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Abstract. Snow water equivalent (SWE) retrieval from Ku-
band radar measurements is possible with complex retrieval
algorithms involving prior information on the snowpack mi-
crostructure and a microwave radiative transfer model to
link backscatter measurements to snow properties. A key
variable in a retrieval is the number of snow layers, with
more complex layering yielding richer information but at
an increased computational cost and number of unknowns.
Here, we show the capabilities of a new method to sim-
plify a complex multilayered snowpack to two to three lay-
ers while nearly preserving the microwave scattering be-
havior of the snowpack and conserving the bulk snow wa-
ter equivalent. This method, called radar-equivalent snow-
pack, is based on a k-means clustering algorithm to group
the snow layers based on the extinction coefficient and a
weighted average using the optical thickness applied to the
snow properties. We evaluated our method using snow prop-
erties from simulations of the Soil, Vegetation and Snow ver-
sion 2 (SVS-2)/Crocus physical snow model at 11 sites span-
ning a large variety of climates across the world and the Snow
Microwave Radiative Transfer model to calculate backscat-
ter at 17.25 GHz. The layer simplification is done as an inter-
mediate step between the physical modeling (SVS-2/Crocus)
and the microwave radiative transfer (Snow Microwave Ra-
diative Transfer Model – SMRT). Grouping and averaging
snow stratigraphy into three layers effectively reproduced the
total snowpack backscatter of multilayered snowpacks, with
an overall root mean squared error of 0.5 dB and R2

= 0.98.
Using this methodology in SWE retrieval applications, this
method can be used to simplify snowpacks and reduce the
number of variables to optimize while maintaining simi-
lar scattering behavior without compromising the modeled

snowpack properties. A reduction in the mathematical com-
plexity of SWE retrieval cost functions and a reduction in
computation of up to 80 % can be gained by using fewer lay-
ers in the SWE retrieval.

1 Introduction

Snow water equivalent (SWE) is a key element of the hy-
drological cycle and an important component of the surface
energy balance, so it must be well-represented in environ-
mental prediction systems. Because conventional SWE ob-
servations are exceptionally sparse, new spaceborne radar
missions to deliver SWE information are under develop-
ment, such as the Canadian Terrestrial Snow Mass Mission
(TSMM, Derksen et al., 2021; Tsang et al., 2022). A state-
of-the-art SWE retrieval from the Ku-band radar measure-
ments delivered by a mission like TSMM requires a radiative
transfer model (RTM) to link snow properties to backscatter
(Saberi et al., 2021; Zhu et al., 2021; Pan et al., 2017, 2024).
Snow properties, including layer thickness, density, tempera-
ture, and microstructure (e.g., specific surface area), are nec-
essary to model the microwave signal with an RTM properly.
Prior or first-guess information on layered snow properties
is needed to constrain retrievals (Merkouriadi et al., 2021;
Durand et al., 2024). This information can come from ver-
tical snowpack measurements, either manually or using an
instrument like a high-resolution snow penetrometer (SMP,
Proksch et al., 2015). More typically, observations are un-
available, so snowpack information can come from physi-
cal snow models that provide multilayered snow properties
based on meteorological forcing data.
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Detailed physical snow models like Crocus (Vionnet et al.,
2012) and SNOWPACK (Bartelt and Lehning, 2002; Lehn-
ing et al., 2002) are one-dimensional multilayered physical
schemes that can model the evolution of the snowpack (in-
cluding its microstructure) by taking into account energy ex-
change between the snow, the atmosphere, and the soil based
on meteorological inputs. In Crocus, the snowpack is verti-
cally discretized on a finite-element grid with specific rules
to allow the snowpack layering to evolve dynamically from
new precipitation, compaction, and/or metamorphism. One
such rule is the dynamic attribution of the number of layers
and thicknesses to simulate the snowpack layering. The min-
imum number is 3 layers, but the maximum is 50 (Vionnet
et al., 2012). Numerical snow models that use large numbers
of layers can improve the representation of dynamic physical
processes within the snowpack, such as heat and mass fluxes,
resulting in a better representation of the temperature profile.
Better simulation of the vertical temperature profile within
the snow improves the simulation of microstructure evolution
and spring snowmelt initiation (Cristea et al., 2022). There-
fore, there is a benefit to adding layers in physical modeling
to improve the full vertical profile of snow properties.

Some algorithms couple a physical snow model and a
snow RTM to retrieve SWE using microwave remote sens-
ing data (Langlois et al., 2012; Larue et al., 2018; Singh
et al., 2024). Snow RTMs can model the radar backscatter
using snow parameters from complex layered snowpacks. In
a SWE retrieval like in Pan et al. (2017), the SWE (a func-
tion of depth and density) of the different layers is estimated
by minimizing the difference between the modeled and mea-
sured backscatter. To simulate the backscatter, most RTMs
solve the radiative transfer equation based on the discrete or-
dinate and eigenvalue method (Picard et al., 2004), which
discretizes the radiative transfer equation and solves a non-
homogeneous system of linear equations based on the num-
ber of layers. Increasing the number of snow layers thus in-
creases the computational cost at many levels within the re-
trieval algorithm. Also, a larger number of layers increases
the complexity of the retrieval by increasing the number of
variables in the cost function. This is why current retrievals
typically use a two-layer model (Saberi et al., 2021; Pan
et al., 2017). Completely neglecting stratigraphy by using a
one-layer model can affect the performance of the retrieval
(Durand et al., 2011) because layering strongly influences
the backscattering properties of snow (Rutter et al., 2016).
A one-layer model oversimplifies the scattering behavior of
the snowpack and so is not adequate in most cases (Rutter
et al., 2019; Meloche et al., 2024; Montpetit et al., 2024). For
this reason, a two- or three-layer model provides notably bet-
ter SWE retrievals by accounting for stratigraphy in a certain
way (Pan et al., 2017; Saberi et al., 2021). In the end, there
is a disconnect between needing several layers in a physi-
cal model to simulate a realistic microstructure profile and
needing only two or three layers in SWE retrievals for com-
putation simplicity.

