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Abstract. Snow phenology characterizes the cyclical
changes in snow and has become an important indicator of
climate change in recent decades. Changes in snow phenol-
ogy can significantly impact climate and hydrological condi-
tions. Previous studies commonly employed fixed-threshold
methods to extract snow phenology, which cannot represent
the differences in the beginning and/or end of the snow pe-
riod under different snow conditions in the Northern Hemi-
sphere, leading to potential uncertainties in terms of snow
phenology. In this study, we observe that snow phenology
extracted from different snow data and methods shows sig-
nificant differences but consistently underestimates snow du-
ration at low and middle latitudes. After normalizing, the
percentage snow depth curve turns significantly at the 10 %
position, marking the transition between the snow and non-
snow seasons. Therefore, we propose a dynamic snow phe-
nology method with a 10 % threshold. Using the dynamic-
threshold method, there is an earlier snow cover onset day
(SCOD), a later snow cover end day (SCED), and a longer
snow cover duration (SCD) at low and middle latitudes, es-
pecially on the Tibetan Plateau, where the SCD differences
can reach 28 d. The differences in terms of snow phenology
at higher latitudes are reversed. The dynamic snow phenol-
ogy accounts for the spatial heterogeneity of Northern Hemi-
sphere snow cover and excludes the influence of inter-annual
variability of snow cover on snow phenology extraction, pro-
viding a novel perspective for identifying and understanding
snow cover variations in the Northern Hemisphere.

1 Introduction

Snow, an important component of the Earth’s cryosphere, has
also become a sensitive indicator of climate change (Brown
and Mote, 2009; Dong, 2018; Kang et al., 2010). Approxi-
mately 98 % of seasonal snow cover is concentrated in the
Northern Hemisphere (Armstrong and Brodzik, 2001; Dietz
et al., 2012), and its variability has a significant influence on
both the global climate system and the hydrological cycle
(Déry and Brown, 2007; Cohen et al., 2012; Furtado et al.,
2015; Harpold and Brooks, 2018; You et al., 2020). Snow
has high albedo and low thermal conductivity, regulating the
surface energy balance and subsequently influencing atmo-
spheric circulation (Marks et al., 1992; Gouttevin et al., 2012;
Brutel-Vuilmet et al., 2013; Henderson et al., 2018). Mean-
while, the seasonal snow is an important natural reservoir
that provides freshwater resources for more than a billion
people (Barnett et al., 2005; Immerzeel et al., 2010; Sturm et
al., 2017; Bormann et al., 2018). Therefore, accurate quan-
tification of snow dynamics across the Northern Hemisphere
(NH) is urgently needed.

Under global warming, the snow cover extent (SCE) of
the NH has undergone a notable decline over the past few
decades, with this trend being projected to persist into the
foreseeable future (Brown and Robinson, 2011; Estilow et
al., 2015; Hori et al., 2017; Tang et al., 2022). Meanwhile,
the variation rate of each season’s average snow depth (SD)
exhibited great fluctuations in different seasons. Compared
with those in spring and autumn, the average SD in winter
decreased at the highest rate (Xiao et al., 2020). In a warmer
climate, the snow-melting date will advance in time, and the
melting amount will also increase (Barnett et al., 2005; Ni-
jssen et al., 2001; Musselman et al., 2021). Moreover, the
length of the snow season and the number of snow days are
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shortened in global mountain regions (Notarnicola, 2020a).
At low and middle latitudes, the continuity of snowfall be-
comes poorer, and snowfall time is more scattered and ir-
regular (Li et al., 2022; Wang et al., 2024). These indicators
suggest that snow in the Northern Hemisphere is undergoing
significant changes.

In recent decades, snow phenology has been widely used
to characterize seasonal changes in snow. Common snow
phenology parameter indicators include snow cover onset
day (SCOD), snow cover end day (SCED), and snow cover
duration (SCD) (Liston, 1999; Liston and Hiemstra, 2011;
Ke et al., 2016; Lin and Jiang, 2017; Notarnicola, 2020b).
With climate change, snow phenology has changed signifi-
cantly, with regional differences (Whetton et al., 1996; Choi
et al., 2010; Wang et al., 2013; Peng et al., 2013). Opposite
changes in snow phenology occurred across northern mid-
dle and high latitudes from 2001 to 2014, with SCD de-
creasing by 5.57± 2.55 d at high latitudes and increasing by
9.74± 2.58 d at middle latitudes (Chen et al., 2015). Over
the whole of High Mountain Asia, SCD generally decreases,
SCOD is delayed, and SCED advances, except in the west-
ern Himalayas, where snow cover and SCD increase (Tang
et al., 2022; Xu et al., 2024). Changes in snow phenology
can significantly impact climate and hydrological conditions.
An earlier onset of snowmelt can modify the seasonal distri-
bution of runoff, increasing the frequency of droughts and
floods (Chen et al., 2016; Wang et al., 2024). Moreover,
snow not only provides essential moisture for vegetation but
also offers thermal insulation, protecting plants from harsh
winds and cold temperatures (Knowles et al., 2017; Liu et
al., 2023). Wipf and Rixen (2010) have demonstrated that the
timing of the vegetation growing season is notably affected
by snowmelt. Therefore, thorough studies of spatiotemporal
changes in snow phenology are essential for understanding
regional and global climate dynamics, managing water re-
sources, supporting vegetation growth, and predicting poten-
tial climatic crises.

Snow phenology was generally obtained through a two-
step process in previous studies, i.e., identifying the pres-
ence or absence of snow in the grid based on a given thresh-
old and calculating snow phenology indicators (Peng et al.,
2013; Yang et al., 2019; Notarnicola, 2020a). Various types
of snow data are used to extract snow phenology, including
SD, snow cover fraction, and snow water equivalent, leading
to possible differences in terms of identified snow phenol-
ogy (Chen et al., 2015; Guo et al., 2022). Numerous stud-
ies have demonstrated that improving the accuracy of snow
cover products is the primary means of enhancing snow phe-
nology metrics (Frei et al., 2012; Estilow et al., 2015; Xiao et
al., 2024). However, whether the extraction methods of snow
phenology are reasonable has received little attention. No-
tarnicola (2020b) suggested that global snow cover analyses
should consider snow characteristics such as accumulation,
duration, and melt. The selection of thresholds is optimized
according to different snow cover characteristics (in terms of

regularity and maximum snow depth). However, most stud-
ies still employ a fixed threshold to extract snow phenology
in different regions and years (Brown et al., 2007; Gao et al.,
2011; Yue et al., 2022; Tang et al., 2022). In fact, applying
a single threshold without accounting for local snow proper-
ties, atmospheric conditions, and land cover types often re-
duces snow detection accuracy (Riggs et al., 2017; Gao et
al., 2019). Snow cover increases with latitude, with thick and
stable snow cover at high latitudes and shallow and short-
lived snow cover at middle and low latitudes, especially on
the Tibetan Plateau (TP) (Orsolini et al., 2019). In addition,
the snow changes from year to year due to many aspects of
the climate, and the regional snow cover trends exhibit a het-
erogeneous and non-linear response to the regional warming
rate (Blau et al., 2024). Snow conditions are variable, but
thresholds are always fixed, which can lead to uncertainties
in snow phenology. At present, it has been proven that, in
the methods of extracting vegetation phenology, fixed thresh-
olds cannot accommodate spatiotemporal heterogeneity, ig-
nore inter-annual variations, and are not applicable to diverse
vegetation types, among a series of other problems (White
et al., 1997; Mo et al., 2012). However, this issue regarding
snow phenology extraction methods has not yet received at-
tention and resolution. We aim to propose a novel method
that incorporates both spatial heterogeneity in snow cover
and temporal variability to extract snow phenology, reducing
the uncertainty associated with the fixed-threshold method
from a physical-meaning perspective.

In this study, we compare the snow phenology extracted
from different snow data and develop a dynamic-threshold
method for snow phenology extraction across the NH. Sec-
tion 2 describes the details of the data and the snow phe-
nology extraction methods (including the traditional fixed-
threshold method and the new dynamic-threshold method)
used in this study. Snow phenology extraction and compari-
son results are presented in Sect. 3. The discussion and con-
clusions are presented in Sect. 4.

2 Data and methods

2.1 Snow data

We use the Interactive Multi-Sensor Snow and Ice Mapping
System (IMS; Helfrich et al., 2007) dataset to represent the
change in snow cover area (SCA). The IMS dataset is pro-
duced by the United States National Ice Center (USNIC) to
provide cloud-free snow cover products for the NH. The IMS
dataset combines multiple optical and microwave sensors to
classify snow and non-snow areas. It offers three spatial res-
olutions of 1, 4, and 24 km, and the daily 24 km snow cover
product covers the period from early 1997 to the present,
which is used in this work.

The 8 d snow cover component product (MOD10C2) is
also used to represent the SCA variation. The MOD10C2
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product delivered by the Moderate Resolution Imaging Spec-
trometer Satellite (MODIS) combines data from the 8 d com-
posite product of the MOD10A2 at a resolution of 500 m
(Hall and Riggs, 2007). Utilizing an 8 d composite is advan-
tageous as it accommodates areas where frequent cloud cover
obstructs continuous surface observations (Frei et al., 2012).
It is worth noting that polar darkness prevents the mapping
of snow cover in arctic regions in boreal winter in this dataset
(Riggs et al., 2019).

Meanwhile, we employ a separate dataset of snow depth
(SD) for comparative analysis with the SCA dataset. The
long-term series of daily global SD are obtained by means of
a passive microwave remote sensing inversion method (Che
et al., 2019). The remote sensing inversion method uses a dy-
namic brightness temperature gradient algorithm, which con-
siders temporal and spatial variations in snow characteristics
and establishes a dynamic spatial and seasonal relationship
between brightness temperature differences at different fre-
quencies and snow depths. Long time series of passive mi-
crowave brightness temperature data are obtained from three
sensors: SMMR, SSM/I, and SSMI/S. The dataset is a daily
product covering the period of 1980–2018 at a spatial resolu-
tion of 25067.53 m and shows a relative deviation of within
30 %.

