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Abstract. The near-infrared (NIR) albedo of snow is con-
trolled by optical snow grain size (ropt). Therefore, character-
izing the spatial and temporal variability in ropt at the snow
surface is critical for understanding melt timing and mag-
nitude for water availability and Earth’s energy budget to-
ward future climates. While numerous studies have demon-
strated estimates of ropt by means of optical instruments that
span scales from in situ to satellites, they leverage different
retrieval techniques, radiative transfer models, and modeled
snow grain shapes. Variation in these factors causes tremen-
dous uncertainty in ropt retrievals, yet a thorough evaluation
has yet to be conducted. To address this knowledge gap we
conducted a laboratory bidirectional reflectance study, using
NIR hyperspectral imaging (NIR-HSI) to retrieve grain size
metrics for a wide variety of snow microstructures and eval-
uate them against micro-CT benchmarks. Toward enhanced
ropt retrieval accuracy, we sought to determine (1) the opti-
mal modeled snow grain shape; (2) the best-performing ra-
diative transfer model; and (3) variability associated with re-
trieval techniques, spanning broadband, narrowband, multi-
spectral, and hyperspectral approaches. Our results for op-
timizing grain shape parameters align with existing studies
for the TARTES model, and we offer first recommendations
for the SNICAR model. The retrieval technique also dis-
played considerable variation, with the hyperspectral resid-
ual method performing best. Multispectral and single-band
techniques were comparable to their hyperspectral counter-
parts at times, but this was attributed to the idealized labo-
ratory conditions and high instrument signal-to-noise ratio.
Following shape optimization, the SNICAR and TARTES

models produced the best results (median absolute error of
15.6 %–17.4 %, depending on technique), outperforming the
AART model and the Random Mixture model. Toward a
more direct comparison with albedo estimate error, we also
evaluated the square root of ropt retrievals; median absolute
error values ranged from 7.9 %–26.2 %, depending on model
and technique, with most pairings resulting in values <15 %.
Our results demonstrate that the accuracy of ropt retrievals
is highly sensitive to the choice of retrieval technique, ra-
diative transfer model, and grain shape parameters. To mini-
mize error, each of these factors should be carefully selected
in the context of the specific measurement. As NIR-HSI in-
struments and other NIR detectors become increasingly af-
fordable and their resolution improves, the findings presented
here provide guidance for improved ropt and snow albedo
mapping across ground-based, aerial, and satellite platforms.

1 Introduction

Snow, the most reflective natural surface on Earth, occupies
large portions of Earth’s surface and plays a critical role for
climate and hydrology (Dumont et al., 2021). Snow has a
high (up to 90 %) albedo, defined as the ratio of reflected
solar radiation at the snow surface to that of incoming so-
lar radiation, and has a significant role in Earth’s overall
surface energy balance. Furthermore, snow albedo is sensi-
tive to snow microstructure, and this sensitivity is respon-
sible for numerous climatic feedback loops (Flanner et al.,
2012). In terms of hydrology, snow albedo drives the tim-
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ing and magnitude of snowmelt in mountainous regions; this
is imperative for water forecasting (Marks and Dozier, 1992).
Thus, accurate measurements and modeled estimates of snow
albedo, particularly with regards to spatiotemporal variation,
are key to understanding future climate, snowmelt rates, and
water availability downstream.

The optical properties of ice are well understood (Perovich
and Govoni, 1992; Picard et al., 2016; Warren and Brandt,
2008; Warren, 1982,1984); this has led to the development of
numerous snow radiative transfer models, used to predict the
reflectance or albedo of snow based on optical conditions and
physical snowpack parameters (Flanner and Zender, 2005;
Kokhanovsky and Zege, 2004; Libois et al., 2013; Malinka,
2014; Malinka et al., 2016; Stamnes et al., 1988). In the vis-
ible wavelengths, snow is highly reflective and albedo is pri-
marily driven by impurities near the snow surface (Skiles
et al., 2012, 2018). In the near-infrared (NIR) wavelengths,
ice is absorptive and the primary driver of NIR albedo is the
path length of ice or, analogously, the optical snow grain size
(expressed as a radius, ropt). Beyond NIR reflectance, opti-
cal grain size has been shown to be the primary parameter
controlling broadband albedo of clean snow (Wiscombe and
Warren, 1980). Therefore, characterizing the spatial and tem-
poral variability in ropt at the snow surface is critical for ac-
curately estimating albedo from remote sensing instruments.

There is an inverse relationship between NIR albedo and
optical grain size; as grain size increases, the albedo de-
creases due to increased absorption. This relationship is the
basis from which snow reflectance measurements can be
used to retrieve estimates of ropt. A common practice is
to simulate snow spectral reflectance for a wide range of
ropt values using a radiative transfer model and to populate
a lookup table that can then be compared with measured re-
flectance. Over the last several decades, numerous methods
have been developed to relate modeled to measured spectra.
These efforts range from in situ (e.g., Donahue et al., 2021,
2022; Gallet et al., 2009; Matzl and Schneebeli, 2006; Painter
et al., 2007) to airborne platforms (e.g., Donahue et al., 2023;
Nolin and Dozier, 2000; Painter et al., 2012; Seidel et al.,
2016; Skiles et al., 2023) to spaceborne sensors (e.g., Bair
et al., 2020; Bohn et al., 2021; Painter et al., 2009, 2012). Al-
though many studies have demonstrated success at estimat-
ing ropt, these differing methods can produce disparate re-
trievals. This is a salient point, as incorrect ropt estimates can
result in substantial error in predicted snow albedo, which
can dramatically influence Earth system and climate mod-
els (Räisänen et al., 2017; Robledano et al., 2023). Primary
sources of uncertainty or inconsistency are the data used
to execute the retrieval (hereafter “retrieval technique”), the
choice of radiative transfer model used, and the modeled
snow grain shape used when initializing the radiative trans-
fer model. Despite this variability, a thorough evaluation of
retrieval techniques and models has yet to be conducted.

To address these uncertainties, we conducted a laboratory
reflectance study to assess ropt retrieval sensitivity across

three factors: retrieval technique, radiative transfer model,
and simulated snow grain shape. In an effort to provide future
ropt mapping efforts with additional guidance, we sought to
address the following questions:

i. Which retrieval technique works best, and to what ex-
tent do hyperspectral data improve upon multispectral,
narrowband, and broadband retrieval alternatives?

ii. Which radiative transfer model works best?

iii. What combination of optical snow grain shape parame-
ters is the most effective?

iv. How do retrieval technique, radiative transfer model,
and simulated snow grain shape interplay regarding
ropt retrieval accuracy?