To reduce the number of layers, a mass- or thickness-
weighted average is commonly used to average all properties
of the snowpack (Durand et al., 2011) and conserve snow
mass (i.e., SWE). Singh et al. (2024) applied the same logic
in averaging a multilayered snowpack into a two-layer snow-
pack and chose the height that corresponded to the maximum
change in density to split the snowpack into two layers. Other
SWE retrievals (Saberi et al., 2021) focused on arctic snow-
packs by setting the initial two-layer snowpack from well-
documented layer properties (e.g., wind slab and depth hoar
for Arctic snowpacks) (Rutter et al., 2019; Vargel et al., 2020;
Derksen et al., 2009, 2012). For assimilation of passive mi-
crowave data, Larue et al. (2018) used a detailed physical
snow model (Crocus) coupled with an RTM with a limit of
15 layers as a compromise between accuracy and computa-
tion time. Yu et al. (2021) proposed an interesting method
for estimating an effective one-layer snowpack for passive
microwave applications that calculates a SWE-weighted av-
erage for the microstructure parameter and preserves the re-
flectivity of the air–snow and snow–ground interfaces from
the multilayered snowpack. With this approach, the scatter-
ing properties are better preserved. To our knowledge, a ro-
bust method still does not exist to effectively reduce the num-
ber of layers of a given snowpack while minimizing changes
in scattering properties. This would allow the accuracy of the
SWE retrieval not to be compromised and the computation
time to be reduced.

The goal of this paper is to develop a simple algorithm
to convert a multilayered snowpack with a large number of
layers (20–50) into a simplified snowpack (2–3 layers) that
preserves its snow mass and scattering behavior, thereby im-
proving the computational cost with minimal impact on per-
formance. The method should preserve backscatter within
1 dB, since it is the calibration uncertainty of most synthetic
aperture radars (Schmidt et al., 2018). This study only fo-
cuses on evaluating our snowpack reduction method on dry
snow in the context of SWE retrievals based on volume scat-
tering. However, this method could potentially be used for
wet snow since the extinction coefficient would be sensitive
to liquid water via the absorption coefficient if the physical
model correctly estimates the melt. To evaluate our method,
we test it on multilayered Crocus simulations at 11 sites
across various snow climates and multiple seasons. From the
50-layer simulations (maximum layering), we compare vari-
ous methods to obtain a radar-equivalent snowpack by eval-
uating differences in snow masses and simulated backscat-
ter using the Snow Microwave Radiative Transfer Model
(SMRT, Picard et al., 2018).
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2 Methods

2.1 Study site and data

A total of 11 sites were selected to cover a wide range of
snowpack conditions and climates, and meteorological forc-
ing and evaluation datasets were previously published. Of the
11 sites, 6 are in mountain environments (Col de Porte, Küh-
tai, and Weissfluhjoch in the European Alps and Reynolds
Mountain, Senator Beck, and Swamp Angel in the western
USA), 2 are in tundra environments (Bylot and Trail Valley
Creek in the Canadian High Arctic), 2 are in taiga environ-
ments (Umiujaq in the Canadian boreal forest and Sodankylä
in the Finnish boreal forest), and 1 is in a maritime climate
(Sapporo in Japan). Details of each dataset are shown in Ta-
ble 1.

Of the 11 sites, 3 were selected to more easily illustrate the
methodology. These sites (TVC, WFJ, and SAP) have dis-
tinct snowpack characteristics. The TVC arctic snowpack is
characterized by a layer of highly scattering depth hoar with
a dense wind slab on top. The WFJ alpine snowpack is char-
acterized by a deep snowpack with a progressive density in-
crease from top to bottom and some melt–freeze crusts due to
warming events throughout the season. The SAP snowpack
is characterized by a similar alpine snowpack but is more im-
pacted by wet precipitation.

2.2 Soil, Vegetation and Snow version 2 (SVS-2)/Crocus

The snowpack model Crocus (Brun et al., 1992; Lafaysse
et al., 2017; Vionnet et al., 2012) was used to simulate the
evolution of the snowpack properties, i.e., the number of lay-
ers, thickness, density, liquid water content, temperature, and
specific surface area for each layer. The version of Crocus
used in this study is implemented in the SVS-2 land surface
scheme (Garnaud et al., 2019; Vionnet et al., 2012; Wool-
ley et al., 2024). The snowpack model is coupled to a mul-
tilayered soil model that includes soil freezing and thawing
(Boone et al., 2000). SVS-2 is an improvement to the SVS
land surface scheme (Alavi et al., 2016; Husain et al., 2016;
Leonardini et al., 2021) used at Environment and Climate
Change Canada for hydrological prediction. For the simula-
tions at the arctic sites (Bylot and Trail Valley Creek), the
Arctic version of Crocus (Royer et al., 2021b; Woolley et al.,
2024) was used. This version improves the simulation of the
wind slab properties and includes the impact of basal vege-
tation on snowpack properties. This allows a better “arctic”
density profile by increasing the wind slab density and low-
ering the depth hoar density.

At each site, simulations were run with a maximum num-
ber of 50 snow layers. Table B1 summarizes the options of
Crocus for each physical process and the snow aging param-
eters (Gaillard et al., 2025) used for the simulations at the
different sites. At the two Arctic sites, the polar vegetation
height was set to 10 cm (Woolley et al., 2024), and for the

taiga sites it was set to 50 cm and 20 cm for UMQ and SOD,
respectively. The model uses a time step of 10 min, and the
meteorological forcing is provided hourly.

