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Abstract. The regular and robust mapping of grounding lines
is essential for various applications related to the mass bal-
ance of marine ice sheets and glaciers in Antarctica and
Greenland. Differential Interferometric Synthetic Aperture
Radar (DInSAR) enables precise detection of tide-induced
ice shelf flexure at a continent-wide scale with temporal res-
olutions of just a few days. While automated pipelines for
generating differential interferograms are well established,
grounding line delineation remains largely a manual process,
which is labor-intensive and increasingly impractical given
the growing data streams from current and upcoming syn-
thetic aperture radar (SAR) missions. To address this limi-
tation, we developed an automated pipeline employing the
holistically nested edge detection (HED) neural network to
delineate grounding lines from DInSAR interferograms. The
network was trained in a supervised manner using 421 man-
ually annotated grounding lines of outlet glaciers and ice
shelves of the Antarctic Ice Sheet. We also evaluated the
utility of non-interferometric features such as surface ele-
vation, ice velocity, and differential tide levels for enhanc-
ing delineation performance. Our recommended neural net-
work, trained on the real and imaginary interferometric fea-
tures, achieved a median offset of 265 m and a mean offset of
421 m from manual grounding line delineations, as well as
a predictive uncertainty of 401 m. Furthermore, we demon-
strated this network’s capacity to generalize by generating
grounding lines for previously undelineated interferograms,
highlighting its potential for large-scale, high-resolution spa-
tiotemporal mappings.

1 Introduction

Over the past 3 decades, there has been a clear negative trend
in ice mass loss from both the Antarctic Ice Sheet (AIS) and
the Greenland Ice Sheet (Otosaka et al., 2023; Fox-Kemper
et al., 2021). However, projections of sea level rise from
ice sheet evolution models remain highly uncertain, particu-
larly for the AIS (Robel et al., 2019; Pattyn and Morlighem,
2020; Seroussi et al., 2020; Aschwanden et al., 2021). A pri-
mary source of this uncertainty is the limited understanding
of dynamic processes at ice–ocean boundaries, further exac-
erbated by a scarcity of observations at the grounding line
(Rignot, 2023). The grounding line (GL), where grounded
ice transitions to floating ice shelves (Weertman, 1974), is a
critical indicator of ice sheet stability and plays a key role in
mass balance assessments (Rignot and Thomas, 2002; Rig-
not et al., 2008). Melting of ice shelves from contact with
warm circumpolar deep water leads to GL retreat, making
accurate and frequent mapping of GL position essential for
monitoring ice sheet stability (Rignot and Jacobs, 2002; De-
poorter et al., 2013; Schoof, 2007).

Detecting the precise location of the grounding line is
challenging due to its subglacial location. This problem is
addressed by considering other features as proxies for the
true GL (Fig. 1a) (Brunt et al., 2011). Terrestrial and air-
borne ice-penetrating radar provide direct GL measurements
(Jacobel et al., 1994; Catania et al., 2010; MacGregor et al.,
2011; Uratsuka et al., 1996), while tiltmeter (Stephenson and
Doake, 1979; Stephenson, 1984; Smith, 1991), static GPS
(Riedel et al., 1999), and kinematic GPS (Vaughan, 1994)
measurements capture the hinge line position F . Although
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spatial and temporal coverage is limited, these ground-based
methods validate satellite-derived GLs.

Satellite remote sensing has significantly improved the
spatial and temporal coverage of GL observations. Early
satellite-based methods involved manual tracing of the break
in slope Ib using Landsat 7 imagery (Bindschadler and Choi,
2011) and surface morphology derived from MODIS images
(Scambos et al., 2007). Elevation profiles from radar altime-
try (Dawson and Bamber, 2017, 2020; Hogg et al., 2018)
and laser altimetry (Fricker and Padman, 2006; Fricker et al.,
2009; Brunt et al., 2010, 2011; Li et al., 2020) have provided
pointwise measurements of F , H , and Ib. F has also been
inferred from radar line-of-sight displacement fields (Marsh
et al., 2013; Christianson et al., 2016; Joughin et al., 2016)
derived from differential range offset tracking (DROT). Re-
cently, Wallis et al. (2024) correlated DROT range offsets
with modeled tide levels to detect the transition between
grounded and floating ice. These methods, alongside various
static and dynamic approaches, have been comprehensively
reviewed by Friedl et al. (2020).

Differential Interferometric Synthetic Aperture Radar
(DInSAR) is regarded as the most accurate technique for
GL detection (Rignot et al., 2011). A DInSAR interferogram
is computed as the difference of two interferograms formed
from three or more repeat-pass SAR acquisitions. If the as-
sumption of constant ice velocity within the temporal base-
line of the SAR acquisitions holds, the resulting differen-
tial interferogram contains detectable phase changes from the
tidal flexure at the ice-sheet–ice-shelf boundary. The zone of
ice shelf flexure is visible as a dense fringe belt in the DIn-
SAR phase. The landward extent of the fringe belt is manu-
ally digitized as the grounding line. Figure 1b illustrates the
flexure zone and digitized GL in the DInSAR interferogram
of a glacier draining into the Ross Ice Shelf. The landward
extent is typically within a few hundred meters seawards of F
and considered a good approximation of the true grounding
line (Rignot et al., 2011; Friedl et al., 2020). Two Antarctica-
wide datasets have been generated with this method (Rignot
et al., 2016; Groh, 2021a).

