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Abstract. Monitoring prairie snow is difficult due to its ex-
treme spatial variability from windy conditions, gentle to-
pography, and low tree cover. Previous work has shown
that a non-invasive, aboveground cosmic ray neutron sensor
(CRNS) placed at the Central Agricultural Research Center
(CARC; 47.07° N, 109.95° W), an agricultural research site
within a semi-arid prairie environment managed by Mon-
tana State University, was sensitive to both the low snow
amounts and spatial variability of prairie snow. In this study,
we build upon previous work to understand how different
snow distributions would have influenced CRNS measure-
ments at the CARC. Specifically, we compared the changes
in neutron counts and snow water equivalent (SWE) after re-
locating our CRNS probe at the CARC using the Ultra Rapid
Neutron-Only Simulation (URANOS) and comparing them
to uniform snow distributions. Neutron counts from simula-
tions with a shallow, heterogeneous snowpack were higher
compared to neutron counts from simulations with a uni-
form snowpack. While areas of higher snow accumulation
reduced neutron counts, the low SWE made it difficult to
discern a consistent relationship between SWE and neutron
counts. Despite this, our analysis indicates that a naive CRNS
placement was 2 to 5 times more likely to yield represen-
tative SWE estimates compared to a similarly placed snow
scale. CRNS showed better agreement with lidar-derived
SWE at our prairie site compared to several gridded snow
products. We show CRNS can provide valuable information
about shallow, heterogeneous snowpacks in prairie and other
environments and can benefit future missions from UAV and
satellite platforms.

1 Introduction

Seasonal snow plays an important hydrologic and climatic
role in the Earth system. Seasonal snow covers an average of
31 % of the Earth’s surface annually (Tsang et al., 2022). A
major component of the Western United States’ water sup-
ply originates from seasonal snowpack, feeding the needs
of over 60 million people (Bales et al., 2006). Prairie snow
can make up to 25 % of the global snow cover (Sturm and
Liston, 2021). Mid-latitude semi-arid prairie environments,
such as those found in the interior Great Plains of North
America (i.e., northern states such as Montana and extend-
ing north into Canada) are dependent on snow. Over 80 to
85 % of streamflow in the Northern Great Plains originates
from snow (Gray, 1970), despite accounting for 20 % of the
annual precipitation (Aase and Siddoway, 1980).

Snow cover in the prairie is known for its extreme spatial
heterogeneity, mainly due to strong surface winds, gentle to-
pography, and spatial variability in vegetation (Gray, 1970).
Figure 1 depicts the variability that snow can exhibit in a
prairie environment. Strong winds in an open, flat expanse
of land scours snow, causing wind erosion, enhancing subli-
mation, and transporting 75 % of the annual snowfall (Gray,
1970; Harder et al., 2019). The effects of blowing snow are
affected by changes in surface roughness such as vegetation
which allows for preferential deposition and accumulation of
snow along natural barriers (Harder et al., 2019; Kort et al.,
2012). These areas of preferential deposition can build snow
drifts as shown in Fig. 1a that can grow over 1 m tall and can
transition to bare ground over a spatial scale of meters to tens
of meters.
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Figure 1. Field images depicting the heterogeneity of snow in a prairie environment from winter 2020–2021. (a) Image taken on top of> 1 m
snow drift, looking east, with snow disappearing as you move away from the snow drift. (b) Standing crop stubble is used to trap snow for
early spring melt. Field images were provided by Eric Sproles.

Figure 1b shows how vegetation variation due to agri-
culture in the Northern Great Plains can drive preferential
snow accumulation. The introduction of dryland cropping
techniques, such as no till (or zero tilling) allows certain
winter wheat crops to grow in the Northern Great Plains
changing the surface roughness of the prairies (Nielsen et al.,
2005; Aase and Siddoway, 1980; Harder et al., 2019). The
increased surface roughness from crops allow for preferen-
tial deposition of snow, reducing the blowing snow process
(Harder et al., 2019). In addition, farmers can leave standing
crop stubble, like in Fig. 1b, to aid in trapping snow and re-
ducing snow erosion to provide water recharge and manage
infiltration and runoff (Aase and Siddoway, 1980; Harder et
al., 2019). Due to the semi-arid climate in the Northern Great
Plains, water use must be efficient for agricultural fields to be
productive. Thus, agricultural development in the prairies has
increased the need to capture snow for early season melt wa-
ter. Accurate snow water equivalent (SWE) measurements in
prairie environments are thus relevant for maximizing agri-
cultural water use efficiency.

Snow heterogeneity introduces an important question in
water resources management: How and where can we effec-
tively measure SWE in prairies and other similar environ-
ments? Traditional manual snow measurements from snow
pits are labor-intensive and are best applied in deep snow. In
prairie environments, snow pit measurements of snow den-
sity are usually restricted to snow drifts and are difficult to
collect in shallower prairie snowpack. In addition, continu-
ous SWE monitoring through snow pillows or snow scales
like those found in the snow telemetry (SNOTEL) network
from the US Department of Agriculture Natural Resources
Conservation Service (USDA NRCS) (Serreze et al., 1999),
are not as effective in the prairie due to wind erosion and
transport. Additionally, Fig. 1 shows how the placement of a
snow pillow or snow scale (e.g., in an area that accumulates
a snow drift or an area that is wind-scoured) could result in

very different snow measurements, some (or all) of which
may not reflect the areal average SWE. Another alternative
is to measure SWE at larger scales through remote sensing
on satellite or airborne platforms. However, satellite and air-
borne remote sensing of SWE in the Northern Great Plains is
currently limited by the SWE variability at the subpixel scale
(Tuttle et al., 2018).