2 Background

2.1 Optical grain size

Traditionally, snow grain size is defined as the longest ex-
tension of a snow grain, and typically observed using a hand
lens and grain card (Fierz et al., 2009). The optical grain size,
in contrast, does not refer to the size of actual snowflakes.
Rather, optical (or, synonymously, effective) grain size de-
fines the average value of a geometric property (usually di-
ameter or radius) among a collection of homogeneous sim-
ple shapes, with optical properties similar to those of the ac-
tual heterogeneous and complex-shaped snow grains. Histor-
ically, snow has been modeled as a collection of spheres of
equivalent size (Grenfell and Warren, 1999), and thus grain
size is commonly expressed as the optically equivalent grain
radius, ropt. Using this spherical assumption, the optical grain
size can then be related to the physical snow microstructure
through the ice surface area per unit mass (Legagneux et al.,
2002), or specific surface area (SSA), demonstrated in

ropt =
3

SSAρice
. (1)

Although some models have since added more elegant
treatments of snow grain shape, ropt remains a common
means of quantifying the extent of ice absorption and SSA in
remote sensing and is a standard predictive variable in snow
radiative transfer models.

2.2 Retrieval techniques

The retrieval technique describes the single band, combina-
tion of bands, or spectral features used to match reflectance
measurements to simulations and plays a role in grain size
retrieval variability. Depending on the instrument, collected
data may be broadband, narrowband, multispectral, or hy-
perspectral. For broadband platforms, only a simulated av-
erage reflectance over the sensor bandwidth can be evalu-
ated, while narrowband measurements are matched to the
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Figure 1. Modeled snow spectra with a constant ropt value of 200 µm, demonstrating substantial variability between radiative transfer models
and shape parameter (fs, A, B, g) inputs (discussed in Sect. 2.4).

sensor’s central wavelength. When using multispectral in-
struments, a normalized index, such as the Normalized Dif-
ference Grain Size Index, or NDGSI (Painter et al., 2012),
is often used. Hyperspectral sensors collect continuous spec-
tral measurements and allow for a variety of retrieval tech-
niques, such as measuring the depth or area of normalized
ice absorption features (Clark and Roush, 1984; Nolin and
Dozier, 2000) or even best-match fitting the entire spectrum,
known as the residual method (Donahue et al., 2022). The
latter technique is useful for simultaneously retrieving grain
size and liquid water content. Multispectral and hyperspec-
tral approaches are generally considered more robust than
their broadband and narrowband counterparts because they
contain much more spectral information, allowing for finer
discrimination of material properties and improved accuracy
in detecting and characterizing specific features.

2.3 Radiative transfer models

In addition to differing retrieval techniques, there are sev-
eral snow radiative transfer models that have been de-
veloped to simulate snow spectra, and the variability be-
tween these models also plays a key role in retrieval uncer-
tainty. The longstanding benchmark comprises strict numer-
ical codes that solve the radiative transfer equations, such as
the Discrete-Ordinate Radiative Transfer model, or DISORT
(Stamnes et al., 1988). However, for many practical applica-
tions, faster and simpler approximations are often preferred.
For instance, the Snow, Ice, and Aerosol Radiative – Adding-
Doubling (SNICAR-AD) model (Flanner et al., 2021) is a
frequently employed two-stream approximation – hence one
that rapidly integrates across all viewing zenith and azimuth
angles to produce albedo estimates – that has demonstrated
excellent agreement with DISORT (Dang et al., 2019). De-
spite being an albedo model, SNICAR-AD (hereafter simply

“SNICAR”) is frequently compared against measured bidi-
rectional reflectance for ropt retrieval at nadir viewing angles,
where albedo and reflectance factor are nearly identical (Du-
mont et al., 2010).

The Approximate Asymptotic Radiative Transfer (AART)
snow model is a bidirectional reflectance simulation based on
an asymptotic approximation to the radiative transfer equa-
tion and geometric optics (Kokhanovsky and Zege, 2004).
More recently, Malinka (2014) leveraged this asymptotic the-
ory in a bidirectional reflectance model based on a random
binary mixture of two immiscible materials (air and ice), in
which optical characteristics change in a stochastic manner
between discrete values (hereafter referred to as the “Ran-
dom Mixture” model, or RM). Libois et al. (2013) combined
two-stream and asymptotic approximation schemes to cre-
ate the Two-stream Analytical Radiative Transfer in Snow
(TARTES) albedo model with advanced inclusion of snow
grain shape dependence. Simulated NIR snow spectra for a
constant grain size, but varying radiative transfer models and
shape parameters, are shown in Fig. 1 to illustrate the vari-
ability resulting from these different choices.

2.4 Snow grain shape representation

Last, in addition to the retrieval technique and the radiative
transfer model, another factor of relevance is the modeled
snow grain shape. Modeled shape, and subsequently how the
single scattering grain properties are calculated, is perhaps
the biggest difference between the aforementioned models
and thus the greatest cause of ropt retrieval uncertainty be-
tween models, and even within a given model. As discussed
in Sect. 2.1, snow has historically been modeled as a col-
lection of spheres of equivalent size (Grenfell and Warren,
1999), and single scattering properties determined from Mie
calculations. This was originally true of SNICAR, although
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Table 1. Summary of radiative transfer model characteristics, particularly regarding modeled grain shape.

Albedo/
bidirectional

Single scattering albedo Scattering asymmetry

Nonsphericity considered Tunable Nonsphericity considered Tunable

SNICAR Two-stream
albedo model

No, Mie calculations No, spheres Yes, parameterization Yes

TARTES Two-stream
albedo model

Yes, geometric optics Yes Yes, geometric optics Yes

AART Bidirectional Yes, geometric optics No, fractals∗ Yes, geometric optics No, fractals∗

Random Mixture Bidirectional Yes, geometric optics No, random mixture∗ Yes, geometric optics No, random mixture∗

∗ Equations for AART and the Random Mixture model are derived with assumed shapes, although a user can choose to adjust resulting shape parameters manually in the code, thus
altering shape within the framework of the given model.

the model has since been expanded to address the prevailing
belief that the spherical assumption is an oversimplification.
While SNICAR still calculates the single scattering albedo
of snow using a spherical assumption and Mie calculations,
the influence of grain shape on scattering asymmetry (specif-
ically the asymmetry parameter, g) is now considered via pa-
rameterizations from He et al. (2017). The grain shape can
be varied based on the combination of two parameters; the
shape factor (fs) and aspect ratio (A). The shape factor is
defined as the ratio of the specific-projected-area-defined ef-
fective diameter of a nonspherical grain to that of a spherical
grain with the same volume, representing the effect of non-
sphericity (He et al., 2017). Altering the combination of fs
and A amounts to varying the value of g. For simplicity, a
user can select one of four pre-set combinations of these pa-
rameters that represent idealized shapes: spheres, spheroids,
hexagonal plates, and Koch snowflakes. Alternately, one can
manually input any combination of fs andA to create custom
shapes.

The other models examined here (AART, Random Mix-
ture, and TARTES) leverage geometric optics to calculate
single scattering properties. Both AART and the Random
Mixture model have pre-assumed “shapes” (fractals and a
random mixture, respectively), and thus default values for
single scattering albedo and the asymmetry parameter that
are built into the models, although a user can manually adjust
them in the code. The TARTES model, however, is designed
to be tunable, and accounts for the influence of shape on both
scattering asymmetry and absorption. Shapes in TARTES are
also dependent on a two-parameter combination: the absorp-
tion enhancement parameter, B (which is related to single
scattering albedo), and the asymmetry parameter, g. When
creating TARTES, Libois et al. (2013) called for a systematic
determination of B and g in both the field and laboratory us-
ing independent measurements of SSA. Although the topic
of modeled shape has received greater attention in recent
years (e.g., He et al., 2017; Libois et al., 2013, 2014; Rob-
ledano et al., 2023), additional experiments in a controlled
laboratory environment would be beneficial to the snow op-

tics community. A summary of the models examined here
and key differences between them is presented in Table 1.

