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Abstract. This study presents the first compositional analy-
sis of dust in snowpack from a typical Chinese industrial city
utilizing computer-controlled scanning electron microscope
combined with k-means cluster analysis and manual expe-
rience. The dust is predominantly composed of kaolinite-
like (36 %), chlorite-like (19 %), quartz-like (15 %), illite-
like (14 %), hematite-like (5 %), and clay-mineral-like (4 %)
particles, with minor contributions from other components.
It was also found that the size distribution and aspect ratio of
the dust did not undergo significant changes during dry and
wet deposition, but they exhibited great variability among the
different mineral composition groups. Subsequently, these
observed microphysical parameters were used to constrain
the optical absorption of dust, and the results showed that
under low (high) snow grain size scenarios, the albedo reduc-
tions caused by dust concentrations of 1, 10, and 100 ppm in
snow were 0.007 (0.022), 0.028 (0.084), and 0.099 (0.257),
respectively. These results emphasize the importance of dust

composition and size distribution characteristics in constrain-
ing snowpack light absorption and radiation processes.

1 Introduction

Snow constitutes a crucial component of the terrestrial
cryosphere, covering approximately 40 % of the global land
area, with a maximum extent of around 45 million km2 (Hall
et al., 1995; Lemke et al., 2007). It is predominantly found in
polar and high-latitude regions, as well as mountainous areas
at mid- to low latitudes, exhibiting significant temporal and
spatial variability due to seasonal changes (Tan et al., 2019;
Thackeray et al., 2016; Zhu et al., 2021). Current research
indicates that light-absorbing aerosols in the atmosphere
(e.g., black carbon, brown carbon, and dust) are eventually
deposited on various surfaces, including snow or glaciers
through atmospheric diffusion, transport, and dry/wet depo-
sition processes (Doherty et al., 2010; Gilardoni et al., 2022;
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Kuchiki et al., 2015). This alters the single optical proper-
ties of the snowfield, enhances the absorption of solar radi-
ant energy, and reduces the albedo of the snow and ice sur-
face, thereby accelerating snowmelt and altering the water
cycle, and exerting a nuanced yet pivotal role in regional cli-
mate dynamics (Hadley and Kirchstetter, 2012; Hansen and
Nazarenko, 2004; Kang et al., 2020; Skiles et al., 2018).
Hence, it emerges as a critical determinant impacting both
regional and global climate change.

Extensive observational evidence highlighted significant
reductions in the extent and duration of snow cover across
the Northern Hemisphere, which is particularly notable in
high-latitude and mountainous regions due to global warm-
ing (Bormann et al., 2018; Derksen and Brown, 2012; Mote
et al., 2018; Pulliainen et al., 2020; Zeng et al., 2018).
Currently, the duration of the Northern Hemisphere snow
cover is decreasing by approximately 5–6 d per decade (Dye,
2002), with Arctic June snow cover diminishing at a rate of
13.6 % per decade (Derksen and Brown, 2012; Derksen et
al., 2017). Regions like the western Tibetan Plateau and Aus-
tralia have experienced snow cover retreat rates ranging from
11 % to 30 % per decade (Bormann et al., 2012; Immerzeel et
al., 2009), while the onset of snowmelt in the western United
States has advanced by 6–26 d since the mid-1970s (Hall et
al., 2015). Dust, a prevalent aerosol type in the Earth’s at-
mosphere system, has garnered significant scientific atten-
tion due to its role in accelerating ice and snowmelt (Bryant
et al., 2013; Dong et al., 2020; Kaspari et al., 2015; Painter
et al., 2012). Réveillet et al. (2022) reported an 8–12 d ear-
lier average snowmelt in the French Alps and the Pyrenees
due to dust presence during 1979–2018. Zhang et al. (2018)
found that dust reduced snow albedo in the southern Tibetan
Plateau by approximately 0.06± 0.004, equivalent to 30 %
of the albedo reduction caused by black carbon. Sarangi
et al. (2020) further demonstrated dust’s primary contribu-
tion to snow darkening above 4000 m altitude in the Tibetan
Plateau, surpassing that of black carbon in influencing re-
gional ice and snowmelt, whereas Xing et al. (2024) and
Winton et al. (2024) also highlighted the remarkable con-
tribution of dust events to the snow darkening of the High-
Mountain Asia and the Southern Alps, respectively. More-
over, Hao et al. (2023) projected a decrease in black carbon
deposition on ice and snow under future emission scenar-
ios, and anticipated that heightened dust emissions and de-
position fluxes driven by climate change-induced land use
changes (Neff et al., 2008), frequent wildfires (Yu and Gi-
noux, 2022), and increased drought (Huang et al., 2016).
Consequently, dust’s impact on ice and snowmelt is expected
to intensify markedly.