The long-term series of daily global SD is affected by
satellite orbits, leading to substantial missing measurements
at low and middle latitudes. To minimize the negative ef-
fects of data gaps, we substitute the China region in the
global dataset with another set of snow depth data for the
China region (Che et al., 2015). This dataset is extracted
from satellite-borne passive microwave brightness tempera-
ture data using the Chinese passive microwave SD inversion
algorithm of Che et al. (2015). These data have been vali-
dated against meteorological observations, and absolute er-
rors of less than 5 cm account for approximately 65 % of all
of the data (Che et al., 2008). For snow products with differ-
ent resolutions, we have standardized them to a resolution of
0.25°.

2.2 Definition of snow phenology

In this study, we calculate the snow phenology in the hydro-
logical year, which is defined as the period from 1 Septem-
ber to 31 August of the following year. For different data,
snow cover phenology indicators are defined in different
ways (Table 1). For the daily IMS binary SCA dataset, no
additional processing is required to determine if the grid is
covered with snow. However, a fixed threshold of snow cover
is used to classify grids as snow-covered or snow-free for
the SD datasets. Additionally, snow cover is considered to be
present for the MOD10C2 dataset when the MOD10C2 ex-
ceeds 50 % (Brown et al., 2007; Gao et al., 2011; Ke et al.,
2016).

Following the identification of snow in the grid, SCD,
SCOD, and SCED are extracted for every dataset. SCD val-

ues for the SD and IMS datasets are calculated by summing
snow-covered days. SCOD is defined as the first day with the
first continuous snow cover exceeding 5 d in a hydrological
year, whereas SCED is the last day with the last continuous
snow cover exceeding 5 d. For the MOD10C2 dataset, con-
sidering the 8 d temporal resolution, the SCOD is the date
4 d before the first identified snow cover, and the SCED is
4 d after the last identified snow cover. SCD is determined by
multiplying the number of snow occurrences by eight (No-
tarnicola, 2020a; Yue et al., 2022; Guo et al., 2022; Chen et
al., 2015).

2.3 Dynamic threshold for snow phenology

In this study, we develop a dynamic snow phenology
method with reference to the vegetation phenology extrac-
tion method. The vegetation phenology extraction method
was proposed by White et al. (1997) based on the normal-
ized difference vegetation index (NDVI), which detects the
start of the growing season (SOS) and the end of the growing
season (EOS) across land cover. The formula is as follows:

NDVIratio =
NDVI−NDVImin

NDVImax−NDVImin
, (1)

where NDVImax is the annual maximum NDVI, and
NDVImin is the annual minimum NDVI. When the NDVIratio
is above a certain threshold, the corresponding day of the
year is determined to be the SOS. When the NDVIratio is be-
low a certain threshold, the corresponding day of the year is
determined to be the EOS. Employing this approach instead
of using a fixed threshold enables the comparison of veg-
etation phenology across different land types (White et al.,
2014; Yu et al., 2010; Sun et al., 2022).

To investigate the snow phenology in different areas across
the globe, we propose a dynamic threshold for snow phenol-
ogy:

Snowratio =
Snow−Snowmin

Snowmax−Snowmin
, (2)

where Snowmax is the annual maximum snow element (e.g.,
snow cover fraction, snow depth), and Snowminis the annual
minimum snow element. The grid is determined to be snowy
when Snowratio exceeds a certain threshold.

To identify the optimal Snowradio, we normalize and
smooth the inter-annual SD variation curves for the entire
NH and each latitudinal zone (including the Tibetan Plateau)
with a 30 d moving window and then calculate their first-
order derivatives. Occasional snowfall events, such as short-
duration or localized snowfall, can introduce anomalous fluc-
tuations into the snow curve, leading to multiple small peaks
or atypical maxima. These fluctuations represent short-term
meteorological noise rather than the long-term seasonal evo-
lution of the snow cover. This is particularly common, es-
pecially in unstable snow areas (e.g., the Tibetan Plateau).
Smoothing can reduce these instabilities and make the snow
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Table 1. Definitions of fixed-threshold methods for snow phenology parameters with different datasets.

Dataset Threshold SCD SCOD SCED

IMS –
n∑

i=1
Snowi the first day on which the pixel

is first covered with snow for at
least five consecutive days

the last day on which the pixel
is last covered with snow for at
least 5 consecutive days

SD 2 cm
n∑

i=1
Snowi the first day on which the pixel

is first covered with snow for at
least 5 consecutive days

the last day on which the pixel
is last covered with snow for at
least 5 consecutive days

MOD10C2 50 %
n∑

i=1
Snowi · 8 the fourth day before which the

pixel is first covered with snow
the fourth day after which the
pixel is last covered with snow

Note that, in the equations, “snow” is the snow element used. n is the total number of days in the hydrologic year, which is 365 and 366 for the
IMS and SD datasets and 46 for the MOD10C2 dataset.

curve more reflective of seasonal snowpack changes. The
dynamic-threshold method relies on the trend of the snow
curve. If the snow curve is affected by chance snowfall
events, it may lead to a misjudgment of the dynamic thresh-
old. Therefore, we smooth the snow data to eliminate the ef-
fect of noise. Additionally, we design pre-experiments and
conclude that a sliding window of 30 d would be most appro-
priate (see Fig. S1 in Supplement). The first-order derivative
represents the slope of the tangent line. Its extreme points
show where the slope is steepest, meaning the curve changes
most significantly. We assume the smoothed snow accumula-
tion curve has a single-peak structure. The first-order deriva-
tive can be seen as the actual rate of snow accumulation or
melting. The extreme points of the first-order derivative indi-
cate the maximum rate of snow changes. When the first-order
derivative equals zero (at the beginning and end of the curve,
not the maximum), this shows that snow has not started ac-
cumulating or has completely melted. The intermediate state
between the maximum rate of snow changes and no change
represents when snow starts to accumulate or when melting is
nearly complete, which is what we are looking for in SCOD
and SCED. So, here, we simply choose the extreme mid-
point of the first-order derivative as the snow curve turning
point. The percentage of the turning point is the threshold
we need. The above process is carried out for each grid in
the NH, and Fig. 1 shows a schematic of the entire NH. The
midpoints of the extreme are labeled A and B, which cor-
respond to the snow curves as SCOD and SCED. The per-
centages for SCOD and SCED fall between 5 % and 15 %
(marked by red circles). Below this threshold, the snow curve
changes slowly, while, above it, the curve changes rapidly.
This threshold range (i.e., Snowratio) can therefore serve as
an indicator for the beginning and/or end of the snow season.

2.4 Elevation data and standard deviation of
topography

To explore the relationship between topography and snow
phenology, we use an elevation dataset with a spatial res-
olution of 0.008° derived from the NASA digital elevation
model (DEM). The dataset is used for calculations of the
gridded standard deviation of topography (SDtopo). Com-
pared with the average topographic height, the SDtopo pro-
vides a more accurate representation of topographic variabil-
ity, which is essential for predicting snow cover distributions
in mountainous regions (Douville et al., 1995; Swenson and
Lawrence, 2012; Miao et al., 2022). Specifically, the 0.1°
SDtopo data are obtained by calculating the standard devi-
ation of all elevation values within each 0.1° grid cell.

3 Results

3.1 Comparison of snow phenology extracted from
different data

Due to the spatial heterogeneity of snow distributions in the
NH, the diversity of snow data types, and the choice of fixed
thresholds, the snow phenology extraction in the NH is sub-
ject to great uncertainty. To accurately capture snow phenol-
ogy and reflect the effects of different methods on snow phe-
nology, we first compare the snow phenology results of three
datasets (IMS, MOD10C2, and SD) during the hydrological
years of 2000–2018. Notably, snow phenology above 60° N
is not extracted from the MOD10C2 dataset due to the effects
of the polar night.

Overall, the spatial distribution of snow phenology across
the NH exhibits pronounced heterogeneity, characterized by
distinct latitudinal and altitudinal zonal patterns. In detail, as
latitudes and altitudes increase, the SCD extends with ear-
lier SCOD and later SCED (Fig. 2). At high latitudes (above
60° N), SCD generally exceeds 180 d, with SCOD occurring
from September through October and SCED occurring from
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Figure 1. Intra-annual variability in the normalized SD in the Northern Hemisphere. The gray curves represent the original SD, the red
curves represent the 30 d smoothed SD, and the yellow curves represent the first-order derivative. A and B represent the midpoints of the
extreme of the first-order derivative. Gray shading indicates that the snow season has not started or has ended, blue shading indicates the
snow accumulation period, and red shading indicates the snow-melting period. The unit DOHY is an abbreviation for day of the hydrological
year, defined as 1 September through 31 August of the following year.

June through August. Within the latitudinal range of 40–
60° N, SCD exhibits a broader range from a minimum of ap-
proximately 20 d to a maximum of around 180 d. SCOD oc-
curs from November to December, while SCED occurs from
March to May. In areas below 40° N, except for the highlands
on the TP, SCD is generally less than 30 d. Snow phenology
on the TP increases with altitude, with SCD being greater
than 280 d in the western mountainous region but less than
20 d in the central basin region.

In the NH, snow characteristics across various latitudinal
zones exhibit notable distinctions, leading to diverse snow
phenology patterns. To thoroughly assess the impact of vary-
ing snow data types and extraction methods on the snow phe-
nology results, we further compare snow phenology across
different latitudinal zones (including the Tibetan Plateau) us-
ing three datasets. From Table 2, the statistical results reveal
a substantial difference (22 d) in terms of SCD between the
IMS and SD datasets across the entire NH. Specifically, this
difference is primarily attributed to SCOD, which shows a
notable variation of 33 d, while SCED displays a marginal
difference of only 1 d.

Further analysis at different latitudinal zones emphasizes
the significant variability in snow phenology among the
three datasets. For the SCD, the differences among the three
datasets are relatively small in the middle- and low-latitude
zones and are more pronounced at high latitudes (53 d) be-
tween the IMS and SD. Besides, the SD dataset consistently

identifies the latest SCOD across all latitudinal zones, while
the MOD10C2 dataset identifies the earliest SCOD, with
the difference between them exceeding 1 month north of
40° N latitude. In comparison to the above two snow phe-
nology indicators, the SCED has smaller differences, ex-
hibiting pronounced magnitudes only at low and middle lat-
itudes. The most substantial deviation is observed between
the MOD10C2 and SD datasets on the TP, reaching 34 d.