A less common approach is to unwrap the DInSAR phase
and fit the resulting elevation data to a 1D elastic beam
model, which relates the hinge line location to the vertical
displacement of ice (Rignot, 1996). However, this technique
is restricted to slow-moving glaciers, as phase decorrelation
over fast-flowing ice streams limits the reliability of elevation
estimates from phase unwrapping (Mouginot et al., 2019).
Another approach derives tidal bending from individual in-
terferograms and identifies the GL position through model
inversion (Parizzi, 2020). This method avoids phase unwrap-
ping and double-difference interferograms but requires an
a priori estimate of the grounding zone location to constrain
the phase gradient profiles, making it more semiautomatic.

Given the growing volume of SAR acquisitions suited
to detect the grounding line from current (Sentinel-1 A,
TerraSAR-X, COSMO-SkyMed, PAZ, ICEYE constellation)

and upcoming missions (Sentinel-1 C, NISAR), replacing
the labor-intensive manual grounding line delineation with
scalable and automatic algorithms is necessary. Mohajerani
et al. (2021) is the only study to date that applies deep learn-
ing for delineating the grounding line in double-difference
interferograms. They used a convolutional neural network
(CNN) based on the DeepLabV3+ architecture (Chen et al.,
2018) and trained it on the real and imaginary components of
252 Sentinel-1 DInSAR interferograms of the Getz Ice Shelf.
They delineated grounding lines for the rest of AIS on inter-
ferograms of 6 and 12 d repeat-pass Sentinel-1 acquisitions
of 2018. They reported a mean deviation of 232 m between
the network and manual digitizations and a median absolute
deviation (MAD) of 101 m.

Building on our initial papers (Ramanath Tarekere, 2022;
Ramanath Tarekere et al., 2023), this study advances au-
tomated GL detection by training a CNN to segment
grounding lines directly from DInSAR phase data. In Ra-
manath Tarekere (2022), we conducted experiments to de-
termine the optimal network and dataset parameters for this
task, comparing the performance of holistically nested edge
detection (HED) (Xie and Tu, 2015) and UNet (Ronneberger
et al., 2015) architectures for GL delineation. Several tile
dimensions and resolutions were tested to derive the best
dataset configuration. Ramanath Tarekere et al. (2023) fine-
tuned the HED network from Ramanath Tarekere (2022); in-
troduced minor network adjustments; and explored the influ-
ence of topographical, meteorological, and ice flow data on
GL delineation. In this work, we expand on the topic of fea-
ture importance, determine an effective dataset split strategy
for training the network, and demonstrate the network’s spa-
tial transference ability by delineating interferograms from
regions previously unseen during network training. Addition-
ally, we provide predictive model uncertainties.

2 Dataset

2.1 The AIS_cci grounding line location

We used manual GL delineations from the grounding line lo-
cation (GLL) product of ESA’s Antarctic Ice Sheet Climate
Change Initiative project (hereafter AIS_cci GLL) as labels
for training the neural network and to validate its perfor-
mance. The interferometric processing was carried out with
a pipeline developed at the Remote Sensing Technology In-
stitute in the German Aerospace Center (DLR), within the
AIS_cci project (Muir, 2020). The GL digitizations are avail-
able as “LineStrings” in an Esri shapefile, including metadata
about acquisition conditions, tide levels, and atmospheric
pressure. A complete product description can be found in
Groh (2021a). For this study, we used the manual delin-
eations of 421 interferograms formed from Sentinel-1, ERS-
1/2 and TerraSAR-X acquisitions. Table 1 provides details
regarding the temporal coverage, temporal baselines, and the
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Figure 1. (a) The cross-section of an ice shelf, showing the fea-
tures in the flexure zone: F (hinge line) is the landward limit of
the ice flexure due to tides, G is the true grounding line, Ib is the
break in slope, Im is the local elevation minimum, and H is the
seaward limit of ice flexure where the ice shelf reaches hydrostatic
equilibrium. Adapted from Fricker et al. (2009). (b) DInSAR in-
terferogram from four TerraSAR-X acquisitions of an outlet glacier
located in the Siple coast with 11 d temporal baseline. The black
line shows the manually delineated GL (point F in a). The black
arrows at the edges of the dense fringe belt show the extent of the
flexure zone in the interferogram.

number of double-difference interferograms generated from
the acquisitions of the missions mentioned above. Only a
subset of the original dataset is openly accessible (Floricioiu
et al., 2021). The map in Fig. 2a shows the spatial extent of
the AIS_cci GLLs.

2.2 Training features stack

To train our neural network, we compiled a stack of eight in-
terferometric and non-interferometric features derived from
various datasets. Table 2 summarizes these feature attributes,
and Fig. 2b and c present examples of the complete feature
set for one sample.

2.2.1 Interferometric features

The interferometric features were generated from the double-
difference wrapped phases used in the AIS_cci GLL pro-
duction pipeline. These features include the real and imag-
inary components of the double-difference interferograms,
the wrapped phase, and pseudo-coherence (Fig. 2b). Pseudo-
coherence arises from resampling the wrapped phase im-
ages while preserving the cyclic phase variations from −π
to π . Additional details on this process are provided in Ap-
pendix A. Pseudo-coherence reflects phase stability, with
higher values in areas of lower fringe frequency. However,
it is not an objective measure of phase quality. Both decorre-
lated pixels and pixels with high fringe frequency but good
coherence exhibit low pseudo-coherence values (below 0.4).

2.2.2 TanDEM-X PolarDEM

Surface elevation data were sourced from the 90 m resolution
TanDEM-X PolarDEM of Antarctica (Huber, 2020), derived
from the global TanDEM-X digital elevation model (Wes-
sel, 2016). The TanDEM-X PolarDEM was created by aver-
aging two complete coverage datasets from bistatic acquisi-
tions between April 2013 and November 2013 and between
April 2014 and October 2014. Additional acquisitions from
July 2016 to September 2017 were used to fill gaps. Further
information on the generation, calibration, and validation of
TanDEM-X PolarDEM can be found in Wessel et al. (2021).