2.3 SMRT

SMRT is a multilayered snow radiative transfer model that
can compute backscatter in the microwave range. It considers
each snow layer to be a homogeneous random medium com-
posed of air and ice and solves the radiative transfer equation
for a multilayered snowpack (Picard et al., 2018). Each snow
layer is represented by temperature, density, thickness, and
microstructure parameters, all of which are provided by Cro-
cus. One key component of SMRT is determining the scat-
tering and absorption coefficients (κs and κa) of each layer.
These coefficients dictate the radar scattering and absorbing
behavior of the medium (snow). For snow, this generally im-
plies that scattering (κs) dominates for dry snow and that ab-
sorption (κa) dominates for wet snow. The extinction coef-
ficient (κe = κs+ κa) characterizes the interaction within the
medium by accounting for both coefficients and is a key pa-
rameter of the snow layer reduction algorithm presented in
this paper. Multiple formulations of the coefficients can be
used depending on the electromagnetic model, but here we
focus on the improved Born approximation (IBA, Mätzler,
1998) implemented in SMRT.

The phase function of snow in the 1–2 frame, e.g., ice par-
ticles (medium 2) in an air matrix (medium 1), is defined by

p1–2 frame(ϑ,ϕ)= φi(1−φi)(ε2− ε1)
2 Y 2(ε2,ε1)k

4
0

M(|kd |)sin2χ, (1)

where k0 is the wavenumber in free space and φi is the vol-
ume fraction of the scattering constituent (ice) describing
φi = ρsnow/ρice, with ρsnow the snow density (kg m−3) and
ρice the pure ice density (kg m−3). ε is the relative permittiv-
ity of both media, and χ is the polarization angle defined by
sin2χ = 1− sin2ϑcos2ϕ for the scattering (ϑ) and incident
(ϕ) directions. The mean square field ratio (Y 2) accounts for
the difference in the electric field between the background
and scattering media (see Picard et al., 2018, for the equa-
tions). The microstructure term (M(|kd |)) is defined by the
Fourier transform of the autocorrelation function (ACF) of
the medium. Here, we used the exponential model (Mätzler,
2002), where the ACF is characterized by a correlation length
(lmw) estimated by the specific surface area (SSA) and the
snow density. More details on the ACF and M(|kd |) can be
found in Picard et al. (2018). κs can be calculated from the
following equation:

κs = π

π∫
0

[ p11(ϑ)+p22(ϑ) ]dϑ, (2)

where p11 = p1–2 frame(ϑ,ϕ = π/2) and p22 =

p1–2 frame(ϑ,ϕ = π) are defined by the phase function.
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Table 1. Overview of the sites used to evaluate the Crocus snowpack layering reduction methods.

Site Code Source Time period Lat. (°) Long. (°) Elevation (m) Country Snow
cover

Bylot BYL Domine et al. (2021) 2014–2019 73.15 −80.00 22 Canada Arctic
Col de Porte CDP Menard and Essery (2019) 1994-2014 45.30 5.77 1325 France Alpine
Kühtai KUT Krajči et al. (2017) 1990–2013 47.21 11.01 1920 Austria Alpine
Reynolds Mountain RME Menard and Essery (2019) 1988–2008 43.19 −116.78 2060 USA Alpine
Sapporo SAP Menard and Essery (2019) 2005–2015 43.08 141.34 15 Japan Maritime
Senator Beck SNB Menard and Essery (2019) 2005–2015 37.91 −107.73 3714 USA Alpine
Sodankylä SOD Menard and Essery (2019) 2007–2014 67.37 26.93 179 Finland Taïga
Swamp Angel SWA Menard and Essery (2019) 2005–2015 37.91 −107.71 3371 USA Alpine
Trail Valley Creek TVC Tutton et al. (2024) 2013–2018 68.75 −133.5 91 Canada Arctic
Umiujaq UMQ Lackner et al. (2024) 2012–2020 56.56 −76.48 130 Canada Taïga
Weissfluhjoch WFJ Menard and Essery (2019) 1996–2016 46.83 9.81 2536 Switzerland Alpine

κa is defined by

κa = 2k0=(
√
εeff), (3)

where εeff is the effective permittivity using the Polden–van
Santen general mixing formula (Sihvola, 1999).

In addition to the simulations using the full number of Cro-
cus snow layers, SMRT was used to simulate the backscat-
ter of the snowpack to evaluate our averaging methods
(Sect. 2.4). Crocus provides the layered snow density and
SSA to estimate the microwave grain size with

lmw =Klp =K
4(1−φi)
ρice SSA

, (4)

where K is the polydispersity of the microstructure. The
polydispersity was assumed to be 0.75 for all of the grain
types in this experiment, but future work could include a
polydispersity for different Crocus-simulated grain types.

Simulations were first performed at the high Ku-band
(17.25 GHz), the TSMM frequency that is most sensitive to
volume scattering (Derksen et al., 2021), but later the fre-
quency range X-band to Ku-band was also investigated. Ver-
tical co-polarization (VV) was the focus since horizontal co-
polarization (HH) will not be measured as part of TSMM
(Derksen et al., 2021). A simple absorber for the background
was used (no scattering from the ground is assumed) to only
obtain the snow contribution to the modeled backscatter. The
incident angle was set to 35° as a typical median value for
synthetic aperture radar sensors such as TSMM. The snow
layer interfaces were assumed to be flat.

2.4 Algorithm

The algorithm aims to reduce the number of snow layers to
two or three relevant layers while preserving SWE and scat-
tering behavior with respect to the reference snowpack (de-
fined as the 50-layer Crocus simulations). The main goal is
to develop a robust method to aggregate and average snow
layer properties in a microwave SWE retrieval context. Fig-
ure 1 shows the general methodology for obtaining a radar

equivalent snowpack with reduced layers. The method is di-
vided into two operations applied to layers: grouping and av-
eraging.

