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Abstract. This sensitivity study examines the impact of mod-
ulating surface sensible heat flux over leads – open-water ar-
eas within sea ice cover – to approximate finer-scale pro-
cesses that are often underrepresented in climate models.
We aim to assess how this parameterization (referred to
as ECE3L) influences the persistent positive bias in Arctic
sea ice (concentration and thickness) in the global climate
model EC-Earth3 (ECE3). We performed two pairs of 50-
year simulations using 1985 (cold-climate) and 2015 (warm-
climate) forcing, with the latter characterized by thinner ice
and weaker atmospheric boundary layer stability during win-
ter. Our results show that modified heat flux alters surface air
temperatures in the Arctic, with minimal impact on lower lat-
itudes. The changes are more pronounced in the cold-climate
experiment, particularly during Arctic winter. We also per-
formed a historical ensemble comparison between ECE3L
and ECE3 over a transient-climate period (1980–2014). We
found that the spatial patterns in mean sea ice changes in
the transient climate closely resembled those observed in the
cold-climate experiment. However, the reduction in the to-
tal sea ice area and volume in ECE3L relative to ECE3 was
nearly 4 times greater in the cold climate compared with
the transient climate. This suggests that amplified heat flux
through leads is less effective in a warming climate with de-
creasing winter stratification. Notably, ECE3L shows closer
alignment with observational data and refines the declining
sea ice volume trend overestimation in ECE3, reducing over-
estimated ensemble variability caused by excessive sea ice.
This, in turn, amplifies sea ice sensitivity to Arctic warming,
particularly in the marginal ice zone. These findings empha-
size the importance of accurately representing surface heat

flux through sea ice leads, which plays a critical role in cap-
turing the influence of atmospheric stability on sea ice dy-
namics and regional Arctic amplification.

1 Introduction

Sea ice influences thermal interactions between the ocean
and atmosphere by acting as an insulating barrier and reflec-
tive surface. An accelerated reduction in Arctic sea ice cover
(extent and thickness) leads to increased solar absorption by
the ocean (i.e. ice–albedo feedback mechanism), which in
turn intensifies surface warming (Bhatt et al., 2014). As a
result, Arctic warming rates have nearly quadrupled com-
pared to the global average since satellite observations com-
menced in 1979 (Rantanen et al., 2022). The Arctic’s rapid
warming can increase the melting of the Greenland ice sheet,
raise global sea levels, extend and intensify Arctic fire sea-
sons, speed up permafrost thaw, and alter weather patterns
in the heavily populated mid-latitudes regions of the North-
ern Hemisphere (AMAP, 2021; Eyring et al., 2021; Thomas,
2017; Johannessen et al., 2020).

Accurate modelling of Arctic sea ice is essential for under-
standing and predicting the impact of climate change. How-
ever, several Earth system models that contributed to the
Coupled Model Intercomparison Project Phase 6 (CMIP6;
Eyring et al., 2016), including EC-Earth3, tend to simu-
late excessive sea ice in winter and an early minimum
in August (Keen et al., 2021; Doescher et al., 2022) in-
stead of September, as indicated by observational, satellite-
based datasets (Cavalieri et al., 1996; Stroeve et al., 2014;
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Fox-Kemper et al., 2021). The CMIP6 multi-model mean
captures the observed decline in Arctic sea ice in gen-
eral, while substantial variability exists both among different
models and among ensemble members of the same model
(Lee et al., 2023), highlighting internal variability as a key
source of uncertainty in decadal trends (Dörr et al., 2023).
A major challenge lies in ice thickness representation: mod-
els with thicker ice tend to exhibit a faster decline in sea ice
volume than those with thinner ice, increasing uncertainty in
reproducing the overall rate of decline (Lee et al., 2023; Mas-
sonnet et al., 2018). Ice thickness also influences feedback
mechanisms, such as the ice–albedo effect, where thinner
ice and earlier melt expose open water, accelerating warm-
ing (Bhatt et al., 2014). Additionally, missing processes like
surface heat flux over sea ice leads, which mediate ocean–
atmosphere heat exchange in winter, can amplify local warm-
ing (Esau, 2007; Marcq and Weiss, 2012). These factors con-
tribute to uncertainties in modelling Arctic warming and in
projecting future sea ice evolution and its climate impacts
(Wunderling et al., 2020).

Several studies have highlighted the need for climate mod-
els to reduce biases in the historical climate mean state to
improve projections of sea ice changes (Massonnet et al.,
2018; Docquier and Koenigk, 2021; Keen et al., 2021; Kay
et al., 2022). Particularly in a warming climate, the thinning
of sea ice and snow cover increases the importance of ther-
modynamic processes, involving heat and energy exchange
between the sea ice, atmosphere, and ocean surface (Masson-
net et al., 2018; Landrum and Holland, 2022; Webster et al.,
2021). Deser et al. (2010) demonstrated a connection be-
tween Arctic temperature inversion and sea ice loss, suggest-
ing that the strong wintertime marine temperature inversion
observed from 1980 to 1999 will diminish by 2080–2099.
However, the presence of a positive bias in sea ice mean
states can have profound consequences for the atmosphere,
leading to unrealistic stable atmospheric stratification and ul-
timately damping the modelled sea ice sensitivity to external
forcing.

In this study, we hypothesized that modulating upward
heat flux through leads can help mitigate the seasonal bias in
the coupled EC-Earth3 model and improve the simulation of
Arctic sea ice. This hypothesis is based on the understanding
that the absence of a parameterization for turbulent exchange
over leads in global climate models hampers adequately cap-
turing the exchange of heat and energy between the atmo-
sphere and the ocean through these crucial areas (Esau, 2007;
Marcq and Weiss, 2012). Consequently, this deficiency may
result in an early onset of stable stratification and an extended
period of sea ice growth.

Implementing a new modulating factor to the Norwe-
gian Earth System Model (NorESM), in its atmosphere-
only model configuration (https://blue-action.eu/, last access:
20 July 2025, Davy and Gao, 2019), significantly advanced
our understanding of how heat fluxes through sea ice leads
affect the Arctic’s surface energy balance. This factor takes

seasonal variations into account and varies based on the sta-
bility of the atmospheric boundary layer, increasing heat
flux through leads to warm the air above during winter and
dampening it during summer. Although the modulating fac-
tor shows promise in addressing known seasonal biases, its
long-term climate impacts remain uncertain due to potential
changes in atmospheric stability and the spatial distribution
of leads (Deser et al., 2010), highlighting the need for further
investigation.

To address these, we propose implementing the modula-
tion factor into a coupled climate model. Specifically, this
will allow us to investigate whether an amplified heat flux
through sea ice leads in winter may better represent the tran-
sition to a warmer Arctic with less perennial sea ice, poten-
tially reducing the importance of leads under climate change.
Moreover, we aim to assess whether this modification can
improve the sensitivity of climate models to external forcing
in the Arctic. To do so, we will analyse changes in the trends
in key essential climate variables (sea ice extent, area, vol-
ume, and surface air temperature) during a period of rapid
Arctic change (1980–2014; Schweiger et al., 2019) due to
the inclusion of the lead scheme. We will also identify the
added value of this modification in reducing model bias on a
regional scale.

2 Methods

2.1 Empirical relationship between surface heat flux
amplification (Alead) and sea ice leads

An empirical parameterization, introduced by Davy and
Gao (2019) for the NorESM model, defines the relation-
ship between surface sensible heat flux (SSHF) amplifica-
tion and sea ice leads. This approach builds upon turbulence-
resolving simulations of heat fluxes over leads of different
widths and atmospheric stability (Esau, 2007), combined
with satellite-derived lead width distributions (Marcq and
Weiss, 2012), to better represent sub-grid-scale processes.
Their sensitivity study, conducted using an atmosphere-only
model configuration, shows an improved characterization of
SSHF in regions with partial sea ice cover.