2.2.3 Ice velocity from Sentinel-1

Ice velocity data were produced by the consortium part-
ner ENVEO IT as part of the AIS_cci project (Wuite,
2020) (available at http://cryoportal.enveo.at, last access:
3 July 2025). This 3D product includes easting, northing,
and vertical velocity components. Azimuth and line-of-sight
(LOS) velocities, derived from Sentinel-1 SAR backscatter
image offset tracking (Nagler et al., 2015), were projected
onto the Reference Elevation Model of Antarctica (REMA)
digital elevation model (Howat et al., 2019). The resulting
velocity map represents a multiyear average from Sentinel-
1 repeat-pass data acquired between 2014 and 2021, cover-
ing the continental margins up to approximately 75° S. In our
feature stack, we included only the northing and easting com-
ponents, as horizontal ice flow may help the neural network
distinguish between grounded and floating ice on a coarse
spatial scale.

2.2.4 Ocean tide levels from the Circum-Antarctic
Tidal Simulation (CATS2008)

The differential tidal state captured in the DInSAR data
was computed by combining individual tide levels from the
CATS2008 tide model (Padman et al., 2008) in the same se-
quence as the interferograms used to create the double dif-
ference. The CATS2008 model incorporates data from tide
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Table 1. Overview of the satellite acquisitions of the interferograms used in the AIS_cci GLL product. IW: interferometric wide swath; SM:
strip map. The last column shows the number of double-difference interferograms used in this study.

Satellite Temporal extent Repeat cycle Imaging mode No. of DInSAR
[years] [d] interferograms

Sentinel-1 A/B 2014–2021 6, 12 d IW 198
ERS-1/2 1992–1996 1,3 SM 123
TerraSAR-X 2012–2018 11 SM 100

gauges, GPS measurements, TOPEX/Poseidon radar altime-
try, ICESat-derived grounding line locations, and Mosaic of
Antarctica (MOA) grounding lines. Although the model is
gridded at 4 km, we obtained pixel-wise interpolated tide
levels using the pyTMD module (Sutterly et al., 2017) in
Python. We further corrected the tide levels for the inverse
barometer effect (Padman et al., 2003) by incorporating daily
air pressure data from the National Centers for Environmen-
tal Prediction and the National Center for Atmospheric Re-
search Reanalysis (NCEP/NCAR), provided by NOAA PSL,
Boulder, Colorado, USA (https://psl.noaa.gov, last access:
3 July 2025). The final corrected tidal amplitudes were in-
cluded in the training feature stack.

3 Automatic delineation pipeline

3.1 Preprocessing

Each component of the feature stack requires preprocessing
before being input into the neural network. The AIS_cci GLL
line geometries are converted into rasters with a pixel size of
100 m. The double-difference interferograms are resampled
to match this raster grid. The GL and interferogram rasters
are then tiled into 256×256 pixel patches with 20 % overlap
in all directions. The feature stack described in Sect. 2.2 is
cropped accordingly to form a three-dimensional array. Miss-
ing pixels are filled with the mean value of the corresponding
feature within the tile. Non-interferometric features are nor-
malized to the range 0 to 1 to ensure network stability during
training. The tiles are split into training, validation, and test
sets. To augment the training data, random horizontal and
vertical flips are applied, doubling the number of samples.
These preprocessing steps are illustrated in Fig. 3.

3.2 GL delineation

We trained a holistically nested edge detection (HED) net-
work (Xie and Tu, 2015) to delineate GLs. Our architecture
closely follows the original design, with modifications to the
padding scheme to maintain spatial dimensions across con-
volutions. The network consists of five convolutional blocks,
each containing 3× 3 convolutions, with max pooling lay-
ers downsampling the output by a factor of 2 between blocks
(Fig. B1). The final segmentation map is a weighted com-

bination of outputs from all blocks, upsampled to a uniform
size before concatenation. To address the class imbalance be-
tween GL and background pixels, we applied the weighted
cross-entropy loss proposed by Xie and Tu (2015):

L(ŷ)=−
|ygl|

|y|

∑
j∈ybg

log(1− ŷj )−
|ybg|

|y|

∑
j∈ygl

log ŷj , (1)

where |ygl| is the number of grounding line pixels, |ybg| is
the number of background pixels, and |y| is the total number
of pixels for one sample. The function weights the predicted
probabilities of grounding line pixels by the fraction of back-
ground pixels and vice versa for each tile.

We apply this loss function to each side output to enhance
the learned features in the network’s initial layers. This tech-
nique, called deep supervision, has been demonstrated to im-
prove generalization and mitigate the challenge of vanishing
gradients in segmentation tasks (Lee et al., 2015; Xie and Tu,
2015). Furthermore, the Rectified Linear Unit (ReLU) activa-
tion function is employed for every convolution layer, while
the sigmoid function is applied to both the side outputs and
the concatenated output. Once the neural network has been
trained with the specified parameters outlined in Sect. 3.4,
we input the test samples into the network. This generates
segmentation maps where each pixel denoted the probability
of belonging to the grounding line class.