Previous studies have focused on investigating the concen-
tration of dust in snow and its related radiative effects, ne-
glecting the impact of the microphysical properties of dust
on its optical absorption (Bryant et al., 2013; Reynolds et
al., 2020; Xie et al., 2018). In fact, the physical and chem-
ical properties of mineral dust aerosols, including their par-

ticle size distribution (PSD), composition, mixing state, and
shape, determine their optical properties (Chou et al., 2008;
Colarco et al., 2014; Fountoulakis et al., 2024; Haapanala et
al., 2012; Shi et al., 2022b). Dong et al. (2020) compared the
volume–size distribution of dust deposition in ice and snow
in western China and the Arctic, finding significant differ-
ences in the median particle size of dust and showing that the
particle size decreases with altitude in various remote regions
except for the remote Arctic and Antarctic regions. Wang et
al. (2023) used intelligent scanning electron microscopy to
obtain typical PSD of dust in snow in Changchun. Addition-
ally, related dust studies in the atmosphere have confirmed
the complex variability of dust mineral composition. For ex-
ample, in the case of dust aerosols from the Sahara Desert
collected in Izana, Spain, in the summer of 2005, it was
found that they were mainly composed of silicates (64 %)
and sulfates (14 %), with small amounts of carbonaceous
materials (9 %), quartz (6 %), calcium-rich particles (5 %),
hematite (1 %), and soot (1 %) (Kandler et al., 2007). In con-
trast, dust particles collected in Beijing, China, during an
Asian dust storm were primarily composed of clay minerals
(35.5 wt %, by weight percentage), quartz (30.3 wt %), and
calcite (14.0 wt %) followed by feldspar (8.7 wt %), pyrite
(1.0 wt %), and hornblende (0.4 wt %) along with noncrys-
talline materials (10.1 wt %) (Shi et al., 2005). Panta et
al. (2023) conducted detailed field measurements using elec-
tron microscopy in the Sahara Desert of Morocco, report-
ing the statistical characteristics of the single-particle com-
position, size, mixing state, and aspect ratio of newly emit-
ted mineral dust. Kok et al. (2023) also highlight that dust–
snow interactions generate a global annual-mean radiative
forcing of +0.013 W m−2 (90 % confidence interval: 0.007–
0.03 W m−2), with large uncertainties primarily attributed to
variations in dust–snow mixing state, particle size distribu-
tion, and chemical composition. To date, no studies have
comprehensively analyzed the composition, size, and mor-
phology of dust in snow or clarified the interrelationships
among these characteristics. This lack of understanding sig-
nificantly limits accurate assessments of the optical proper-
ties and radiative effects of dust in ice and snow (Flanner et
al., 2021; He et al., 2024).

Based on a field snow observation experiment conducted
in Changchun, northeastern China, in November 2020, this
study utilized intelligent scanning electron microscopy with
an energy-dispersive X-ray analyzer to investigate in detail
the composition, size, and morphological characteristics of
dust during dry and wet deposition. These statistically sig-
nificant parameters were subsequently used to constrain the
complex refractive index and optical absorption inversion of
dust, providing more accurate dust optical parameter inputs
for snow radiative transfer models and enhancing the accu-
racy of climate effect assessments of dust in snow.
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2 Methods

2.1 Snow sample collection and analysis

Our previous study detailed the snow field experiment con-
ducted in Changchun (Wang et al., 2023). The sampling site
is located at the meteorological station of Luyuan District
(43°88′ N, 125°25′ E), with no apparent sources of air pollu-
tion emissions in the visual range. During and after a heavy
snowfall from 19 November to 17 December 2020, we col-
lected snow samples every 2 d, yielding a total of 1 fresh
snowfall sample (wet deposition) and 15 aged surface snow
samples (dry and wet deposition). This study selected five
samples for measurement and analysis at intervals of 6–8 d,
including one wet deposition sample (D1) and four dry/wet
deposition samples (D7, D15, D23, and D29; “D” denotes
day). Briefly, the selected snow samples were melted at room
temperature, and an appropriate volume of the snow solu-
tion was taken based on the cleanliness of the snow sample
(20 mL for D1 and 1 mL for the other four samples). The so-
lution was filtered through a polycarbonate membrane with
a diameter of 25 mm and a pore size of 0.1 µm to separate
the particles. The membrane was then transferred to a stor-
age box and dried in a desiccator. Prior to analysis, a filter
membrane approximately 0.5 cm2 in size was cut and gold-
plated. The samples were placed in the electron microscope
sample chamber for vacuum processing, and data were col-
lected and analyzed using the Environmental Particle Anal-
ysis Software (IntelliSEM-EPASTM) of the intelligent scan-
ning electron microscope.