To overcome these limitations in snow observations in the
prairies, we installed a cosmic ray neutron sensor (CRNS)
to measure the SWE at an agricultural research site in the
plains of central Montana. CRNS instruments detect the
background neutron flux that is generated when cosmic rays
interact with matter on Earth (Desilets et al., 2010). Neu-
trons are extremely sensitive to hydrogen, which can either
be absorbed if the neutron is thermalized or slowed down due
to energy loss from elastic collisions with hydrogen atoms
(Zreda et al., 2012). Thus, a CRNS detector measures these
attenuated neutrons, which is inversely related to the amount
of hydrogen atoms in its immediate surroundings. The most
common source of hydrogen in the environment is water
molecules in the atmosphere (Rosolem et al., 2013; Zreda et
al., 2012), vegetation (Baroni et al., 2018; Franz et al., 2015),
and soils (e.g., lattice water and organic matter) (Bogena et
al., 2013; Franz et al., 2013). After accounting for all other
hydrogen pools, CRNS estimates of soil moisture and SWE
are made over an approximate operational radius of 150 to
250 m (for aboveground CRNS) by detecting the neutron flux
over time (Zreda et al., 2008; Royer et al., 2021). The non-
invasive and large footprint of CRNS has intriguing potential
to overcome the issues of traditional continuous snow mon-
itoring in heterogeneous shallow to moderate snowpacks. It
also helps to mitigate a common issue in hydrology: bridging
the scale gap between point measurements and areal mea-
surements, such as remote sensing or modeling studies, by
providing measurements of areal SWE at an intermediate or
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similar spatial resolution (Blöschl, 1999; Iwema et al., 2015;
Schattan et al., 2020).

Previous research has shown that CRNS estimates of SWE
at an agricultural prairie site in central Montana agree with
spatially weighted digital snow models (DSMs) from UAV
light detection and ranging (lidar) flights and modeled CRNS
estimates, despite extreme spatial heterogeneity of the snow-
pack surrounding the detector (Woodley et al., 2024). CRNS
has been noted to be sensitive to bare ground patches, usu-
ally increasing the neutron counts (Schattan et al., 2019). We
build on our previous research from Woodley et al. (2024) to
analyze the effects of snow heterogeneity within the opera-
tional footprint of the CRNS using neutron transport model-
ing. From these results, we provide insights and guidelines
on best practices to site future CRNS probes with respect to
shallow, heterogenous snowpacks. We also use a synthetic
analysis to compare the reliability of a naive CRNS place-
ment in a shallow, heterogeneous snowpack against a simi-
larly sited snow scale. Finally, we compare CRNS estimates
and currently available gridded SWE products to lidar- and
ground-based SWE measurements and find that CRNS mea-
surements can be a reliable ground truth for remote sensing
applications in the prairies.

2 Study area

The modeling domain for this study is a 1 km2 region of
the Central Agricultural Research Center (CARC), an agri-
cultural research site managed by Montana State University,
located in central Montana (47.057510° N, 109.952945° W;
see Fig. 2). The CARC hosts ongoing agricultural research
where researchers investigate different crop varieties, crop-
ping strategies, and soil biogeochemistry. Crops typically
grown at the CARC include cereals, grasses, legumes, and
broadleaf plants. Some crops persist into the winter as stub-
ble at the CARC, depending on harvest practices (Palo-
maki and Sproles, 2023). The elevation of the study re-
gion ranges from 1287 to 1298 m. Soils at the CARC
are primarily well-drained, shallow clay loams (Palomaki
and Sproles, 2023). We observed average air temperatures
of −0.4 °C (−3.7 °C during December-February), average
air pressure of 870 mbar, and average relative humidity of
62.8 % throughout the winter of 2020–2021 (November to
April). A CRNS (CRS2000/B from HydroInnova LLC, Al-
buquerque, NM, USA) was deployed at the site in the winter
of 2020/2021, coincident with the SnowEx 2021 Prairie field
campaign, to measure the low-energy cosmic ray-induced
neutrons (Woodley et al., 2024).

Figure 2. Basemap of study site. (a) The 1 km2 research domain
outlined by the dashed black box at the Central Research Agricul-
tural Center (CARC). The CRNS location is marked by the yellow
dot and the estimated 171 m footprint (calculated in Woodley et al.,
2024) is shown in the dashed yellow circle. The approximate lo-
cations where Fig. 1a (green triangle) and Fig 1b (cyan triangle)
were taken are also shown. Fig. 1a and b were taken facing east.
(b) The approximate location of the CARC in Moccasin, MT in
Central Montana is marked by the red star. The State of Montana
is also highlighted in red with a fill color of tan. (Basemap Image:
© Google Tiles).

3 Data and methods

3.1 In situ measurements

The CARC was selected for NASA’s SnowEx field campaign
in the winter of 2020/2021 to study prairie snow as one of
its main objectives. SnowEx efforts at the CARC included
airborne L-band interferometric synthetic aperture radar (In-
SAR) flights from the Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) instrument, snow-on and snow-
off UAV lidar observations, UAV orthophotos and structure
from motion (SfM), and ground-based snow observations in-
cluding snow pits and snow depth transects (Palomaki and
Sproles, 2023). For this analysis, we used UAV mounted lidar
measurements of snow depth along with snow density mea-
surements from snow pits to calculate spatially distributed
SWE at the CARC.

Table 1 lists the snow depth properties and Fig. 3a shows
the resulting DSMs from the eight UAV lidar flights made in
winter 2020/2021 across eight different dates in our 1 km2

study area (dashed black box, Fig. 2). The lidar data at the
CARC were acquired by a contractor, DJ&A, P.C., using a
1550 and a 905 nm wavelength laser (Woodley et al., 2024).
The lidar measurements show how snow depth varies spa-
tially and temporally within the CARC. The lidar flight con-
ducted on 15 January 2021 is considered our “no snow” base-
line. Despite the large range in snow depth due to the snow
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drifts, the snow drifts typically covered less than 1 % of the
1 km2 area before February 2021. This includes a prominent
linear north-south snow drift that formed adjacent to a wind-
break in the western portion of the CARC. For this study,
the DSM from the UAV lidar was divided into 2 m by 2 m
pixels, for a total model domain of 500 pixels by 500 pixels.
We masked off any region with 0 cm snow depth as a “no
snow” region. We note that root-mean-squared errors (RM-
SEs) provided by the contractor were between 4 and 7 cm,
possibly due to the winter stubble giving a false surface re-
turn (Palomaki and Sproles, 2023). We compared our DSM
from 21 January 2021 to the pixel classifications made from
an orthomosaic photo on the same day (Fig. 1d and e from
Palomaki and Sproles, 2023), and the two show good agree-
ment. However, our “no snow” masks include some pixels
that are classified as “Mixed” in Palomaki and Sproles, 2023,
probably due to the shallow and discontinuous nature of the
snow in these areas.