In summary, variations in model and shape selection will
result in substantial differences in simulated spectra (Fig. 1).
These variations in modeled spectra, combined with the mul-
tiple techniques used to retrieve ropt, can lead to large er-
ror and uncertainty. This problem is demonstrated in Fig. 2.
Three different retrieval techniques are executed across the
same snow sample on a per-pixel basis. For each retrieval
technique, three different models are also used to perform the
retrieval, resulting in nine distinct grain size distributions that
vary markedly. Despite this variability, a thorough evaluation
of retrieval techniques and models has yet to be conducted,
providing motivation for the evaluation presented here.

3 Methodology

We aimed to prepare laboratory snow samples with a wide
variety of well-defined grain habits and microstructures,
characterize them with microscopy and X-ray micro com-
puted tomography (micro-CT), acquire optical measure-
ments, and use radiative transfer modeling to perform and
intercompare ropt retrievals. We obtained optical data using
NIR hyperspectral imaging (NIR-HSI), and determined sub-
sequent ropt retrievals using numerous retrieval techniques,
radiative transfer models, and shape parameter combina-
tions. We analyzed resulting values statistically against ref-
erence ropt measurements from micro-CT. This represents
one of a few extensive datasets combining NIR bidirec-
tional reflectance measurements with micro-CT characteri-
zation of snow microstructure. Section 3.1 describes snow
sample preparation and physical characterization, Sect. 3.2
outlines the acquisition of NIR-HSI data, Sect. 3.3 covers
radiative transfer modeling, and Sect. 3.4 discusses retrieval
techniques and statistical analyses. The flowchart in Fig. 3
illustrates the entirety of our retrieval comparison process.
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Figure 2. A demonstration of ropt retrieval variability across differing retrieval techniques and radiative transfer models. A visible-wavelength
photograph of a snow sample is shown in (a), as compared with the NIR false color composite (FCC) image in (b), produced from hyper-
spectral imaging. The data from the highlighted pixel (enlarged for clarity) are then evaluated using (c) the residual, (d) scaled band depth,
and (e) NDGSI retrieval techniques, discussed in greater detail in Sect. 3.4. (f) The combination of different retrieval techniques and radiative
transfer models leads to dramatic differences in ropt retrievals. The black vertical reference line in (f) represents the reference micro-CT
ropt measurement. All methods are discussed further in Sect. 3. Data shown are from Sample 18. Regarding shape, Koch snowflakes are used
for SNICAR and values of 1.9 and 0.875 are used for B and g, respectively, in TARTES.
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Figure 3. Flowchart of the ropt retrieval and comparison process. Reflectance data from NIR-HSI were paired with four radiative transfer
models (M1–M4) to produce a variety of ropt retrievals. Numbers in parentheses correspond to the quantity of spectral libraries or datasets
per sample. NIR-HSI data were acquired at nadir, and six different sets of data (T1–T6) were extracted for use in retrieval. For the radiative
transfer models that can consider shape, the optimal shape parameter combinations were determined for each retrieval technique. Grain size
retrievals for each combination of model and retrieval technique were compared on a samplewise basis with ropt equivalent measurements
from micro-CT.

3.1 Sample preparation and physical characterization

The samples used here, and thus the methods for sample
preparation and physical characterization, are identical to
those from Dillon et al. (2024). Sample creation and char-
acterization are briefly summarized here, but we refer the
reader to the aforementioned publication for a full descrip-
tion.

3.1.1 Sample preparation

We utilized Montana State University’s Subzero Research
Laboratory (SRL) for sample preparation and assessment.
The snow used in these experiments was a combination of
laboratory-grown crystals produced in the SRL’s snowmak-
ing apparatus and natural undisturbed snow that we collected
from the surrounding area. We kept all samples in a cold
room at −30 °C for at least 24 h prior to evaluation to al-
low them to equilibrate and ensure the snow was dry. We
prepared 41 snow samples from 12 batches of differing snow
grains. From the bulk batches, we sieved snow grains through
various mesh sizes to further promote disparate microstruc-
tures (Table 2). The exception to this was surface hoar, which
we grew following the methods used by Stanton et al. (2016).
Sample grain habits included precipitation particles (PP),
decomposing and fragmented precipitation particles (DF),
rounded grains (RG), melt forms (MF), faceted crystals (FC),
depth hoar (DH), and surface hoar (SH) (Fierz et al., 2009).

We prepared snow samples to be microstructurally homoge-
neous, both laterally across the sample and vertically over a
sample depth of 3.8 cm.

3.1.2 Physical characterization

We thoroughly characterized the physical properties of each
sample, as summarized in Table 2. First, we performed mi-
croscopy on representative grains from each batch prior to
sieving, and classified grain habits using a crystal card and
lens following Fierz et al. (2009). After sieving and sample
preparation, we collected micro-CT data from each sample
using a Bruker SkyScan 1173 housed in a −10 °C chamber
within the SRL, generally following the protocol outlined by
Donahue et al. (2021). To prepare samples, we used a cylin-
drical holder of 3 cm diameter× 4 cm length, which allowed
for a voxel size of 14.5 µm. The voxel size of 14.5 µm was the
finest spatial resolution achievable with the relatively large
cylindrical micro-CT sample holder used in this study. The
larger micro-CT sample holder was chosen to provide suffi-
cient surface area for larger-grained samples (e.g., surface
hoar) to be encapsulated and transported to micro-CT for
measurement. We recognize that this relatively coarse res-
olution may lead to an underestimation of SSA and an over-
estimation of ropt for grains with fine dendrites smaller than
this size, particularly for PP primary grain habits (especially
in Samples 1–5).
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Table 2. Physical snow sample characteristics organized by primary grain habit and listed in order of decreasing surface area-to-volume ratio
therein. Adapted from Dillon et al. (2024).