The IntelliSEM-EPASTM system automatically scans mul-
tiple matrix areas within the field of view. By collecting
backscattered signals from the scanning electron micro-
scope (TESCAN Mira3) and comparing the image signal in-
tensity with preset threshold levels, particles are detected.
Upon detection, the system automatically records the mor-
phology images and positions of the particles on the polycar-
bonate membrane and utilizes 2 Bruker XFlash 6|60 energy
dispersive spectroscopy (EDS) detectors to analyze the rel-
ative content of 24 chemical elements (C, O, Na, Mg, Al,
Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn,
Ba, Se, and Pb) in the particles. This process rapidly gen-
erates high-definition images and energy spectrum data for
each particle (thousands of particles per hour). Additionally,
IntelliSEM-EPASTM provides detailed measurements of the
maximum and minimum diameters, average diameter, par-
ticle projection area, roundness, and aspect ratio with the
acquired particle SEM images based on a built-in image
processing module (Zhao et al., 2022). Compared to manu-
ally operated scanning electron microscope experiments, the
IntelliSEM-EPASTM system has the advantages of intelligent
control and fast analysis speed, allowing for the acquisition
of a large amount of environmental particle information in
a short time, including detailed data on particle concentra-
tion levels, morphology characteristics, and component con-

tent across arbitrary size ranges and were also comparable
to the results from bulk analysis (Peters et al., 2016; Wag-
ner and Casuccio, 2014). The elemental concentrations ob-
tained by CCSEM show good consistency with bulk anal-
ysis results from atomic absorption (AA), bulk X-ray fluo-
rescence (XRF), proton-induced X-ray emission (PIXE), and
anion chromatography (IC) (Casuccio et al., 1983). Mamane
et al. (2001) also showed that 360 particles were sufficient
to obtain representative results in CCSEM analysis of parti-
cle types and size distributions based on comparisons of 360,
734, 1456, and 2819 individual particles. Although CCSEM
has a superior advantage in high efficiency for measuring
large quantities of particles, it encounters challenges with
certain types of particles that have complex morphologies,
such as soluble salts and soot (Peters et al., 2016). CCSEM-
induced errors may include particle overlap, contrast arti-
facts, sizing inaccuracies, and particle heterogeneity (Ma-
mane et al., 2001). Consequently, manual error correction is
typically performed prior to data processing.

2.2 Dust microphysical properties derived from
IntelliSEM-EPASTM

Based on the IntelliSEM-EPASTM system, this study ob-
tained the geometric information and energy spectrum data
of about 4000–5000 particles in each sample, aiming to re-
veal the statistical characteristics of the microphysical prop-
erties of insoluble particles in snow. Specifically, according
to Kandler et al. (2007), particles with a relative mass pro-
portion of C and O elements exceeding 95 % were roughly
classified as carbonaceous particles. Then, for all remaining
particles, the elemental index of each element other than C
and O was calculated. Based on single-particle composition
quantification, the elemental index of element X is defined
as the atomic ratio of the concentration of the considered el-
ement to the sum of the concentrations of the quantified ele-
ments (Panta et al., 2023).

|X| =

X

(Na+Mg+Al+Si+P+S+Cl+K+Ca+Ti+V
+Cr+Mn+Fe+Co+Ni+Cu+Zn+Sn+Ba+Pb)

(1)

The elemental symbol indicates the relative contribution
measured for each particle (in atomic percent). Using the ob-
tained elemental indices and combining k-means clustering
algorithms and manual experience, these non-carbonaceous
particles were classified (Kandler et al., 2007; Panta et al.,
2023; Zhao et al., 2022). The main principle of the k-
means clustering algorithm is to use the k-means algorithm
to classify particles with similar chemical compositions into
30 types based on the elemental index of each element and
then, according to relevant research and manual experience
classification principles of EDS spectra (Panta et al., 2023),
classify the 30 types into 12 mineral phases by merging
some similarly classified clusters, with particle categories
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named after their most common chemical composition, in-
cluding quartz-like, hematite-like, rutile-like, kaolinite-like,
chlorite-like, illite-like, hematite-like, and clay-mineral-like
particles. Figure S1 in the Supplement presents the percent-
age distribution of elemental indices (excluding C and O)
for 12 categories of mineral particles. Specifically, hematite-
like, quartz-like, rutile-like, apatite-like, and dolomite-like
particles are predominantly characterized by Fe, Si, Ti, Ca,
and Mg, respectively. Kaolinite-like particles are enriched
in Al and Si, while clay-mineral-like and Ca-rich silicate par-
ticles contain significant amounts of Al and Si, along with
notable Ca content, with the latter exhibiting a higher Ca con-
centration. In contrast, illite-like, smectite-like, and chlorite-
like particles, in addition to being enriched in Al and Si,
also contain varying amounts of K, Mg, and Fe, respectively.
Correspondingly, representative SEM images of particles are
presented within each mineral category panel.