Among the three datasets, the IMS and MOD10C2 both
serve as representations of snow coverage. The comparative
analysis indicates that both datasets exhibit synchronous lat-
itudinal variations, with a turning point at 40° N (Fig. 3).
South of 40° N, the mean snow coverage from IMS is larger
than that of the MOD10C2, and the opposite is true north
of 40° N. To explore the influence of threshold selection on
snow phenology extraction, different thresholds of 30 % and
50 % are also implemented within the MOD10C2 dataset.
The results show that the variations in snow phenology ex-
tracted from the two datasets are basically the same. For
SCD, 40° N also serves as a turning point, with IMS extract-
ing the shortest SCD south of 40° N and the longest SCD
north of 40° N. Additionally, the IMS consistently extracts
the latest SCOD across all latitudes, while SCED is the latest
for the MOD10C2 with a 30 % threshold. There are signif-
icant differences in snow phenology when different thresh-
olds are used. Specifically, when the threshold is reduced,
snow conditions at given grid points are more easily reached,
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Figure 2. Spatial distribution of snow phenology extracted by the fixed-threshold method over the Northern Hemisphere for the hydrological
years of 2000–2018. (a) Multi-year averaged snow cover duration (SCD), (b) snow cover onset day (SCOD), and (c) snow cover end day
(SCED) based on the IMS dataset. (d, e, f) Same as (a), (b), and (c) but for the MOD10C2 dataset. (g, h, i) Same as (a), (b), and (c) but
for the SD dataset. The unit DOHY is an abbreviation for day of the hydrological year, defined as 1 September through 31 August of the
following year.

Table 2. Different snow phenology indicators extracted from the three datasets in different latitudinal zones (including the Tibetan Plateau).

Snow phenology parameters Dataset NH TP 30–40° N 40–50° N 50–60° N 60–75° N

SCD
IMS 110 89 30 86 163 229
MOD10C2 – 93 46 81 150 –
SD 132 97 39 51 120 176

SCOD
IMS 66 86 109 91 64 37
MOD10C2 – 70 103 80 51 –
SD 99 88 121 125 100 77

SCED
IMS 226 224 168 190 232 268
MOD10C2 – 245 175 189 229 –
SD 227 211 182 189 225 257

Note that NH is short for the Northern Hemisphere, and TP is short for the Tibetan Plateau. The unit DOHY is an abbreviation for day of the
hydrological year, defined as 1 September through 31 August of the following year.

resulting in a longer SCD, earlier SCOD, and later SCED.
This indicates the importance of threshold selection in ac-
curately capturing snow dynamics and temporal changes in
snow coverage.

Temporally, the IMS, MOD10C2, and SD datasets show
different intra-annual variations (Fig. 4). At low and middle
latitudes, such as in the latitudinal zone of 30–40° N, the an-
nual average maximum MOD10C2 is 26.4 %, and the maxi-
mum SD reaches 2.19 cm. Although perennial snow is preva-
lent at high elevations on the TP, the annual mean maximum
MOD10C2 remains below 50 %, and the maximum SD is
only 3.92 cm. It is evident that the thresholds of 50 % for the
MOD10C2 and 2 cm for SD cannot realistically characterize
the seasonal variations of snow at low and middle latitudes.

Furthermore, SD consistently displays a stable, single-
peak change, effectively capturing the snow processes
from accumulation to ablation. In contrast, the IMS and
MOD10C2 curves exhibit significant fluctuations at low lat-
itudes, particularly on the TP, where multiple peaks are ob-

served. As latitude increases, the IMS and MOD10C2 curves
become smooth. However, in the latitudinal zones north of
50° N, snow cover can become extensive or even reach com-
plete coverage over time, masking the variability of snow and
resulting in a lack of distinct peaks. In our study, the snow
peak is also used as an indicator, and snow accumulation and
melting processes are analyzed separately. The stable single-
peak structure of the SD curve is more suitable for our study,
and the MOD10C2 data are affected by the polar night, which
prevents the use of data at high latitudes. Therefore the sub-
sequent snow phenological correction is to use SD data.

Based on the above results, we believe that improving the
accuracy of snow cover products is one of the primary means
for enhancing snow phenology and that the soundness of
snow phenology extraction methods is crucial. In the next
section, we aim to enhance the snow phenology extraction
method using SD data to obtain a more reasonable snow phe-
nology in the NH.
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Figure 3. Changes in snow phenology indicators from the IMS and MOD10C2 datasets with latitude. The figures indicate the latitudinal
variations of (a) the snow cover fraction (SCF), (b) snow cover duration (SCD), (c) snow cover onset day (SCOD), and (d) snow cover end
day (SCED). The blue curve in (a) represents the IMS, and the red curve represents the MOD10C2. The blue curves in (b), (c), and (d)
represent the snow phenology extracted by the IMS, the orange curves represent the snow phenology extracted by the MOD10C2 with a
threshold value of 50 %, and the green curves represent the snow phenology extracted by the MOD10C2 with a threshold value of 30 %. The
unit DOHY is an abbreviation for day of the hydrological year, defined as 1 September through 31 August of the following year.

Figure 4. Intra-annual variations in the IMS, MOD10C2, and SD in five latitudinal zones (including the Tibetan Plateau) from 2000 to 2018.
The dashed lines in the MOD10C2 curve represent the MOD10C2 of 50 %, and the dashed lines in the SD curves represent the SD of 2 cm.
The MOD10C2 dataset north of 60° N is not analyzed due to the effects of the polar night. The values in the graphs characterize the annual
snow maximum over the respective areas.

3.2 Dynamic snow phenology threshold

Snow cover in the Northern Hemisphere (NH) exhibits a
latitudinal distribution pattern opposite to that of vegeta-
tion, where vegetation decreases with increasing latitude
(Wang et al., 2016; Zeng et al., 2020), while snow cover in-

creases. Given this similarity in zonal variation, we propose
a dynamic-threshold method for extracting snow phenology,
inspired by a commonly used approach in vegetation phenol-
ogy (see Sect. 2.3). This method assigns varying thresholds
to grid points based on their local snow conditions, enabling
more accurate characterization of spatial and temporal snow
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phenology compared to a fixed threshold. To enhance the ro-
bustness of our analysis, we extend the study period to the
hydrological years of 1989–2018.

To determine an appropriate dynamic threshold, we calcu-
late first-order derivatives of snow depth time series across
five latitudinal zones in the NH. The results indicate that
the Snowratio values predominantly fall within the range of
5 %–15 %. A grid-point-level analysis further supports the
generalizability of this threshold interval, with 73.05 % and
82.65 % of areas falling within this range during snow ac-
cumulation and during snowmelt, respectively (Fig. 5). No-
tably, areas with SCD of fewer than 10 d were masked to en-
sure statistical reliability. Based on these findings, we estab-
lish a 10 % threshold – the midpoint of the 5 %–15 % range
– to define snow presence at a given grid point. Specifically,
a grid is considered to be snow-covered if its snow depth
reaches a value corresponding to 10 % of the difference be-
tween its maximum and minimum snow depth; otherwise, it
is classified as snow-free.

Normalizing and plotting the intra-annual variation of SD
curves for five latitudinal zones of the Northern Hemisphere
on the same graph, it is evident that the 10 % threshold gen-
erally corresponds to the position of the turn in the curve
slope for each latitudinal zone (Fig. 6a). The percentage SD
curves show minimal change below the 10 % threshold, in-
dicating little snow cover and that the snow season has ei-
ther not started or has ended. In contrast, the curves rise
and/or fall sharply when percentage SD curves are above
the 10 % threshold, indicating ongoing snow accumulation
and/or melting. The position of 10 % is exactly at the inflec-
tion point of the transition between the two states of snow,
which can be recognized as an indicator for judging the be-
ginning and/or end of the snow season. Meanwhile, the uni-
fied results of multiple latitudinal bands confirm the uni-
versality and reasonability of the 10 % threshold. We plot
the relationship between the percentage threshold and the
smoothing window for the Northern Hemisphere and for
each latitude zone and find that the percentage threshold,
similarly, stabilizes around 10 % when the window reaches
30 d, justifying the window (see Fig. S1 in Supplement).
Defining a SDtopo greater than 200 as a mountain range
divides the Northern Hemisphere into mountain ranges and
non-mountain ranges. Regardless of the latitudinal belt, the
snow curve in the non-mountainous region would be nar-
rower than that in the mountainous region, implying a shorter
snow season in the non-mountainous region. Snow curves in
mountainous regions are more stable and show the same pat-
tern in the five latitudinal zones. Therefore, the location of
the 10 % threshold is appropriate in both mountain range and
non-mountain range areas where the turnover change occurs.

The SD curves exhibit a similar single-peak pattern across
latitudes, with the curves at high latitudes (60–75° N) dis-
playing the widest shape, gradually narrowing towards lower
latitudes. This trend is consistent with the gradual reduction
in SCD with decreasing latitude. An exception is observed in

the SD curve of the TP, which shows a broad shape similar
to that of high latitudes, even with a leftward shift in its posi-
tion. This suggests that the TP has a longer SCD and earlier
SCOD than expected despite being located at low to middle
latitudes. The SD peak also increases with latitude. North of
60° N, the SD peak reaches 28.64 cm, while south of 40° N,
it is only 2.19 cm. In the TP region, the peak snow depth is
3.92 cm, occurring approximately 1 month earlier compared
to in other latitudinal zones. The timing of snow peaks plays
a crucial role in influencing the dynamics of snow accumula-
tion and melting processes.

Employing the 10 % dynamic-threshold method, we ex-
tract SD thresholds for 30 years in the NH and then average
(Fig. 6b). The cutoff for the traditional 2 cm threshold falls
within the middle latitudes between approximately 40 and
50° N. At low and middle latitudes, the thresholds tend to be
less than 2 cm and even below 0.5 cm on half of the TP. In
contrast, high-latitude SD thresholds exceed 2 cm. The ma-
jority of the extracted snow depth thresholds at high latitudes
range from 4 to 6 cm. These findings indicate that employing
a fixed SD threshold of 2 cm overestimates the snow phenol-
ogy for high latitudes and underestimates it for regions at low
and middle latitudes. Each grid in the Northern Hemisphere
has varying SD thresholds annually, and the multi-year av-
erage SD threshold pattern closely resembles the spatial dis-
tribution of SD. This suggests that the method can dynami-
cally adjust the threshold based on the annual and regional
SD variations, thereby reducing the uncertainty in snow phe-
nology extraction caused by large-scale climatic influences.