To calculate spatially distributed SWE from UAV snow
depth, we used density measurements from snow pits mea-
surements collected in the north-south snow drift in the west-
ern portion of the CARC research domain (Mason et al.,
2024). Snow pits observations were collected on four dates:
20 January, 17 February, 24 February, and 5 March 2021.
The snow pits revealed a bimodal snow density distribu-
tion, with a lighter snow layer (varying between approxi-
mately 100 kg m−3 for newly fallen snow to slightly over
400 kg m−3 late in the melt season) atop a denser basal layer
(approximately 400–500 kg m−3) Thus, we utilized a 2-layer
density scheme to calculate spatially distributed SWE at the
CARC, using snow density values derived from the snow pit
measurements. The thickness of the lighter and basal snow
layers on a given date was determined by differencing the li-
dar DSMs on different dates. These 2-layer snow density and
depth maps were used to specify the “natural” snow cover
conditions in the neutron transport simulations (Sect. 3.2).
The snow pit data are archived and freely available on the
National Snow and Ice Data Center (NSIDC) Distributed Ac-
tive Archive Center (DAAC). A more detailed summary of
our methodology is provided in the Supporting Information
from Woodley et al. (2024).

3.2 Ultra rapid neutron-only simulations

We analyzed the effects of the spatial heterogeneity of prairie
snow on CRNS measurements through neutron transport
modeling. Recently, CRNS studies have adopted the use of
the Ultra Rapid Neutron-Only Simulation (URANOS), such
as Brogi et al. (2022), Schattan et al. (2017), and Schrön et
al. (2023). URANOS utilizes a Monte Carlo approach to sim-
ulate the neutrons and has been specifically developed for
CRNS applications (Köhli et al., 2023). Millions of neutrons
are generated from randomly distributed point sources within
a user-defined area, and the neutron paths and interactions
are tracked from source to the point of detection through a

ray-casting algorithm (Brogi et al., 2022; Köhli et al., 2023).
URANOS can model three-dimensional voxel-based geome-
tries with defined materials by stacking multiple layers of ei-
ther ASCII matrices or bitmap images to replicate important
site characteristics (Köhli et al., 2023). For this analysis, we
used URANOS v1.23, which is freely available for download
at: https://gitlab.com/mkoehli/uranos/ (last access: 22 Febru-
ary 2024).

To examine how CRNS measurements change with the
spatial distribution of snow, we ran 624 individual URANOS
simulations: corresponding to each of the 26 virtual CRNS
locations around the CARC (Fig. 3b), for each of the eight
dates corresponding to the UAV lidar flights at the CARC,
with three different snow distribution schemes on each date.
The three different snow distribution schemes include two
different sets of simulations using two different spatially uni-
form snow layers and a singular set of simulations using a
“natural” or heterogeneous snowpack using DSMs derived
from the UAV lidar and snow density (Fig. 3a). We also ran
control simulations with completely snow-free conditions for
each virtual CRNS locations. Our “natural” or heterogeneous
model set-ups are similar to the simulations described in
Woodley et al. (2024), with a stratified 2-layer snow density
model as described in Sect. 3.1 and split into semi-regular
layers (see color bar in Fig. 3). However, our simulations
also contain several important differences. First, we moved
the virtual CRNS around our research domain to test how
neutron counts would have been affected by the differing
snow cover conditions around the CARC. A cylindrical vir-
tual CRNS detector was placed at each of the 26 points in
Fig. 3b and placed 2 m above the ground in URANOS. Each
URANOS run simulated 108 neutrons. The virtual CRNS
was enlarged to a 9 m radius to improve detection statistics
and supplied with a detector response function (provided in
the URANOS GitLab repository) to simulate the sensitiv-
ity of the CRNS installed at the CARC, specifically a high-
density polyethylene moderator of 25 mm thickness. To min-
imize the influence of soil heterogeneity and focus on the
influence of snow variability, we chose to create a uniform
30 cm soil layer with the average of all soil measurements.
In the field, soil samples for soil moisture and bulk density
were collected at 5 cm depth intervals up to a total depth of
30 cm and at six cardinal directions at three different radii
(approximately 25, 75, and 200 m) from the CRNS instru-
ment (Woodley et al., 2024). Because this analysis moves the
simulated CRNS instrument around the CARC where other
soil moisture measurements were not made, we chose to av-
erage the soil measurements for our uniform soil layer. As in
Woodley et al. (2024), soil moisture, atmospheric pressure,
and other important parameters listed in Table 2 were kept
constant to allow direct comparisons of model simulations
due to changes in snow distribution and to remove the need
to correct counts based on differing hydrogen pools.

For the uniform simulations, a chosen volume of snow
water was evenly distributed in the research area, creating
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Table 1. Snow depth (SD) and the snow-covered area (SCA) statistics from the DSMs from each of the 8 UAV lidar flights at the CARC. We
report the average and maximum SD for each date. The SCA is reported as the percentage of the CARC within the 1 km2 research area is
covered by snow and the percentage of the CARC covered by greater than 20 cm of snow.

Date Avg. SD, Excluding Bare Ground Max. SD SCA SCA, SD> 20 cm
(Avg. With Bare Ground) [cm] [cm] [%] [%]

15 Jan 2021 5.3 (0.1) 63.4 1.8 % 0.2 %
21 Jan 2021 3.6 (1.6) 96.7 45.1 % 0.6 %
22 Jan 2021 3.8 (2.0) 82.7 52.1 % 0.5 %
29 Jan 2021 3.2 (0.9) 82.8 28.1 % 0.5 %
17 Feb 2021 8.8 (7.9) 131.5 89.6 % 5.0 %
18 Feb 2021 8.7 (7.6) 131.0 87.1 % 4.8 %
24 Feb 2021 5.5 (2.2) 100.6 39.7 % 2.4 %
4 Mar 2021 2.2 (1.3) 80.4 60.1 % 1.1 %

Figure 3. (a) Lidar DSMs from the winter 2020–2021 NASA SnowEx Prairie Mission within the research domain (dashed black box in
Fig. 2a). Gray regions indicate regions of no snow cover (SD= 0 cm). Color scale for snow is not linear. Smaller increments were included
to show where extremely shallow snow is located at the CARC. (b) Map of locations of virtual CRNS points for URANOS simulations.
The actual CRNS location is marked by the magenta triangle, with the calculated 171 m operational footprint (magenta dashed circle) of the
CRNS from Woodley et al. (2024). The rest of the virtual CRNS (vCRNS) locations used in this analysis are marked by red circles, with one
example virtual CRNS footprint shown in the red dashed circle in the upper right.

a uniform snow layer. We created two uniform snow layer
schemes based on: (a) the average amount of snow water
in the 171 m operational footprint around the CRNS detec-
tor and (b) the average amount of snow water across the en-
tire 1 km2 study domain. The 171 m operational footprint of
the CRNS is a site-specific value calculated at the CARC
using “no snow” URANOS simulations from Woodley et
al. (2024). While we used a constant value for the CRNS
footprint in this study, the actual operational footprint of a
CRNS is dependent on the amount of moisture present in
the environment. We derived the uniform snowpack thick-
ness by dividing the total amount of snow water volume by

the snow density of hard coded material values of different
snow types in URANOS. Depending on the amount of snow
water per pixel, we chose to model the snowpack using the
built-in material codes for snow: 240, 241, and 242, which
has density values of 0.03, 0.1, 0.3 g cm−3, respectively, to
create a snow layer with uniform thickness and density (see
MaterialCodes.txt in GitLab repository, link in Sect. 3.2).