Sample Batch Primary grain Secondary Micro-CT SSA Micro-CT ropt Micro-CT ρ Sieve size (mm) Notes
# ID habit grain (kgm−2) (µm) (kgm−3)

habit(s)

Passed Caught

1 A PP PPrm, DF 35.85 91.3 176 2.38 1.18
2 A PP PPrm, DF 31.60 103.5 217 2.38 –
3 A PP PPrm, DF 28.69 114.0 211 1.18 0.42
4 B PP PPgp 34.67 94.4 160 2.38 1.18
5 C PP DF 36.10 90.6 94 – – In situ fresh PP
6 C PP DF 22.40 146.1 286 2.38 1.18
7 C PP DF 22.30 146.7 280 0.85 0.42
8 C PP DF 21.94 149.1 275 2.38 –
9 C PP DF 20.05 163.1 303 1.18 0.85

10 D DF RG 29.92 109.3 293 2.38 1.18
11 D DF RG 28.19 116.1 323 0.85 0.42
12 D DF RG 27.38 119.5 351 1.18 0.85
13 D DF RG 22.65 144.4 365 2.38 –
14 E DF DFbk, RGwp 17.74 184.4 374 0.85 –
15 F DF PP 15.69 208.5 322 2.38 –
16 F DF PP 15.04 217.5 312 2.38 1.18
17 F DF PP 14.89 219.8 309 1.18 0.85
18 F DF PP 14.17 230.9 382 0.85 –

19 G FC DH 16.00 204.5 407 1.18 0.42
20 G FC DH 12.34 265.0 448 2.38 1.18
21 G FC DH 11.19 292.4 417 6.3 3.35
22 G FC DH 10.96 298.5 472 6.3 –
23 G FC DH 10.76 304.0 404 3.35 2.38

24 H SH RG 15.83 206.6 213 6.3 – Re-sieved SH
grains

25 H SH RG 11.80 277.3 65 – – In situ SH atop
RGs

26 H SH RG 8.18 400.0 94 – – Smaller than
S25

27 I RG DF 14.75 221.7 381 2.38 1.18
28 I RG DF 14.26 229.4 419 1.18 0.85
29 I RG DF 13.93 234.9 431 2.38 –
30 I RG DF 13.56 241.4 489 0.85 0.42
31 I RG DF 13.52 241.9 452 – – S29 melt-refreeze
32 J RG DF 15.01 218.0 394 0.85 –
33 J RG DF 14.67 223.0 355 0.42 –
34 J RG DF 11.62 281.4 460 1.18 –
35 K RG DF 12.14 269.5 404 1.18 0.85
36 K RG DF 11.82 276.8 428 0.85 0.42

37 L MF RG 5.41 604.8 582 2.38 0.42
38 L MF RG 4.02 813.0 545 6.3 –
39 L MF RG 3.41 958.5 512 3.15 2.38
40 L MF RG 3.14 1041.7 467 – – Refrozen in situ
41 L MF RG 2.58 1265.8 433 6.3 3.15

After scanning, we performed thresholding of gray-scale
images into ice and air phases by visual inspection. Recon-
structions via the marching cubes method (Lorensen and
Cline, 1987) allowed us to determine the volume and sur-
face area in 3D. From these measurements, we calculated the
density and SSA of each sample, as well as ropt, via the lin-

ear relationship with SSA in Eq. (1). We used these micro-CT
ropt values as truth for comparison with optical retrievals.

3.2 Hyperspectral imaging

We used a Resonon Inc. Pika NIR-640 near-infrared hy-
perspectral imager to map snow spectral reflectance in the
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Figure 4. (a) Laboratory data collection schematic for hyperspectral imaging. (b) Data regions of interest (ROIs) within the snow sample.
Adapted from Dillon et al. (2024).

NIR (http://www.resonon.com, last access: 16 August 2024).
Donahue et al. (2021) provide a detailed description of the
instrument. Briefly, the imager’s spectral resolution ranges
from 2.39 to 2.50 nm, and measures 336 bands across the
NIR region from 891–1711 nm. It constructs a 2D image con-
taining the full spectrum in each pixel by collecting the im-
age line by line, known commonly as “push broom” scan-
ning. We used a Resonon benchtop linear scanning stage to
move the sample beneath the sensor. For more details on the
benchtop apparatus, see Donahue et al. (2022).

We positioned the hyperspectral imager above the linear
translating stage that held the samples. The lens of the im-
ager is surrounded by a set of four halogen lamps that pro-
duce direct illumination (Fig. 4a). The halogen lamps and
lens of the imager are at heights of 38 and 43 cm above
the snow surface, respectively. We used a large Spectralon
white diffuse reflectance panel to perform calibration, result-
ing in a reflectance factor (R) measured for each band in ev-
ery individual pixel of the image. The Spectralon panel is
30.5 cm× 30.5 cm, thus larger in both dimensions than our
optical ROI (Fig. 4b). We built a sample holder with the
same external dimensions as our snow sample holders, but
specifically made to hold the Spectralon panel, both centered
on the ROI and at the same distance from the illumination
source as the snow surfaces. For each snow sample scan, we
also conducted a reference scan with the Spectralon panel.
This allowed for pixel-by-pixel calibration of the entire opti-
cal ROI, thus accounting for any heterogeneous illumination.
We made these reference measurements for each sample and
each illumination condition. We acquired all optical data im-
mediately prior to micro-CT analysis at a constant tempera-
ture of −10 °C.

Initial processing took place in Resonon’s proprietary
Spectronon software, and analyses were thereafter performed
in R. To reduce edge effects, we began by truncating each

image to a central region-of-interest (ROI) that encapsulated
the micro-CT ROI (Fig. 4b). Resulting NIR-HSI ROIs con-
tained 224 000 pixels with a spatial resolution of 0.5 mm. Re-
flectance images were generated from 188 of the 336 avail-
able bands, covering the range from 951 to 1403 nm. This
selection was made to reduce noise at the lower end of the
imager’s spectral range and to exclude longer wavelengths
where snow is minimally reflective. Examples of measured
spectra are presented in Fig. 5. The top row depicts visible-
wavelength photographs of select snow samples with varying
microstructures, contrasted with false color composite NIR
images in the lower row. Sample spectra from each image
further demonstrate the dependence of NIR reflectance on
snow microstructure.

3.3 Radiative transfer modeling

To model snow reflectance, we utilized the four commonly
used snow radiative transfer models described in Sect. 2:
TARTES, SNICAR, AART, and the Random Mixture model.
In order to replicate our laboratory setup, we performed sim-
ulations using direct illumination, with both illumination and
viewing zenith angles equal to zero. Though our true labo-
ratory setup is slightly more complex, with four lamps en-
circling the center of the snow sample, a single direct nadir
beam seemed the most appropriate approximation. We ran
each model assuming semi-infinite snow depths, consider-
ing that the depth of our sample holder was beyond the opti-
cal penetration depth for all snow microstructures and wave-
lengths examined here. For SNICAR, which requires a snow
density input, we assigned a value of 300 kgm−3. However,
this was of little relevance, given that density influences nei-
ther albedo nor reflectance in most snow models, only pene-
tration depth. Following the same reasoning, the other mod-
els examined here either do not require or do not allow for a
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Figure 5. (a–e) Visible-wavelength photographs of several snow samples with differing microstructure contrasted with (f–j) their NIR
false color composite (FCC) counterparts. (k) Example spectra from the (enlarged) pixel in each FCC image, illustrating the well-known
relationship between grain size and reflectance in the NIR spectral range.

density input. Last, we elected to use the ice refractive index
of Warren and Brandt (2008).