The temporal and spatial distributions of snow cover vary
across different regions, leading to varying snow peak times.
The time of snow peaks is crucial for the hydrological and
ecological dynamics of climate systems and should be in-
cluded as an indicator of snow phenology. Here, we pro-
pose a novel snow phenology index named the snow peak
day (SPD). Next, we extract the SCD, SCOD, SCED, and
SPD using the dynamic SD threshold during the hydrolog-
ical years of 1989–2018. The spatial distributions of the
snow phenology indicators are similar to those of the original
method: with increasing latitude and elevation, SCD length-
ens, SCOD advances, and SCED is delayed. Furthermore,
SPD also exhibits distinct latitudinal and altitudinal charac-
teristics, with SPD typically occurring in January at middle
and low latitudes, in April at high latitudes, and even later
in perennial snow regions. It is noteworthy that the SCD and
SPD exhibit contrasting patterns in Europe and North Asia
at around 60° N latitude. While Europe experiences a shorter
SCD than North Asia does, the SPD occurs later, implying
sustainable snow accumulation at the onset of the snow sea-
son. In contrast, North Asia displays a longer SCD but with
less accumulated snow, resulting in reduced snow cover to-
wards the later period and an earlier SPD. These findings
emphasize the unique significance of each snow indicator,
highlighting their complementary nature. Therefore, analyz-
ing multiple snow phenology indicators can help to compre-
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Figure 5. Spatial distribution of Northern Hemisphere threshold percentages extracted from the first-order derivatives. (a) Percentage thresh-
olds associated with snow accumulation (SCOD) from the first half of the first-order derivative maximum value. (b) Percentage thresholds
associated with snow melting (SCED) from the last point of half of the first-order derivative minimum value. The extraction of threshold
percentages is preceded by a sliding-average process with a window of 30 %.

Figure 6. Intra-annual variability in the normalized SD for five latitudinal zones in (a) the whole Northern Hemisphere, (c) the Northern
Hemisphere mountain ranges, and (d) the Northern Hemisphere non-mountain ranges. Shading represents the interval of 5 %–15 %, and the
dashed line represents the dynamic threshold of 10 %. Actual maximum snow depths for each latitude band are in parentheses. The unit
DOHY is an abbreviation for day of the hydrological year, defined as 1 September through 31 August of the following year. (b) Spatial
distribution of multi-year average snow depth thresholds in the Northern Hemisphere extracted using the snow dynamic-threshold method.

hensively understand the snow evolution process from mul-
tiple perspectives.

Here, we further compare the results extracted using the
traditional fixed-threshold method and the new dynamic-
threshold method. Overall, the SCD and SCOD are signifi-
cantly different between the two methods, but SCED varies

relatively little. This suggests that snowmelt is a rapid and
transient process that is less sensitive to the choice of thresh-
old. Besides, it can still be seen that 40–50° N is a dividing
line (Fig. 7e), where there are no significant differences be-
tween the two methods. In areas north of 50° N, employing
the dynamic-threshold method leads to a reduction in SCD
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and a retardation in SCOD compared with those of the tradi-
tional method, while the modification in SCED proves to be
non-significant. Conversely, at low and middle latitudes be-
low 40° N, SCD is extended, SCOD is advanced, and SCED
is delayed. Thus, the reduced SD threshold induces a longer
snow phenology at low and middle latitudes. Noteworthily,
the TP shows the most marked divergence among the five
regions, with SCD increasing by 28 d, SCOD advancing by
12 d, and SCED being delayed by 15 d. The application of
snow dynamic thresholds yields the most substantial differ-
ence for the TP in comparison to fixed thresholds.

We further investigate the spatial distribution and tempo-
ral variations of the snow season (Fig. 8). The interval be-
tween SCOD and SPD is classified as the snow accumula-
tion period, while the duration from SPD to SCED is the
snow-melting period. Across the NH, the average length of
the snow accumulation period significantly exceeds that of
the melting period, with mean durations of 88 and 43 d, re-
spectively. Notably, both the snow accumulation and melt-
ing periods are longer with increasing latitude and altitude.
Over the last 3 decades, the NH’s SPD has advanced by
−0.0439 d yr−1, indicating an advancement in the SPD over
time. Employing the snow dynamic-threshold method, we
observe an increase in the trend of the SCOD from −0.1304
to −0.1212 d yr−1, while the trend of the SCED increases
from −0.1284 to −0.1265 d yr−1. These changes suggest a
lengthening of the snow accumulation period and a shorten-
ing of the melting period as time progresses. However, the
magnitude of the extended accumulation period has dimin-
ished, and the reduction in the magnitude of the melting pe-
riod is also notable.

Given the limitations of MOD10C2 data, such as their
susceptibility to polar-night effects and fluctuations, we se-
lect SD as the primary driving data for this study. How-
ever, to demonstrate the robustness of the dynamic-threshold
method, we also apply MOD10C2 data for dynamic snow
phenology extraction (see Figs. S1–5 in Supplement). Our
results indicate that, for MOD10C2 data, a dynamic thresh-
old of 15 % is more appropriate. After applying the dynamic-
threshold method, the snow phenology results closely align
with those obtained from SD, exhibiting longer SCD, ear-
lier SCOD, and later SCED in mid- and low-latitude regions.
The most pronounced discrepancies are observed over the
TP. However, since snow cover data are influenced by the
polar night at high latitudes, direct comparisons cannot be
made at these latitudes.

In summary, the inter-annual variability and heterogeneity
in the spatial distribution of snow highlight the limitations
of using fixed thresholds at different times and in different
regions. Therefore, it is unreasonable to use a uniform SD
threshold of 2 cm as a criterion for assessing snow phenol-
ogy across the entire NH. Through the implementation of a
snow dynamic-threshold method, the snow phenology of in-
dividual pixels can be evaluated in relation to their unique
seasonal fluctuations, allowing for a more accurate represen-

tation of the actual snow phenology. In addition, the snow
phenology dynamic-threshold method is more reasonable in
areas with complex topographic and climatic features, such
as the TP.

3.3 Characteristics of TP snow phenology

In the previous sections, we elucidate that the TP exhibits the
most substantial alterations in snow phenology after using
the novel method. Consequently, this region is the focus of
our attention in the following analysis.

Shallow and unstable snow covers the central TP with a
short SCD of rarely more than 1 month. Conversely, the
SCD of perennial snow cover in the mountainous areas of
the western TP can exceed 10 months. Meanwhile, SCD can
reach approximately 200 d in the southeastern TP due to suf-
ficient water vapor, with SCOD typically occurring in Oc-
tober and SCED occurring in May. Figure 9 demonstrates
that the dynamic-threshold approach induces extended SCD,
advanced SCOD, and delayed SCED. The largest difference
in the snow phenology is concentrated in the southwestern
and east-central TP, with disparities of up to 165 d in SCD,
126 d in SCOD, and 113 d in SCED. Furthermore, there are
consistent trends in terms of SCD and SCED across the TP,
while SCOD shows a certain variability. There is an ad-
vanced SCOD in the majority of the TP, particularly in high-
altitude areas, while a slight delay in SCOD is observed in
the central TP.

Our analysis indicates that the spatial distribution of snow
phenology on the TP and the differences between the two
methods are closely related to the topography. The TP has
a diverse topography, with an SDtopo below 200 m in the
central region and over 200 m and even over 800 m in the
mountainous areas of the northwestern and southeastern TP
(Fig. 9e). The complex topography causes spatially heteroge-
neous land surface characteristics and snow conditions (Hel-
big et al., 2015). Obviously, the SD on the TP clearly shows
a spatial pattern that is consistent with that of the SDtopo.
SD exceeds 10 cm in the northwestern and southeastern TP,
whereas it is less than 2 cm in the central region. Therefore,
we divide snow on the TP into two categories based on the
SDtopo: mountain snow areas and non-mountain snow areas.
Areas where SDtopo exceeds 200 m are classified as moun-
tain areas, while those with SDtopo values below 200 m are
considered to be non-mountain areas.

The snow phenology characteristics differ significantly be-
tween mountain and non-mountain areas of the TP (Fig. 10).
Specifically, the SCD in mountain areas amounts to 152 d,
whereas it is significantly shorter in non-mountain areas
(90 d). The SCD’s variation is also evident across differ-
ent snow phenology indicators. The SCOD occurs earlier in
mountain areas, and the SPD and SCED occur later. This
discrepancy is attributed to the higher altitudes and lower
temperatures observed in mountain regions, leading to more
snow and then delayed snow peaks and SCED. In contrast

The Cryosphere, 19, 2733–2750, 2025 https://doi.org/10.5194/tc-19-2733-2025



L. Wang et al.: Dynamic identification of snow phenology 2743

Figure 7. Spatial distributions of (a) snow cover duration (SCD), (b) snow peak day (SPD), (c) snow cover onset day (SCOD), and (d) snow
cover end day (SCED) in the Northern Hemisphere, extracted using the dynamic-threshold method. The unit DOHY is an abbreviation for
day of the hydrological year, defined as 1 September through 31 August of the following year. (e) Hotspot map of comparison of snow
phenology extracted by the snow dynamic-threshold method and the traditional fixed-threshold method in five latitudinal zones.

to the NH overall, the difference in SCED between the TP
mountains and non-mountainous areas is more significant
than that of SCOD, which plays a greater role in shaping the
SCD differences. The discrepancy in SCOD between these
two areas is 14 d, whereas the discrepancy in SCED extends
to 35 d.

In mountain areas, the annual average maximum SD
reaches 4.653 cm. Employing the snow dynamic-threshold
method led to a reduction from the original 2 cm thresh-
old to 0.712 cm, which is more consistent with the posi-
tion of the turn change in the curve slope. Conversely, snow
in non-mountain areas remains shallow and unstable, with
an annual average maximum SD below 2.5 cm. After us-
ing the dynamic-threshold method, the threshold is adjusted
to 0.254 cm. The original 2 cm threshold nearly reaches the
snow peak, indicating a great underestimation of snow phe-
nology. However, a 0.3 cm threshold may be excessively low
and too easy to reach, potentially losing its phenological sig-
nificance. For areas with shallow snow, the snow cover frac-
tion (SCF) may capture more accurate snow phenology in-
formation than the SD. This is because the SD at individual
grid points within sparse snow cover fails to accumulate cu-

mulatively, whereas the SCF effectively captures the transi-
tion from less to greater snow cover. Therefore, the use of the
SCF dataset may be more helpful in extracting accurate snow
phenology information when analyzing shallow and unstable
snow areas.