The amplification factorAlead depends on atmospheric sta-
bility, quantified via the convective boundary layer length
scale (λCBL) and sea ice concentration (SIC), with the lat-
ter defined as the fractional area of sea ice within a grid cell
(in percent). The state-dependent λCBL is derived from an
empirical formula based on the instantaneous air tempera-
ture gradient θ (200–300 m) in the atmospheric model. For
grid cells with SIC≥ 90 %, Alead reaches its maximum value
(linearly interpolates to 1 for SIC≤ 70 %). A full derivation
of this parameterization, including the governing equations
and parameter choices, is provided in Appendix A.
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2.2 The coupled EC-Earth3 model with
implementation of Alead

In our study, we used a well-documented, state-of-the-art
global climate model EC-Earth3 (version v3.3), which is
the model version that contributed to CMIP6 (Doescher
et al., 2022). This model comprises three main components:
atmosphere, ocean, and sea ice. The atmospheric compo-
nent incorporates the Integrated Forecast System (IFS cy-
cle 36r4) developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF), with a horizontal grid
of TL255 and 91 vertical model levels. The ocean compo-
nent uses version 3.6 of the Nucleus for European Mod-
elling of the Ocean (NEMO3.6) embedded with version 3 of
the Louvain-la-Neuve sea Ice Model (LIM3; Rousset et al.,
2015). The NEMO-LIM3 set-up uses a nominal 1° resolu-
tion horizontal grid (i.e. ORCA1) and 75 vertical levels. In
particular, the LIM3 sea ice model adopts an ice thickness
distribution framework to deal with fine-scale ice thickness
variations (Rousset et al., 2015).

EC-Earth3, hereafter referred to as ECE3, exhibits an Arc-
tic sea ice bias in its mean state. While the total area of Arc-
tic sea ice aligns well with satellite observations, there are
generally large positive biases in the total volume of Arctic
sea ice (Doescher et al., 2022), compared to the Pan-Arctic
Ice–Ocean Modeling and Assimilation System (PIOMAS;
Zhang and Rothrock, 2003), a reanalysis that has been ex-
tensively validated (Stroeve et al., 2014; Wang et al., 2016)
and broadly used by the community as a reference product
(Davy and Outten, 2020; Keen et al., 2021). In September,
the model shows an evident overestimation of the Arctic sea
ice thickness (SIT), with a bias of up to 2 m, while in March,
ECE3 overestimates it in the central Arctic but underesti-
mates it in the Bering and Kara seas relative to PIOMAS (see
Fig. 13 in Doescher et al., 2022).

To alleviate the bias in the Arctic sea ice and assess its con-
sequences on the global climate system, we incorporated the
factor Alead into the SSHF calculations within the coupled
ECE3 framework, addressing a topic that has not been exten-
sively explored in previous studies (Davy and Gao, 2019).
Alead is applied globally on the sea ice of both poles and up-
dated at each model time step with the instantaneous condi-
tions of the lower-level air temperature gradients θ and SIC
on the atmospheric model grid. The EC-Earth3 simulations
with the implementation of Alead are hereafter referred to as
ECE3L.

In ECE3L, all surface fluxes are computed in the atmo-
sphere using state variables from the ocean–atmosphere in-
terface and then remapped to the ocean and sea ice compo-
nents via the OASIS3-MCT coupler (Doescher et al., 2022).
The modulating factor, Alead, influences only the sensible
heat flux in the surface atmosphere by either amplifying or
damping it over leads, depending on atmospheric stability.
This adjustment can result in increases of up to 1.2, enhanc-
ing surface heat exchange over sea ice where SIC exceeds

70 %, particularly during winter. Conversely, in summer, the
factor decreases from 1 to 0.9, leading to a reduction in
surface heat exchange and producing the opposite effect on
the surface atmosphere (see Fig. S1 in the Supplement and
Sect. 3.2).

2.3 CMIP6 historical simulations and the comparison
strategy

We first performed a pairwise comparison of single simu-
lations between ECE3L and ECE3 (i.e. with/without Alead)
in cold and warm climates (hereafter referred to as Exp-
Cold and ExpWarm, respectively). Here, we distinguished
the warm-climate scenario by its characteristics of thinner ice
and weaker atmospheric boundary layer stability during win-
ter compared to the cold climate (Fig. 1). To exemplify the
contrasting conditions, we arbitrarily selected the years 1985
and 2015 to represent the warm and cold periods, respec-
tively. The coupled simulations used the CMIP6 historical
external forcing from the given year (including solar radia-
tion, greenhouse gas concentrations, aerosols, and land use).
The ocean and atmospheric variables still freely evolve in
the simulation without being constrained. The initial states
are from one of the members of the ECE3 CMIP6 histori-
cal ensemble (see Fig. 3 by Doescher et al., 2022), specifi-
cally r5i1p1f1. We selected initial conditions from the histor-
ical simulation of r5i1p1f1 on 1 January in 1985 and 2015,
respectively, and repeated external forcing for the respec-
tive years in a 50-year cycle. For each simulation, the first
20 years were designated as the spin-up period, with the sub-
sequent 30 years for comparison purposes. We investigated
(1) whether implementing the new scheme in coupled cli-
mate simulations would result in any global impact and (2) if
this impact is influenced by the state of Arctic sea ice.

Next, we investigated how the presence of leads in Arc-
tic sea ice affects the coupled climate system in a transient
climate, particularly during significant Arctic warming due
to climate change (1980–2014). Specifically, we focused on
two key questions:

1. How might the importance of these open leads change
during winter due to shifts in atmospheric stability?

2. How does the differing sea ice evolution influence the
modelled Arctic warming?

To address these, we performed a 20-member ensemble sim-
ulation using ECE3L and compared it with a 20-member
ECE3 ensemble (Doescher et al., 2022), both utilizing the
same historical forcing from CMIP6. The 20 members used
were selected from the broader 25-member ECE3 CMIP6 en-
semble (i.e. r1–r25i1p1f1, as shown in Fig. 3 of Doescher
et al., 2022). Only 20 out of 25 members are publicly ac-
cessible through the Earth System Grid Federation (ESGF,
https://esgf.llnl.gov, last access: 20 July 2025). These simu-
lations were performed by the EC-Earth consortium follow-
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Figure 1. The ECE3 baseline simulation. Panel (a) presents the
annual cycle of air temperature differences between the 850 and
1000 hPa levels over Arctic sea ice for the ExpCold (dark blue) and
ExpWarm (light grey) scenarios. Error bars indicate 1 standard de-
viation of the 30-year variability. The temperature data are area-
averaged for regions with a sea ice concentration (SIC) ≥ 70 %
in the Arctic Ocean (66.5–90° N). Additionally, the 30-year mean
differences in sea ice thickness between ExpWarm and ExpCold
are shown on the right y axis, using solid circles (SIC≥ 70 %)
and stars (SIC≥ 80 %). Panels (b) and (c) illustrate air tempera-
ture differences in October using 30-year averages in ExpCold and
ExpWarm, respectively. The thick black line indicates the Arctic
Circle (66.5° N), within which the sea ice area for SIC ≥ 70 % is
calculated in panel (a) for each month. The thick grey lines mark
the Greenland–Iceland–Norwegian (GIN) seas (40° W–15° E, 66.5–
82° N) and the Barents and Kara (BAKA) seas (15–100° E, 70–
82° N) used in Fig. 12.

ing the CMIP6 protocol (Eyring et al., 2016) for historical
simulations of CMIP6 (1850–2014).