The grouping of the layers was done in two ways. The first
method was used as a baseline comparison. This method (re-
ferred to as equal) aggregated layers based on the normalized
height hnorm, which is the height of a layer divided by the
thickness of the whole snowpack. For instance, if a snowpack
is simplified into two layers, the top half of the snowpack,
i.e., all layers with heights greater than one-half of the snow-
pack thickness, would be aggregated into a first layer and
the bottom half would contain all layers with heights that are
less than or equal to one-half of the snowpack thickness. This
method is a basic way of obtaining an equivalent snowpack
with layers of equal thickness. Also, a one-layer simplified
snowpack was created by grouping all layers into one group
to evaluate the worst-case scenario when reducing the num-
ber of layers. The second method, which is part of our pro-
posed new methodology, was based on k-means clustering
(Ikotun et al., 2023). This algorithm identifies groups within
the parameter space by minimizing the variance within each
group or cluster. First, it randomly initializes centroids for
each group in the parameter space and then assigns each
point to the initial groups based on the Euclidean distance to
the nearest centroid. The centroids are updated to the mean
position of all points within each group. The process is re-
peated iteratively until a convergence is reached (when the
centroid positions no longer change significantly) or a fixed
number of iterations is completed. A known issue with k-
means clustering is that the random initialization of the cen-
troids can lead to non-representative clusters due to a local
minimum reached in the convergence. To avoid this issue, the
k-means initialization (Arthur and Vassilvitskii, 2007) was
used, which ensures a smart initial choice of the centroids
based on the empirical distance distribution of the points, es-
sentially selecting centroids that are furthest from each other.
This speeds up the convergence and improves the quality of
the clusters. In our case, the parameter space is the extinction
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Figure 1. Schematic of the methodology. Necessary steps in the snowpack simplification are shown vertically, and the different options
(grouping and averaging) are shown horizontally where hnorm is the normalized height and h is the layer thickness. The four snow properties
considered are thickness, density, temperature, and SSA.

coefficient κe of each layer and the respective layer height
in the snowpack. Layers with strong extinction coefficients
(high κe) will have strong interaction with the incident wave.
A layer with a low extinction coefficient will be practically
transparent to the incident wave. This method creates groups
of layers based on their microwave properties κe and their
locations in the snowpack.

Once the grouping of the layers was done, the snowpack
layer properties (density, temperature, and SSA) were aver-
aged. We investigated two different ways of averaging: (1) a
weighted average based on h as a baseline (referred to as the
h average) and (2) a new weighted average based on the op-
tical thickness τ = κe h (Zhu et al., 2021) for SSA and tem-
perature (referred to as the τ average). The h average is used
for density in both average methods, as it ensures the con-
servation of SWE. The average density of a snowpack with
multiple layers of thickness h can be defined by

ρ =

∑n
i=1hiρi∑n
i=1hi

. (5)

If we replace
∑n
i=1hi with the thickness of the whole snow-

pack hsnow and rearrange Eq. (5), the SWE equation is ob-

tained:

SWE=
n∑
i=1

hiρi = hsnowρ. (6)

Finally, the thickness of each group is calculated by adding
all of the individual layer thicknesses within that group.

The backscatter was estimated for the reference simulation
(maximum layering from SVS-2) and five other grouping
methods referred to as 1-layer, 2-equal, and 3-equal, with the
equal thickness layering method and two-cluster and three-
cluster layers using the k-means cluster grouping. Both aver-
aging methods were tested on the equal and cluster groupings
to compare the performance of each method. The root mean
squared error (RMSE) with the reference simulation is used
to evaluate each method.

It is known that the backscatter in snow comes from both
volume scattering and reflection at these interfaces, although
interface reflection is small with respect to volume (except
at nadir). When reducing the number of layers from 50 to
2, 48 interfaces are removed from the simulations. Although
interface reflection is small with respect to volume, this re-
duces the overall internal layer reflections of the signal in the
snowpack because of the reflected signal at each interface.
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However, if the permittivity contrast between two layers is
low, the reflection will be negligible. To quantify the effect
of the reflections at each snow layer interface, backscatter
simulations using transparent internal layers were used to es-
timate the influence of all of the interfaces in the multilay-
ered snowpack configurations. The experiment referred to as
transparent was done by leaving the surface to the default
SMRT interface (flat Fresnel) and changing all of the inter-
nal interfaces to transparent, which yields no reflection and
full transmission of the radar signal at each interface. This
means setting the transmission to 1 and the reflection to 0.
The snow–ground interface was not modified. The difference
in backscatter was estimated between the reference simula-
tion and the transparent simulation to estimate how much the
internal interfaces contribute to the total backscatter.

3 Results and discussions

3.1 Grouping and averaging methods

Figure 2 presents examples of the two-layer equivalent snow-
packs (first column) and three-layer equivalent snowpacks
(second column) derived from the two methods (equal and
cluster) for two different dates at WFJ. The equal method is
shown with the dashed lines, and the cluster method is shown
with the colored symbols. The k-means method groups to-
gether layers with similar extinctions, whereas the equal-
thickness method creates transitions that are not always con-
sistent with transitions in scattering. For some vertical snow
profiles, transitions between equal-thickness layers can coin-
cide with a change in κe (e.g., in Fig. 2), but k-means consis-
tently identifies changes in κe. One particular case of cluster
grouping is seen in Fig. 2f, where the classification of certain
layers is mixed (groups 1 and 2). The two layers classified
as group 2 at approximately 50 cm depth were “added” to
the bottom layer. The effect of this particular grouping is dis-
cussed later in the section.