The size distribution of different types of particles is de-
scribed using a normal distribution, specifically expressed as
(Flanner et al., 2021; Li et al., 2021):

nr =
dN
dr
=

n∑
i=1

Ni
√

2πr ln(σi)
exp

{
−

1
2

[
ln(r)− ln(ri)

ln(σi)

]2
}
, (2)

where Ni is the total number of particles per unit volume in
the ith size mode, ri is the mean radius, and σi is the ge-
ometric standard deviation. These parameters can be fitted
from the measured data. Similarly, the aspect ratio (AR) of
particles is also expressed as a normal distribution function
(Panta et al., 2023):

nAR =
dN

dAR
=

n∑
i=1

Ni
√

2πARln(σi)

exp

{
−

1
2

[
ln(AR)− ln(ARi)

ln(σi)

]2
}
. (3)

2.3 Dust light absorption and snow albedo calculation

Based on the proportion of different mineral phases in the
dust, the effective volume refractive index (meff) of mineral
mixtures in snow aerosols was calculated using the effective
medium approximation (EMA) method. Specifically, for bi-
nary mixtures, the effective complex refractive index under
EMA Bruggeman approximation can be written as (Kahnert,
2015):

meff =√√√√ 1
4

[
m2

1(2− 3f )+m2
2(3f − 1)

]
+

√[
1
16

[
m2

1(2− 3f )+m2
2(3f − 1)

]2
+

1
2
m2

1m
2
2

]
, (4)

where m1 is the complex refractive index of the background
matrix, m2 is the complex refractive index of the inclusions,
and f is the volume fraction of the inclusions. The effec-
tive complex refractive index for multicomponent mixtures
can be obtained by repeating the above process. The refrac-
tive indices of different minerals used in this study were

obtained from the spectral refractive index dataset of the
main mineral components and chemical compositions pro-
vided by Zhang et al. (2024). For more detailed informa-
tion about the dataset, refer to Zhang et al. (2024). Subse-
quently, using the effective complex refractive indices of dust
constrained by observations, size distribution, and aspect ra-
tio (AR) data, we calculated the mass absorption coefficient,
single-scattering albedo, and asymmetry factor of different
types of dust particles using the MOPSMAP program pack-
age (Gasteiger and Wiegner, 2018). The MOPSMAP model
is a comprehensive aerosol optical property model combin-
ing the T-matrix method, Mie scattering theory, and geomet-
ric optics that widely used in calculating complex aerosol op-
tical parameters (Kanngiesser and Kahnert, 2021; Shi et al.,
2022b).

The simulation of snow albedo was executed by our team
using the Spectral Albedo Model for Dirty Snow (SAMDS)
(Wang et al., 2017), which has been applied in many stud-
ies and is applicable to semi-infinite snow depth scenarios
(Shi et al., 2021; Li et al., 2021). Its accuracy is also well
validated, achieving an albedo accuracy of ±0.02 compared
to field spectroradiometer data (Wang et al., 2017). Specifi-
cally, the albedo of a snow-covered field containing dust un-
der clear-sky conditions can be expressed as

Rd(λ)= exp

(
−4

√
8πBRefk(λ)

9λ(1− g)
+

2ρiceRef

9(1− g)
MACDust ·CDust

·
3
7
(1+ 2cos(v0))

)
, (5)

where λ is the wavelength in µm, v0 is the solar zenith an-
gle, and k(λ) is the imaginary part of the complex refractive
index of ice. ρice and Ref represent the density and effective
radius of snow grains (in µm), respectively; g is the asymme-
try factor of snow grains (weighted average of the scattering
angle cosine); and B is a factor related only to the shape of
the snow grains. MACDust is the mass absorption coefficient
of dust, and CDust is the concentration of dust particles in the
snow. SAMDS uses 480 bands (0.2–5.0 µm) to resolve spec-
tral albedo. Here, we used B = 1.27 and g = 0.89 to charac-
terize spherical snow grains (Wang et al., 2017). SAMDS is
also capable of simulating the albedo of non-spherical snow
grains, and our previous work has explored the albedo varia-
tion induced by snow grain shape (Shi et al., 2022a), which
will not be reiterated here. Additionally, this study assumes
dust–snow external mixing. However, it is worth noting that
some studies have indicated that internal mixing can further
enhance the dust-induced albedo reduction caused by 5 %–
30 % (He et al., 2019; Shi et al., 2021). Therefore, this as-
sumption may underestimate the impact of dust on albedo.
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3 Results