To generate the ECE3L ensemble, we started with
the initial conditions of two ECE3 members from 1960
(i.e. r5i1p1f1 and r8i1p1f1), applied the Alead factor, and
ran each simulation through a 15-year spin-up period. From
1975, we populated each of these simulations into 10 sepa-
rate runs by introducing small random perturbations (around
10−5 K) to the 3D temperature field in the atmosphere,
which caused ensemble members to diverge within days (see
Sect. 4.1 and Fig. S5). This resulted in a 20-member ECE3L
ensemble that ran until 2014. Details of the experimental set-
up are summarized in Table 1.

2.4 Validation data and metrics

The model evaluation covers the 1980–2014 period, aligning
with the availability of satellite-based observational sea ice
datasets in the Arctic. Our analysis involves comparing the
two ensemble simulations. First, we calculate the bias, which
was derived from the differences between the ensemble mean
and the observed data. Second, we quantify the improve-
ments by calculating the differences between the ECE3L and
ECE3 ensemble means. These calculations enable us to eval-
uate the model’s ability to replicate observed conditions and
to understand how the inclusion of Alead influences its per-
formance.

For sea ice thickness, we relied on the PIOMAS re-
analysis. Although PIOMAS is not strictly an observational
dataset, it is a valuable reference because it has been well val-
idated against observations (e.g. Stroeve et al., 2014; Wang
et al., 2016). It also provides well-quantified measures of
uncertainty (Schweiger et al., 2011) and is commonly used
to evaluate climate models (Davy and Outten, 2020; Keen
et al., 2021). For sea ice concentration, we used two indepen-
dent observational datasets: one referred to as NSIDC-0051,
which is derived from passive microwave data and has been
processed using the NASA Team algorithm (Cavalieri et al.,
1996), and the other referred to as OSI-450a, known as the
global sea ice concentration climate data record, version 3.0
(2022). The latter dataset was sourced from the Ocean and
Sea Ice Satellite Application Facility (OSI SAF). Given that
PIOMAS assimilates sea ice concentration data from NSIDC
products, we considered NSIDC-0051 to be the primary ref-
erence. The data from OSI-450a served as a secondary refer-
ence.

For model evaluation, we maintained consistency by re-
gridding all sea ice data, from both climate models and ob-
servations, to the NSIDC-0051 polar stereographic grid with
a 25 km spatial resolution, following Lin et al. (2021). We
calculated sea ice area, extent (SIC> 15 %), and volume
(i.e. multiplying sea ice area by the sea ice thickness) across
the entire Northern Hemisphere ice-covered region using
monthly mean data from 1980 to 2014. To evaluate the accu-
racy of modelled sea ice edges compared to observations, we
used the integrated ice-edge error (IIEE) metric introduced
by Goessling et al. (2016), applying a criterion of SIC = 15%
to define the sea ice edge. The IIEE quantifies the total area
where the modelled SIC differs by more than 15 % from the
reference data. It accounts for regions where the model ei-
ther overestimates (O) or underestimates (U ) SIC relative to
the 15 % threshold. In summary, the IIEE is calculated as the
sum of these areas: IIEE=O +U . This metric offers valu-
able insights into how well the modelled sea ice edges align
with observational references (e.g. Ponsoni et al., 2023).

To evaluate how changes in surface heat flux can influence
temperature patterns and trends in the Arctic and globally, we
selected four global surface temperature datasets as reference
fields. These datasets include ERA5 (Hersbach et al., 2020),
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Table 1. Summary of the pairwise experiments (ECE3 vs. ECE3L).

Pair Experiment (model) name CMIP6 forcing No. of ensembles Analysis period

1 ExpCold (ECE3 vs. ECE3L) 1985 forcing repeated for 50 years 1 30 years
2 ExpWarm (ECE3 vs. ECE3L) 2015 forcing repeated for 50 years 1 30 years
3 Ensemble (ECE3 vs. ECE3L) Historical transient 20∗ 1980–2014

∗ ECE3 is a 25-member (r1–r25i1p1f1) ensemble (Doescher et al., 2022), with the realizations 6, 9, 11, 13, and 15 not being publicly accessible.

NCEP2 (Kanamitsu et al., 2002), and JRA-55 (Kobayashi
et al., 2015), which are three atmospheric reanalysis datasets
providing air temperature at 2 m (T2m). Additionally, we use
the Berkeley Earth Land/Ocean temperature dataset (BEST;
Rohde and Hausfather, 2020), which is different from re-
analysis datasets as it combines its own land surface tem-
perature records with air temperature data and utilizes the
HadSST4 dataset for sea surface temperatures (SSTs; Titch-
ner and Rayner, 2014). Following Rantanen et al. (2022), lo-
cal Arctic amplification is defined as the ratio of the temper-
ature trend at each grid point to the global mean temperature
trend, and the Arctic region is defined as the area encircled by
the Arctic Circle (66.5–90° N). The slopes of linear trends in
surface temperatures used least-squares fitting for the annual
mean values. In this study, our main objective is to evaluate
how amplified heat flux reduces the overestimation of mod-
elled sea ice in the Arctic. Therefore, we do not include an
analysis on the underestimated sea ice in the Antarctic.

3 Cold vs. warm climate

3.1 Atmospheric stability and sea ice variability

The turbulent processes over sea ice are affected by the tem-
perature difference between the air and the ice surface, which
is influenced by sea ice concentration (lead cover) and ice
thickness (Lüpkes et al., 2008). In the ECE3 (baseline) sim-
ulations, the occurrence of the low-level winter temperature
inversion is defined as positive air temperature differences
between 850 and 1000 hPa, following the method of Deser
et al. (2010). In Fig. 1a, the winter temperature inversion
over Arctic sea ice (SIC≥ 70 %) is considerably weaker and
shorter in ExpWarm compared to ExpCold on a 30-year av-
erage. Particularly during the early freeze-up months (Octo-
ber and November), mean differences in a warmer climate
are nearly half the size of those in a colder climate, with the
central Arctic pack ice (SIC≥ 70 %) experiencing over 1 m
of thinning and more than 2× 106 km2 of shrinkage during
summer (Fig. 1b and c) compared to ExpCold. The compari-
son between two baseline simulations suggests that the effect
of parameterizing turbulent process on sea ice becomes less
pronounced during Arctic warming, likely due to a reduction
in the strength and duration of winter temperature inversion.

The 30-year mean Arctic sea ice area (SIA) and sea ice
volume (SIV) in the ECE3 simulations for ExpWarm ac-

count for 84 % and 57 % of those for ExpCold, respectively
(Fig. 2). This is equivalent to a decrease in the mean thick-
ness, defined as the total SIV divided by SIA, from 2.7 to
1.8 m. In the ECE3L simulations, the 30-year mean changes
caused by modified heat fluxes through leads are less pro-
nounced in ExpWarm than in ExpCold (Fig. 2). Specifically,
SIA is 2 % (12 %) less in ECE3L than in ECE3, while SIV
is 7 % (27 %) less in ECE3L during the 30-year time frame
for ExpWarm (ExpCold). The mean differences are statisti-
cally significant (p < 0.05 in a two-sided t test), except for
SIA in ExpWarm (p > 0.05 in Fig. 2c). The results support
our hypothesis that the model’s response to the modulation
of surface heat flux can be influenced by the winter temper-
ature inversion and the extent of thick ice (Fig. 1). In Exp-
Cold, the modulation of heat fluxes in ECE3L consistently
reduces SIA and SIV after the spin-up, leading to thinner ice
compared to ECE3. In ExpWarm, however, ECE3L exhibits
both increases and decreases in sea ice with minimal im-
pact on overall thickness (see the full time series in Fig. S2).
The interannual variability in ECE3L closely aligns with that
of ECE3 across all months in both ExpCold and ExpWarm
(Fig. 2), indicating that the parameterization does not alter
the system’s internal variability.