The distribution of TP snow cover shows significant spa-
tial heterogeneity due to the complex topography. Conse-
quently, snow phenology is also profoundly influenced by
topographic factors. Specifically, with an increasing SDtopo,
the SD becomes larger, SCD becomes longer, SCOD ad-
vances, and SPD and SCED are delayed, which leads to
distinctive differences in terms of snow phenology between
mountain and non-mountain areas. The snow dynamic-
threshold method demonstrates substantial enhancements for
snow phenology in mountain areas. However, the availability
of this method for improving snow phenology assessments in
non-mountain areas with shallow snow requires further in-
vestigation.

https://doi.org/10.5194/tc-19-2733-2025 The Cryosphere, 19, 2733–2750, 2025



2744 L. Wang et al.: Dynamic identification of snow phenology

Figure 8. Spatial distribution of snow depth during the (a) snow accumulation period and (b) snow-melting period in the Northern Hemi-
sphere, extracted using the snow dynamic-threshold method. Scatterplots of SCOD, SPD, and SCED, extracted using (c) the traditional 2 cm
fixed-threshold method and (d) the snow dynamic-threshold method in the Northern Hemisphere. The blue dots represent SCOD, the red dots
represent SPD, and the green dots represent SCED. The numbers are the slopes of the linearly fitting lines. The unit DOHY is an abbreviation
for day of the hydrological year, defined as 1 September through 31 August of the following year.

Figure 9. Spatial distribution of differences in (a) snow cover duration (SCD), (b) snow cover onset day (SCOD), and (c) snow cover end
day (SCED), extracted by means of the snow dynamic-threshold method and the traditional fixed-threshold method on the Tibetan Plateau.
Unit is DOHY (day of the hydrological year). Spatial distribution of (d) multi-year mean snow depth (SD) and (e) standard deviation of
topography (SDtopo) on the Tibetan Plateau (TP).
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Figure 10. Intra-annual variation of snow depth in (a) mountain, and (b) non-mountain areas on the Tibetan Plateau (TP). The dashed red
line represents the location of the fixed threshold of 2 cm, and the blue line represents the location of the threshold extracted using the snow
dynamic-threshold method. (c) Histogram of snow phenology in non-mountain and mountain regions of the TP using the dynamic-threshold
method. The unit DOHY is an abbreviation for day of the hydrological year, defined as 1 September through 31 August of the following year.

4 Conclusions and discussion

In this study, we explore the spatial distribution of snow phe-
nology in the Northern Hemisphere (NH) using several sets
of satellite remote sensing snow data and multiple methods.
A new extraction method for snow phenology is proposed for
the NH, and the differences in snow phenology using the tra-
ditional and new methods are compared to evaluate the new
snow phenology method. The conclusions are described be-
low.

Snow phenology extracted from the fixed-threshold
method and different snow data (SD, MOD10C2, and IMS)
exhibits approximately the same spatial distribution across
the NH. As the latitude and altitude increase, SCD extends,
SCOD advances, and SCED is delayed. However, notable
discrepancies exist in the SCD and SCOD across the datasets,
with peak variances reaching 53 and 49 d, respectively. In
contrast, the SCED exhibits less variability, with a maximum
difference of merely 34 d.

Considering the inter-annual variability of snow, as well
as regional differences, in the NH, the dynamic method is
more applicable to the extraction of snow phenology. The
10 % threshold coincides with the inflection point of the rapid
change in the snow depth curve, which marks the entry into
the snow season. The new method induces a shortening of
SCD and a delay in SCOD at higher latitudes, while SCED
exhibits minimal change. In contrast, at lower latitudes, the
adjustments in these metrics are inversely related.

The snow phenology experiences the most substantial
changes on the TP when the new method is used, with SCD
increasing by 28 d, SCOD advancing by 12 d, and SCED de-
laying by 15 d. Due to complex topographic and climatic fea-
tures, there are also large differences in snow between moun-
tainous and non-mountainous areas on the TP. The mountain-
ous areas have longer SCD, earlier SCOD and later SPD and
SCED, with a substantial 62 d variation in SCD. Meanwhile,
the dynamic-threshold method for snow phenology is well-
suited for analyzing mountainous regions of the TP. How-
ever, its applicability to non-mountainous areas with shallow
snow remains to be further investigated.

This study proposes an algorithm based on dynamic
thresholds to recognize snow phenology, similarly to what
has been done for vegetation phenology. The snow accu-
mulation period corresponds to the start of season (SOS),
and the melting period aligns with the end of season (EOS).
Similarly to vegetation, the state of snow in the NH shows
different trends (Armstrong and Brodzik, 2001; Brown and
Robinson, 2011; Guo et al., 2021). Compared to the fixed-
threshold method, the dynamic method improves accuracy
by adjusting thresholds according to regional characteristics
and temporal changes (Burgan and Hartford, 1993; White
et al., 1997; White and Nemani, 2006). It selects inflection
points, peaks, or specific percentiles of snow curves to be
more flexible and universal. Therefore, the approach is par-
ticularly suitable for large-scale and multi-temporal studies
of snow phenology and demonstrates significant advantages
when dealing with complex environmental changes. By dy-
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namically adjusting snow thresholds, each year’s accumu-
lation and melting periods are determined based on actual
conditions, replacing the dependence on traditional seasonal
divisions. This offers a new “reference system” for describ-
ing seasonal changes, similarly to the Twenty-Four Solar
Terms in climate research (Qian et al., 2010, 2012), provid-
ing a novel perspective and method for understanding snow
changes in the Northern Hemisphere under global warming.

Despite improvements in snow phenology extraction, vari-
ations in the data and in definitions of snow phenology and
hydrological years lead to differences in terms of extracted
snow phenological characteristics, which are further com-
pounded by inherent data uncertainties (Xie et al., 2017;
Ma et al., 2020; Guo et al., 2022). The fundamental prin-
ciples underlying snow information acquisition vary across
observation methods, impacting binary snow results (Hall
and Riggs, 2007; Dietz et al., 2012; Zhang et al., 2024). Fac-
tors like the observational instrument’s orbit and cloud cover
can further affect the accuracy of snow datasets (Gao et al.,
2010; Coll and Li, 2018). Second, the performance of snow
data varies geographically. Since the accuracy of passive mi-
crowave detection increases with snow depth, the passive mi-
crowave remote sensing data are more effective for analyz-
ing snow phenology in regions with consistent snow cover
(Armstrong and Brodzik, 2001; Savoie et al., 2009). In ar-
eas with shallow snow and with wet snow, the accuracy of
passive microwave remote sensing data is reduced, and the
snow depth indicator may not accurately capture accumu-
lation and melting processes. In addition, for the transient-
snow area, the snow depth curve is more volatile, which
makes the assumed single-peak structure untenable. After
comprehensive consideration, the snow cover fraction may
be a more reliable indicator in such cases. Therefore, we per-
form another extraction of dynamic snow phenology using
the snow cover fraction data, and the results are similar to
SD but with greater differences for the TP (see Figs. S1–5 in
Supplement). Regardless of the threshold method, problems
with the data itself increase the uncertainty of snow phenol-
ogy analysis. Therefore, it is necessary to integrate ground
observation data with different remote sensing data to form
a more comprehensive and accurate snow phenology extrac-
tion system.

We propose a dynamic approach to defining snow phe-
nology by adjusting the threshold for snow presence in this
study. However, snow and vegetation differ in terms of their
fundamental dynamics. Vegetation grows gradually, while
snow can change rapidly over short periods. Therefore, there
is a second key step in the extraction of snow phenology,
which requires that the threshold be met for several consec-
utive days. This condition ensures that the detected event re-
flects a stable and meaningful snow presence and mitigates
the influence of sporadic snowfall events. While we retain
the traditional threshold of 5 consecutive days, this may not
be suitable for all regions. In some areas, such as the central
TP, shallow snow plays an important role, with its surface

albedo having a strong influence on snow ablation (Wang
et al., 2020). Moreover, snow there is highly discontinuous
over time, with an annual average of 14 snow cover events
and prolonged periods without snow cover (Li et al., 2022;
Wang et al., 2024). It is difficult to achieve 5 consecutive
snow days, leading to barriers to identifying the snow sea-
son. Future work will take the dynamic consecutive snow day
threshold into account.

In conclusion, this study reveals significant differences in
terms of snow phenology extracted from diverse snow data
and methods and reveals that employing the fixed-threshold
method cannot accurately capture the actual snow season.
We therefore develop a novel physically based snow phe-
nology extraction method based on a spatiotemporally dy-
namic threshold, enhancing the snow phenology extraction
in the Northern Hemisphere, especially on the TP. The dy-
namic snow phenology accounts for the spatial heterogene-
ity of Northern Hemisphere snow cover and excludes the in-
fluence of the inter-annual variability of snow cover on snow
phenology extraction, providing a novel perspective for iden-
tifying and understanding snow cover variations in the North-
ern Hemisphere.
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Ice Data Center at https://doi.org/10.7265/N52R3PMC (U.S. Na-
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(MOD10C2) is available through the National Snow and Ice Data
Center at https://doi.org/10.5067/MODIS/MOD10C2.006 (Hall and
Riggs, 2016). The long-term series of daily global snow depth is
available through National Tibetan Plateau Center/Third Pole Envi-
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in China is available through National Tibetan Plateau Center/ Third
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tpdc.270194 (Che et al., 2015). The 0.008° elevation dataset for
the TP can be found through National Tibetan Plateau Center/
Third Pole Environment Data Center at https://data.tpdc.ac.cn/en/
data/ddf4108a-d940-47ad-b25c-03666275c83a (National, 2019).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/tc-19-2733-2025-supplement.

Author contributions. LW and XM formulated the original ideas
presented in this paper. LW led the data analysis and wrote the orig-
inal manuscript draft. XM participated in the result interpretation,
manuscript preparation, and improvement. XH and YL assisted in
data analysis and writing. WG, BQ and JG participated in the dis-
cussion of the idea and the improvement of the writing. All of the
authors contributed to the article and approved the submitted ver-
sion.