As discussed, TARTES and SNICAR each have two tun-
able shape parameters, which can substantially vary the mod-
eled spectra and subsequent grain size retrievals. To further
investigate the influence of modeled snow grain shape, we
produced numerous spectral libraries for both TARTES and
SNICAR using modulated combinations of shape parame-
ters. For TARTES, we evaluated the absorption enhancement
parameter, B, for values from 0.8–2.7 at increments of 0.1,
and asymmetry factor, g, for values from 0.60–0.95 at incre-
ments of 0.025. These ranges spanned all reasonable values,
based on previous literature (e.g., Libois et al., 2013, 2014;
Robledano et al., 2023). Similarly, for SNICAR, we varied
the shape parameter (fs) from 0.1–1.0 at 0.05 increments and
the aspect factor (A) from 0.1–7.6 with steps of 0.5, again
spanning all reasonable values (e.g., He et al., 2017) and
nearly the full range selectable values in the model. Thus,
in total we produced 300 spectral libraries for TARTES and
304 for SNICAR, all at nadir illumination, with each consti-
tuting a different combination of shape parameters (Fig. 3).
For AART and the Random Mixture model, the modeled
snow grain shape is fixed, thus we generated a single spec-
tral library for each model with nadir illumination and view-
ing angles to replicate the laboratory setup. All spectral li-

braries ranged from 950–1400 nm at 1 nm resolution, and
across ropt values of 30–1500 µm at 5 µm increments.

3.4 Retrieval techniques

The goal of an optical grain size retrieval is to match a mea-
sured spectrum to a modeled spectrum and obtain the quan-
titative property. Therefore, to begin, all NIR-HSI data were
resampled from the native spectral resolution of ∼2.5 nm to
1 nm resolution to match the modeled spectral libraries us-
ing spline interpolation. Next, we evaluated six commonly
used retrieval techniques (Fig. 6): three hyperspectral, one
multispectral, one narrowband, and one broadband retrieval
technique.

The first hyperspectral technique is referred to as the resid-
ual method (Donahue et al., 2022); this leverages the en-
tire spectrum and minimizes the residual between the mea-
sured and modeled spectra on a band-by-band basis (Fig. 6a).
The other two hyperspectral techniques use a spectral shape
parameter related to the prominent ice absorption feature
centered at 1030 nm. The scaled band depth, Db (Fig. 6b),
and scaled band area, Ab (Fig. 6c), approaches evaluate
the continuum-removed and normalized 1030 nm absorption
feature (Clark and Roush, 1984; Nolin and Dozier, 2000).
Here, the absorption feature is defined as a range from
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Figure 6. Examples and definitions of the six retrieval techniques evaluated.

Figure 7. (a–f) Heat maps depicting median ropt absolute retrieval error for TARTES as a function of shape parameters, across retrieval
techniques. The best-performing combination tile for each technique is boxed in red, while the optimal combination from Robledano et al.
(2023) is marked with an “R”; other idealized shapes evaluated in their work are also marked.

The Cryosphere, 19, 2913–2933, 2025 https://doi.org/10.5194/tc-19-2913-2025



J. W. Dillon et al.: Evaluating sensitivity of optical snow grain size retrievals 2923

950 nm (fixed due to the range of the NIR-HSI instrument)
to the local maxima around 1100 nm.

For a multispectral retrieval we used the NDGSI (Fig. 6d),
which quantifies the relative difference between two re-
flectance values in the NIR range. For our single wavelength
retrieval (Fig. 6e), we selected 1310 nm, a relevant selection
given its use in the IceCube (Zuanon and A2 Photonic Sen-
sors, 2013) and DUFISSS (Gallet et al., 2009) instruments.
We also evaluated narrowband accuracy at 1064 nm for bet-
ter comparison with NIR lidar in Ackroyd et al. (2024) and
future publications (Appendix A). Last, to emulate a broad-
band retrieval, we calculated the average reflectance across
the entire measured spectrum (Fig. 6f).

For each retrieval technique, we matched the extracted
data from NIR-HSI measurements to the modeled spectrum
with the closest corresponding value, and “retrieved” the cor-
responding grain size. We repeated this process for all pixels
in each sample across all spectral libraries. For the radia-
tive transfer models that can consider shape (TARTES and
SNICAR), we identified the optimal shape parameter pair-
ing for each retrieval technique based on micro-CT measure-
ments. We calculated samplewise medians of retrieved ropt
and compared them with each other and across retrieval tech-
nique/model combinations, as well as with reference micro-
CT values.

4 Results

4.1 Shape parameter optimization

4.1.1 TARTES

Beginning with the TARTES spectral library, we calculated
samplewise median values of retrieved ropt for each combina-
tion of absorption enhancement parameter (B) and asymme-
try factor (g). To visualize the influence of shape parameters,
we extracted the median absolute error (relative to micro-
CT ropt) across all samples for each technique and colored
the heat map in Fig. 7 to indicate these error values. The
optimal shape parameter combinations yielded median ab-
solute error values of 15.5 %–17.2 %, varying slightly by re-
trieval technique, with hyper- and multispectral techniques
generally outperforming narrow- and broadband. However,
the substantial dependence of median absolute error values
on shape parameters highlights the importance of selecting
an optimal shape parameter combination.

We can see that, for a given technique, a variety of shape
parameter combinations produce reasonable error (i.e., yel-
low tiles). It appears that interplay between the two shape
parameters is an important consideration, and thus the best
selection for one shape parameter depends on the value of
the other (and, to a lesser extent, on the retrieval technique).
Within the heat maps, an interesting, yet predictable, pattern
emerges in an inverse relationship between B and g. As indi-

vidual grains become more absorptive (via an increase in B),
accurate results are still achieved by reducing the extent to
which grains preferentially scatter forward, hence a decrease
in g, resulting in a larger portion of the (unabsorbed) light es-
caping the snowpack. While our parameter optimization for
the Db retrieval technique is in good agreement with Rob-
ledano et al. (2023), for most retrieval techniques our opti-
mal combinations of B and g were closer to the idealized
shapes of hexagonal plates, cubes, cuboids, and fractals (dis-
cussed further in Sect. 5). Across all retrieval techniques, the
median optimal values of B and g were 1.7 (σ = 0.05) and
0.775 (σ = 0.025), respectively.

4.1.2 SNICAR

We performed the same heat map optimization analysis on
shape parameter combinations in SNICAR (Fig. 8). The op-
timal shape parameter combinations yielded median absolute
error values of 16.5 %–17.7 %, values very comparable to
TARTES. Again, significant shape dependence and patterns
of optimal accuracy are apparent in the heat maps. To reit-
erate a key point from Sect. 2.4, unlike TARTES, where the
effect of shape on both absorption and asymmetry is con-
sidered, in SNICAR a spherical assumption is built into the
single scattering albedo (and thus B). Therefore, altering the
combination of shape factor, fs, and aspect ratio, A, is es-
sentially akin to modulating g, while the value of B stays
fixed at that of a sphere (hence 1.25; Fig. 7). However, as
we can see in Fig. 7, even for spherical values of B, there
are corresponding values of g that fall within the “stripe” of
optimal accuracy in TARTES, and thus it is perhaps unsur-
prising that certain combinations of fs and A can yield sim-
ilar retrieval accuracy in SNICAR. The optimal combination
was often somewhere between the idealized shapes that users
can select in SNICAR, rather than manually assigned fs and
A values. Across all retrieval techniques, the median optimal
values of fs andAwere 0.95 and 2.1, respectively, essentially
amounting to an elongated spheroid.