Globally, we find that the 30-year mean of global sur-
face temperature in ExpCold is 0.21 °C higher in ECE3L
than ECE3, which falls within the range of model variabil-
ity across the ECE3 20 members of historical simulations
(which is 0.24 °C for the respective year). Similarly, the
change is only 0.02 °C higher between ECE3L and ECE3
in ExpWarm, relative to the model spread of 0.18 °C. This
indicates that the change in global mean surface tempera-
ture induced by the modulation of heat flux over sea ice in
ECE3L is within the range of natural variability represented
by the model ensemble. In particular, the modification does
not cause global surface temperature drift, and both models
exhibit robust internal variability, as illustrated in Fig. S2c.

3.2 Local and remote influences of sea ice leads

The region with thick ice (2 m isoline in Fig. 3a and c) in
winter is considerably smaller in ExpWarm compared to Ex-
pCold. Consequently, the thinning of sea ice differs between
these two climate scenarios. In ExpCold (Fig. 3b), it reaches
a maximum of −1 m in the central Arctic, particularly in the
region from north of Greenland to the Beaufort Sea. In Exp-
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Figure 2. Comparison of the Arctic’s annual cycle under a constant forcing between ECE3 (solid black line) and ECE3L (dashed blue line)
for (a) sea ice area and (b) sea ice volume. Simulations are performed for ExpCold, characterized by thicker ice and stronger stability of the
atmospheric boundary layer during winter in the Arctic Ocean. Values are shown as the mean (thick line) and 1 standard deviation (shaded
area) over the last 30 years. The full time series of simulations is shown in Fig. S2. Panels (c) and (d) are the same as panels (a) and (b)
but for ExpWarm with thinner ice and weaker static stability. SIA and SIV are calculated with the cdficediags tool (from CDFTOOLS 3.0).
Numbers and symbols indicate the 30-year mean for the respective variables for ECE3 (open black circles) and ECE3L (blue crosses). The
mean differences are statistically significant (p < 0.05, two-sided t test) in panels (a), (b), and (d) but not in panel (c).

Warm (Fig. 3d), the largest reduction (−0.5 m) shifts to the
central Arctic, north of the Laptev and East Siberian seas.
This shift coincides with regions experiencing peak winter
amplification of heat flux through leads (refer to Fig. S1a
and c). This spatial pattern is governed by the prevailing
conditions of atmospheric instability. In Fig. 4a and c, the
sea ice cover shows similarities between ExpCold and Exp-
Warm in ECE3L. However, when compared to ECE3, there
is a considerable reduction in sea ice concentration (where
SIC< 70 %) in the North Atlantic marginal ice zone in Exp-
Cold, whereas there are only small changes in the Greenland
Sea in ExpWarm, as illustrated in Fig. 4b and d. These find-
ings suggest that overall sea ice thinning, particularly at the
ice margins, is a key driver of the sea ice concentration reduc-
tion during Arctic winters. In these dynamic marginal zones,
where the ice is often thin and fractured, even small reduc-
tions in thickness can lead to substantial decreases in ice ex-
tent. In contrast, the concentration in the central Arctic’s pack
ice remains close to 100 % during winter, even with thickness
reductions of 1 m or more. This thinning at the margins co-
incides with a significant rise in surface air temperature by
approximately 2° (Fig. 5), indicating a warmer atmospheric
boundary layer extending southwards.

In Arctic summer (Alead < 1), sea ice thinning patterns re-
main consistent with winter (Fig. S3), indicating the domi-
nant role of winter amplification. The thicker ice in the Pa-

cific marginal seas compared to north of Greenland is present
in both ECE3 and ECE3L and results from a known EC-
Earth3 bias (Doescher et al., 2022), not the modulation ef-
fect (Fig. S3d), which applies only in the stratified central
Arctic (Fig. 1). Additionally, there is a notable reduction in
sea ice concentration of up to 30 % in ExpCold compared to
less than 20 % in ExpWarm, as illustrated in Fig. S4. These
results clearly show a reduction in the magnitude of heat flux
amplification, corresponding to a decline in the mean states
of sea ice as the climate shifts from colder to warmer condi-
tions, observed in both the winter and summer months.

Statistically significant differences in the surface air tem-
perature between ECE3L and ECE3 are noted at high lati-
tudes in all seasons in ExpCold (Fig. 5), unlike in ExpWarm
where the differences are minor. In regions with less sea
ice in ECE3L compared to ECE3, the surface is warmer in
ECE3L, especially in non-summer seasons. These findings
underscore the role of sea ice in shaping polar surface tem-
peratures. A warmer atmosphere can facilitate greater mois-
ture convergence, increasing precipitation, especially in the
Arctic. Therefore, variations in precipitation generally reflect
the temperature differences between ECE3L and ECE3, with
the magnitude being negligible (not shown), aligning with
the findings of Kay et al. (2022).
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Figure 3. The late-winter (March) Arctic sea ice thickness under a
constant forcing for ExpCold (a) ECE3L and (b) the ECE3L minus
ECE3 differences. Panels (c) and (d) are the same as panels (a)
and (b) but for ExpWarm. Values are shown as 30-year averages,
as in Fig. 2. Note that a nonlinear colour scale is used in panels (a)
and (c) to emphasize low ice thicknesses. Thicknesses under 0.01 m
are not shown. Note that the PIOMAS domain is defined as SIT>
0.15 m (see colour bar). The late-summer Arctic is shown in Fig. S3.

Figure 4. The late-winter (March) Arctic sea ice concentration un-
der a constant forcing for ExpCold (a) ECE3L and (b) the ECE3L
minus ECE3 differences. Panels (c) and (d) are the same as pan-
els (a) and (b) but for ExpWarm. Values are shown as 30-year aver-
ages, as in Fig. 2. Note that a nonlinear colour scale is used to em-
phasize low ice concentrations. Concentrations under 5 % are not
shown. The late-summer Arctic is shown in Fig. S4.

4 Transient climate: comparison of historical ensemble
simulations

4.1 Enhanced performance: reduced seasonal bias and
narrower model spread

The ensemble mean of ECE3L consistently shows a lower
sea ice area and volume than that of ECE3 throughout the
annual cycle, with the largest differences noted during win-
ter when the sea ice area and volume in ECE3 reach their
peak (Fig. 6). The ensemble means show significant differ-
ences for both Arctic sea ice area and volume climatolo-
gies (p < 0.05 in a two-sided t test). ECE3L more closely
aligns with the observed seasonal cycle than ECE3. How-
ever, during the summer months (June–August), both mod-
els slightly underestimate sea ice area, with ECE3L showing
a slightly larger mean difference of −0.6× 106 km2 com-
pared to −0.4× 106 km2 for ECE3 in June. This underes-
timation aligns with a common bias across several coupled
CMIP6 models, including ECE3, where the minimum sum-
mer Arctic sea ice area occurs in August rather than Septem-
ber (Keen et al., 2021; Doescher et al., 2022). Consequently,
the largest biases are observed in September, amounting to
0.7× 106 km2 for ECE3L and 1× 106 km2 for ECE3. Both
ensembles consistently overestimate the Arctic sea ice vol-
ume throughout the year, with positive monthly mean bi-
ases ranging from 6× 103 to 11.2× 103 km3 in ECE3L and
from 7.8× 103 to 12.9× 103 km3 in ECE3. These biases are
reduced year-round by the lead scheme; however, they are
not significantly different from those in the ECE3 histori-
cal ensemble. The ensemble spreads range from 2.6×103 to
3.2×103 km3 in ECE3L and from 4.8×103 to 5.5×103 km3