The Cryosphere, 19, 2733–2750, 2025 https://doi.org/10.5194/tc-19-2733-2025

https://doi.org/10.7265/N52R3PMC
https://doi.org/10.5067/MODIS/MOD10C2.006
https://doi.org/10.11888/Snow.tpdc.270925
https://cstr.cn/18406.11.Geogra.tpdc.270194
https://cstr.cn/18406.11.Geogra.tpdc.270194
https://data.tpdc.ac.cn/en/data/ddf4108a-d940-47ad-b25c-03666275c83a
https://data.tpdc.ac.cn/en/data/ddf4108a-d940-47ad-b25c-03666275c83a
https://doi.org/10.5194/tc-19-2733-2025-supplement


L. Wang et al.: Dynamic identification of snow phenology 2747

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Yvan Orsolini, David Robinson,
Xiongxin Xiao and two anonymous referees for their helpful com-
ments.

Financial support. This study was jointly supported by the Na-
tional Natural Science Foundation of China (grant nos. 42305033
and 42375115) and the Second Tibetan Plateau Scientific Expedi-
tion and Research Program (STEP) (grant no. 2019QZKK0103).

Review statement. This paper was edited by Cécile Ménard and re-
viewed by Yvan Orsolini and two anonymous referees.

References

Armstrong, R. L. and Brodzik, M. J.: Recent northern hemisphere
snow extent: A comparison of data derived from visible and mi-
crowave satellite sensors, Geophys. Res. Lett., 28, 3673–3676,
https://doi.org/10.1029/2000GL012556, 2001.

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Po-
tential impacts of a warming climate on water avail-
ability in snow-dominated regions, Nature, 438, 303–309,
https://doi.org/10.1038/nature04141, 2005.

Blau, M. T., Kad, P., Turton, J. V., and Ha, K.-J.: Uneven global
retreat of persistent mountain snow cover alongside mountain
warming from ERA5-land, Npj Clim. Atmos. Sci., 7, 278,
https://doi.org/10.1038/s41612-024-00829-5, 2024.

Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Es-
timating snow-cover trends from space, Nat. Clim. Change, 8,
924–928, https://doi.org/10.1038/s41558-018-0318-3, 2018.

Brown, R. D. and Mote, P. W.: The Response of Northern Hemi-
sphere Snow Cover to a Changing Climate, J. Clim., 22, 2124–
2145, https://doi.org/10.1175/2008JCLI2665.1, 2009.

Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring
snow cover variability and change over 1922–2010 including
an assessment of uncertainty, The Cryosphere, 5, 219–229,
https://doi.org/10.5194/tc-5-219-2011, 2011.

Brown, R., Derksen, C., and Wang, L.: Assessment of spring
snow cover duration variability over northern Canada from
satellite datasets, Remote Sens. Environ., 111, 367–381,
https://doi.org/10.1016/j.rse.2006.09.035, 2007.

Brutel-Vuilmet, C., Ménégoz, M., and Krinner, G.: An analy-
sis of present and future seasonal Northern Hemisphere land
snow cover simulated by CMIP5 coupled climate models,

The Cryosphere, 7, 67–80, https://doi.org/10.5194/tc-7-67-2013,
2013.

Burgan, R. E. and Hartford, R. A.: Monitoring vegetation greenness
with satellite data (INT-GTR-297; p. INT-GTR-297), U.S. De-
partment of Agriculture, Forest Service, Intermountain Research
Station, https://doi.org/10.2737/INT-GTR-297, 1993.

Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T.:
Snow depth derived from passive microwave remote-
sensing data in China, Ann. Glaciol., 49, 145–154,
https://doi.org/10.3189/172756408787814690, 2008.

Che, T., Dai, L., and Li, X.: Long-term series of daily
snow depth dataset in China (1979–2024), National Ti-
betan Plateau/Third Pole Environment Data Center [data set],
https://doi.org/10.11888/Geogra.tpdc.270194, 2015.

Che, T., Li, X., and Dai, L.: Long-term series of daily
global snow depth (1979–2017), National Tibetan
Plateau/Third Pole Environment Data Center [data set],
https://doi.org/10.11888/Snow.tpdc.270925, 2019.

Chen, X., Liang, S., Cao, Y., He, T., and Wang, D.: Observed
contrast changes in snow cover phenology in northern mid-
dle and high latitudes from 2001–2014, Sci. Rep., 5, 16820,
https://doi.org/10.1038/srep16820, 2015.

Chen, Y., Li, W., Deng, H., Fang, G., and Li, Z.: Changes in Central
Asia’s water tower: past, present and future, Sci. Rep., 6, 35458,
https://doi.org/10.1038/srep35458, 2016.

Choi, G., Robinson, D. A., and Kang, S.: Changing North-
ern Hemisphere Snow Seasons, J. Clim., 23, 5305–5310,
https://doi.org/10.1175/2010JCLI3644.1, 2010.

Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A.,
and Cherry, J. E.: Arctic warming, increasing snow cover and
widespread boreal winter cooling, Environ. Res. Lett., 7, 014007,
https://doi.org/10.1088/1748-9326/7/1/014007, 2012.

Coll, J. and Li, X.: Comprehensive accuracy assessment
of MODIS daily snow cover products and gap fill-
ing methods, ISPRS J. Photogramm., 144, 435–452,
https://doi.org/10.1016/j.isprsjprs.2018.08.004, 2018.

Déry, S. J. and Brown, R. D.: Recent Northern Hemisphere
snow cover extent trends and implications for the snow-
albedo feedback, Geophys. Res. Lett., 34, 2007GL031474,
https://doi.org/10.1029/2007GL031474, 2017.

Dong, C.: Remote sensing, hydrological modeling and in situ obser-
vations in snow cover research: A review, J. Hydrol., 561, 573–
583, https://doi.org/10.1016/j.jhydrol.2018.04.027, 2018.

Douville, H., Royer, J. F., and Mahfouf, J. F.: A new snow pa-
rameterization for the Meteo-France climate model, Part II: Val-
idation in a 3-D GCM experiment, Clim. Dynam., 12, 37–52,
https://doi.org/10.1007/BF00208761, 1995.

Dietz, A. J., Kuenzer, C., Gessner, U., and Dech, S.
W.: Remote sensing of snow – a review of avail-
able methods, Int. J. Remote Sens., 33, 4094–4134,
https://doi.org/10.1080/01431161.2011.640964, 2012.

Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term
Northern Hemisphere snow cover extent data record for cli-
mate studies and monitoring, Earth Syst. Sci. Data, 7, 137–142,
https://doi.org/10.5194/essd-7-137-2015, 2015.

Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly,
R., and Robinson, D. A.: A review of global satellite-
derived snow products, Adv. Space Res., 50, 1007–1029,
https://doi.org/10.1016/j.asr.2011.12.021, 2012.

https://doi.org/10.5194/tc-19-2733-2025 The Cryosphere, 19, 2733–2750, 2025

https://doi.org/10.1029/2000GL012556
https://doi.org/10.1038/nature04141
https://doi.org/10.1038/s41612-024-00829-5
https://doi.org/10.1038/s41558-018-0318-3
https://doi.org/10.1175/2008JCLI2665.1
https://doi.org/10.5194/tc-5-219-2011
https://doi.org/10.1016/j.rse.2006.09.035
https://doi.org/10.5194/tc-7-67-2013
https://doi.org/10.2737/INT-GTR-297
https://doi.org/10.3189/172756408787814690
https://doi.org/10.11888/Geogra.tpdc.270194
https://doi.org/10.11888/Snow.tpdc.270925
https://doi.org/10.1038/srep16820
https://doi.org/10.1038/srep35458
https://doi.org/10.1175/2010JCLI3644.1
https://doi.org/10.1088/1748-9326/7/1/014007
https://doi.org/10.1016/j.isprsjprs.2018.08.004
https://doi.org/10.1029/2007GL031474
https://doi.org/10.1016/j.jhydrol.2018.04.027
https://doi.org/10.1007/BF00208761
https://doi.org/10.1080/01431161.2011.640964
https://doi.org/10.5194/essd-7-137-2015
https://doi.org/10.1016/j.asr.2011.12.021


2748 L. Wang et al.: Dynamic identification of snow phenology

Furtado, J. C., Cohen, J. L., Butler, A. H., Riddle, E. E., and Ku-
mar, A.: Eurasian snow cover variability and links to winter
climate in the CMIP5 models, Clim. Dynam., 45, 2591–2605,
https://doi.org/10.1007/s00382-015-2494-4, 2015.

Gao, Y., Xie, H., Lu, N., Yao, T., and Liang, T.: To-
ward advanced daily cloud-free snow cover and snow
water equivalent products from Terra–Aqua MODIS and
Aqua AMSR-E measurements, J. Hydrol., 385, 23–35,
https://doi.org/10.1016/j.jhydrol.2010.01.022, 2010.

Gao, Y., Xie, H., and Yao, T.: Developing Snow Cover
Parameters Maps from MODIS, AMSR-E, and Blended
Snow Products, Photogramm. Eng. Rem. S., 77, 351–361,
https://doi.org/10.14358/PERS.77.4.351, 2011.

Gao, Y., Hao, X., He, D., Huang, G., Wang, J., Zhao, H., Wwi,
Y., Shao, D., and Wang, W.: Snow cover mapping algorithm in
the Tibetan Plateau based on NDSI threshold optimization of
different land cover types. Journal of Glaciology and Geocry-
ology, 41, 1162–1172, https://doi.org/10.7522/j.issn.1000-
0240.2019.1155, 2019.

Gouttevin, I., Menegoz, M., Dominé, F., Krinner, G., Koven, C.,
Ciais, P., Tarnocai, C., and Boike, J.: How the insulating prop-
erties of snow affect soil carbon distribution in the continental
pan-Arctic area, J. Geophys. Res.-Biogeo., 117, 2011JG001916,
https://doi.org/10.1029/2011JG001916, 2012.

Guo, H., Yang, Y., Zhang, W., Zhang, C., and Sun, H.: Attribut-
ing snow cover extent changes over the Northern Hemisphere
for the past 65 years, Environ. Res. Commun., 3, 061001,
https://doi.org/10.1088/2515-7620/ac03c8, 2021.

Guo, H., Wang, X., Guo, Z., Zhu, G., Che, T., Wang, J., Huang,
X., Han, C., and Ouyang, Z.: Review of snow phenology vari-
ation in the Northern Hemisphere and its relationship with
climate and vegetation, The Cryosphere Discuss. [preprint],
https://doi.org/10.5194/tc-2022-229, 2022.

Hall, D. K. and Riggs, G. A.: Accuracy assessment of the
MODIS snow products, Hydrol. Process., 21, 1534–1547,
https://doi.org/10.1002/hyp.6715, 2007.