The grouping and averaging methods were first investi-
gated at three different sites that represent alpine (WFJ), mar-
itime (SAP), and arctic (TVC) snowpacks. Figure 3 shows
the simulated backscatter with SMRT for the 2013–2014
winter season. For easier representation, only the group-
ing with three layers is shown here: 3-equal with the h-
average method was worst in terms of reproducing the n-
layer backscatter, 3-cluster with the h average improves the
performance but still cannot consistently replicate the n-layer
backscatter throughout the season, and 3-equal with a τ av-
erage achieved a similar performance to 3-cluster with the
τ -average model but had issues early in the season for WFJ
and SAP. Using the τ average was superior to the h aver-
age for preserving the backscatter. The backscatter of the arc-
tic snowpack at TVC is well-represented for most grouping
methods. Using the cluster method is not always better than
equal grouping during the season. For some dates, the cluster

is close to equal grouping (Fig. 2) and the resulting backscat-
ter is similar.

To better understand the performance of the cluster ap-
proach, Fig. 4 shows biases for 3-equal and 3-cluster with
the h-average method as a function of snow properties; 3-
equal with the h-average method shows increased negative
biases for low density and a high SSA at the WFJ and SAP
sites compared to biases for the cluster method, which were
smaller and constant across the density and SSA. These lay-
ers have less scattering and low SWE (high SSA and low
density) than other snow layers, supporting the idea that these
snow layers were better handled by the cluster grouping be-
cause of the ability to identify and group these transparent
layers. Biases for both methods tend to increase as the snow
layers are warmer. For TVC, biases remain relatively small
(< 1 dB) for the majority of the season because the SWE is
fairly small (< 100 mm), and changes in stratigraphy are less
frequent due to the lack of precipitation. Arctic snowpacks
also tend to have a simple stratigraphy well-represented by a
two-layer snowpack (Vargel et al., 2020; Royer et al., 2021a).

Analysis of all sites and seasons (Table 2) produces re-
sults consistent with the example cases shown in Fig. 3. Not
surprisingly, aggregating the layers into a one-layer snow-
pack with the h-average method resulted in the highest over-
all bias. Increasing the number of layers (from one to three)
and using a cluster grouping resulted in a lower RMSE and
a greater R2 (Table 2). Again, 3-cluster with the τ -average
method is the most promising method for preserving SWE
and the scattering behavior because the RMSE for all of the
sites is lowest (RMSE= 0.5 dB and R2

= 0.98). TVC, KUT,
and SWA had the highest RMSE (0.7–0.8 dB) compared to
BYL, CDP, and UMQ, which had the lowest RMSE (0.3–
0.4 dB). There is no pattern with respect to snow climate
(alpine and arctic) and the performance of 3-cluster with the
τ -average method; 2-cluster with the τ average and 3-equal
with the τ average produced the second-best overall RMSE
of 0.7 dB and R2

= 0.97, while 3-equal with the τ average
achieved lesser but similar performance to 3-cluster with the
τ -average model. This indicates that the cluster grouping is
less important in terms of preserving the microwave behavior
than the τ average of the snow properties.

Averaging layers using the h average does not sufficiently
reduce the backscatter RMSE below 1 dB. However, using
the τ average brings the RMSE down to under 1 dB. The
τ -average method was effective in preserving the backscat-
ter because this averaging approach places more weight on
strong scattering layers due to κe. The thickness is also a
good indicator of scattering because a thicker layer will scat-
ter more than a thin layer with the same scattering proper-
ties. This is an effective way of averaging snow properties
and preserving the scattering behavior of the snowpack. The
τ -average method seems the most promising method for pre-
serving the scattering behavior.

Transparent layer simulations yielded on average an
RMSE of 0.3 dB from full layering simulations (Table 2).
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Figure 2. Snowpack properties (scattering, density, SSA, and grain type) from Crocus and SMRT simulations at WFJ for the winter of
2013–2014. The first row is 8 December 2013, and the second row is 9 February 2014. The grouping using the k-means clustering is shown
by the colors in panels (a), (b), (e), and (f). The hnorm used for the equal-thickness grouping is also shown with the dashed lines. The colors
and nomenclature for the grain types follow the international classification for seasonal snow on the ground (Fierz et al., 2009).

Figure 3. Backscatter time series for the reference simulations and different three-layer grouping and averaging methods. The simulations
for the 2013–2014 season at WFJ, SAP, and TVC are shown.

This indicates that, on average, the internal layering con-
tributions are around 0.3 dB based on the number of layers
from SVS-2/Crocus simulations and the different sites and
seasons. For the arctic sites (BYL, TVC, and UMQ), the
RMSE values from 3-cluster with the τ -average method and
the transparent experiment are the same, indicating that the
snowpack reduction method almost perfectly preserves the
scattering of the snowpack, with the exception of the layer
contributions. For the other sites, especially the alpine sites
(KUT, SWA, and UFJ), the RMSE of 0.7 dB for 3-cluster
with the τ -average method is larger than the layering con-

tribution, indicating that there are still some effects from the
reduction method that are not accounted for.

The issue raised in Fig. 2 about mixed layers between
groups can be discussed further with the results of the trans-
parent layering. The two layers at 50 cm in Fig. 2f that were
grouped with the layers at the bottom with three k-means do
not affect the scattering effect of the snowpack since they
will be accounted for in the τ average, whether they are in
group 0 or group 1. However, attenuation of the scattering
from these layers can differ if the layers are moved upward or
downward in the snowpack. The other effect was the vertical
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Figure 4. Boxplot of the difference in backscatter as a function of mean density, SSA, and temperature per simulation for the sites WFJ,
SAP, and TVC for the 2013–2014 season.

Table 2. Overview of the RMSE and correlation coefficient (R2) of the estimated backscatter for the different grouping and averaging
methods for all sites and all seasons. The column in bold shows the best-performing method.