We can further observe the importance of modeled
snow grain shape by comparing samplewise retrievals from
SNICAR across the four pre-selected shapes using the resid-
ual method (Fig. 9). The modeled shape strongly influences
both overall error and variance, with optimized shape param-
eters (Fig. 9e) outperforming all pre-selected shapes. Even
for the optimized case, we can see that it is difficult to cor-
rectly retrieve ropt for different measured grain habits (partic-
ularly SH, FC, and MF) simultaneously. As expected, some
shape parameter combinations fit observed grain habits better
than others. Optimized shape parameters for each model/re-
trieval technique are used hereafter in Sect. 4.2.

4.2 Model and retrieval technique intercomparison

For a given radiative transfer model, we generally observed
the most accurate results using retrieval techniques that lever-
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Figure 8. (a–f) Heat maps depicting median ropt absolute retrieval error for SNICAR as a function of shape parameters, across retrieval
techniques. The best-performing combination tile for each technique is boxed in red, while the locations of idealized shapes from He et al.
(2017) are denoted as well.

Table 3. Median absolute error statistics (in µm) across all models and retrieval techniques for ropt (M(|ε(ropt)|), top) and square root ropt
(M(|ε(√ropt)|), bottom). For each model, the most accurate retrieval technique is marked in bold (or multiple techniques in the case of a
tie).

TARTES SNICAR AART RM

Residual 38.1 (15.9 %)± 80.0 (29.0 %) 45.1 (16.9 %)± 80.9 (30.2 %) 47.3 (20.6 %) ± 84.6 (20.5 %) 58.1 (29.8 %) ± 118.0 (15.4 %)
Db 35.9 (15.6 %)± 101.4 (23.4 %) 38.0 (17.4 %)± 92.9 (24.8 %) 44.8 (21.4 %)± 123.9 (17.7 %) 66.4 (35.6 %)± 147.7 (17.2 %)
Ab 35.9 (17.0 %)± 113.0 (22.3 %) 40.7 (17.7 %)± 111.9 (23.3 %) 54.4 (28.1 %)± 149.7 (15.8 %) 83.1 (44.8 %)± 177.7 (19.4 %)
NDGSI 35.6 (15.5 %) ± 105.6 (30.0 %) 30.9 (17.3 %)± 106.3 (29.3 %) 64.4 (29.8 %)± 143.4 (17.5 %) 83.1 (45.5 %)± 120.0 (19.5 %)
R1310 45.7 (17.2 %)± 87.4 (31.3 %) 44.8 (16.5 %) ± 88.5 (31.9 %) 58.1 (28.3 %)± 120.2 (15.9 %) 83.1 (39.7 %)± 112.6 (17.3 %)
Broadband 40.1 (17.1 %)± 82.8 (30.4 %) 50.6 (17.7 %)± 78.9 (29.1 %) 48.1 (22.0 %)± 92.4 (19.1 %) 65.0 (29.8 %) ± 116.2 (15.6 %)

Residual 1.3 (8.3 %)± 2.0 (12.4 %) 1.4 (8.3 %) ± 2.0 (12.8 %) 1.5 (10.2 %) ± 1.8 (9.8 %) 2.3 (16.2 %) ± 2.2 (9.8 %)
Db 1.2 (8.1 %)± 2.1 (11.0 %) 1.4 (8.9 %)± 2.1 (11.5 %) 1.7 (11.3 %)± 2.3 (9.8 %) 2.7 (19.8 %)± 2.8 (11.1 %)
Ab 1.5 (8.9 %)± 2.2 (10.7 %) 1.5 (9.3 %)± 2.2 (11.2 %) 2.0 (13.4 %)± 2.8 (10.0 %) 3.3 (25.7 %)± 3.4 (12.7 %)
NDGSI 1.2 (7.9 %) ± 2.3 (12.8 %) 1.2 (9.1 %)± 2.3 (12.7 %) 2.4 (16.2 %)± 2.7 (10.7 %) 3.3 (26.2 %)± 2.6 (12.6 %)
R1310 1.4 (9.0 %)± 2.1 (13.1 %) 1.2 (8.3 %) ± 2.1 (13.2 %) 2.1 (14.2 %)± 2.2 (9.2 %) 2.9 (22.3 %)± 2.3 (11.1 %)
Broadband 1.3 (8.3 %)± 2.0 (12.9 %) 1.5 (9.2 %)± 2.0 (12.4 %) 1.8 (11.7 %)± 1.8 (9.4 %) 2.3 (16.2 %) ± 2.2 (10.0 %)
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Figure 9. Samplewise median SNICAR retrieved ropt values vs. micro-CT measured ropt values for (a–d) different pre-selected shapes and
(e) optimized shape parameters using residual method retrieval technique. Gray diagonal lines are a 1 : 1 reference while the black lines are
linear best fits. Point color and style correspond to observed grain habits, following Fierz et al. (2009). The area within the blue rectangles
in (a)–(e) is enlarged in (f)–(j) with resampled trend lines, given that most samples were clustered at smaller grain sizes relative to the largest
MF samples. Median error and absolute error across all samples are listed for each case. For (a)–(e), r = 0.91 in all cases, while r = 0.66
across (f)–(j).

age more spectral data, with reductions associated with tech-
niques using fewer spectral data, as demonstrated by the
three techniques shown in Fig. 10a–c. This is a predictable
result, although it should be noted that reductions in accuracy
with fewer spectral data were often modest (e.g., TARTES
and SNICAR in Fig. 10c) and, in select cases, even matched
or outperformed their hyperspectral counterparts. Complete
metrics of median absolute error for all models and retrieval
techniques are provided in Table 3. Additionally, Table 3 lists
median absolute error for the square root of ropt retrievals
(lower half), considering a recent shift within the snow op-
tics community regarding error reporting. Whereas ropt has a
nonlinear influence on NIR absorption and albedo, the square
root of ropt is much more linearly related to reflectance, and
thus percentage error in the square root of ropt retrievals can
be directly related to uncertainty in subsequent albedo esti-
mates.

Across all retrieval techniques, a similar performance
trend is apparent between models: TARTES and SNICAR
produced excellent and comparable results, followed by
AART, and then the Random Mixture model, a result evi-
denced by the violin plots in Fig. 10a–c, the ratio density
function in Fig. 10d, and Table 3. This finding likely high-
lights the importance of shape optimization for a particular
application and/or retrieval technique (Sect. 4.1). In other
words, tuning the single scattering/inherent optical proper-
ties can be quite useful for minimizing error. An example of

using the residual method and an optimized TARTES spec-
tral library to create pixelwise ropt maps for different samples
is presented in Fig. 11, demonstrating the complete workflow
and good agreement with micro-CT measurements.