in ECE3.
Further comparisons highlight that the September Arctic

sea ice extent in the ECE3L ensemble closely matches obser-
vations from 1980 to 2014, outperforming ECE3 (Fig. 7b).
Across most years, ECE3L consistently shows a lower
September sea ice extent than ECE3 (Fig. 8a). In March, the
Arctic sea ice volume in ECE3L shows a closer alignment
with the PIOMAS reanalysis, demonstrating its improved
performance over ECE3 (Figs. 7c and d and 8b). In Fig. 8, the
September sea ice extent and the March sea ice volume show
significantly different ensemble means (p < 0.05), driven
mainly by external forcing. After detrending, residuals for
both are no longer significantly different (p > 0.05). De-
spite these improvements, both models do not fully capture
the observed trends in sea ice decline. In September, the
models underestimate the declining trend in sea ice extent,
showing a decrease of −0.6×106 km2 per decade compared
to the observed −0.9× 106 km2 per decade. Similarly, in
March, both models overestimate the declining trend in sea
ice volume, with trends of −3.4× 103 km3 per decade for
ECE3 and −3.1× 103 km3 for ECE3L, against an observed
−2.5× 103 km3 from PIOMAS.
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Figure 5. Seasonal differences in the 2 m temperature (in K) between ECE3L and ECE3 in the Northern Hemisphere (20–90° N) for Exp-
Cold (a–d) and ExpWarm (e–h). Stippling indicates areas with statistically significant differences (p < 0.05) as determined by a two-sided
t test.

The model spread of ECE3 exhibits notable decadal
changes before and after the 1990s in the transient climate,
whereas ECE3L shows a relatively consistent and smaller
spread across the same period (Figs. 7 and 8). This stability in
ECE3L is accompanied by substantial reductions in overesti-
mated sea ice area and volume prior to 1990, suggesting that
incorporating the amplification effect through leads in the
central pack ice refines the model’s estimates of the declin-
ing sea ice volume trend overestimated in ECE3, at least to
some extent. A supporting analysis (Fig. S5) shows that the
initialized ECE3L ensemble recovers the internal variability
in the Atlantic Meridional Overturning Circulation (AMOC)
and global mean temperatures after a short spin-up, indicat-
ing that the smaller model spread in sea ice metrics is not
an artefact of the initialization method but rather a result of
reduced bias achieved through the new parameterization.

In this sensitivity study, the parameterization amplifies
winter heat loss to reduce ice thickness and dampens sum-
mer heat uptake to delay melt, potentially addressing sea-
sonal biases such as excessive winter ice thickness and pre-
mature summer melting, which would otherwise shift the an-
nual minimum from September to August (Doescher et al.,
2022; Keen et al., 2021). In ECE3, Alead is most effective
in colder conditions with excessive sea ice, where greater
sea ice coverage and atmospheric stability contribute to large
model variability before 1990 (Fig. 7). However, as the Arc-
tic warms, its influence weakens due to reduced winter strat-
ification and continued summer sea ice retreat (Deser et al.,

2010). Consequently, its impact on mitigating summer sea
ice bias remains limited. Thus, the smaller spread in ECE3L
is a direct result of bias reduction in sea ice representation
rather than an artificial constraint on variability.

4.2 Enhanced performance: reduced regional bias and
improved representation of the sea ice edge

Arctic sea ice thickness fields reveal the impacts of heat flux
modulation during the March maximum and September min-
imum periods (Fig. 9). Ensemble mean comparisons show
that, in March, the mean SIT in the central Arctic for ECE3L
in the transient climate generally exceeds 3 m, greater than
the 30-year mean of ExpCold (Figs. 3a and 9a). The reduc-
tion in SIT between ECE3L and ECE3 (i.e. thinning of cen-
tral pack ice where SIC≥ 70 %) is also lower in the tran-
sient climate than in ExpCold (Figs. 3b and 9b). Similarly,
in September, the central Arctic SIT for ECE3L in the tran-
sient climate remains greater than in ExpCold, with changes
(ECE3L minus ECE3) again being more pronounced in Ex-
pCold (Figs. S3a and b and 9c and d). Notably, in ECE3,
the mean SIT in March is slightly higher in the central Arc-
tic in ExpCold than in the transient climate, with minimal
differences observed in summer (not shown). The generally
thicker ice in ECE3L in the transient climate is due to the
diminished effect of heat flux amplification on ice thinning,
compared to the more pronounced effect in ExpCold.
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Figure 6. Comparison of the annual cycle in the transient climate
(1980–2014) between ECE3 (black) and ECE3L (blue) for (a) Arc-
tic sea ice area and (b) Arctic sea ice volume. Thick lines represent
the ensemble means, while the shaded areas indicate the spread be-
tween the 5th and 95th percentiles across 20 ensemble members
(grey for ECE3 and light blue for ECE3L). Observations for the sea
ice area include the NSIDC and OSI-450a datasets, both remapped
to the NSIDC-0051 grid. Sea ice volume is based on the PIOMAS
domain criteria (thickness > 0.15 m). The mean differences are sta-
tistically significant (p < 0.05, two-sided t test).

The Arctic sea ice concentration maps for March and
September climatologies in both ensemble means (Fig. S6)
closely resemble those observed in the mean states for Ex-
pCold (Figs. 4a and b and S4a and b), although with mod-
erate differences between ECE3L and ECE3. To accurately
assess these models, we employ the integrated ice-edge er-
ror (IIEE) metric with a 15 % threshold for the sea ice edge
(Goessling et al., 2016) and then compare the results with
satellite observations from NSIDC (Fig. 10). As documented
by Doescher et al. (2022), in March, ECE3 tends to over-
estimate the ice concentration near the ice margins in the
Atlantic sector, whereas it underestimating the ice concen-
tration in the Bering Sea and Sea of Okhotsk (denoted in
Fig. 10d). ECE3L shows a notable improvement in reduc-
ing the positive bias found in the Atlantic sector, although it

slightly increases the negative bias in the Pacific sector, noted
in the Sea of Okhotsk. In September, ECE3 generally overes-
timates the sea ice concentration at ice margins, except in the
Kara Sea, where it is underestimated. The improvement by
ECE3L is particularly noticeable in the Atlantic sector. These
findings are corroborated by an alternative satellite dataset
(OSI-450a; not shown), aligning with Doescher et al. (2022).
The monthly IIEE time series indicate that ECE3L consis-
tently outperforms ECE3 across all months (not shown), with
Fig. 11 illustrating significant differences in IIEE for March
and September (p < 0.05), as examples, and no detected
trend over time. Notably, the model spread of ECE3, espe-
cially in winter months, has dramatically decreased since the
2000s. In contrast, the model spread of ECE3L has remained
relatively low, with no apparent decadal shifts.

In summary, the annual climatologies for the changing sea
ice conditions in the transient climate, as represented by the
ECE3 and ECE3L ensemble means (Fig. 6), closely match
those of the repeated climate scenario for ExpCold (Fig. 2).
For the 1980–2014 period, the sea ice area and volume were
10.4× 106 km2 and 27.6× 103 km3, respectively, represent-
ing a 3 % and 7 % reduction compared to ExpCold, with a sea
ice area and volume of 10.9× 106 km2 and 29.3× 103 km3,
respectively, showing reductions of 12 % and 27 %. Notably,
the mean sea ice thickness (defined as SIV divided by SIA)
under both climate conditions for ECE3 is 2.7 m, yet the re-
ductions in area and volume by ECE3L (relative to ECE3) are
nearly 4 times larger under the repeated forcing of ExpCold
than under transient historical forcing. This underscores the
diminishing influence of sea ice leads on modifying the Arc-
tic climate, largely due to the decreased occurrence of stable
stratification in the winter as the Arctic warms.