Backscatter RMSE (dB), R2

Site One-layer 2-equal 2-cluster 3-equal 3-equal 3-cluster 3-cluster Transparent
h average h average τ average h average τ average h average τ average

BYL 7.6, 0.39 1.8, 0.96 0.7, 0.99 1.4, 0.97 0.6, 0.99 0.6, 0.99 0.4, 0.99 0.4, 0.99
CDP 6.2, 0.64 3.5, 0.84 0.7, 0.99 2.5, 0.90 0.8, 0.98 0.7, 0.98 0.5, 0.99 0.3, 0.99
KUT 5.0, 0.65 2.5, 0.86 0.9, 0.96 1.9, 0.91 0.8, 0.97 1.1, 0.95 0.7, 0.97 0.3, 0.99
RME 4.7, 0.75 2.9, 0.87 0.7, 0.98 2.2, 0.91 0.7, 0.98 1.2, 0.96 0.5, 0.99 0.3, 0.99
SAP 4.4, 0.72 2.4, 0.88 0.4, 0.98 1.9, 0.91 0.5, 0.98 0.7, 0.98 0.3, 0.99 0.3, 0.99
SNB 2.7, 0.79 1.9, 0.89 0.7, 0.96 1.7, 0.92 0.6, 0.98 1.4, 0.93 0.5, 0.98 0.2, 0.99
SOD 5.5, 0.55 2.0, 0.91 0.6, 0.99 1.4, 0.95 0.6, 0.99 0.6, 0.99 0.4, 0.99 0.3, 0.99
SWA 4.1, 0.72 2.9, 0.80 0.9, 0.95 2.4, 0.84 0.7, 0.97 1.7, 0.90 0.7, 0.97 0.3, 0.99
TVC 9.0, 0.41 3.2, 0.71 0.9, 0.99 1.6, 0.91 0.7, 0.99 0.4, 0.99 0.4, 0.99 0.4, 0.99
UMQ 3.0, 0.78 2.0, 0.90 0.5, 0.99 1.7, 0.91 0.7, 0.98 0.7, 0.99 0.3, 0.99 0.2, 0.99
UFJ 4.0, 0.72 2.9, 0.84 0.9, 0.95 2.4, 0.88 0.7, 0.97 1.6, 0.92 0.7, 0.97 0.3, 0.99

All 5.1, 0.65 2.5, 0.86 0.7, 0.97 1.9, 0.91 0.7, 0.98 1.0, 0.96 0.5, 0.99 0.3, 0.99

change in permittivity that was modified, impacting the re-
flection of the signal in the internal layers. However, because
the reflection of the internal layers was minimal (≈ 0.3 dB)
and the change in backscatter was < 1 dB for all of the sites,
it was concluded that the overall effect of this special group-
ing case was minimal.

The simulations were performed earlier at VV polariza-
tion since this will be the primary polarization of TSMM,
but similar simulations were also done at HH polarization
(not shown here) and yielded a higher RMSE of 0.1 dB than
VV polarization.
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Figure 5. Backscatter simulations of 3-equal with the h-average and 3-cluster τ -average methods as a function of frequency.

3.2 Frequency dependence

An analysis of frequency dependence was conducted across
the X-band to Ka-band range (10 to 40 GHz), encompass-
ing regimes where volume scattering is significant. This in-
terval includes the frequency utilized in the present study
(17.25 GHz), which corresponds to the upper frequency se-
lected for the Terrestrial Snow Mass Mission (Derksen et al.,
2021). The errors between simulations with full layering and
3-cluster with the τ average were similar to the values re-
ported in Table 2 from 10 to 30 GHz. The performance of
3-cluster with the τ -average method is based on κe, which is
frequency-dependent. This allows us to obtain similar results
when frequency (and sensitivity to volume scattering) in-
creases. Although differences can be noted between sites, our
method preserved similar performances from 10 to 30 GHz.
At 10 GHz, a different simulation setup would be needed
since the soil contribution will dominate. Above 40 GHz, 3-
cluster with the τ -average method became similar to 3-equal
with the h average because the backscatter came from the
snow surface as the frequency increased and the penetration
depth decreased.

3.3 Implications for SWE retrievals

In SWE retrieval applications, the number of variables that
need to be optimized plays a crucial role in determining the
accuracy and efficiency of the retrieval process. One of the
most significant advantages of adopting a radar-equivalent
snowpack representation is its ability to reduce the number
of optimized variables without substantial loss of informa-
tion. Now, an important choice still has to be made regarding
whether two or three layers are best. We saw that backscat-
ters from a two-layer snowpack are slightly degraded com-
pared to using a three-layer snowpack (Table 2). Despite this
small degradation when simplifying into two layers, retrieval
applications could still benefit in terms of computational ef-
ficiency and reduced solution space, which can be advanta-
geous for operational or large-scale applications. However,
simplifying into three layers would offer a better representa-
tion of snowpacks across all climates.

In a Bayesian retrieval, calculating the mismatch term in-
volves running a radiative transfer model and then optimizing
the resulting posterior parameters. Using radar-equivalent
snowpack would imply that the optimization is performed
for a snowpack represented by a reduced number of layers
rather than its full complexity. Concurrently, the prior distri-
butions for snow properties, which are sourced from SVS-2,
are also reduced to this number of layers. This consistent ap-
proach ensures that both the forward modeling for the mis-
match term and the prior information are based on a compa-
rable simplified structural representation of the snowpack.