Error metrics for the same three retrieval techniques are
grouped by grain habit in Fig. 12. Much like the SNICAR
scatterplot in Fig. 9, Fig. 12 demonstrates the difficulty in
simultaneously producing accurate retrievals for a wide va-
riety of snow grain habits. As with Fig. 10, we can see that
TARTES and SNICAR, after shape optimization, generally
perform the best, particularly with PP, DF, RG, and MF. Both
AART and the Random Mixture model demonstrated a ten-
dency to consistently underestimate grain size across most
grain habits. The models generally struggled most with sam-
ples of a FC or SH primary grain habit; this is perhaps sen-
sible, as chord lengths can vary dramatically in these crys-
tals, depending on the angle at which light interacts with the
grain. More intriguing is the inconsistent sign of the error.
For samples with a FC primary grain habit, all models over-
estimated grain size, although the Random Mixture model
was quite accurate, contrary to overall results. Meanwhile,
SH samples were globally underestimated. While beyond the
scope of this study, it would certainly be possible to perform
a similar modeled shape optimization (Sect. 4.1) toward en-
hancing results for a particular grain habit, if a practitioner
had prior knowledge or expectation of what conditions might
be encountered. However, our goal here was to optimize re-
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Figure 10. (a–c) Violin and boxplots demonstrating distributions of samplewise median error across all models for (a) residual method, (b)
scaled band depth, and (c) R1310 retrieval techniques. (d) Probability density functions for the ratio of retrieved to reference ropt values,
shown as another means of visualizing accuracy. The right-skewing tails are largely the result of a tendency to overestimate the grain size of
FC samples.

sults across a wide range of snow microstructures because
prior knowledge of grain habit is usually unknown when us-
ing remote sensing instruments.

5 Discussion

5.1 Shape optimization

Shape optimization analysis revealed that modeled snow
grain shape has a substantial influence on the accuracy of
grain size retrievals. For both TARTES and SNICAR, the
optimal values of shape parameters were fairly constant
across retrieval techniques, with similar patterns emerging
(Figs. 7 and 8). Using SNICAR, optimal values of fs ranged
from 0.85–1.00 (M = 0.95). Regarding aspect ratio, A, val-
ues varying from unity by a factor of∼2–3 proved ideal (e.g.,
0.6, 2.1, 2.6, 3.1). Thus, based on our results, the ideal mod-
eled shape for SNICAR that best represents all snow grain
habits is a flattened and elongated asymmetrical spheroid. To

the best of our knowledge, this is the first study to examine
the optimal combination of SNICAR shape parameters and
we recommend that these parameters be used in future stud-
ies.

In contrast to SNICAR, optimization of TARTES shape
parameters – the absorption enhancement and asymmetry
parameter (B and g, respectively) – has received consid-
erable attention in recent years. Libois et al. (2013) sug-
gested 1.6≤B ≤ 1.9, further narrowing to the TARTES de-
fault of 1.6 in Libois et al. (2014), as they note a wide peak
in their retrieved B values from 1.4–1.8. The most recent
and thorough work on the matter, conducted by Robledano
et al. (2023), suggested B = 1.7 and g= 0.82, describing
the optimal modeled shape of snow as “a collection of con-
vex particles without symmetry. . . ” This estimate of the
asymmetry parameter, g, deviates from the TARTES default
value of 0.86 as reported by Meirold-Mautner and Lehning
(2004) and the suggested value of 0.75 from Kokhanovsky
and Zege (2004); it also falls outside the range of 0.83–
0.87 found by Libois et al. (2013). We observe asymme-
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Figure 11. (a–e) False color composite images for five different snow samples. (f–j) The residual method is demonstrated on the measured
spectra from the cyan pixel in each image. (k–o) By repeating the process on all pixels, maps of ropt are created and juxtaposed with micro-
CT measured values. (p) Similarly, pixelwise grain size distributions are visualized as histograms compared with vertical micro-CT reference
lines.

Figure 12. Column charts grouped by grain habit depicting magnitudes of samplewise median error across all models for (a) residual method,
(b) scaled band depth, and (c) R1310 retrieval techniques.
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try parameter values on the lower end of these observa-
tions. Our optimal ropt retrievals were achieved when running
TARTES with g= 0.750–0.825 (M = 0.775), depending on
the retrieval technique, thus spanning the values suggested by
Kokhanovsky and Zege (2004) and Robledano et al. (2023).
Regarding the absorption enhancement parameter, we ob-
served optimal B values ranging from 1.6–1.7, depending on
the retrieval technique, with a median value of 1.7, in agree-
ment with Robledano et al. (2023) as well as Libois et al.
(2014).

For future modeling efforts, we reiterate our median op-
timal shape parameters as a potential starting point: for
SNICAR, fs= 0.95 and A= 2.1; for TARTES, B = 1.7 and
g= 0.775. However, there seems to be more to the story than
single ideal values. We can observe in Figs. 8 and 9 that
several combinations of shape parameters (for both TARTES
and SNICAR) can produce similarly favorable ropt retrievals,
and that the interplay between the two variables is most
important. Though likely difficult to enact, we recommend
a similar optimization analysis for individual applications,
considering instrument, retrieval technique, etc., when possi-
ble. Additionally, although certain pairings at extreme values
still produced reasonable retrievals (e.g., B = 2.7, g= 0.60),
we caution that these are outside the range of established val-
ues from most of the previous literature, and they may prove
unreliable at differing illumination and viewing geometries.
Furthermore, as mentioned in Sect. 4.2, it is evident that
some combinations of shape parameters better represent cer-
tain grain habits than others (e.g., Figs. 9 and 12). This find-
ing suggests that a dynamic approach, where the modeled
snow grain shape is assigned based on the expected grain
habits according to recent weather or seasonal conditions,
would be useful, although it would require prior knowledge
for effective implementation.

It is interesting that the ideal shapes observed here, such as
an elongated, asymmetrical spheroid, differ so considerably
from the shapes that one might imagine would best describe
snow grains. It is possible that the elongated spheroid is sim-
ply the best “middle-of-the-road” shape, optimizing perfor-
mance across a wide range of observed grain habits. How-
ever, that does not explain why this shape produced accurate
results for PP samples. It is probably more accurate to say
that the true “shape” of snow crystals, in an optical sense, is
more complex than any idealized shape, including spheres
and even fractals. Our work, and that of Robledano et al.
(2023), points to the conclusion that scattering dynamics are
better captured by more abstract shape descriptions.

5.2 Intercomparison

Though some disagreement between optical retrievals and
micro-CT measurements is to be expected, it is imperative
to understand how well optical techniques compare with true
physical measurements. Such a comparison is especially im-
portant, considering that broader (airborne and spaceborne)

ropt mapping efforts are often validated by local optical re-
trievals (rather than micro-CT). Considering previous work,
Matzl and Schneebeli (2006) found an uncertainty of 15 %
between SSA estimates from NIR photography and stereo-
logical measurements. In Gergely et al. (2013), grain size es-
timates from the Infrasnow integrating sphere demonstrated
agreement within 25 % relative to micro-CT based on seven
of 10 samples. Gallet et al. (2009) were able to estimate SSAs
with errors as low as 10 %–12 % using their DUFISS in-
strument and an empirical reflectance relationship. Donahue
et al. (2021) used the scaled band area retrieval technique and
a hyperspectral imager to map ropt on a per-pixel basis in a
cold laboratory. When comparing mean ropt retrievals with
five micro-CT measurements on a semi-homogeneous sam-
ple, it was found that micro-CT measurements were 23.9 %
larger on average. Many of these studies used a spherical
modeled grain shape, and they report ropt underestimates
similar to those found here when using SNICAR spheres
(Fig. 9a and f), consistent with many papers discussing the
limitations of a spherical assumption (e.g., Kokhanovsky and
Zege, 2004; Libois et al., 2013; Malinka, 2014; Robledano
et al., 2023).