3.3 Postprocessing

Following the delineation module, postprocessing is applied
to refine the output segmentation maps by removing uncer-
tain or spurious predictions. This filtering procedure com-
prises three stages. First, the segmentation maps are con-
verted into binary images by applying a fixed threshold. Pix-
els with values greater than or equal to the threshold are as-
signed a value of 1, while the remaining pixels are set to 0.
Next, a median filter with a window size of 3 is applied to the
binarized predictions to eliminate noise and small spurious
branches. Subsequently, a skeletonization algorithm (Zhang
and Suen, 1984) is employed to iteratively thin the prediction
rasters until only a one-pixel-wide skeleton remains. To fur-
ther refine the results, the skeletonized predictions are pruned
to remove small side branches using the PlantCV Python li-
brary (Gehan et al., 2017). Finally, the cleaned skeletons are
converted into line vectors and saved as GeoJSON files for
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Table 2. Attributes of the input features used to train the neural network. No temporal coverage is specified for CATS2008 because the model
assimilates several measurements across various time periods and provides the tidal amplitude for the required epoch. The mentioned pixel
sizes of the double-difference interferograms are after geocoding and are therefore square.

Feature Dataset Pixel size Temporal coverage Accuracy
[m] [years]

Phase, pseudo-coherence, AIS_cci GLL S1 A/B: ∼ 17 S1 A/B: 2014–2021 average mapping accuracy
and real and imaginary (Groh, 2021a) ERS-1/2: ∼ 18 ERS-1/2: 1992–1999 ∼ 500 m
components of interferograms TSX: ∼ 5 TSX: 2011–2018 (Groh, 2021b)

DEM TanDEM-X PolarDEM 90 Apr 2013–Oct 2014 mean vertical height error
(Huber, 2020) Jul 2016–Sep 2017 −0.3± 2.5 m

standard deviation (Wessel et al., 2021)

Ice velocity ENVEO IT 200 2014–2021 0.047 m d−1

(northing and easting) (Wuite, 2020) (Nagler et al., 2015)

Ocean tide levels CATS2008 4000 – root-mean-square deviations
(Padman et al., 2008) from observed tide levels

9–10 cm
(McMillan et al., 2011)

downstream analysis. The schematic representation of this
delineation pipeline is illustrated in Fig. 3. An example out-
put for an interferogram, along with its manual delineation,
is provided in Fig. 4.

3.4 Training scheme

We trained our models on the NVIDIA A100 GPU with
80 GB high-bandwidth memory for a maximum of 100
epochs and a batch size of 128 tiles. We used the Adam op-
timizer with parameters recommended by Kingma and Ba
(2017) and a learning rate of 3× 10−4. The neural network
was implemented in the PyTorch Lightning framework (Fal-
con and The PyTorch Lightning team, 2019).

To simulate real-world conditions, we employed two dis-
tinct data-splitting approaches: spatial and temporal variants.
In the temporal split (Fig. 5a), samples are drawn from the
same regions of interest (ROIs) but split based on acquisition
time, with the training set containing multiple time points and
validation and test sets representing different time periods
within the same regions (Fig. 5c, d, g). This approach better
reflects operational settings where future observations typi-
cally originate from previously observed areas. In the spa-
tial split (Fig. 5b), training, validation, and test samples are
drawn from completely different geographic regions, ensur-
ing that the model is evaluated on unseen locations (Fig. 5e,
f, i, j). This approach prevents the model from relying on re-
gional similarities present in the training data. However, in
data-scarce ROIs – such as glaciers with limited temporal
coverage – all samples may end up in the training set due to
the lack of sufficient observations for validation and testing.
This fallback scenario closely resembles the spatial split and
is illustrated in Fig. 5h and j, which are identical to empha-
size that some regions only contribute to the training set in
the temporal split. The temporal split comprises 4227 train-

ing samples, 121 validation samples, and 308 test samples.
The spatial split consists of 4223 training samples, 118 vali-
dation samples, and 589 test samples.

3.5 Performance evaluation metrics

The evaluation of the segmentation performance and delin-
eation quality was carried out using both pixel-wise and
geometry-based metrics.

Pixel-wise segmentation performance was assessed using
the optimal dataset F1 score (ODS F1) and average precision
(AP). The F1 score (Eq. 2) is the harmonic mean of precision
(P ) and recall (R). ODS F1 is computed by converting pre-
dictions into binary maps at the threshold yielding the highest
F1 score across all samples; for our dataset, this threshold is
0.8. AP (Eq. 3) is calculated as the weighted average of pre-
cision values across all thresholds, considering the increase
in recall.

F1 = 2×
P ×R

P +R
with P =

Tp

Tp+Fp
and R =

Tp

Tp+Fn
, (2)

where Tp represents true-positive, Fp represents false-
positive, and Fn represents false-negative pixels.

AP=
∑
n

(Rn−Rn−1)×Pn, (3)

where Pn and Rn are the precision and recall at the nth
threshold.

To evaluate the positioning accuracy of postprocessed GL
delineations, we used the polygons and line segments (Po-
LiS) metric (Avbelj et al., 2014). PoLiS measures the av-
erage distance between the vertices of two line geometries.
Given that our delineations are line geometries, we calcu-
lated the Euclidean distance from each point on the network-
generated GL to its closest point on the corresponding man-
ual GL (Eq. 4). This is closely related to the mean distance
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Figure 2. (a) Manual grounding line delineations from the AIS_cci GLL dataset (Groh, 2021a). The legend shows the satellite missions used
to derive the DInSAR interferograms: ERS – European Remote Sensing Satellite; SEN – Sentinel-1 A/B; TSX – TerraSAR-X. The rectangles
below the map show (b) interferometric features and (c) non-interferometric features for the Amery Ice Shelf (black rectangle in a).

error (MDE) (Gourmelon et al., 2022), but PoLiS is designed
specifically for vector geometries.

p(A,B)=
1

2|A|

∑
a∈A

min
b∈B
‖a− b‖2+

1
2|B|

∑
b∈B

min
a∈A
‖b− a‖2, (4)

where |A| refers to the total number of grounding line points
in the manual delineation, and |B| is the total number of
grounding line points in the network-generated GL.