3.1 The composition of dust in seasonal snow

The composition of dust determines its complex refrac-
tive index, which is crucial for studying the radiative ef-
fects of dust (Reynolds et al., 2020; Lee et al., 2020). This
study identified a total of 12 mineral components, includ-
ing hematite-like, quartz-like, rutile-like, clay-mineral-like,
illite-like, kaolinite-like, smectite-like, chlorite-like, apatite-
like, Ca-rich silicate, and dolomite-like particles. However,
it is important to handle this classification scheme with cau-
tion as each particle may consist of different minerals, which
may have variable or ambiguous compositions. Therefore,
the groups used cannot uniquely identify minerals but rather
indicate the most likely minerals matching the particle com-
position. This is reflected in the suffix “-like” used in the
group naming scheme. Given the existence of other poten-
tial identification methods, each with its own advantages and
limitations, the complete dataset generated and used in this
study can be utilized for future research. Figure 1 (Fig. S2)
shows the number (mass) relative proportions of different
mineral components in dry and wet deposition snow sam-
ples at different size resolutions, indicating significant trends
observed among different particle groups with changes in
size categories. For all samples, kaolinite-like particles are
the most abundant and present in all size ranges, with their
abundance decreasing with increasing size. Quartz-like par-
ticles have nearly similar abundance in each size category
(approximately 10 %–20 %), which is higher than the values
reported by Panta et al. (2023) for dust from Morocco (ap-
proximately 5 %). Similarly, clay-mineral-like particles are
evenly distributed across each size category, accounting for
about 4 % of the relative abundance. Hematite-like particles
exhibit similar relative abundances, but their contribution de-
creases with increasing particle size, and their strong light-
absorbing properties have drawn widespread attention (Li et
al., 2024; Zhang et al., 2015; Moteki et al., 2017). In contrast,
chlorite-like particles’ relative contribution increases with in-
creasing size, with an average abundance of approximately
20 %. It is noteworthy that the relative abundance of illite-
like particles is higher in wet deposition samples than in dry
deposition samples, possibly due to k-rich illite, considered
one of the most effective ice nucleation sources found among
different mineral components in dust (Atkinson et al., 2013;
Harrison et al., 2022). Additionally, the relative abundance of
quartz-like particles in dry deposition samples is significantly
lower than in wet deposition samples, which is closely re-
lated to the migration process of quartz-like particles in snow.
Table S1 in the Supplement provides the relative propor-
tions of different mineral components within the measured
size range (0.2–10 µm). Overall, dust in Changchun snow
is primarily composed of kaolinite-like (36 %), chlorite-like
(19 %), quartz-like (15 %), illite-like (14 %), hematite-like
(5 %), and clay-mineral-like (4 %) particles and other compo-

nents. In comparison, Shi et al. (2005) reported mineralogical
properties of Asian dust primarily consist of clay minerals
(35.5 wt %, by weight percentage), quartz (30.3 wt %), and
calcite (14.0 wt %) followed by feldspar (8.7 wt %), pyrite
(1.0 wt %), and hornblende (0.4 wt %). For the Middle East,
Prakash et al. (2016) reported relative mass abundances of
clay minerals ranging from 45 % to 75 %, plagioclase from
5 % to 54 %, and quartz from 0.1 % to 10.2 % as major
components. Considering that industrial activities (e.g., coal
combustion, urban construction, and road dust) emit quartz-
rich particles, while long-range transport from arid regions
(e.g., the Gobi Desert) contributes illite, which is consis-
tent with the dust profile in Asia (Li et al., 2021), the an-
thropogenic contribution (e.g., hematite-like particles) aligns
with the presence of nearby steel production facilities. There-
fore, our results suggest that dust is likely a mixture of local
and long-range sources.

3.2 Size distribution and aspect ratio of dust in
seasonal snow

Particle size is a key factor influencing the light-absorbing
properties of dust, which has received widespread attention
in field observations, numerical models, and satellite remote
sensing (Castellanos et al., 2024; González-Flórez et al.,
2023; Song et al., 2022). Figure 2a illustrates the size distri-
bution characteristics of dust particles collected from snow
samples at different periods, indicating that the peak particle
size of dust during dry deposition did not vary significantly.
All samples exhibited similar size distributions, with geomet-
ric mean radii ranging from 0.35 to 0.37 µm and geometric
standard deviations from 1.88 to 2.12, comparable to find-
ings reported in other studies (Kok, 2011; Di Mauro et al.,
2015; Kok et al., 2017). Interestingly, significant differences
in size spectra were observed among different mineral com-
ponents (Fig. S3 and Table S2), considering only the cases
where the fitted values passed significance tests. Chlorite-
like particles exhibited the coarsest size spectrum (median
radius= 1.32 µm), nearly double that of smectite-like par-
ticles (0.57 µm), likely due to their tendency to aggregate
during atmospheric transport (Formenti et al., 2014). Illite-
like particles displayed the widest size range (0.38–0.59 µm)
across different snow samples, possibly reflecting multiple
source regions or differential atmospheric processing. The
dominant kaolinite-like and quartz-like particles shared sim-
ilar size distributions centered around 0.36 µm, consistent
with their common origin in soil fragmentation (Kok, 2011),
though kaolinite exhibited slightly less size variability. To-
gether these components represented 51 % of particles and
primarily determined the overall dust size characteristics.
Particularly noteworthy were hematite-like particles, which
despite being the smallest at 0.29 µm characteristic of iron
oxide condensation formation, disproportionately influenced
radiative properties due to their exceptional light absorption
(Formenti et al., 2014; Go et al., 2022).
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Figure 1. Size-resolved number abundance of different particle groups for the D1 sample (a), D7 sample (b), D15 sample (c), D23 sample (d),
D29 sample (e), and all samples (f). The numbers on top represent total particle counts in the given size bin.