4 Conclusions

In this paper, we showed the performance of our methods in
simplifying complex multilayered snowpacks to three layers
or less while preserving their microwave scattering behavior
and bulk snow mass. We evaluated our method using sim-
ulated snow properties generated by the Crocus snowpack
scheme at 11 sites, which were input into the SMRT model
to calculate backscatter at 17.25 GHz and VV polarization.
This emulates potential future measurements from the Cana-
dian Terrestrial Snow Mass Mission. The method was a k-
means clustering algorithm that grouped snow layers based
on the extinction coefficient and the height of a layer in the
snowpack. Then, a weighted average using the extinction co-
efficient and the thickness was applied to the snow proper-
ties, except for density, for which snow layer thickness was
used as a weight to preserve SWE. We found that the aver-
aging method was more important than the grouping method
for preserving the backscatter. Reducing the original 50 snow
layers to 3 layers using this method reproduced the snowpack
backscatter of the original multilayered snowpacks with an
overall RMSE of 0.5 dB and R2

= 0.98. Using this method-
ology in SWE retrieval algorithms allows snowpack simpli-
fication without nearly impacting the scattering behavior or
compromising the geophysical properties. Reduction in the
mathematical complexity of the SWE cost function and re-
duction in computation by up to 80 % (Appendix A1) can be
gained by using fewer layers in SWE retrievals.
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We proposed radar-equivalent snowpack, a simple method
that can also be applied to other fields of study that need
to simplify a multilayered snowpack without compromising
the electromagnetic properties of snow. The algorithm aver-
ages snow layers to obtain effective layers with snow proper-
ties that have an electromagnetic equivalent, so the poten-
tial application must be specific to the chosen frequency.
This method could be adapted to passive microwave re-
mote sensing where the signal is also highly dependent on
snow scattering, including ice sheet or sea ice remote sens-
ing where the microwave signal could be simplified to fo-
cus on radiation-relevant layers. For the TSMM workflow,
this radar-equivalent snowpack allows for simplification of
the modeled snowpack from SVS-2/Crocus and reduction of
the number of unknowns in the SWE retrieval. It can also be
used in assimilation schemes to reduce the computation time
required to calculate a backscatter ensemble from a collec-
tion of snowpack members. For these reasons, this method
offers an effective way of linking physical snow modeling
and snow radiative transfer modeling in SWE retrievals.

Appendix A: Computation efficiency

Computation time was also estimated for each method to
evaluate the gain in computational efficiency. The reduction
in the computation time of the backscatter to reduce a com-
plex multilayered snowpack (50 to 10 layers) to 2 or 3 layers
is shown in Table A1. The largest reduction in computation
time was from 50 layers to 2 layers at 87 %, and the smallest
was from 10 to 3 layers at 39 %. Even the smallest reduc-
tion is considerable and motivates this work in the context
of operational SWE retrieval implementations, where these
computations have to be done at large scales.

Table A1. Computation time of backscatter with the SMRT and
grouping methods. Results in various configurations of the num-
ber of layers are shown here. The grouping times for the k-means
method are also shown. The backscatter computation time for three
layers is 0.15 s, and for two layers it is 0.12 s. The grouping and
averaging (3-cluster with a τ average) method takes 0.005 s.

Reduction (%)

Number of Computation To three To two
layers time (s) layers layers

50 layers 0.90 83 87
40 layers 0.80 81 85
30 layers 0.67 78 82
20 layers 0.46 68 75
10 layers 0.25 39 53
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Appendix B

Table B1. Crocus schemes and parameters used at the different sites. The meaning of the Crocus schemes can be found in Lafaysse et al.
(2017) and Woolley et al. (2024). The different options are defined in their respective papers – B21: modified C13 of Carmagnola et al.
(2014); B92: Brun et al. (1992); R21: Royer et al. (2021b); V12: Vionnet et al. (2012); and Y81: Yen (1981). The γ parameter represents the
snow aging coefficient and was determined at the sites in Gaillard et al. (2025), except for Reynolds Mountain, for which the default value
of 60 d was used.

Site Metamorphism Radiation Snowfall Thermal conductivity Water percolation Compaction γ (d)
density

Bylot B21 B92 R21 Y81 B92 R21 900
Col de Porte B21 B92 V12 Y81 B92 B92 20
Kühtai B21 B92 V12 Y81 B92 B92 10
Reynolds Mountain B21 B92 V12 Y81 B92 B92 60
Sapporo B21 B92 V12 Y81 B92 B92 40
Senator Beck B21 B92 V12 Y81 B92 B92 60
Sodankylä B21 B92 R21 Y81 B92 R21 150
Swamp Angel B21 B92 V12 Y81 B92 B92 60
Trail Valley Creek B21 B92 R21 Y81 B92 R21 900
Umiujaq B21 B92 R21 Y81 B92 R21 200
Weissfluhjoch B21 B92 V12 Y81 B92 B92 200

Code and data availability. The code developed for this pa-
per is available at https://doi.org/10.5281/zenodo.16617755
(Meloche, 2025). The code of Crocus within the SVS-
2 land surface scheme used in this study is available at
https://doi.org/10.5281/zenodo.14859640 (Vionnet et al., 2025).

Author contributions. JM, NL, and BM wrote the manuscript with
contributions from all of the co-authors. All of the co-authors de-
signed the experiment. JM and NL performed the analysis. VV and
NL developed SVS-2. All of the co-authors reviewed the manuscript
and provided analysis guidance.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of The Cryosphere. The peer-review process
was guided by an independent editor, and the authors also have no
other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The study was made possible by open-source
development of the SMRT and Crocus models.

Financial support. This research has been supported by Environ-
ment and Climate Change Canada.

Review statement. This paper was edited by Jürg Schweizer and re-
viewed by two anonymous referees.

References

Alavi, N., Bélair, S., Fortin, V., Zhang, S., Husain, S. Z., Car-
rera, M. L., and Abrahamowicz, M.: Warm Season Eval-
uation of Soil Moisture Prediction in the Soil, Vegetation,
and Snow (SVS) Scheme, J. Hydrometeorol., 17, 2315–2332,
https://doi.org/10.1175/JHM-D-15-0189.1, 2016.

Arthur, D. and Vassilvitskii, S.: K-Means++: The Advantages of
Careful Seeding. Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, 7–9 January
2007, 1027–1035, 2007.

Bartelt, P. and Lehning, M.: A Physical SNOWPACK Model for the
Swiss Avalanche Warning, Cold Reg. Sci. Technol., 35, 123–145,
https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.