We also computed the fraction of the length of manual GLs
identified by the neural network as the coverage percentage
(Eq. 5). Only GL segments within the median PoLiS distance
from the manual delineation are considered to exclude spuri-
ous predictions.

Coverage=
length of network-generated GL

length of corresponding manual GL
·100% (5)

4 Results and discussion

4.1 Importance of interferometric features

To evaluate the optimal representation of interferometric fea-
tures, we trained two networks with different input represen-
tations: one using rectangular interferometric features and
the other using polar interferometric features in their train-
ing feature stacks (denoted as network 1 and network 2 in
Table 3, respectively). We used the training samples of the
temporal dataset variant (Sect. 3.4, Fig. 5a) and evaluated the
respective test set.

Both networks produced GLs with median distances of
less than 300 m from manually delineated GLs. Visual as-
sessments (Fig. 6) reveal that both networks are capable of
tracing the complex GL geometry and distinguishing be-
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Figure 3. Flowchart outlining the operations in our automatic delineation pipeline. The colored borders of each step correspond to the
illustrations depicted in Fig. 4.

Figure 4. Illustration of the steps described in the delineation pipeline flowchart (Fig. 3) for an exemplary interferogram of the Amery Ice
Shelf (black rectangle in Fig. 2). The colors of the outlines of each image correspond to the respective highlighted operation in Fig. 3.

tween the landward and seaward extents of the flexure zone.
However, both networks struggle with accurately captur-
ing sharply curving segments of the GL, leading to non-
continuous delineations (Fig. 6a, b, c) and producing spuri-
ous branches (Fig. 6e, f). Although the visual agreement with
manual delineations is promising, the segmentation metrics
seem to indicate poor performance. Specifically, the aver-
age precision and ODS F1 scores remain low due to high
class imbalance between GL and background pixels. Predic-

tions even one pixel away from the manual delineations are
counted as false positives, leading to reduced precision and
lower ODS F1 scores. This is consistent with the findings of
Heidler et al. (2022a) and Gourmelon et al. (2022). Given
that final GLs are obtained only after postprocessing the out-
put segmentation maps, the PoLiS distances provide a more
accurate measure of delineation quality.

The observed disparity between mean and median PoLiS
distances is driven by a subset of interferograms with low
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Figure 5. Distribution of the AIS_cci lines into training (blue), validation (green), and test (red) sets of (a) temporal and (b) spatial splits.
The temporal samples for (c) Abbot Ice Shelf and (d) Amery Ice Shelf contain spatially overlapping but temporally separated training and
test samples. In contrast, the spatial samples for the same regions contains only (e) test samples or (f) training samples. The temporal data
for the (g) Shackleton Ice Shelf contains training and validation samples, whereas the (h) Moscow University Ice Shelf samples contain only
training samples. The spatial data for (i) Shackleton Ice Shelf and (j) Moscow University Ice Shelves contain only training samples.

coherence, which results in sparse delineations. This also
skews coverage percentages, leading to lower average cov-
erage. Upon examining the phase images of these challeng-
ing samples (Fig. 7a, b, and the pinning point in c and d), it
is clear that decorrelation adversely affects the delineation.
These manual delineations highlight the variability in GL
delineation by human operators. Notably, Mohajerani et al.
(2021) found that neural network failures are generally more
consistent than human inconsistencies.

Training the network with both rectangular and polar com-
ponents did not yield improvements in performance (net-
work 1 in Table C1). Since these features represent differ-
ent formulations of the same underlying interferogram, we
surmise that the network does not benefit from the redun-
dancy. Notably, the network trained with rectangular features
performed slightly better – both quantitatively and qualita-
tively – than the network trained with polar features. There-
fore, we chose to proceed with rectangular features combined

with various subsets of non-interferometric features for sub-
sequent experiments.

4.2 Importance of non-interferometric features

To assess the importance of non-interferometric features in
GL delineation, we trained several networks using differ-
ent combinations of rectangular interferometric features and
non-interferometric features. These non-interferometric fea-
tures (Fig. 2c) were evaluated using the leave-one-covariate-
out (LOCO) inference method (Lei et al., 2018), which in-
volves training models with specific feature subsets and com-
paring performance when each feature is individually re-
moved. We trained the models using samples from the tem-
poral dataset variant (Sect. 3.4, Fig. 5a) and evaluated their
performance on the corresponding test set. The results are
summarized in Table 3.
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Figure 6. Comparison of manual (white) and network-generated (black) GLs overlaid on an interferogram of the Getz Ice Shelf, with the
black lines representing outputs from networks 1 and 2 (see Table 3). The text boxes in the upper left of each panel show the average PoLiS
distance between the manual and network-generated GLs, along with the fraction of the manual GL delineated. The right-side panels provide
zoomed-in views of selected areas (marked by blue rectangles) to highlight specific cases: (a), (b), (c), and (d) show loose interferometric
fringes not captured by the networks; (e) and (f) highlight spurious detections.

Figure 7. Visualization of the manual (white) and network-generated (black) GLs of the Totten Ice Shelf from networks 1 and 2 (Table 3).
The zoomed-in panels (a), (b), (c), and (d) show decorrelated parts of the fringe belt which were not delineated by either network.

4.2.1 Influence of DEM

The addition of the DEM consistently improved network per-
formance across multiple configurations (networks 4, 7, and
9). Network 4 (Rect+DEM) achieved a median PoLiS dis-
tance of 236.5 m and a mean coverage of 73.8 %, outperform-
ing network 1 (Rect). The performance boost was even more
evident in network 9 (Rect+DEM+Vel), which attained a

median distance of 227.1 m and coverage of 74.7 %. We at-
tribute this performance boost to the visibility of Ib, which
aids in distinguishing the GL, particularly in regions where
interferograms suffer from low coherence.