Aspect ratio (AR) is another critical geometric parameter
of dust particle that affects their light-absorbing properties
(Botet and Rai, 2013; Haapanala et al., 2012; Huang et al.,
2023). Figure 2b describes the spectral distribution of aspect
ratios of dust particles in dry and wet deposition samples.
Similarly to the size results, the aspect ratio of dust particles
during dry and wet deposition did not show significant vari-
ations, with all samples displaying similar spectral distribu-
tions. The geometric mean values ranged from 1.28 to 1.31,
with geometric standard deviations from 1.22 to 1.23. These
results are slightly lower than those reported in atmospheric
dust studies, such as measurements of dust from Morocco
and Asia with AR values of 1.46 and 1.40, respectively (Kan-
dler et al., 2009; Okada et al., 2001). During the Fennec
campaign in central Sahara, a median AR of 1.3 was found
(Rocha-Lima et al., 2018), and measurements of dust parti-
cles collected in the Sahara air layer and marine boundary
layer during the AERosol Properties – Dust (AER-D) period
showed median AR values of 1.30–1.44 for particles rang-
ing from 0.5 to 5 µm, 1.30 for particles from 5 to 10 µm,

and 1.51 for particles from 10 to 40 µm (Ryder et al., 2018).
Furthermore, we also explored the spectral characteristics of
aspect ratios of different mineral components (Fig. S4 and
Table S3). Unlike the size distribution, although there are
differences in aspect ratios among different components, the
variation range is not large. Most mineral component groups
have similar median AR values of 1.30, except for hematite
and clay minerals, which have the lowest median AR of 1.27
and the highest median AR of 1.37, respectively. The AR of
the same mineral component group shows no significant dif-
ferences among different samples. Additionally, we found
that AR is generally independent of particle size and type
(Fig. S5), consistent with the results of Panta et al. (2023).

3.3 Dust light absorption and its effects on snow albedo

The refractive index of various mineral components exhibits
significant variation. Figure S6 illustrates the complex re-
fractive indices (both real and imaginary parts) of the eight
principal mineral component groups identified in this study.
The imaginary parts, indicative of absorption, vary by up to
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Figure 2. Relative abundances of (a) logarithmic dust size number
distributions dN/(dlogDp) and (b) logarithmic dust AR number
distributions dN/(dlogAR) for different snow samples. Dvg: the
particle diameter of dust in snow, rn: the number median radius,
σg: the geometric standard deviation.

6 orders of magnitude. Hematite shows the highest imaginary
part of the complex refractive index, indicating the strongest
light-absorbing properties, while quartz displays the small-
est, indicating the weakest. The complex refractive indices
of kaolinite, illite, chlorite, and smectite present relatively
similar values, suggesting minimal variation in their light-
absorbing properties. Based on the complex refractive index
database of mineral component groups and combined with
volume relative proportions under observational constraints,
an effective medium approximation method is used to ob-
tain the effective complex refractive index of dust in snow.
Additionally, to assess the impact of different mineral com-
ponent groups on the effective complex refractive index, we
adjusted the initial volume proportions of hematite, kaolin-
ite, chlorite, and illite by factors of 1.25, 1.50, 1.75, and 2.0,
respectively, while keeping the relative proportions of other
components unchanged and finally normalizing the propor-
tions of all components. Figure 3 illustrates the variation in
the effective complex refractive index of dust with the wave-
length under these scenarios, focusing on the imaginary parts

related to absorption. Overall, kdust is distributed within a
narrow range (∼ 0.001–0.01), gradually decreasing with in-
creasing wavelength in the UV and VIS bands and then sta-
bilizing in the NIR band, comparable to values reported in
other literature. Notably, an increase in the relative propor-
tion of hematite leads to a significant rise in kdust, especially
in the visible spectrum. Conversely, increases in the rela-
tive proportions of kaolinite, chlorite, and illite cause a slight
decrease in kdust due to the reduced relative proportion of
hematite after normalization.