From the different URANOS simulations, we also calcu-
lated SWE from the modeled neutron counts. We followed
our methods from Woodley et al. (2024) to calculate modeled
SWE from URANOS. SWE calculations were made using
Eq. (1) (Desilets, 2017) using our modeled neutron counts
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Table 2. Atmospheric and soil parameters used in our URANOS
simulations. These values were unchanged from each set of hetero-
geneous and uniform snow runs.

Parameter Value

Number of neutrons [–] 100 000 000
Air humidity [g m−3] 3.341
Atmosphere depth [g cm−3] 888.809
Soil moisture (first 30 cm) [%] 21 %
Soil bulk density (first 30 cm) [g m−3] 1.087
Soil porosity (first 30 cm) [%] 56 %

from URANOS simulations,

SWE=−3 ln
N −Nwat

Nθ −Nwat
, (1)

where Nθ is the calibration neutron count, from the “snow-
off” reference date of 15 January 2021 and N is the neu-
tron count corresponding to the dates of the subsequent seven
“snow-on” lidar flights at the CARC (21 January 2021 to
4 March 2021). The attenuation length (3) was calculated
to be 4.8 cm from previous literature (Desilets et al., 2010)
and Nwat is the counting rate over an infinite depth of water
and can be calculated using Eq. (2):

Nwat = 0.24N0, (2)

where 0.24 is an assigned constant value (Desilets, 2017; De-
silets et al., 2010) andN0 is the theoretical counting rate over
dry soils:

N0 =
Nθ

a0
θgρbd+a2

+ a1
, (3)

where a0 = 0.0808, a1 = 0.372, and a2 = 0.115 (Desilets et
al., 2010; Desilets, 2017). Usually,Nθ in Eq. (3) is multiplied
by a correction factor, F(t), to correct for solar activity, at-
mospheric pressure, and humidity. However, as all our model
simulations used exactly the same meteorologic conditions,
our correction factor was set to 1; θg is the sum of gravimetric
soil water content, soil mineral lattice water and water equiv-
alent of soil organic carbon, and ρbd is the soil bulk density,
which were obtained from in situ soil samples.

3.3 Comparisons with gridded SWE products

To evaluate whether CRNS SWE has potential value for fu-
ture remote sensing missions or gridded datasets, we com-
pared our CRNS SWE and UAV lidar SWE to several grid-
ded SWE products, which are available at several spatial
resolutions. We chose the Western United States UCLA
Daily Snow Reanalysis (hereafter UCLA-re,∼ 500 m resolu-
tion, Fang et al., 2022), the Snow Data Assimilation System
(SNODAS, 1 km resolution, National Operational Hydro-
logic Remote Sensing Center, 2004) from National Oceanic

and Atmospheric Administration’s National Weather Service
National Operational Hydrologic Remote Sensing Center,
and the Daily 4 km Gridded SWE (hereafter UA, 4 km reso-
lution, Broxton et al., 2019) from the University of Arizona.

The UCLA-re dataset is generated from assimilation data
with Landsat fractional snow cover area and other input data
such as meteorological forcings from the Modern-Era Ret-
rospective analysis for Research and Applications, version 2
(MERRA-2) (Margulis et al., 2019). A Bayesian analysis is
performed on prior estimates of snow states and fluxes us-
ing a land surface model and snow depletion curves (Mar-
gulis et al., 2019). SNODAS provides daily gridded estimates
of SWE for the conterminous United States using a snow
model, which is forced by downscaled numerical weather
predictions (Clow et al., 2012). Digitally available airborne,
satellite, and ground-based snow data are then assimilated
into the model to provide a best estimate of near real-time
snow estimates (Clow et al., 2012; Driscoll et al., 2017). The
UA dataset provides SWE and snow depth estimates by as-
similating snow station data such as the SNOTEL network
and precipitation and temperature data using the gridded
PRISM model (Zeng et al., 2018). For each gridded dataset,
we chose the pixel that included the CARC. Only the SWE
for the UCLA-re data was aggregated and averaged within a
2-pixel by 2-pixel region, to obtain an area that is similar to
the 1 km2 area of the CARC. All gridded datasets are freely
available for download at the National Snow and Ice Data
Center.

4 Results and discussion

4.1 Neutron modeling

Figure 4 shows the differences between the URANOS simu-
lations with a heterogeneous snowpack and 171 m average
uniform snowpack for neutron counts (Fig. 4a) and SWE
(Fig. 4b) for all eight lidar flight dates and 26 virtual CRNS
locations in Fig. 3b. Neutron counts are on average 1.8 %
higher in the heterogeneous runs compared to the uniform
runs with a root-mean-squared difference (RMSD) of 2.6 %.
When we calculated the SWE using these URANOS runs and
Eq. (1), SWE would be underpredicted in the heterogeneous
runs with a mean bias percentage error (MBPE)=−19.9 %
and a RMSD= 35.3 %. We found similar trends comparing
URANOS simulations with a heterogeneous snowpack and
the CARC average uniform snowpack (not shown). Neutron
counts were 1.9 % higher in the heterogeneous runs with an
RMSD of 3.1 %. SWE were biased towards the uniform runs
with an MBPE of −23.2 % and a RMSD= 42.7 %. For both
comparisons, we colored each data point in Fig. 4 by the per-
centage of bare ground (i.e., the ratio of the area of no snow
cover (SD= 0 cm) to the total area of the 171 m radius foot-
print of each virtual CRNS detector). Generally, we found
neutron counts were similar between the heterogeneous and
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uniform runs (both 171 m and CARC average SWE) at higher
percentages of bare ground within the operational footprint
of the CRNS. The opposite trend was true for SWE.