Boone, A., Masson, V., Meyers, T., and Noilhan, J.: The
Influence of the Inclusion of Soil Freezing on Simula-
tions by a Soil–Vegetation–Atmosphere Transfer Scheme, J.
Appl. Meteorol., 39, 1544–1569, https://doi.org/10.1175/1520-
0450(2000)039<1544:TIOTIO>2.0.CO;2, 2000.

Brun, E., David, P., Sudul, M., and Brunot, G.: A Nu-
merical Model to Simulate Snow-Cover Stratigraphy for
Operational Avalanche Forecasting, J. Glaciol., 38, 13–22,
https://doi.org/10.3189/S0022143000009552, 1992.

Carmagnola, C. M., Morin, S., Lafaysse, M., Domine, F., Lesaf-
fre, B., Lejeune, Y., Picard, G., and Arnaud, L.: Implementation

https://doi.org/10.5194/tc-19-2949-2025 The Cryosphere, 19, 2949–2962, 2025

https://doi.org/10.5281/zenodo.16617755
https://doi.org/10.5281/zenodo.14859640
https://doi.org/10.1175/JHM-D-15-0189.1
https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2
https://doi.org/10.3189/S0022143000009552


2960 J. Meloche et al.: Reducing the number of snow layers

and evaluation of prognostic representations of the optical diam-
eter of snow in the SURFEX/ISBA-Crocus detailed snowpack
model, The Cryosphere, 8, 417–437, https://doi.org/10.5194/tc-
8-417-2014, 2014.

Cristea, N. C., Bennett, A., Nijssen, B., and Lundquist, J. D.: When
and Where Are Multiple Snow Layers Important for Simula-
tions of Snow Accumulation and Melt?, Water Resour. Res.,
58, e2020WR028993, https://doi.org/10.1029/2020WR028993,
2022.

Derksen, C., Silis, A., Sturm, M., Holmgren, J., Liston, G. E., Hunt-
ington, H., and Solie, D.: Northwest Territories and Nunavut
Snow Characteristics from a Subarctic Traverse: Implications
for Passive Microwave Remote Sensing, J. Hydrometeorol., 10,
448–463, https://doi.org/10.1175/2008JHM1074.1, 2009.

Derksen, C., Toose, P., Lemmetyinen, J., Pulliainen, J., Langlois,
A., Rutter, N., and Fuller, M.: Evaluation of Passive Microwave
Brightness Temperature Simulations and Snow Water Equivalent
Retrievals through a Winter Season, Remote Sens. Environ., 117,
236–248, https://doi.org/10.1016/j.rse.2011.09.021, 2012.

Derksen, C., King, J., Belair, S., Garnaud, C., Vionnet, V., Fortin,
V., Lemmetyinen, J., Crevier, Y., Plourde, P., Lawrence, B., van
Mierlo, H., Burbidge, G., and Siqueira, P.: Development of the
Terrestrial Snow Mass Mission, in: 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS, IEEE,
Brussels, Belgium, 11 July 2021 614–617, ISBN 978-1-6654-
0369-6, https://doi.org/10.1109/IGARSS47720.2021.9553496,
2021.

Domine, F., Lackner, G., Sarrazin, D., Poirier, M., and Belke-Brea,
M.: Meteorological, snow and soil data (2013–2019) from a herb
tundra permafrost site at Bylot Island, Canadian high Arctic, for
driving and testing snow and land surface models, Earth Syst.
Sci. Data, 13, 4331–4348, https://doi.org/10.5194/essd-13-4331-
2021, 2021.

Durand, M., Kim, E. J., Margulis, S. A., and Molotch,
N. P.: A First-Order Characterization of Errors From Neglect-
ing Stratigraphy in Forward and Inverse Passive Microwave
Modeling of Snow, IEEE Geosci. Remote S., 8, 730–734,
https://doi.org/10.1109/LGRS.2011.2105243, 2011.

Durand, M., Johnson, J. T., Dechow, J., Tsang, L., Borah, F.,
and Kim, E. J.: Retrieval of snow water equivalent from dual-
frequency radar measurements: using time series to overcome the
need for accurate a priori information, The Cryosphere, 18, 139–
152, https://doi.org/10.5194/tc-18-139-2024, 2024.

Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E.,
McClung, D. M., Nishimura, K., Satyawali, P., and Sokratov,
S. A.: The International Classification for Seasonal Snow on the
Ground, Technical Documents in Hydrology No. 83, IACS Con-
tribution No. 1, UNESCO, Paris, 2009.

Gaillard, M., Vionnet, V., Lafaysse, M., Dumont, M., and Ginoux,
P.: Improving large-scale snow albedo modeling using a clima-
tology of light-absorbing particle deposition, The Cryosphere,
19, 769–792, https://doi.org/10.5194/tc-19-769-2025, 2025.

Garnaud, C., Bélair, S., Carrera, M. L., Derksen, C., Bilodeau, B.,
Abrahamowicz, M., Gauthier, N., and Vionnet, V.: Quantifying
Snow Mass Mission Concept Trade-Offs Using an Observing
System Simulation Experiment, J. Hydrometeorol., 20, 155–173,
https://doi.org/10.1175/JHM-D-17-0241.1, 2019.

Husain, S. Z., Alavi, N., Bélair, S., Carrera, M., Zhang, S., Fortin,
V., Abrahamowicz, M., and Gauthier, N.: The Multibudget Soil,
Vegetation, and Snow (SVS) Scheme for Land Surface Param-
eterization: Offline Warm Season Evaluation, J. Hydrometeo-
rol., 17, 2293–2313, https://doi.org/10.1175/JHM-D-15-0228.1,
2016.

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B.,
and Heming, J.: K-Means Clustering Algorithms: A Com-
prehensive Review, Variants Analysis, and Advances in
the Era of Big Data, Inform. Sciences, 622, 178–210,
https://doi.org/10.1016/j.ins.2022.11.139, 2023.
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