5 Discussion

5.1 Implication of the differing sea ice evolution for
Arctic warming

This study provides valuable insights for Arctic climate mod-
elling. By incorporating a modulating factor for surface sen-
sible heat flux over sea ice to account for processes over
leads, the EC-Earth3 model shows closer agreement with the
observed Arctic sea ice extent and volume, particularly un-
der colder climate conditions. This adjustment mitigates a
known bias in earlier simulations. Such developments offer
a step forward in understanding the Arctic’s response to cli-
mate change, with the potential to enhance the reliability and
predictive capabilities of global climate models. Recent re-
search emphasizes the importance of accurately representing
sea ice processes to capture the complex feedback mecha-
nisms that drive Arctic amplification and impact global cli-
mate patterns (AMAP, 2021; Docquier and Koenigk, 2021;
Kay et al., 2022). The parameterization introduced in this
study supports these insights, emphasizing the need to rep-
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Figure 7. Arctic sea ice temporal evolution in the transient climate (1980–2014). Panel (a) presents the September extent (SIC> 15 %)
ensemble of ECE3. Panel (b) is the same as panel (a) but for ECE3L. Observations are from NSIDC with area pole-filling as well as OSI-
450a. All datasets are remapped to the NSIDC-0051 grid. Panels (c) and (d) are the same as panels (a) and (b) but for the March volume
(following the definition of the PIOMAS domain for areas thicker than 0.15 m).

resent finer-scale ocean–sea ice–atmosphere coupling pro-
cesses.

Focusing on surface warming, a primary indicator of cli-
matic impacts, this section evaluates the differing impacts
of sea ice evolution modelled by ECE3 and ECE3L on cli-
mate change. Specifically, it explores how these variations
affect regional warming patterns, thereby enhancing our un-
derstanding of both the localized and broader implications
of Arctic warming. Given the challenges in accurately mea-
suring absolute T2m in the Arctic and globally (Rantanen
et al., 2022; Tian et al., 2024), it remains uncertain whether
ECE3L provides a better representation of the mean state
and the warming trend. To address this, we computed the
average of four observational or reanalysis datasets as refer-
ence fields, aiming to reduce warm-bias artefacts over Arctic
sea ice in reanalyses under very cold conditions (Tian et al.,
2024). As no differences were found in global mean temper-
atures between the ECE3 and ECE3L ensemble means, our
subsequent analysis focuses on temperature trend maps to in-
fer the local amplification ratio relative to the global warming
rate. The temperature trend maps for 1980–2014 (Fig. 12a–c)
show that ECE3L more closely aligns with observed trends
along the ice edge in the North Atlantic sector of the Arctic
compared to ECE3, which overestimates the warming trend
in the Barents Sea, while underestimating it in the Green-

land and Labrador seas. Additionally, ECE3L represents the
warming trend in the East Siberian Sea, unlike ECE3, which
consistently underestimates the trend in the Pacific sector of
the Arctic (specific locations given in Fig. S1d).

The cumulative distribution function (CDF) analysis in
Fig. 12d–f emphasizes regional differences in ensemble per-
formance, with ECE3L exhibiting reduced variability and a
central tendency that aligns more closely with observations
than ECE3. This results in a more consistent representation
of warming trends across the Greenland–Iceland–Norwegian
(GIN) seas, the Barents and Kara (BAKA) seas, and the
broader Arctic. Consequently, ECE3L achieves closer align-
ment with observed local amplification ratios (the ratio of lo-
cal warming to global mean warming; Rantanen et al., 2022),
leading to more confined estimates of Arctic amplification.

Constraining ensemble variability, which may incidentally
improve certain forecast scores (Peterson et al., 2022), is not
our objective. Instead, we aim to assess how the missing rep-
resentation of heat flux over leads influences Arctic climate
simulations. The narrower spread in ECE3L arises from the
amplification effect of Alead on surface heat exchange, rather
than from deliberate tuning. This underscores the sensitivity
of sea ice states to sub-grid-scale heat flux processes, high-
lighting the need for further investigation.
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Figure 8. ECE3 and ECE3L Arctic sea ice (1980–2014).
Panel (a) presents the September extent ensemble mean and the 5th
to the 95th percentiles of 20 members, while panel (b) shows the
March volume ensemble mean and the 5th to the 95th percentiles of
20 members. Ensemble mean differences are statistically significant
(p < 0.05, two-sided t test); however, after detrending, residuals for
both models are not significantly different (p > 0.05).

5.2 Advances and limitations

Current climate models often exhibit significant seasonal bi-
ases in sea ice simulations, which compromise the accuracy
of long-term climate projections for the Arctic (Doescher
et al., 2022; Keen et al., 2021). Studies by Deser et al. (2010)
and Frankignoul and Kwonb (2024) highlight how misrepre-
sentations of critical feedback mechanisms, such as the ice–
albedo feedback, can lead to inaccuracies in seasonal sea ice
predictions. This feedback is crucial in Arctic amplification,
where retreating sea ice results in more open water, which
absorbs more solar radiation, further warming the region and
exacerbating sea ice melt in a cycle that accelerates the de-
cline of Arctic sea ice. These biases not only impact the Arc-
tic atmospheric stability but also influence seasonal atmo-
spheric and oceanic circulations (Frankignoul and Kwonb,
2024).

To improve the accuracy of seasonal predictions and cli-
mate projections for the Arctic, it is essential to account
for unresolved oceanic and atmospheric coupling processes
(Eyring et al., 2021; Docquier and Koenigk, 2021). Turbu-
lent heat exchanges over leads, which affect Arctic climate
dynamics, require finer-scale process parameterization due

Figure 9. Ensemble mean Arctic maps (1980–2014) for the (a)
ECE3L March sea ice thickness and (b) ECE3L minus ECE3 dif-
ference. Panels (c) and (d) are the same as panels (a) and (b) but
for September. Note that a nonlinear colour scale is used in pan-
els (a) and (c) to emphasize low ice thicknesses. Thicknesses under
0.01 m are not shown. Note that the PIOMAS domain is defined as
SIT> 0.15 m (see colour bar). The areas with SIC≥ 70 % in both
ECE3 and ECE3L are encompassed by red lines.

to their fractal nature, spanning from metres to kilometres
(Marcq and Weiss, 2012; Esau, 2007). This fractal complex-
ity introduces uncertainty, particularly related to the proper-
ties of sea ice floes, such as the thickness, damage, and age,
which remain poorly quantified. Addressing this gap, Davy
and Gao (2019) introduced a fixed fractal dimension derived
from satellite observations. Recent studies using large-eddy
simulations (LESs) have further underscored that the lead
width, background wind, and surrounding ice roughness can
strongly influence heat flux (Gryschka et al., 2023), suggest-
ing that reducing the structural uncertainties in models will
require new, high-resolution data sources, like drone-based
measurements.

The present study builds on this foundation by performing
a sensitivity analysis focused on sensible heat flux, avoiding
assumptions about the latent heat flux response to leads due
to the absence of data from the original LESs of Esau (2007).
Using the heat flux modulation factor developed by Davy and
Gao (2019), in which the scale sensitivity is derived from
the model results of Esau (2007), we incorporated this ap-
proach directly into a coupled climate model, a topic that has
not been extensively explored in previous studies (Davy and
Gao, 2019). This modification enhances the model’s sensi-
tivity to local sea ice and atmospheric conditions, improving
Arctic sea ice simulations. Notably, our comparative analy-
sis shows that ECE3L aligns more closely with the PIOMAS
and NSIDC datasets (Schweiger et al., 2011; Stroeve et al.,
2014) and reduces the model spread, particularly under con-
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Figure 10. The integrated ice-edge error (IIEE; defined in Sect. 2.4)
maps of ECE3L (a) and ECE3 (b) vs. NSIDC-0051 for the March
sea ice climatology (1980–2014). Red and blue indicate whether
the model’s ensemble mean overestimates or underestimates the
ice edge prescribed by NSIDC-0051, respectively. Panels (c) and
(d) are the same as panels (a) and (b) but for September sea ice.
The sea ice edge is defined by the 15 % sea ice concentration con-
tour.

ditions of thicker ice in the central Arctic and stronger win-
ter atmospheric stability. Moreover, while our modifications
influence Arctic conditions, they show limited global impli-
cations, consistent with the findings of Kay et al. (2022),
thereby highlighting the potential for refining predictions of
sea ice dynamics and their climatic impacts.