We grouped the differences in neutron counts between the
heterogenous and uniform snow model runs (with CRNS
footprint average SWE) across all dates by virtual CRNS
location, to determine which locations had the largest and
smallest differences in neutron counts (Fig. 4c). The largest
differences were found in points P00, P05, P19, and P03.
Points P00, P05, and P19 are the three closest locations to
the large snow drift in the western portion of the study area.
P03 (top row, center in Fig. 3b) is also located near snow
drifts that formed due to topographical changes near train
tracks that cross the CARC. The lowest errors were found in
points P17, P15, P24, and P06. The commonality between
points P17, P15, P24, and P06 were probably relatively uni-
form snow cover surrounding the virtual CRNS for most of
the dates. P17 and P24 were in the same field directly to the
left of P00, which had relatively uniform snow trapped from
the field around most of the dates during winter 2020/2021.
P00, P05, P19, and P03 had much more variable snow cover
surrounding the virtual CRNS, with the large snow drift on
one side and bare ground on the other for most dates in winter
2020/2021.

Comparing the heterogeneous runs to the uniform runs
with CARC average SWE allows us to evaluate which vir-
tual CRNS locations were most reflective of the CARC av-
erage. The locations with the smallest neutron count differ-
ences were points P20, P07, P06, and P19. The locations with
the largest neutron count differences were points P13, P23,
P14, and P10. Interestingly, points P20, P07, and P19 are the
three points clustered around the actual CRNS instrument at
the CARC. P06 was not located near the original CRNS but
had some snow cover through most of January and Febru-
ary. P13, P14, and P10 were also similarly clustered close
together (NW quadrant) closer to the train track snow drifts.
We theorize that these points sampled too many snow drifts
or too little snow throughout the winter.

One might assume that neutron counts between the uni-
form and heterogeneous simulations should be comparable
because both have the same total snow water volume within
the operation footprint of the CRNS. However, it appears that
the distribution of the snow water and bare ground patches
among fallow fields, crop stubble, and shelter belts around
the CARC has a considerable effect on CRNS, as shown in
Schattan et al. (2019). Figure 4c suggests that snow drifts
closer to the CRNS affect neutron counts the most, lead-
ing to the largest differences in neutron counts compared
to a uniform snow scenario. We found that differences in
neutron counts between the uniform and heterogeneous runs
(hereafter 1NCf =NCuniform−NCheterogeneous) were posi-
tively correlated with the percentage of bare ground within
the operation footprint of the CRNS in the heterogenous sce-
nario (i.e., spatially varying snow distribution derived from
the UAV lidar and snow density), with statistical significance

(r = 0.454, p<0.05). This correlation partly arises from the
fact that we are comparing similar model runs when the
bare ground percentage is close to 100 %, leading to mini-
mal differences in neutron counts. Differences in 1NCf be-
tween the uniform and heterogeneous snowpacks increases
with more snow covering the ground, and enhanced vari-
ability of snow depths within the CRNS footprint. To ver-
ify, we computed additional correlation metrics between the
1NCf and snow depth variability within a CRNS footprint
– that is, the standard deviation and the range (difference
between max. and min. snow depth). We found statistically
significant negative correlations between 1NCf and snow
depth standard deviation (r =−0.70, p<0.05) and 1NCf
and snow depth range (r =−0.60, p<0.05). The negative
correlations are due to 1NCf being mostly negative since
1NCheterogeneous>1NCuniform. These results similarly sug-
gest that higher amounts of snow lead to increased hetero-
geneity (e.g., snow drifts and bare ground patches) which
creates the high 1NCf .

To test whether snow drifts do in fact play a large role in
neutron count differences, we focused on model comparisons
for 15 January 2021, to isolate the effects of large snow drifts
on CRNS measurements. Figure 5 shows the differences be-
tween heterogeneous runs (i.e., spatially varying snow distri-
bution derived from the UAV lidar and snow density) and the
uniform runs (i.e., uniform snow distribution) from 15 Jan-
uary. On this date, most of the CARC was snow-free except
for some isolated patches of extremely shallow snow and the
large snowdrift in the western portion of the study domain
(top left panel of Fig. 3a, and Fig. 5b). Most virtual CRNS
locations resulted in neutron counts from the heterogenous
and uniform runs that were within 1 % of error from each
other. However, points P00, P05, P07, and P19 yielded large
differences of greater than 100 neutrons (approximately 3 %
error). These four points are also the closest to the snow drift
on 15 January 2021 (see Fig. 5b).

Figure 6 compares how the neutron counts change with
relation to the snowpack variability at P00, P05, P07, and
P19. We calculated the percentage change between the het-
erogeneous and uniform runs (171 m average) where the neu-
tron model domain was divided into 12 sectors of equal angle
from the virtual CRNS detector. We noticed skews in neutron
origins due to the relation of the model geometry, that is, the
position of the virtual detector and the source geometry. Vir-
tual detectors placed closer to the edges of our domain had
neutron origins that were skewed towards the center of the
domain. Therefore, we limited the neutron counts to within a
200 m radius of the virtual detector only for the results shown
in Fig. 6a–d. The radial plots in Fig. 6 shows the percentage
change in neutron counts from the uniform runs to the hetero-
geneous runs in each sector on 15 January. P07 (Fig. 6a) saw
the biggest percentage change between the no-snow (right
of N–S line) and snow side (left of N–S line) with an aver-
age percentage change of 5 % in neutron counts compared to
1.6 % change, respectively. We observed a similar but smaller
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Figure 4. Scatterplot comparing (a) neutron counts and (b) SWE for the heterogenous snow runs (x-axis) against uniform snow runs (y-axis)
that use the average SWE of the 171 m radius footprint surrounding the virtual detector across the 26 virtual CRNS locations for the 8 lidar
flight dates. Points are colored by the percentage of bare ground by area within the 171 m footprint of a CRNS. (c) Boxplots showing the
difference between the heterogenous and uniform snow runs for each virtual CRNS location (shown in Fig. 3b), where each box contains the
eight URANOS simulations corresponding to the eight UAV lidar flights at the CARC.