However, this benefit comes with potential drawbacks.
The DEM is a mosaic derived from several years of SAR ac-
quisitions (Sect. 2.2.2), meaning the break-in-slope feature
may not precisely align with the GL captured in the DInSAR
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Table 3. Numerical results for networks trained with different feature subsets as described in Sect. 4.2. Abbreviations for feature subsets are as
follows: Rect – real and imaginary components (rectangular representation); Pol – phase and pseudo-coherence (polar representation); DEM
– digital elevation model; Vel – ice velocity (northing and easting components); Tide – differential tide level; Non-Intf – non-interferometric
features. The best-performing network variant is highlighted in bold.

Network Features subset Median distance Mean distance MAD Mean coverage ODS F1 Average
[m] [m] [m] [%] score precision

1 Rect 276.0 433.1 148.2 69.6 0.17 0.08
2 Pol 282.8 459.6 142.6 68.7 0.18 0.09
3 Rect + Non-Intf 186.0 289.2 84.3 78.6 0.21 0.11
4 Rect+DEM 236.5 353.2 114.5 73.8 0.19 0.09
5 Rect+Vel+Tide 862.0 1007.3 429.0 37.9 0.05 0.02
6 Rect+Vel 314.0 446.4 163.4 68.9 0.15 0.08
7 Rect+DEM+Tide 247.7 386.5 125.4 74.3 0.18 0.09
8 Rect+Tide 253.2 384.8 120.6 72.1 0.17 0.09
9 Rect+DEM+Vel 227.1 359.0 107.7 74.7 0.20 0.10

Table 4. Numerical results for the experiments described in Sect. 4.3. The networks were trained on the rectangular features of the respective
datasets. The best-performing network variant is highlighted in bold.

Dataset variant Median distance Mean distance MAD Mean coverage ODS F1 Average
[m] [m] [m] [%] score precision

Temporal 269.5 459.5 141.9 65.9 0.17 0.08
Spatial 316.0 505.7 176.3 65.2 0.13 0.05

phase. Furthermore, the break-in slope is an unreliable proxy
for fast-flowing glaciers. This introduces the risk that the
network could overfit the DEM, producing inaccurate delin-
eations – especially for fast-flowing glaciers, where interfer-
ometric coherence is often poor. While our evaluation found
no strong evidence of this issue beyond a few isolated cases,
similar overfitting has been observed in automatic calving
front delineation models (Heidler et al., 2022b; Loebel et al.,
2022). Although GL migration is generally slower than calv-
ing front dynamics, we caution users to ensure the region of
interest is relatively stable when incorporating the DEM.

4.2.2 Influence of ice velocity and differential tides

In contrast, including ice velocity and differential tide fea-
tures led to mixed results. Network 5 (Rect+Vel+Tide)
performed the worst among all configurations, with a me-
dian distance of 862.0 m and a mean coverage of only 37.9 %.
This performance gap suggests that these features alone pro-
vide insufficient information for accurate GL delineation.
However, combining the differential tide individually with
rectangular features (network 8) yielded moderate improve-
ments over the network 1. Network 6 (Rect+Vel) performed
marginally worse than network 1. Examples of delineations
from these networks are shown in Fig. C3 (network 5) and
Fig. C2 (networks 6 and 8).

4.2.3 Best-performing feature combination and
operational recommendations

Network 3 (Rect+Non-Intf) achieved the best overall per-
formance, with a median distance of 186.0 m and coverage
of 78.6 %. However, our results indicate that the DEM is the
primary driver of this performance gain, while the contribu-
tions of ice velocity and tide features remain unclear. The
LOCO framework does not allow us to quantify their indi-
vidual effects precisely. Despite network 3’s superior perfor-
mance, we recommend network 1 (Rect) for operational use
for several practical reasons:

1. Using only interferometric features significantly re-
duces preprocessing time and storage requirements.

2. Although the DEM boosts performance overall, its po-
tential to introduce errors in fast-flowing glaciers neces-
sitates caution.

3. The interferogram is the only time-varying input, mak-
ing it the most reliable indicator of the GL within the
temporal context of the SAR acquisitions.

4.3 Inference on the spatial dataset variant and
undelineated interferograms

To evaluate the generalization capabilities of HED, we ap-
plied the network trained on rectangular features from the
temporal dataset variant (network 1 in Table 3) to delineate
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Figure 8. Delineations made by the HED (black) trained on the temporal dataset and spatial dataset for the Abbot Ice Shelf sample (Table 4).
The close-ups in (a) and (b) show fragmented pinning point delineations made by the networks; (c) and (d) show the correct landward-fringe
delineation. The manual delineation (white) is incorrectly made on the seaward-most fringe.

test samples from the spatial dataset variant. We compared
these delineations to those produced by HED, trained specif-
ically on the training samples from the spatial dataset. This
experiment simulates an operational scenario in which the
network is used to generate long-term time series of ground-
ing lines (GLs) for glaciers and ice streams across Antarctica.

The quantitative evaluation showed that the temporal-
trained network outperformed the spatial-trained network
across all metrics (Table 4). The better performance of the
temporal-trained network is likely due to its exposure to
multiple interferograms from the same region during train-
ing, allowing it to generalize better. This suggests that the
temporal-trained network is particularly well suited for gen-
erating time series of grounding lines in regions with a suffi-
cient number of coherent interferograms. Despite these per-
formance differences, the spatial-trained network neverthe-
less produced delineations over the Abbot Ice Shelf region
that visually resembled those from the temporal-trained net-
work, even though no training samples from this area were
included in the spatial dataset (Fig. 5e). This suggests that
the spatial-trained network has some capacity to generalize to
previously unseen regions. Both networks struggled to iden-
tify and accurately delineate pinning points (Fig. 8a, b) but
consistently delineated the landward side of the fringe belt,
despite having been trained on isolated samples of inaccurate
manual delineations positioned on the seaward side (Fig. 8c,
d).