Furthermore, incorporating observed dust size distribution
and AR spectra characteristics, we calculated the mass ab-
sorption cross section (MACdust), as shown in Fig. 4. Simi-
larly to kdust, MACdust is distributed within a narrow range (∼
0–0.3 m2 g−1), gradually decreasing with increasing wave-
length in the UV and VIS bands and approaching stability (∼
0) at wavelengths greater than 1000 nm. An increased rela-
tive proportion of hematite enhances MACdust in the visible
spectrum. For instance, doubling the relative proportion of
hematite raises MACdust at 500 nm from 0.14 to 0.19 m2 g−1.
However, changes in the relative proportions of kaolinite and
chlorite have minimal effects on MACdust consistent with
the results for kdust. Additionally, an increase in kdust signif-
icantly reduces MACdust in the UV and VIS bands, weaken-
ing its spectral dependence. For example, when kdust is in-
creased by factors of 1.25, 1.5, and 2.0, MACdust at 300 nm
decreases by 20 % (0.20 m2 g−1), 33 % (0.17 m2 g−1), and
48 % (0.13 m2 g−1), respectively, and at 500 nm, it de-
creases by 12 % (0.12 m2 g−1), 21 % (0.11 m2 g−1), and 34 %
(0.09 m2 g−1). Overall, the measured MACdust values (0–
0.3 m2 g−1) show regional variations that reflect composi-
tional differences: while comparable to Saharan dust (0.1–
0.25 m2 g−1; Balkanski et al., 2007), they are significantly
lower than Tibetan Plateau dust (0.3–0.5 m2 g−1; Li et al.,
2021) and slightly higher than Colorado (San Juan Moun-
tains) dust (0.05–0.15 m2 g−1; Skiles et al., 2017). This pat-
tern correlates with hematite content, decreasing from 8 %–
12 % in Tibetan Plateau dust to 5 % in our samples and just
2 %–3 % in Greenland dust (Polashenski et al., 2015). The
distinct quartz-rich signature in our samples (15 % vs. <
5 % in other regions) may reflect unique industrial emission
sources in northeastern China.

Figure 5a illustrates the impact of changes in the relative
proportion of hematite on the spectral snow albedo, consid-
ering scenarios with low, medium, and high dust loads in
snow, assuming a snow particle size of 500 µm (medium sce-
nario). It can be observed that changes in spectral albedo
due to variations in dust concentration and composition pro-
portions generally occur in the visible light spectrum, while
the near-infrared (NIR) spectrum is primarily influenced by
the microphysical properties of snow particles themselves
(Gardner and Sharp, 2010; He and Flanner, 2020), thus un-
affected by dust concentration and composition proportions.
Specifically, spectral albedo decreases in the UV and visi-
ble light (UV–VIS) bands with increasing dust concentra-
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Figure 3. Complex spectral refractive indices of dust mixtures in scenarios with different composition group percentages. The solid and
dashed lines in the diagram represent the imaginary and real parts, respectively. The default average volume fraction of each mineral group
is 35.6 % kaolinite, 19.4 % chlorite, 15.2 % quartz, 14.6 % illite, 4.5 % hematite, 3.1 % smectite, and 1.1 % rutile. Panels (a)–(d) represent
the effects of changes in the proportion of hematite, kaolinite, chlorite, and illite, respectively.

tion, with a further decrease observed with rising propor-
tions of hematite. Similarly to Fig. 5a, Fig. 5b describes
changes in spectral albedo of snow under different dust par-
ticle sizes, showing that increasing dust particle size can mit-
igate the decline in spectral albedo in the visible light spec-
trum, which is more pronounced in high-dust-load scenar-
ios. For example, doubling the dust particle size increases
the spectral albedo (300 nm) from 0.946, 0.840, and 0.576
to 0.961, 0.882, and 0.673 for dust concentrations of 1, 10,
and 100 ppm in snow, respectively. Figure 5c and d, respec-
tively, illustrate the effects of changes in the relative propor-
tion of hematite and dust particle size on the reduction in
snow albedo, considering three snow particle size scenarios.
Specifically, the reduction in albedo increases with increas-
ing dust concentration and snow particle size further exacer-
bated by an increase in the proportion of hematite, especially
in scenarios with high dust concentration and snow parti-
cle size. Conversely, an increase in dust particle size reduces
the reduction in albedo, and increases in dust concentration
and snow particle size can further amplify this effect. For
instance, in scenarios with low (high) snow particle size, in-

creasing the proportion of hematite increases the reduction in
albedo caused by dust concentrations of 1, 10, and 100 ppm
in snow from 0.007 (0.022), 0.028 (0.084), and 0.099 (0.257)
to 0.008 (0.026), 0.033 (0.098), and 0.115 (0.291). Con-
versely, increasing the dust particle size reduces the re-
duction in albedo caused by dust concentrations of 1, 10,
and 100 ppm in snow to 0.005 (0.017), 0.022 (0.066),
and 0.081 (0.217). These results emphasize the complex ef-
fects of dust composition, particle size, concentration, and
snow particle size on snow albedo.