trend in P05 (Fig. 6c) with an average 3.2 % change on the
no-snow side and 2.3 % change on the snow side. In both P19
(Fig. 6d) and P00 (Fig. 6b), we observed larger changes on
the snow side compared to the no-snow side. P00 had a 5.3 %
change on the snow side compared to a 2.4 % change on the
no-snow side. P19 had a 3.9 % change on the snow side and
a 2.1 % change on the no-snow side. The different trend in
P00 neutron counts are probably explained by the longer dis-
tance away from the snow drift (Fig. 6f) leading to extreme
difference in the snowpack around the CRNS. Many studies
have shown that CRNS is extremely sensitive to its imme-
diate surroundings (Köhli et al., 2015; Schrön et al., 2017).
In the case of P00, it seems that the latter has a lesser in-
fluence on neutron counts compared to points P05, P07, and
P19, which were much closer to the snow drift. These re-
sults highlight that CRNS neutron counts are the result of the
interaction between the spatial sensitivity of the CRNS and
the spatial snow distribution. The differences between P05,
P07, and P19 are probably caused by the breaks in the snow

drift as it first formed. P07 (Fig. 6e) was placed next to a
longer, contiguous section of the snow drift compared to P05
(Fig. 6g), which reduced the neutron counts on the snow side
for P07. We observed similar breaks in P19. Overall, all of
our model results are probably influenced by the extremely
shallow nature of the snowpack at the CARC, leading to dif-
ferences in neutron counts that are less than 10 % of the de-
tected neutrons, making this correlation analysis difficult to
discern.

4.2 CRNS spatial representativeness

To supplement these findings, we conducted a secondary
analysis to evaluate the spatial representativeness of CRNS
SWE at our prairie site compared to the observations that
might have been collected from a more traditional snow scale
SWE instrument. In most cases, CRNS or other SWE in-
struments are deployed in the hope of capturing the average
snow conditions representative of a large area. To do this,
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Figure 5. (a) A scatterplot comparing neutron counts from the uniform runs (y-axis) against the heterogeneous runs (x-axis) for 15 Jan-
uary 2021, the near-no-snow baseline, with the exception being the large north-south snow drift in the western portion of the study area
(same as Fig. 4a). The points are colored by the percentage of bare ground within the 171 m footprint of the CRNS but using a different
scale. While most points fell near the one-to-one line (black dashed line) and within a 1 % error, four virtual CRNS locations yielded large
differences in neutron counts: P00 (triangle marker), P05 (square marker), P07 (diamond marker), and P19 (hexagonal marker). (b) Map of
the snow depth from the 15 January 2021 UAV lidar flight, shown in the color bar. The snow drift is the slim blue linear feature on the left
(western) portion of the study area. The virtual CRNS locations in URANOS are shown in circles, while the actual CRNS location from
winter 2020–2021 is shown in a triangle (as in Fig. 3b). The four points with the largest neutron count differences are marked in magenta.

Figure 6. Percentage changes in neutron counts of the heterogenous runs from the uniform runs for 12 sectors around the virtual CRNS
location for the 4 points identified in Fig. 3: (a) P07, (b) P00, (c) P05, and (d) P19. The orange line on panels (a)–(d) marks no change
in neutrons counts in the heterogeneous runs from the uniform runs. The snow distribution on 15 January 2021 is shown for each point on
panels (e)–(h) to contextualize the differences.
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we averaged the lidar-derived SWE DSMs for each of the
eight UAV flights to 1 m2 spatial resolution. We calculated
the kernel density of all of these 1 m2 SWE pixels to un-
derstand the full distribution of SWE across the study site,
where each pixel represents a possible SWE measurement
that could have been collected by a naively located snow
scale or snow pillow (of measurement area equal to 1 m2).
Then, we applied the CRNS spatial weighting function from
Woodley et al. (2024) to each of these pixel locations (actu-
ally, every fourth pixel to increase computational efficiency),
using a wraparound boundary to remove edge effects from
pixels close to the boundary of the study site. This allowed us
to retrieve a distribution of synthetic CRNS SWE estimates
across the entire CARC.

We acknowledge that this analysis is naive in that it as-
sumes that the CRNS spatial weighting function would be
constant across the entire study site. In reality, the spatial
sensitivity of CRNS can change with snow spatial distribu-
tion and magnitude, and soil moisture distribution and mag-
nitude, among other factors. The wraparound boundary also
means that none of the CRNS SWE estimates from this anal-
ysis, especially those near the boundaries of the study area,
is truly reflective of the “true” SWE that would be observed
by CRNS at the same location within the site.

However, it does mean that each CRNS SWE estimate is
derived from the same lidar-derived SWE data, which reflects
a spatial snow distribution representative of a prairie site. Fi-
nally, this analysis assumes that a snow scale or snow pil-
low would exactly measure the SWE in each given location.
However, this is unlikely to be true given that snow will prob-
ably accumulate differently on a smooth artificial surface ver-
sus the natural ground surface, especially in the windy, shal-
low snow conditions typical of the prairie. In summary, this
analysis is not as rigorous in reproducing CRNS behavior as
the URANOS simulations presented above. Nevertheless, it
does provide a first-order estimate of the spatial representa-
tiveness of CRNS SWE estimates at a prairie site versus more
conventional, smaller-footprint SWE instruments.

Figure 7a shows the kernel density distribution of syn-
thetic SWE estimates from the CRNS locations across the
entire CARC (blue), compared to the distribution of “Snow
Scale” 1 m2 lidar-derived SWE pixels from the entire CARC
(red) for an example date of 29 January 2021. This date was
more than one week after the most recent snow event, al-
lowing for wind redistribution, sublimation, and potentially
melting of the snow during the intervening period. The spa-
tial mean lidar-derived SWE for the entire CARC is shown
in the vertical, black dashed line. A similar plot is shown in
Fig. 7b for 17 February 2021, soon after a large snow event
(and the most pronounced snowpack of the season). In both
cases, the CRNS SWE distribution is shifted closer to the
CARC average, compared to the 1 m2 “Snow Scale” SWE
distribution.

For 29 January, the CARC average SWE was 0.4 cm. 23 %
of the CRNS locations were within ±25 % of the CARC av-

erage, while only 5 % of the 1 m2 pixels were within that
same range. For 17 February, the CARC average SWE was
1.1 cm, and 50 % of the CRNS locations and 20 % of the 1 m2

pixels were within ±25 % of the CARC average, respec-
tively. Across all dates (excluding 15 January 2021, which
had very spatially limited snow cover), this analysis indi-
cated that the percentage of the CARC study area for which
a CRNS would return a SWE estimate within ±25 % of the
CARC average ranged from 21 %–50 %, while the 1 m2 pix-
els ranged from 5 %–20 % of the CARC. In summary, our
first-order analysis indicated that a naively sited CRNS was
2.3 to 5 times more likely to return a SWE estimate within
±25 % of the large-scale spatial average than a similarly sited
SWE sensor with a footprint of 1 m2.