Hall, D. K. and Riggs, G. A.: MODIS/Terra Snow Cover 8-Day
L3 Global 0.05Deg CMG, Boulder, Colorado USA, NASA Na-
tional Snow and Ice Data Center Distributed Active Archive Cen-
ter [data set], https://doi.org/10.5067/MODIS/MOD10C2.006,
2016.

Harpold, A. A. and Brooks, P. D.: Humidity determines snowpack
ablation under a warming climate, P. Natl. Acad. Sci. USA, 115,
1215–1220, https://doi.org/10.1073/pnas.1716789115, 2018.

Helbig, N., Van Herwijnen, A., Magnusson, J., and Jonas,
T.: Fractional snow-covered area parameterization over com-
plex topography, Hydrol. Earth Syst. Sci., 19, 1339–1351,
https://doi.org/10.5194/hess-19-1339-2015, 2015.

Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T.,
and Kasheta, T.: Enhancements to, and forthcoming de-
velopments in the Interactive Multisensor Snow and Ice
Mapping System (IMS), Hydrol. Process., 21, 1576–1586,
https://doi.org/10.1002/hyp.6720, 2007.

Henderson, G. R., Peings, Y., Furtado, J. C., and Kushner, P. J.:
Snow–atmosphere coupling in the Northern Hemisphere, Nat.
Clim. Change, 8, 954–963, https://doi.org/10.1038/s41558-018-
0295-6, 2018.

Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T.,
Kuchiki, K., Niwano, M., and Enomoto, H.: A 38-year (1978–

2015) Northern Hemisphere daily snow cover extent prod-
uct derived using consistent objective criteria from satellite-
borne optical sensors, Remote Sens. Environ., 191, 402–418,
https://doi.org/10.1016/j.rse.2017.01.023, 2017.

Immerzeel, W. W., Van Beek, L. P. H., and Bierkens, M. F. P.: Cli-
mate Change Will Affect the Asian Water Towers, Science, 328,
1382–1385, https://doi.org/10.1126/science.1183188, 2010.

Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., and Yao, T.: Re-
view of climate and cryospheric change in the Tibetan Plateau,
Environ. Res. Lett., 5, 015101, https://doi.org/10.1088/1748-
9326/5/1/015101, 2010.

Ke, C.-Q., Li, X.-C., Xie, H., Ma, D.-H., Liu, X., and Kou, C.: Vari-
ability in snow cover phenology in China from 1952 to 2010, Hy-
drol. Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/hess-
20-755-2016, 2016.

Knowles, J. F., Lestak, L. R., and Molotch, N. P.: On the use of a
snow aridity index to predict remotely sensed forest productivity
in the presence of bark beetle disturbance, Water Resour. Res.,
53, 4891–4906, https://doi.org/10.1002/2016WR019887, 2017.

Li, H., Zhong, X., Zheng, L., Hao, X., Wang, J., and Zhang, J.:
Classification of Snow Cover Persistence across China, Water,
14, 933, https://doi.org/10.3390/w14060933, 2022.

Lin, Y. and Jiang, M.: Maximum temperature drove snow cover
expansion from the Arctic, 2000–2008, Sci. Rep., 7, 15090,
https://doi.org/10.1038/s41598-017-15397-3, 2017.

Liu, H., Xiao, P., Zhang, X., Chen, S., Wang, Y., and Wang,
W.: Winter snow cover influences growing-season vegetation
productivity non-uniformly in the Northern Hemisphere, Com-
mun. Earth Environ., 4, 487, https://doi.org/10.1038/s43247-
023-01167-9, 2023.

Liston, G. E.: Interrelationships among Snow Distribution,
Snowmelt, and Snow Cover Depletion: Implications for At-
mospheric, Hydrologic, and Ecologic Modeling, J. Appl.
Meteorol., 38, 1474–1487, https://doi.org/10.1175/1520-
0450(1999)038<1474:IASDSA>2.0.CO;2, 1999.

Liston, G. E. and Hiemstra, C. A.: The Changing Cryosphere:
Pan-Arctic Snow Trends (1979–2009), J. Clim., 24, 5691–5712,
https://doi.org/10.1175/JCLI-D-11-00081.1, 2011.

Ma, N., Yu, K., Zhang, Y., Zhai, J., Zhang, Y., and Zhang, H.:
Ground observed climatology and trend in snow cover phe-
nology across China with consideration of snow-free breaks,
Clim. Dynam., 55, 2867–2887, https://doi.org/10.1007/s00382-
020-05422-z, 2020.

Marks, D., Dozier, J., and Davis, R. E.: Climate and en-
ergy exchange at the snow surface in the Alpine Re-
gion of the Sierra Nevada: 1. Meteorological measure-
ments and monitoring, Water Resour. Res., 28, 3029–3042,
https://doi.org/10.1029/92WR01482, 1992.

Miao, X., Guo, W., Qiu, B., Lu, S., Zhang, Y., Xue, Y., and Sun,
S.: Accounting for Topographic Effects on Snow Cover Frac-
tion and Surface Albedo Simulations Over the Tibetan Plateau
in Winter, J. Adv. Model. Earth Sy., 14, e2022MS003035,
https://doi.org/10.1029/2022MS003035, 2022.

Mo, J., Zhu, W., Wang, L., Xu, Y., and Liu J.: Evaluation of re-
mote sensing extraction methods for vegetation phenology based
on flux tower net ecosystem carbon exchange data, Chinese
J. Appl. Ecol., 23, 319–327, https://doi.org/10.13287/j.1001-
9332.2012.0072, 2012.

The Cryosphere, 19, 2733–2750, 2025 https://doi.org/10.5194/tc-19-2733-2025

https://doi.org/10.1007/s00382-015-2494-4
https://doi.org/10.1016/j.jhydrol.2010.01.022
https://doi.org/10.14358/PERS.77.4.351
https://doi.org/10.7522/j.issn.1000-0240.2019.1155
https://doi.org/10.7522/j.issn.1000-0240.2019.1155
https://doi.org/10.1029/2011JG001916
https://doi.org/10.1088/2515-7620/ac03c8
https://doi.org/10.5194/tc-2022-229
https://doi.org/10.1002/hyp.6715
https://doi.org/10.5067/MODIS/MOD10C2.006
https://doi.org/10.1073/pnas.1716789115
https://doi.org/10.5194/hess-19-1339-2015
https://doi.org/10.1002/hyp.6720
https://doi.org/10.1038/s41558-018-0295-6
https://doi.org/10.1038/s41558-018-0295-6
https://doi.org/10.1016/j.rse.2017.01.023
https://doi.org/10.1126/science.1183188
https://doi.org/10.1088/1748-9326/5/1/015101
https://doi.org/10.1088/1748-9326/5/1/015101
https://doi.org/10.5194/hess-20-755-2016
https://doi.org/10.5194/hess-20-755-2016
https://doi.org/10.1002/2016WR019887
https://doi.org/10.3390/w14060933
https://doi.org/10.1038/s41598-017-15397-3
https://doi.org/10.1038/s43247-023-01167-9
https://doi.org/10.1038/s43247-023-01167-9
https://doi.org/10.1175/1520-0450(1999)038<1474:IASDSA>2.0.CO;2
https://doi.org/10.1175/1520-0450(1999)038<1474:IASDSA>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00081.1
https://doi.org/10.1007/s00382-020-05422-z
https://doi.org/10.1007/s00382-020-05422-z
https://doi.org/10.1029/92WR01482
https://doi.org/10.1029/2022MS003035
https://doi.org/10.13287/j.1001-9332.2012.0072
https://doi.org/10.13287/j.1001-9332.2012.0072


L. Wang et al.: Dynamic identification of snow phenology 2749

Musselman, K. N., Addor, N., Vano, J. A. and Molotch,
N. P.: Winter melt trends portend widespread declines in
snow water resources, Nat. Clim. Change, 11, 418–424,
https://doi.org/10.1038/s41558-021-01014-9, 2021.

National, A.: Elevation dataset of the Third pole (2013),
National Tibetan Plateau/Third Pole Environment
Data Center [data set], https://data.tpdc.ac.cn/en/data/
ddf4108a-d940-47ad-b25c-03666275c83a, 2019.

Nijssen, B., O’Donnell, G. M., Hamlet, A. F., and Let-
tenmaier, D. P.: Hydrologic sensitivity of global rivers
to climate change, Climatic Change, 50, 143–175,
https://doi.org/10.1023/A:1010616428763, 2001.

Notarnicola, C.: Hotspots of snow cover changes in global mountain
regions over 2000–2018, Remote Sens. Environ., 243, 111781,
https://doi.org/10.1016/j.rse.2020.111781, 2020a.

Notarnicola, C.: Overall negative trends for snow cover extent and
duration in global mountain regions over 1982–2020, Sci. Rep.,
12, 13731, https://doi.org/10.1038/s41598-022-16743-w, 2020b.

Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang,
K., De Rosnay, P., Zhu, C., Wang, W., Senan, R., and Ar-
duini, G.: Evaluation of snow depth and snow cover over the
Tibetan Plateau in global reanalyses using in situ and satellite
remote sensing observations, The Cryosphere, 13, 2221–2239,
https://doi.org/10.5194/tc-13-2221-2019, 2019.

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Zhou, L., and Wang,
T.: Change in snow phenology and its potential feedback to tem-
perature in the Northern Hemisphere over the last three decades,
Environ. Res. Lett., 8, 014008, https://doi.org/10.1088/1748-
9326/8/1/014008, 2013.

Qian, C., Wu, Z., Fu, C., and Zhou, T.: On multi-timescale
variability of temperature in China in modulated annual
cycle reference frame, Adv. Atmos. Sci., 27, 1169–1182,
https://doi.org/10.1007/s00376-009-9121-4, 2010.

Qian, C., Yan, Z., and Fu, C.: Climatic changes in the Twenty-four
Solar Terms during 1960–2008, Chinese Sci. Bull., 57, 276–286,
https://doi.org/10.1007/s11434-011-4724-4, 2012.

Riggs, G. A., Hall, D. K., and Román, M. O.: Overview of NASA’s
MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS)
snow-cover Earth System Data Records, Earth Syst. Sci. Data, 9,
765–777, https://doi.org/10.5194/essd-9-765-2017, 2017.