We further tested the spatial transferability of the
temporal-trained network on previously unseen interfero-
grams covering several glaciers draining into the Ross Ice
Shelf, illustrated as black lines in Fig. 9a. These interfero-

grams had not been manually delineated and were not part
of the AIS_cci grounding line product. Despite having never
seen these interferograms during training or validation, the
network successfully delineated the landward-most fringe
and avoided decorrelated fringes over the Crary Ice Rise and
Nimrod Glacier (Fig. 9b, c). Similarly, the network avoided
delineating the loose fringes in interferograms of Dickey
Glacier and Nursery Glacier (Fig. 9d). In this context, the
network complemented existing manual delineations by re-
ducing gaps and producing a more complete grounding line
for the region.

5 Estimation of predictive uncertainty

We estimated the predictive uncertainty of our model by
training an ensemble of five neural networks. We chose not
to further decompose this uncertainty into data and model
components, as there is no standardized approach for do-
ing so (Gawlikowski et al., 2023). The ensemble approach
is conceptually similar to the round-robin test used for man-
ual delineations (Muir, 2020), wherein the GL delineation is
repeated for each sample using multiple networks. Each net-
work was initialized with a unique random seed, resulting in
different initial weights and a randomized order of training
samples (Lakshminarayanan et al., 2017). All networks were
trained on the temporal dataset variant. For each sample, we
computed the pixel-wise mean and standard deviation of the
predicted probabilities (Fig. 10), and we converted the mean
probabilities into mean GLs using the same postprocessing
procedure described in Sect. 3.3.
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Figure 9. (a) AIS_cci GLL (red) and HED trained on the temporal dataset (black) grounding lines for several glaciers situated around the
Ross Ice Shelf (upper left). HED delineations for interferograms over (b) Crary Ice Rise, (c) Nimrod Glacier, and (d) Dickey and Nursery
glaciers. The discontinuous GLs for the Nimrod Glacier and Crary Ice Rise are from two spatially overlapping but temporally separate
DInSAR interferograms. The interferograms appear brighter in the overlapping regions.

Figure 10. Example of mean and standard deviation of an ensemble of five predictions computed for a test sample of the Amery Ice shelf.
The networks were trained with rectangular features. Models 1–5 share the color bar which is displayed to the right of the model 5 output.

Following the approach described in Tollenaar et al.
(2024), we illustrate the spatial uncertainty of the models’
predictions as a buffer around the ensemble average ground-
ing line. This buffer was derived by adding one standard de-
viation to the mean prediction at each pixel, followed by bi-

narizing the resulting values using a threshold of 0.8. We ap-
plied this procedure to two separate ensembles trained with
feature subsets corresponding to networks 1 and 3 in Table 3.
We quantified the spatial uncertainty across the test set by
measuring the distance from the average GL to the nearest
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Table 5. Performance of ensemble networks described in Sect. 5. The metrics are calculated for the ensemble average GLs. The predictive
error is computed as the average of one-way distances from the average GLs to the nearest uncertainty buffer contour. Abbreviations for
feature subsets are as follows: Rect – real and imaginary components (rectangular representation); Non-Intf – non-interferometric features.

Features subset Median distance Mean distance Predictive error MAD Mean coverage ODS F1 Average
[m] [m] [m] [m] [%] score precision

Rect+Non-Intf 222.2 340.5 373.9 109.4 69.0 0.2 0.13
Rect 265.0 421.09 401.8 140.6 65.2 0.16 0.11

Figure 11. Manual GLs (white) and HED delineations of the ensemble networks (Table 5) (black) of the Amery Ice Shelf test sample. The
predictive uncertainty is depicted as the shaded region enveloping the lines (red). The inset shows examples of regions where the width of
the uncertainty buffer extends into features such as the (a, b) Clemence Massif and (c, d) Budd Ice Rumples. The models are also uncertain
over (e, f) partially decorrelated fringes and (g, h) loose fringes.

boundary of the uncertainty buffer at 10 km intervals along
the mean GLs. We then computed the average of these dis-
tances to obtain a predictive error representative of the un-
certainty. Table 5 summarizes the performance metrics for
the two ensembles. Interestingly, the mean and median de-
viations of network 3 alone were better than those of the
Rect+Non-Intf ensemble, though still within the uncertainty
bounds. While ensemble methods often improve predictive
accuracy, they do not always guarantee better results (Gaw-

likowski et al., 2023). However, the Rect ensemble performs
better than network 1.

Figure 11 shows the average GLs derived from the two
ensembles and the uncertainty buffer for a test sample. The
buffer width indicates the degree of uncertainty. In most
cases, the buffer extended symmetrically both landwards and
seawards from the average GL. However, we observed wider
buffers around small-scale features such as pinning points
and massifs (Fig. 11a, b, c, d), decorrelated fringes (Fig. 11e,
f), and loose fringes (Fig. 11g, h).
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Finally, we evaluated the Antarctica-wide performance of
the ensemble average GLs by comparing their PoLiS dis-
tances to AIS_cci lines (Fig. C4). Both ensembles exhibited
particularly poor performance over the Antarctic Peninsula
and the Totten Ice Shelf, likely due to the low coherence
of the respective double-difference interferograms (Figs. C1
and 7).