Once optimized shape parameter values were applied, our
results depended primarily on the radiative transfer model
used and, to a lesser extent, on the retrieval technique
(Figs. 10 and 12). As discussed in Sect. 4.2, the residual
method was the most accurate hyperspectral retrieval tech-
nique and often the best overall performer, a sensible result
considering the superior amount of spectral data leveraged.
However, particularly when using TARTES and SNICAR,
excellent results were still achieved with the multispec-
tral, narrowband, and pseudo-broadband techniques (e.g.,
Fig. 10c and Table 3). This is likely due to the consistent il-
lumination source and idealized laboratory condition; scaled
absorption feature techniques were primarily introduced to
limit uncertainty from low signal-to-noise ratio (SNR) and
varying illumination conditions (Nolin and Dozier, 2000).
However, this result is still encouraging for broadband and
multispectral applications as instrument SNR and calibration
methods continue to improve.

Regarding radiative transfer models, as mentioned earlier,
TARTES and SNICAR performed the best, with median ab-
solute errors ranging from 15.6 %–17.4 % (or 7.9 %–9.3 %
for the square root of ropt), depending on the retrieval tech-
nique, and median errors of −3.5 % to 5.2 %. Thus, our re-
sults are either on a par with or improved, compared with pre-
vious literature, particularly in relation to applications with
mapping/scalable capacity as opposed to in situ techniques.
The AART model followed, with median error values rang-
ing from −29.8 % to −7.1 %, and then the Random Mixture
model, with median errors of −45.2 % to −29.8 %. Though
we did not go so far as to hypothesize which models would
have the most success, this last result is perhaps surprising, as
the novel approach put forth by Malinka (2014) seems quite
robust. Examining the question of modeled grain shape in
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terms of chord length distribution is sensible, and the model
has been validated by Malinka et al. (2016), and in the more
substantial bidirectional reflectance evaluation of Dumont
et al. (2021), albeit with only three snow samples spanning
two grain habits in the latter. More investigation on this topic
is required, as Malinka (2023) points out. For instance, that
researcher demonstrates that dense packing in structures like
snow, deemed only to influence light penetration depth in tra-
ditional snow radiative transfer modeling, may also result in
a reduction in reflectance and albedo that has not been con-
sidered.

In summary, the efforts presented here constitute one of
the most thorough comparisons between optical retrievals
and micro-CT data to date. Our success highlights the im-
portance of considering model selection, shape optimiza-
tion, and retrieval technique, as well as interactions between
these factors. However, our results are not comprehensive,
and additional work should expand on the factors evaluated
here. For instance, new models or updates to existing ones
should be evaluated, such as the recent extension of AART
(Kokhanovsky et al., 2024). In addition to B and g, other
parameters related to snow grain shape should also be thor-
oughly investigated, such as the symmetry parameter, C.

Beyond the factors mentioned here, future efforts might
examine additional variables while continuing our approach
of optimizing grain size retrievals to minimize error rela-
tive to micro-CT controls. As mentioned above, a logical
next step would be to investigate different bidirectional re-
flectance geometries, as well as differing proportions of dif-
fuse radiation. We kept these conditions simple and constant
to better compare other factors, but non-nadir illumination
with some mixture of diffuse radiation is obviously the norm
in field settings. In a SNICAR modeling study, Fair et al.
(2022) demonstrated substantial retrieval error related to dif-
fering bidirectional geometries, as well as their interaction
with grain shape and scattering anisotropy. Another factor
receiving growing consideration is surface roughness. It is
thought (e.g., Manninen et al., 2020) that increasing snow
surface roughness lowers albedo while increasing backscat-
tering at the expense of forward scattering. Thus, the effects
of roughness on retrieval quality should be thoroughly quan-
tified. Such initiatives will continue to reduce the influence
of confounding factors and improve precision when deter-
mining snow grain size from optical measurements.

6 Conclusions

Our research demonstrates a novel intercomparison between
radiative transfer models, modeled snow grain shapes, and
retrieval techniques, toward mapping snow optical grain size.
In essence, we found that:

i. Shape parameter combinations of fs= 0.95, A= 2.1
and B = 1.7, g= 0.775 performed best for SNICAR

and TARTES, respectively. However, operation-specific
shape optimization would be ideal.

ii. Regarding retrieval techniques, the hyperspectral resid-
ual method performed best. Multispectral, narrowband,
and “broadband” retrieval techniques produced accu-
racy comparable to hyperspectral techniques when us-
ing certain models, although this result should be
viewed with caution given our idealized laboratory
setup.

iii. Concerning radiative transfer models, SNICAR and
TARTES (after shape optimization) generally outper-
formed AART and the Random Mixture model, likely
due largely to their prescribed shapes.

iv. In general, the appropriate combination of instrument,
retrieval technique, and model/shape parameters is im-
perative.

As NIR-HSI and other NIR detectors become more eco-
nomical, and as their spatial and temporal resolutions be-
come more robust, the findings presented here may provide
guidance for enhanced ropt (and thus snow albedo) mapping.
Extending the work presented here to field operations will
have immediate implications for Earth surface energy bal-
ance estimates and subsequent impacts on climate, hydro-
logical, and even avalanche forecasting.

Appendix A

Results for the narrowband R1064 alternative retrieval tech-
nique are presented here. Shape optimization results for
both TARTES and SNICAR are presented in Fig. A1, while
overall and grain habitwise error metrics are presented in
Fig. A2. Optimized parameters and accuracy for theR1064 re-
trieval technique were comparable to all other retrieval tech-
niques presented in the main text. However, interestingly,
the TARTES and SNICAR models performed slightly worse
at 1064 nm relative to all other retrieval techniques, while
AART and the Random Mixture model demonstrated their
best results. It is our hope that these results can eventually be
used for comparison with grain size retrievals from 1064 nm
lidar.
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Figure A1. Heat maps depicting median ropt absolute retrieval error for (a) SNICAR and (b) TARTES as a function of shape parameters for
theR1064 retrieval technique. The best-performing combination tile for each technique is boxed in red. For TARTES, the optimal combination
from Robledano et al. (2023) is marked with an “R”; other idealized shapes evaluated in their work are also marked. For SNICAR, the
locations of idealized shapes from He et al. (2017) are denoted.

Figure A2. Violin and column graph plots depicting (a, b) samplewise median error and (c, d) absolute error for theR1064 retrieval technique.
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