Riggs, G. A., Hall, D. K., and Román, M. O.: MODIS Snow
Products Collection 6.1 User Guide (Version 1.0), NASA,
https://doi.org/10.5067/MODIS/MOD10C2.006, 2019.

Savoie, M. H., Armstrong, R. L., Brodzik, M. J., and
Wang, J. R.: Atmospheric corrections for improved satel-
lite passive microwave snow cover retrievals over the
Tibet Plateau, Remote Sens. Environ., 113, 2661–2669,
https://doi.org/10.1016/j.rse.2009.08.006, 2009.

Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow:
A trillion dollar science question, Water Resour. Res., 53, 3534–
3544, https://doi.org/10.1002/2017WR020840, 2017.

Sun, H., Chen, Y., Xiong, J., Ye, C., Yong, Z., Wang, Y., He, D.,
and Xu, S.: Relationships between climate change, phenology,
edaphic factors, and net primary productivity across the Tibetan
Plateau, Int. J. Appl. Earth Observ. Geoinform., 107, 102708,
https://doi.org/10.1016/j.jag.2022.102708, 2022.

Swenson, S. C. and Lawrence, D. M.: A new fractional snow-
covered area parameterization for the Community Land Model
and its effect on the surface energy balance: CLM SNOW

COVER FRACTION, J. Geophys. Res.-Atmos., 117, D21107,
https://doi.org/10.1029/2012JD018178, 2012.

Tang, Z., Deng, G., Hu, G., Zhang, H., Pan, H., and
Sang, G.: Satellite observed spatiotemporal variability
of snow cover and snow phenology over high moun-
tain Asia from 2002 to 2021, J. Hydrol., 613, 128438,
https://doi.org/10.1016/j.jhydrol.2022.128438, 2022.

U.S. National Ice Center.: IMS Daily Northern Hemisphere Snow
and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Boulder,
Colorado USA, National Snow and Ice Data Center [data set],
https://doi.org/10.7265/N52R3PMC, 2008.

Wang, J., Tang, L., and Lu, H.: The new indices to describe temporal
discontinuity of snow cover on the Qinghai-Tibet Plateau, Npj
Clim. Atmos. Sci., 7, 189, https://doi.org/10.1038/s41612-024-
00733-y, 2024.

Wang, L., Derksen, C., Brown, R., and Markus, T.: Recent
changes in pan-Arctic melt onset from satellite passive mi-
crowave measurements, Geophys. Res. Lett., 40, 522–528,
https://doi.org/10.1002/grl.50098, 2013.

Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X., and Peng, Y.: Tem-
poral Trends and Spatial Variability of Vegetation Phenology
over the Northern Hemisphere during 1982–2012, PLOS ONE,
11, e0157134, https://doi.org/10.1371/journal.pone.0157134,
2016.

Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A.,
Ding, B., Li, X., Zhao, L., Li, H., Che, T., and Moore, J. C.: Char-
acterizing Surface Albedo of Shallow Fresh Snow and Its Impor-
tance for Snow Ablation on the Interior of the Tibetan Plateau,
J. Hydrometeorol., 21, 815–827, https://doi.org/10.1175/JHM-
D-19-0193.1, 2020.

Whetton, P. H., Haylock, M. R., and Galloway, R.: Climate
change and snow-cover duration in the Australian Alps, Climatic
Change, 32, 447–479, https://doi.org/10.1007/BF00140356,
1996.

White, M. A. and Nemani, R. R.: Real-time monitoring and
short-term forecasting of land surface phenology, Remote Sens.
Environ., 104, 43–49, https://doi.org/10.1016/j.rse.2006.04.014,
2006.

White, M. A., Thornton, P. E., and Running, S. W.: A continental
phenology model for monitoring vegetation responses to interan-
nual climatic variability, Global Biogeochem. Cy., 11, 217–234,
https://doi.org/10.1029/97GB00330, 1997.

White, K., Pontius, J., and Schaberg, P.: Remote sensing of spring
phenology in northeastern forests: A comparison of methods,
field metrics and sources of uncertainty, Remote Sens. Environ.,
148, 97–107, https://doi.org/10.1016/j.rse.2014.03.017, 2014.

Wipf, S. and Rixen, C.: A review of snow manipulation experiments
in Arctic and alpine tundra ecosystems, Polar Res., 29, 95–109,
https://doi.org/10.3402/polar.v29i1.6054, 2010.

Xiao, X., He, T., Liang, S., Liang, S., Liu, X., Ma, Y., and Wan, J.:
Towards a gapless 1 km fractional snow cover via a data fusion
framework, ISPRS J. Photogramm. Remote Sens., 215, 419–441,
https://doi.org/10.1016/j.isprsjprs.2024.07.018, 2024.

Xiao, X., Zhang, T., Zhong, X., and Li, X.: Spatiotemporal Variation
of Snow Depth in the Northern Hemisphere from 1992 to 2016,
Remote Sens., 12, 2728, https://doi.org/10.3390/rs12172728,
2020.

Xie, J., Kneubühler, M., Garonna, I., Notarnicola, C., De Gre-
gorio, L., De Jong, R., Chimani, B., and Schaepman, M. E.:

https://doi.org/10.5194/tc-19-2733-2025 The Cryosphere, 19, 2733–2750, 2025

https://doi.org/10.1038/s41558-021-01014-9
https://data.tpdc.ac.cn/en/data/ddf4108a-d940-47ad-b25c-03666275c83a
https://data.tpdc.ac.cn/en/data/ddf4108a-d940-47ad-b25c-03666275c83a
https://doi.org/10.1023/A:1010616428763
https://doi.org/10.1016/j.rse.2020.111781
https://doi.org/10.1038/s41598-022-16743-w
https://doi.org/10.5194/tc-13-2221-2019
https://doi.org/10.1088/1748-9326/8/1/014008
https://doi.org/10.1088/1748-9326/8/1/014008
https://doi.org/10.1007/s00376-009-9121-4
https://doi.org/10.1007/s11434-011-4724-4
https://doi.org/10.5194/essd-9-765-2017
https://doi.org/10.5067/MODIS/MOD10C2.006
https://doi.org/10.1016/j.rse.2009.08.006
https://doi.org/10.1002/2017WR020840
https://doi.org/10.1016/j.jag.2022.102708
https://doi.org/10.1029/2012JD018178
https://doi.org/10.1016/j.jhydrol.2022.128438
https://doi.org/10.7265/N52R3PMC
https://doi.org/10.1038/s41612-024-00733-y
https://doi.org/10.1038/s41612-024-00733-y
https://doi.org/10.1002/grl.50098
https://doi.org/10.1371/journal.pone.0157134
https://doi.org/10.1175/JHM-D-19-0193.1
https://doi.org/10.1175/JHM-D-19-0193.1
https://doi.org/10.1007/BF00140356
https://doi.org/10.1016/j.rse.2006.04.014
https://doi.org/10.1029/97GB00330
https://doi.org/10.1016/j.rse.2014.03.017
https://doi.org/10.3402/polar.v29i1.6054
https://doi.org/10.1016/j.isprsjprs.2024.07.018
https://doi.org/10.3390/rs12172728


2750 L. Wang et al.: Dynamic identification of snow phenology

Altitude-dependent influence of snow cover on alpine land sur-
face phenology, J. Geophys. Res.-Biogeo., 122, 1107–1122,
https://doi.org/10.1002/2016JG003728, 2017.

Xu, J., Tang, Y., Dong, L., Wang, S., Yu, B., Wu, J., Zheng, Z., and
Huang, Y: Temperature-dominated spatiotemporal variability in
snow phenology on the Tibetan Plateau from 2002 to 2022, The
Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-
2024, 2024.

Yang, T., Li, Q., Ahmad, S., Zhou, H., and Li, L.: Changes
in Snow Phenology from 1979 to 2016 over the Tian-
shan Mountains, Central Asia, Remote Sens., 11, 499,
https://doi.org/10.3390/rs11050499, 2019.

You, Q., Wu, T., Shen, L., Pepin, N., Zhang, L., Jiang, Z.,
Wu, Z., Kang, S., and AghaKouchak, A.: Review of snow
cover variation over the Tibetan Plateau and its influence
on the broad climate system, Earth-Sci. Rev., 201, 103043,
https://doi.org/10.1016/j.earscirev.2019.103043, 2020.

Yu, H., Luedeling, E., and Xu, J.: Winter and spring warm-
ing result in delayed spring phenology on the Tibetan
Plateau, P. Natl. Acad. Sci. USA, 107, 22151–22156,
https://doi.org/10.1073/pnas.1012490107, 2010.

Yue, S., Che, T., Dai, L., Xiao, L., and Deng, J.: Characteristics of
Snow Depth and Snow Phenology in the High Latitudes and High
Altitudes of the Northern Hemisphere from 1988 to 2018, Re-
mote Sens., 14, 5057, https://doi.org/10.3390/rs14195057, 2022.

Zeng, Z., Li, Y., Wu, W., Zhou, Y., Wang, X., Huang, H., and Li,
Z.: Spatio-Temporal Variation of Drought within the Vegetation
Growing Season in North Hemisphere (1982–2015), Water, 12,
2146, https://doi.org/10.3390/w12082146, 2020.

Zhang, L., Zhang, H., Sun, X., and Luo, L.: Combined Use of
Multiple Cloud-Free Snow Cover Products in China and Its
High-Mountain Region: Implications From Snow Cover Iden-
tification to Snow Phenology Detection, Water Resour. Res.,
60, e2023WR036274, https://doi.org/10.1029/2023WR036274,
2024.

The Cryosphere, 19, 2733–2750, 2025 https://doi.org/10.5194/tc-19-2733-2025

https://doi.org/10.1002/2016JG003728
https://doi.org/10.5194/tc-18-1817-2024
https://doi.org/10.5194/tc-18-1817-2024
https://doi.org/10.3390/rs11050499
https://doi.org/10.1016/j.earscirev.2019.103043
https://doi.org/10.1073/pnas.1012490107
https://doi.org/10.3390/rs14195057
https://doi.org/10.3390/w12082146
https://doi.org/10.1029/2023WR036274

	Abstract
	Introduction
	Data and methods
	Snow data
	Definition of snow phenology
	Dynamic threshold for snow phenology
	Elevation data and standard deviation of topography

	Results
	Comparison of snow phenology extracted from different data
	Dynamic snow phenology threshold
	Characteristics of TP snow phenology

	Conclusions and discussion
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