6 Conclusions

We applied the HED deep neural network for automatically
delineating grounding lines from DInSAR interferograms.
The network was included as a module of our automatic
GL delineation pipeline, which handles the preprocessing
of DInSAR interferograms to make them suitable inputs for
the network, trains the network to generate GL segmentation
maps, and then applies postprocessing to obtain GL vector
geometries. The network was trained on the AIS_cci GLL
dataset, which consists of manually delineated GLs across
several outlet glaciers and ice streams around the Antarc-
tic Ice Sheet. Additional surface elevation data, ice veloc-
ity components, and differential tide levels were incorporated
into the training stack to assess the influence of auxiliary fea-
tures.

Our feature ablation experiments revealed that using the
DEM improves GL detection, particularly in areas with poor
coherence. However, since DEMs are derived from multiple
SAR acquisitions over several years, they often do not align
temporally with the SAR scenes used to build the double-
difference interferogram, potentially resulting in erroneous
delineations that deviate from the DInSAR fringe belt. Ice
velocity and differential tide level features had a marginal
positive effect when combined with the DEM, but their in-
clusion often resulted in sparse and spurious GL delineations.
Consequently, we recommend using only the rectangular in-
terferometric features for robust GL detection, minimizing
the risk of introducing false positives. We provide an estimate
of the networks’ predictive uncertainty using an ensemble
of networks. The standard deviation buffers largely extend
over decorrelated fringes, indicating that the networks’ pre-
dictions in such areas are not as reliable. The GLs from the
Rect ensemble have 265 m median deviation and 421 m mean
deviation from the AIS_cci GLLs as well as 401 m average
predictive uncertainty.

Furthermore, we demonstrated that the trained HED net-
work can delineate GLs from interferograms of previously
unseen regions without retraining, enabling rapid process-
ing of new interferograms without manual intervention.
This adaptability makes the network suitable for large-scale
GL migration studies across diverse timescales. Since our
pipeline is agnostic to the SAR data source, it can be ap-
plied to DInSAR interferograms from various spaceborne
SAR missions, including recent and upcoming missions
such as Sentinel-1C and NISAR. This flexibility underscores

the pipeline’s potential to support long-term, automated GL
monitoring across the Antarctic Ice Sheet.
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Appendix A: Resampling wrapped phases

In order to conserve the cyclic variation of phase, the am-
plitude and phase of the double-difference interferograms
were resampled separately. Due to missing SAR backscat-
ter information for the interferograms used in the AIS_cci
dataset, we used a unit amplitude component to obtain a
complete complex polar representation of the interferograms.
The polar components were transformed into real and imagi-
nary parts (Fig. A1), which were resampled separately. These
were transformed back to polar form to obtain resampled
pseudo-coherence and phase information (Fig. A2).

Figure A1. Phase-preserving reprojection and resampling scheme illustrated for (a) sample ERS interferogram of Ketchum Glacier in the
Antarctic Peninsula and (b) the added unit amplitude component (both in EPSG:4326 projection). Transformation from polar components to
(c) imaginary and (d) real components. The image extents in latitude and longitude were not set to prevent distorting the visualization.
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Figure A2. The resampled and reprojected (a) real and (b) imaginary interferometric components of the DInSAR phase sample shown in
Fig. A1. Both were reprojected to EPSG:3031 projection with a pixel size of 100 m× 100 m. These components are transformed back to
(c) pseudo-coherence and (d) phase. The insets in (c) show the variation of pseudo-coherence for the cases where (e) the phase is coherent
but contains high-frequency fringes and (f) the phase is decorrelated. In both cases, the pseudo-coherence value is < 0.4.
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Appendix B: HED architecture diagram

Figure B1. Architecture of the holistically nested edge detection neural network (Xie and Tu, 2015).

Appendix C: Additional results

The table below lists additional feature ablation experiments.
The model trained with Vel+Tide features and the hyperpa-
rameters specified in Sect. 3.4 did not yield usable results and
therefore were not used to compute metrics.

Table C1. Numerical results for networks trained with different feature subsets as described in Sect. 4.2. Abbreviations for feature subsets:
Intf: interferometric features; DEM: digital elevation model; Vel: ice velocity (northing and easting components); Tide: differential tide level;
Non-Intf: non-interferometric features.

Network Features subset Median distance Mean distance MAD Mean coverage ODS F1 Average
[m] [m] [m] [%] score precision

1 Intf 306.5 466.76 164.38 66.94 0.12 0.07
2 Non-Intf 380.25 559.27 194.25 57.97 0.09 0.048
3 DEM 442.5 611.78 208.0 53.93 0.07 0.04
4 Vel+Tide – – – – – –
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Figure C1. Visualization of the GLs generated by networks 1, 2, and 3 (Table 3) for several test samples.
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Figure C2. Visualization of the GLs generated by networks 4, 6, and 8 (Table 3) for several test samples.
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Figure C3. Visualization of the GLs generated by networks 5, 7, and 9 (Table 3) for several test samples.
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Figure C4. Region-wise performance of the two ensembles. The PoLiS distances shown here are for the test set of the temporal dataset
variant. The green triangle and the red line indicate the mean and median distances, respectively. The circles outside the whiskers are
outliers, which lie outside 1.5 times the interquartile range.

Code and data availability. The subset of the interferograms
used for training, corresponding manual grounding lines
and HED delineated grounding lines are available here:
https://doi.org/10.5281/zenodo.15228974 (Ramanath Tarekere,
2025).

The code repository is accessible here: https://github.com/
sinramtar/automatic-gl-delineation.git (Ramanath Tarekere and
Krieger, 2025).
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