4 Summary and discussion

This study employs CCSEM technology to quantitatively an-
alyze insoluble particulate matter in snow in Changchun,
ranging from 0.2 to 10 µm, and identified 12 mineral com-
ponent groups through k-means cluster analysis and em-
pirical identification. The findings indicate that the dust in
Changchun snow primarily comprises kaolinite-like (36 %),
chlorite-like (19 %), quartz-like (15 %), illite-like (14 %),
hematite-like (5 %), and clay-mineral-like (4 %) particles,
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Figure 4. Spectral variations in the dust mass absorption cross sections (MACs) for different simulation scenario: (a) hematite, (b) kaolinite,
(c) chlorite, and (d) size. Here, the dust aspect ratio is fixed at 1.3.

with no significant changes in the proportions of differ-
ent mineral components during dry deposition processes.
In contrast, wet deposition samples contain higher propor-
tions of illite and quartz, which may be attributed to illite
as an effective source of ice nuclei and the dynamic mi-
gration of quartz in snow. The study also found that the
size and aspect ratio (AR) of dust follow normal distribu-
tion characteristics, with geometric means and standard de-
viations of 0.35–0.37 µm and 1.88–2.12 for size and 1.28–
1.31 and 1.22–1.23 for AR, respectively. Although there
were no significant changes in the size and AR of dust dur-
ing dry and wet deposition processes, significant variability
was observed among different mineral component groups in
terms of size and AR. Subsequently, based on statistically
derived characteristics of dust components, size, and AR un-
der observational constraints, we analyzed the light absorp-
tion characteristics of dust. The mass absorption cross sec-
tion (MACdust) was found to be distributed within a narrow
range (∼ 0–0.3 m2 g−1). An increase in the relative propor-
tion of hematite was observed to increase MACdust, while an
increase in dust particle size decreased MACdust by a specific
percentage (10 %–50 %). Finally, the study discussed the

complex effects of dust composition, particle size, concentra-
tion, and snow particle size on snow albedo. The results indi-
cate that an increase in the relative proportion of hematite fur-
ther enhances the reduction in snow albedo caused by dust,
whereas an increase in dust particle size mitigates this reduc-
tion. Additionally, increases in dust concentration and snow
particle size can further amplify these effects.

Compared with bulk sample collection and other tech-
niques, we emphasize the fact that CCSEM technology pro-
vides an innovative approach to detect the statistical char-
acteristics of mineral composition, size distribution, and
shape (AR) of dust in snow, significantly enhancing the ac-
curacy of dust radiative forcing in model simulations. How-
ever, it is worth noting that although mineralogy provides
strict definitions for mineral phases based on composition
and crystal structure, atmospheric dust particles typically
consist of heterogeneous mixtures. Currently, the scientific
community lacks standardized protocols for classifying the
mineralogical components of such complex particulate as-
semblages, making it difficult to compare dust composi-
tion reported in different literature, severely limiting research
on dust chemical composition in different regions globally
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Figure 5. (a) Spectral snow albedo in the wavelength range of 0.2–2.5 µm for different dust concentrations and hematite percentages, with
assumed snow radii of 500 µm. (b) Spectral snow albedo for different dust concentrations and sizes. (c) Broadband snow albedo reduction as
a function of dust concentration for different hematite percentages and snow grain radii (100, 500, and 1000 µm). (d) Similar to (c), but the
hematite percentage is replaced with dust size.

(Castellanos et al., 2024; Zhang et al., 2024). Therefore, we
call for the establishment of strict criteria for distinguishing
mineral components as soon as possible which will also sup-
port hyperspectral projects and space programs developed
and implemented by international societies and aerospace in-
stitutions to enhance understanding of mineral composition
in terrestrial dust source regions (Green et al., 2020; Guanter
et al., 2015). On the other hand, there is still a lack of under-
standing of the basic mineralogical and physical properties
of dust particles, including key mineral spectral refractive in-
dices, such as those of hematite and goethite. Measurements
of hematite refractive indices currently vary widely, hinder-
ing attempts to calculate dust optical properties and forcing
changes (Zhang et al., 2024). In addition, the irregular shapes
of dust particles cannot be represented by simple mathemati-
cal models and the lack of comprehensive and realistic shape
models are prominent issues in dust optical modeling, distin-
guishing it from other aerosol types (Huang et al., 2023; Ito
et al., 2021). Overall, the greatest limitation lies in the lack of
detailed, region-specific, statistically representative informa-

tion on the microphysical properties of base dust particles –
size distribution, morphology, complex refractive index spec-
tra, heterogeneity of internal structures, and resulting optical
characteristics.
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