These results are shown spatially in Fig. 7c and e, where
Fig. 7c shows the map of synthetic CRNS SWE estimates,
and Fig. 7e shows the lidar-derived SWE at 1 m2 resolution
for the example date of 29 January 2021. In both maps, loca-
tions that returned a SWE value within ±25 % of the CARC
average are shown in red. The representative areas for CRNS
are more extensive and spatially contiguous, while the rep-
resentative 1 m2 “Snow Scale” pixels are fewer and less spa-
tially contiguous. The same maps are shown for 17 Febru-
ary 2021 in Fig. 7d and f. In this case, a larger proportion of
the CARC is representative of the large-scale CARC average
in both maps, and the CRNS similarly shows more exten-
sive and more contiguous representative areas. These results
indicate that CRNS provides value for large-scale SWE es-
timates in the prairies, and well suited to measure SWE in
prairie environments compared to the conventional, smaller-
footprint sensors. It appears that the optimal locations to site
CRNS in prairie snow distributions like the CARC are in lo-
cations of low snow accumulation near areas of high snow
accumulations (e.g., snow drifts). This makes sense, as most
of the CARC area exhibits low snow accumulation, while
only a small portion experiences higher snow accumulation,
and CRNS are most sensitive to the area immediately sur-
rounding the instrument. Through a combination of design
and happenstance, our actual CRNS at the CARC (point P00
in Fig. 3) is located within a representative region for all li-
dar dates (with the exception of 15 January 2021, which had
very spatially limited snow cover).

4.3 Comparison against gridded SWE estimates

To show the value of accurate CRNS measurements to fu-
ture remote sensing missions, we compared our CRNS SWE
estimates and currently available gridded snow products to
the areal mean lidar-derived SWE and snow depth for the en-
tire 1 km2 study area. Figure 8 shows comparisons of SWE
(Fig. 8a) and snow depth (Fig. 8b) products at similar mag-
nitudes of scale (see Sect. 3.3 for details). We also plotted
our CRNS SWE time series at the CARC from Woodley et
al. (2024) (see Fig. 5a in Woodley et al., 2024). In January
and March 2021, all gridded SWE products had no SWE.
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Figure 7. Simulation of the spatial representativeness of aboveground CRNS at the CARC versus a snow scale or pillow of area 1 m2. (a)
and (b) Probability density functions of the SWE observed by synthetic CRNS (blue) versus a synthetic snow scale or pillow of pixel size
1 m by 1 m (red) for 29 January and 17 February 2021, respectively. The vertical dashed line shows the mean SWE of the entire study 1 km2

area. It is evident on both dates that the probability density of CRNS SWE estimates is shifted closer to the areal mean. (c) and (e) show
the areas where the CRNS and 1 m “Snow Scale” are within ±25 % of the mean SWE of the entire study area (red pixels), respectively, for
29 January 2021. The underlying blue color map shows the SWE estimate from the given synthetic SWE measurement method, as calculated
from the lidar-derived SWE DSM. This results in different color scale limits for the CRNS (c) than for the synthetic snow scale (e) because
the CRNS measures SWE over a larger spatial footprint, which effectively smooths out the SWE distribution. (d) and (f) show the same
information for 17 February 2021. Generally, the CRNS is representative of a larger proportion of the study area and the representative areas
are more contiguous, compared to the 1m resolution synthetic snow scale or pillow.

This contrasts with the average CARC SWE from the UAV
lidar DSMs (red squares in Fig. 8a) and URANOS simula-
tions (gray boxplots in Fig. 8a), and our CRNS SWE times
series (green line, Fig. 8a), which all indicate that snow is
present. In February, the UCLA-re and SNODAS predicted
more peak SWE on 17 and 18 February 2021 compared to
our average CARC SWE, with SNODAS almost double our
CARC SWE estimates. The UA SWE produced quite similar

estimates to our CARC SWE in February, before underpre-
dicting SWE starting in March.

The differences in SWE products are probably due to ag-
gregation with different resolution and meteorological forc-
ings. Sub-grid variability is shown to be very important in
estimating the SWE in a prairie environment, where the av-
erage SWE can be either grossly under or overpredicted. Past
studies have indicated that SNODAS is unsuccessful at cap-
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Figure 8. Comparisons of (a) SWE estimates and (b) snow depth estimates from gridded products and in situ measurements between
9 January to 10 March 2021. In (a), time series of the UCLA Snow Reanalysis (blue line), UA SWE (orange line), daily mean CRNS SWE
(green line) from Woodley et al. (2024; blue line from Fig. 5a) are shown. Daily SNODAS SWE estimates for each of the dates corresponding
to a lidar flight are shown as blue triangles, and an averaged CARC SWE for each DSM for the 1 km2 study region are plotted as red squares.
URANOS modeled SWE estimates from this study for each date are plotted as gray boxplots to illustrate the variability of SWE within our
study region. Snow depth from the same sources are shown in (b), except for CRNS and URANOS, which do not estimate snow depth.

turing the snow spatial variability in regions with persistent
winds like the prairies (Lv et al., 2019). Our results indi-
cate that similar issues can occur with snow depth. Figure 8b
plots a similar graph, except showing the changes in snow
depths for January to March 2021. Snow depth shows a sim-
ilar pattern, where all gridded products lack snow in Jan-
uary 2021 and March 2021, and snow depths are detected
for February 2021. SNODAS overestimates the snow depths
compared to our average CARC snow depths on 17 and
18 February 2021, while underestimating snow depths for all
other dates, despite having similar spatial resolution (1 km
for SNODAS and a 1 km aggregate for lidar CARC SWE).

While Fig. 8a shows that SWE estimates from the UA 4km
data are more reliable in February 2021, Fig. 8b shows that
the accuracy of both the UA and UCLA-re snow depth es-
timates vary depending on the winter months. UA 4 km un-
derestimates snow depth for mid-February 2021, while the
UCLA-re overestimates snow depth. However, by the end of
February 2021, this relationship is flipped with the UCLA-re
predicting similar snow depth to our lidar DSM average and
the UA 4 km overpredicting snow depth. The timing of snow
accumulation from all three models also does not seem to line

up with some of our in situ measurements. UCLA-re shows a
brief accumulation event between the 15 January 2021 UAV
flight and the 21 January 2021 UAV flight, and coincident
with a known snowfall event between 18–19 January 2021
(see Supporting Information for Woodley et al., 2024). How-
ever, snow disappears quickly after the snowfall event. Lower
estimates of mean SWE and SD are expected for larger spa-
tial resolutions due to increased aggregation (Blöschl, 1999).