Despite these advancements in modelling the Arctic cli-
mate, significant challenges remain. Current models, includ-
ing EC-Earth3, often struggle to capture the accelerated loss
of Arctic sea ice that has been observed since the late 1990s
(Lee et al., 2023). The mean state of sea ice, especially its
thickness, is crucial for activating key feedback mechanisms
that enhance model sensitivity to external forcing (Masson-
net et al., 2018; Wunderling et al., 2020). These feedbacks
are vital for reliably predicting the timing and implications
of an ice-free summer in the Arctic Ocean. Additionally,
ECE3L consistently overestimates sea ice volume up to the
end of the analysis period, with the influence of sea ice leads
expected to diminish in future climate simulations due to the
decreasing coverage of thick ice and weakening winter strati-
fication. Moreover, the new scheme does not fully recover the

Figure 11. The temporal evolution of the integrated ice-edge error
(IIEE) for September (a) and March (b) estimated for ECE3 (black)
and ECE3L (blue) relative to NSIDC-0051 during the 1980–2014
period, with the ensemble means (thick line) and the model spread
(the shaded area) indicated as 1 standard deviation from the mean
across 20 members. The sea ice edge is defined by the 15 % sea ice
concentration contour. Ensemble mean differences are statistically
significant (p < 0.05, two-sided t test); no trends are detected over
time.

observed September minimum, underscoring persistent chal-
lenges in simulating late-summer sea ice loss. This limitation
stems from its focus on atmosphere–ice heat flux modifica-
tion, without directly addressing ocean–ice dynamics, which
are crucial for accurately capturing summer retreat (Docquier
and Koenigk, 2021). Addressing these deficiencies requires
further research, particularly into how variations in sea ice
and snow thickness affect heat and energy exchanges in the
Arctic (Landrum and Holland, 2022). It is also essential to
investigate how different representations of these processes
can alter climate model sensitivity to external forcing (Web-
ster et al., 2018).

Furthermore, this study relies on specific model configura-
tions and parameterizations, which may not be directly appli-
cable across different climate models. As indicated by Chen
et al. (2023), significant inter-model spread in Arctic sea ice
thickness within CMIP6 simulations compared to PIOMAS
data highlight the need for broader application tests. Explor-
ing the adaptability of the modulating factor approach across
different models could help validate and generalize the find-
ings, ultimately enhancing global climate projections.

The modulation factor Alead is applied globally, including
in the Antarctic. However, its local effect is confined to sea
ice in the Weddell Sea and Ross Sea in ECE3L (not shown),
due to a substantial warm bias in the Southern Ocean and the
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Figure 12. (a–c) Annual mean temperature trends for the transient climate (1980–2014), derived from the average of the observational
datasets, ECE3L and ECE3. Areas without statistical significance are masked in panel (a), whereas panels (b) and (c) display significant
trends across all areas. (d–f) Cumulative probability plots of the temperature trend from the ECE3 (black) and ECE3L (blue) ensembles for
three regions: (d) the Greenland–Iceland–Norwegian (GIN) seas (40° W–15° E, 66.5–82° N), (e) the Barents and Kara (BAKA) seas (15–
100° E, 70–82° N), and (f) the Arctic Circle. The locations of the GIN and BAKA regions are shown in Fig. 1c. The dashed grey lines in
panels (a)–(c) depict the Arctic Circle (66.5° N latitude). Observations are from ERA5, BEST, JRA-55, and NCEP2.

resulting underestimation of Antarctic sea ice, as identified
in the ECE3 CMIP6 historical simulations (see Figs. 10 and
14 of Doescher et al., 2022). This diminishes the effect of pa-
rameterization in the Antarctic. Further refining parameteri-
zation to account for thinner sea ice in both the Antarctic and
warming Arctic could provide insights into the contrasting
behaviours and feedback mechanisms of sea ice, enhancing
our understanding of polar climate interactions and poten-
tially improving the accuracy of global climate projections.

6 Conclusions

This study explored whether and how the persistent positive
bias in Arctic sea ice simulated within the global climate
model EC-Earth3 can be alleviated in different climates by
introducing a modulating factor, which adjusts surface sensi-
ble heat flux through leads in the central pack ice. Our eval-
uation, involving two sets of 50-year simulations and com-
parisons with two historical ensembles, demonstrates that the
lead parameterization (ECE3L) significantly influence winter
surface air temperatures in the Arctic, while having minimal
impact on non-polar regions.

The spatial patterns in mean sea ice changes from 1980 to
2014 in ECE3L closely mirror those simulated using 1985
forcing (cold climate). However, the reduction in total Arctic
sea ice area and volume is nearly 4 times greater in the cold
climate, a period characterized by stronger atmospheric sta-
bility. This suggests that while the impact of amplified heat
flux through leads is less effective under warming conditions,
it remains crucial in colder climates, where ice loss and sur-
face warming are more pronounced. As a result, this parame-
terization does not accelerate the transition to a warmer Arc-
tic with less perennial sea ice; instead, it refines the long-term
trends in sea ice volume decline and Arctic warming overes-
timated in ECE3. ECE3L shows reduced ensemble variabil-
ity, leading to enhanced sea ice sensitivity to Arctic warming
and providing more constrained estimates of Arctic amplifi-
cation. Improved agreement with observational and reanaly-
sis data, particularly in the North Atlantic marginal ice zone,
emphasizes the critical role of atmospheric stability in shap-
ing both sea ice states and the broader patterns of Arctic am-
plification.

In a warmer climate, the modulating factor can either in-
crease or decrease sea ice states depending on prevailing at-
mospheric stability and the mean sea ice thickness, making
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the overall effects minimal and uncertain. This underscores
the importance of accurately simulating sea ice dynamics
to better understand the Arctic climate response to forcing.
The next step is to refine the parameterization to include an
ice-thickness-dependent modulation factor, effectively incor-
porating both Antarctic and Arctic sea ice simulations in a
warming climate. This will help explore their broader impli-
cations for global climate projections.

Appendix A: Parameterization of surface heat flux over
sea ice leads in a climate model

A1 Empirical relationship between the lead width and
surface sensible heat flux amplification

Initially Esau (2007) established an empirical relationship
between the lead width and sensible heat flux, quantified as
an amplification effect, measuring the extra flux from leads
compared to open water with the same air–sea temperature
differences, using large-eddy simulations (LESs). Leads on
the scale of a few kilometres in width produced the strongest
amplification, aligning well with observed data (Fig. A1a)
and contrasting with previous assumptions that narrow leads
(1–25 m) yield the highest flux per unit area (Marcq and
Weiss, 2012). This underscores the need to include 3D tur-
bulence effects in parameterizing complex small-scale heat
flux processes.

Readers are encouraged to refer to Esau (2007), par-
ticularly Tables 1 and 2 and Fig. 4 in that publication,
which detail how the amplification effect varies with atmo-
spheric stability, defined by the convective boundary layer
length scale (λCBL in metres), and lead width (x in metres).
The best fit to two sets of LES results for weakly strati-
fied (θ = 9.7 Kkm−1, λCBL = 2500 m) and strongly strati-
fied (θ = 30.7 Kkm−1, λCBL = 1400 m) conditions is given
in Eq. (A1).

A(x)= 5
(

x

λCBL

) 1
3

exp

−
(

x
λCBL
− 1

)2

4.84

 (A1)

Here, A(x) represents the amplification factor, indicating
how much greater the sensible heat flux per unit area is from
the lead compared to open water.

A2 The lead width distribution from satellite
observations

Satellite observations suggest that the lead width follows a
power-law distribution with a negative exponent, indicating
that narrow leads are most common (Marcq and Weiss, 2012,
their Eq. 11).

P(x)=
a− 1
L0

(
x

L0

)−a
(A2)

Here, P represents the probability of finding a lead of width
(x in metres), with L0 (10 m) as the lower bound, determined
by satellite resolution. The exponent a (where a > 1) charac-
terizes the steepness of the distribution. For more details, see
Marcq and Weiss (2012), particularly their Figs. 2–4.

Marcq and Weiss (2012) applied two luminosity thresh-
olds to distinguish leads from ice, producing two sets of
power-law coefficients. As neither threshold is objectively
preferable, Davy and Gao (2019) averaged these estimates,
accounting for uncertainty to evaluate the total, large-scale
effect of leads on the surface energy balance. The best esti-
mates for a are 2.2 (low threshold) and 2.55 (high threshold).

A3 Integrating the lead width distribution for the total
amplification factor

Davy and Gao (2019) calculated a total amplification fac-
tor for a grid cell with mixed ice and open water, assum-
ing that the open water results from leads following the ob-
served power-law distribution. This was done by integrating
the product of the lead width probability distribution and the
LES-derived amplification factor, as shown in Eq. (A3).

Â=

∞∫
L0

A(x)P (x)dx (A3)

Here, Â represents the total amplification of sensible heat
flux from leads within the grid cell, compared to that from an
equal area of open water, and A(x) and P(x) are defined in
Eqs. (A1) and (A2), respectively.

This equation requires a numerical solver to calculate the
total amplification factor over a range of λCBL, based on
LESs from Esau (2007) that cover conditions from strong sta-
bility (θ = 30.7 Kkm−1) to weak stability (θ = 9.7 Kkm−1).
The results, shown in Fig. A1b, are best fit by an empirical re-
lation between the maximum total amplification factor Amax
and λCBL, as expressed in Eq. (A4).

Amax = c1 · λ
2
CBL− c2 · λCBL+ c3, if SIC≥ 90% (A4)

Here, c1 = 6.012×10−8, c2 =−4.036×10−4, and c3 = 1.56,
with a cap of [0.8, 1.2].

The effective factor Alead is linearly interpolated between
1 and Amax, as defined in Eq. (A5).

Alead =1+ (Amax− 1) ·
max(0,SIC− 70)

90− 70
,

if SIC< 90% (A5)

When the fraction of open water exceeds 30 % (i.e. SIC≤
70 %), Alead becomes a constant value of 1.
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Figure A1. (a) The heat flux amplification factor (relative to open water) as a function of lead width, adapted from Esau (2007). Blue dots
represent individual LESs, the dashed red line shows the best fit to LES data, and green dots indicate aircraft observations over the Baltic
Sea. (b) The total sensible heat flux amplification across all leads. Panels (a) and (b) are adopted from Figs. 1 and 4 in Davy and Gao (2019),
respectively.

A4 Implementation to the EC-Earth3 model

The depth of the convective boundary layer (λCBL in me-
tres) is determined using Eq. (A6), where the key param-
eter θ = dT

dz (in K m−1) characterizes the atmospheric sta-
bility at a height of between 200 and 300 m, depending on
the vertical resolution of the atmospheric model (Davy and
Gao, 2019). In the EC-Earth3 model configuration, temper-
ature changes (1T , in K) between model levels 86 and 91,
which correspond to approximate heights of 200–250 m from
the Earth’s surface, are used. The empirical expression in
Eq. (A6) is conveniently expressed using 1T with constant
values of ĉ4 = 230 mK−1 and c5 = 2100 m, so that the re-
sulting λCBL typically ranges from 1400 to 2500 m. This
range was derived from the LESs, which were tested under
conditions from strongly stable stratification (30.7 Kkm−1)
to weak stratification (9.7 Kkm−1). No more strongly sta-
ble stratification was observed in the lowest model level. The
constants c4 and c5 were adjusted based on the temperature
changes between the specified model levels in the EC-Earth3
model configuration. These values were chosen to be consis-
tent with the results of the original LESs of Esau (2007), and
they will be different if different model levels or atmospheric
models are employed.

λCBL = c4
dT
dz
+ c5 = ĉ4 ·1T + c5 (A6)

Figure S1 shows examples of Alead for ExpCold and Exp-
Warm in the Arctic, respectively. This calculation is based
on the lapse rate and sea ice concentration from previous
atmosphere-only (AGCM) simulations in the Blue-Action
project with EC-Earth3 (Liang et al., 2020). The AGCM
simulations were forced by the historical forcing of CMIP6

and the surface boundary conditions from global daily 1/4°
SSTs and SICs from the UK Met Office Hadley Centre Sea
Ice and Sea Surface Temperature dataset (version 2.2.0.0;
https://www.metoffice.gov.uk/hadobs/hadisst2/, last access:
21 July 2025, Titchner and Rayner, 2014.) The modulation
effects exhibit remarkable seasonal variation, influenced by
the background atmospheric stability, in the Arctic regions
(see Fig. S1). During the winter months, there is an addi-
tional heat flux from the warm ocean through the leads to
the atmosphere by means of the modulating factor above 1.
In contrast, during the summer months, the surface heat flux
through the leads is reduced because the modulating factor
is below 1. The areas where the lead parameterization takes
effect (SIC> 70 %) and ice cover is thicker than 2 m have ex-
perienced substantial reductions from ExpCold to ExpWarm,
particularly in the summer (as seen in Fig. S1b and d). This
suggests that the sea ice state, along with the presence of
leads, has undergone significant changes during this period.
These seasonal and interannual variations in the impact of
leads on heat flux through the sea ice play a crucial role in the
dynamics of the Arctic regions and their response to chang-
ing climate conditions.

Code and data availability. The model output from the EC-
Earth3 CMIP6 historical simulations is freely and pub-
licly available from the Earth System Grid Federation
(ESGF, https://doi.org/10.22033/ESGF/CMIP6.4700, EC-
Earth-Consortium, 2019). In total, there are 20 members
available, namely, r1–r5, r7, r8, r10, r12, r14, and r16–r25;
hence, these 20 members were used in this work. The PI-
OMAS monthly outputs are available at http://psc.apl.uw.
edu/research/projects/arctic-sea-ice-volume-anomaly/data/
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(Polar Science Center, 2024). The satellite sea ice concen-
tration observations used in this study are from the NSIDC-
0051 and OSI-450a datasets, which are accessible online at
https://doi.org/10.5067/MPYG15WAA4WX (DiGirolamo et al.,
2022) and https://doi.org/10.15770/EUM_SAF_OSI_0013 (OSI
SAF, 2022), respectively. The diagnostic package for the analysis
of the NEMO model output, CDFTOOLS (v3), is available
at https://github.com/meom-group/CDFTOOLS (meom-group,
2017). The modified code for ECE3L is available from https:
//dev.ec-earth.org/projects/ecearth3/repository/show/ecearth3/
branches/development/2022/r9244-lead_parameter/sources (EC-
Earth Development Portal, 2022). The model output from ECE3L
can be made publicly accessible upon request.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-2751-2025-supplement.
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