Our analysis shows that CRNS has utility for improving
SWE estimates in prairie environments, and other environ-
ments with shallow, heterogeneous snowpacks. CRNS mea-
surements have already shown this utility in mountain re-
gions. Integration of CRNS SWE into models, alongside re-
mote sensing data, has reduced error spread in the Austrian
Alps (Schattan et al., 2020). CRNS has the potential to in-
crease the coverage of SWE monitoring sites, where cur-
rently used technologies within snow monitoring networks
like SNOTEL may not be optimal, such as the northern Great
Plains. Previous research has shown that large errors in SWE
were due to subpixel SWE variability of the Northern Great
Plains (Tuttle et al., 2018). However, we hope that future
planned satellite missions such as NISAR, armed with simi-
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lar instrumentation used in the CARC during SnowEx 2021
(Palomaki and Sproles, 2023) can improve efforts to monitor
snow in this relatively under-instrumented region.

4.4 Assumptions and limitations of this study

For this analysis, we made several key assumptions and
simplifications from actual field conditions during winter
2020/2021. One key simplification concerned soil moisture.
As mentioned in Sect. 3.2, we kept soil moisture spatially
uniform and constant across all our model simulations due
to a variety of logistical complications. In situ soil moisture
measurements were collected at the CARC after the winter
season in May 2021, due to delivery of the CRNS instru-
ment after first snowfall (Woodley et al., 2024). These soil
measurements were also taken at a maximum of 200 m away
from our CRNS instrument, while our URANOS simulations
cover the entire 1 km2 area. While soil moisture was contin-
uously monitored at nine locations throughout the winter of
2020/2021 using soil moisture probes, these data were not
informative because the soil temperature dropped below 4 °C
(at which point water’s dielectric properties change) for the
top 0.5 m of soil for nearly the entire winter (Woodley et
al., 2024). The heterogeneity of the underlying soil moisture
will have a great effect on CRNS measurements and neu-
tron counts, possibly even overcoming the contribution of the
snowpack due to the shallow nature of the snowpacks in the
prairie. Snowmelt events throughout the winter could also af-
fect CRNS measurements throughout the winter, which may
also affect soil moisture depending on the coupled frozen
ground dynamics. Our aim was to show how CRNS measure-
ments were affected by snowpack spatial distribution alone
and what considerations need to be taken before siting a
CRNS to obtain SWE.

Another important assumption was our initial conditions,
that is, our Nθ , the calibration neutron count (see Eqs. 1 and
3), which we took from 15 January 2021. Typically, a CRNS
is calibrated by choosing a value of Nθ before the start of
the winter season, when SWE = 0 (Desilets, 2017). Again,
due to logistical constraints mentioned previously, we were
not able to obtain a baseline neutron count during snow-free
conditions. Between the time period when the CRNS was
installed at the CARC on 22 November 2021 and when we
conducted our “snow-off” lidar flight on 15 January 2021,
the CARC was never completely snow-free (Woodley et al.,
2024). Our Nθ value from 15 January may be lower than a
calibration value chosen before the start of the winter season
due to the proximity of the prominent north-south snow drift.
A lower Nθ would affect the SWE values that we have cal-
culated in this study and our CRNS time series (green line in
Fig. 8). However, with less than 2 % of the CARC covered in
snow on 15 January 2021 and only 0.2 % of it covered in deep
snow (see Table 1), we do not expect the choice of Nθ to be
a large source of bias in our CRNS SWE estimates. Modeled
SWE calculated using a completely snow-free baseline (gray

boxes Fig. 8a) and the 15 January baseline (Fig. 4b) differed
on average by 0.05 cm.

5 Conclusions

A neutron transport modeling study at an agricultural site in
the Northern Great Plains of Montana has shown that the spa-
tial variability of shallow and heterogeneous snowpack af-
fects CRNS measurements. Our URANOS simulations with
heterogeneous snowpack tended to have increased neutron
counts compared to simulations with a uniform snowpack
with similar snow water volume. We partly attribute these in-
creases in neutron counts to bare ground patches around the
CRNS with the heterogeneous snowpack, similar to previous
studies such as Schattan et al. (2019). However, we acknowl-
edge that the spatial sensitivity of the sensor may play a large
role in these differences as well, since our virtual CRNS loca-
tions were placed in areas of lower snow accumulation. How
snow is distributed should be considered when siting above-
ground CRNS instruments in areas of high snow spatial het-
erogeneity, even for very shallow snowpack like that at the
CARC, if the goal is for the instrument to be representative
of the large-scale spatial average. In prairie sites character-
ized by wind scoured fields and spatially limited snow drifts,
CRNS instruments should be placed in areas of low snow
accumulation that are nearby higher snow accumulation ar-
eas. However, a naively sited CRNS instrument (i.e., with
no knowledge of the snow distribution) is still 2 to 5 times
more likely to be representative of the large-scale average
SWE than a more conventional, smaller footprint SWE sen-
sor such as a snow scale or snow pillow. Comparisons with
gridded SWE products show that CRNS has the potential to
improve SWE estimates in prairie snow, when compared to
lidar-derived SWE from the site. Our study focuses solely on
the effect of snow distribution on CRNS, but spatial variabil-
ity of soil moisture is also important to consider, especially in
shallow snowpack areas such as the prairie, where the effect
of soil moisture distribution on CRNS measurements may be
of comparable magnitude to that of snow distribution. This
highlights the need for further research in semi-arid prairie
environments like the Northern Great Plains, where water use
efficiency and snow capture are of great agricultural interest,
and more rigorous studies of CRNS applications in shallow,
heterogeneous snowpacks.

Code and data availability. Code and data used in
this analysis will be made available through GitHub
at https://github.com/heyjoekim/spatial_crns_carc (last
access: 27 May 2025) and archived on Zenodo at
https://doi.org/10.5281/zenodo.15530868 (Kim and Tuttle, 2025).
Snow pit data from the CARC are available to download from the
NSIDC DAAC (https://doi.org/10.5067/QIANJYJGRWOV, Mason
et al., 2024).
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