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Abstract. Sít’ Tlein, located in the St. Elias Range, which
straddles Alaska’s Wrangell–St. Elias National Park and Klu-
ane National Park in the Yukon, is the world’s largest pied-
mont glacier. Sít’ Tlein has thinned considerably over 30
years of altimetry, yet its low-elevation piedmont lobe has re-
mained intact in contrast to the glaciers that once filled neigh-
boring Icy and Disenchantment bays. In an effort to forecast
changes to Sít’ Tlein over decadal to centennial timescales,
we take a data-constrained dynamical modeling approach
in which we infer the parameters of a higher-order model
of ice flow – the bed elevation, basal traction, and surface
mass balance – with a diverse but spatiotemporally sparse
set of observations including satellite-derived, time-varying
velocity fields; radar-derived bed and surface elevation mea-
surements; and in situ and remotely sensed observations of
accumulation and ablation. Nonetheless, such data do not
uniquely constrain model behavior, so we adopt an approx-
imate Bayesian approach based on the Laplace approxima-
tion and facilitated by low-rank parametric representations
to quantify uncertainty in the bed, traction, and mass bal-
ance fields alongside the induced uncertainty in model-based
predictions of glacier change. We find that Sít’ Tlein is con-
siderably out of balance with contemporary (and presumably
future) climate, and we expect its piedmont lobe to largely
disappear over the coming centuries. If warming ceases, and
surface mass balance remains at 2023 levels, then by 2073

(2173) we forecast a mass loss (expressed in terms of 95 %
credible interval) of 323–444 km3 (546–728 km3). If instead
surface mass balance continues to change at the same rate
as inferred over the historical period, then we forecast a
2073 (2173) mass loss of 383–505 km3 (740–900 km3). In ei-
ther case, the resulting retreat and subsequent replacement of
glacier ice with a marine embayment or lake will yield a sig-
nificant modification to the regional landscape and ecosys-
tem.

1 Introduction

Sít’ Tlein (briefly known as Malaspina Glacier; Fig. 1a), sit-
uated in coastal Alaska in the St. Elias Mountains, is the
world’s largest piedmont glacier and, when taken together
with its neighbor the Bering–Bagley ice field, is Earth’s
largest temperate ice mass. Its geometry is complex and is
comprised of a large piedmont lobe that is fed by three prin-
cipal tributaries. The largest of these tributaries (sometimes
independently referred to as Seward Glacier) has in its ac-
cumulation area Mt. Logan and Mt. St. Elias, the second-
and fourth-highest points in North America, while its smaller
tributaries, the Agassiz and Marvine glaciers, transport ice
from the maritime windward slopes of Mt. St. Elias and Mt.
Cook to within a few kilometers of the Gulf of Alaska. The
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total area of Sít’ Tlein and its tributaries is roughly 4500 km2,
and the piedmont lobe has an estimated volume of nearly
700 km3 (Tober et al., 2023). The lobe’s volume is con-
strained by radar observations of the ice geometry (Tober
et al., 2023), but the volumes of the tributaries are not well
known.

Sít’ Tlein is thinning, and the glacier extent has diminished
since it was first reliably mapped in the late 19th and early
20th century (Russell, 1893; Tarr and Martin, 1914; Sharp,
1958), with the active ice front, which previously extended
to the ocean in some locations, now typically more than a
kilometer removed. The combined system exhibits complex
dynamics, with both the tributaries and piedmont lobe un-
dergoing periodic surges that transport ice to regions that
are otherwise stagnant and as such are critical for maintain-
ing the piedmont lobe’s geometry. These surges are spatially
variable, with alternating directionality leading to dramatic
looped moraines (Muskett et al., 2008). Notably, the lobe was
at one point contiguous with piedmont glaciers that filled the
adjacent Icy and Disenchantment bays (Barclay et al., 2001).
This is reflected in the Tlingit name Sít’ Tlein, which trans-
lates to “Big Glacier” and is also used to describe the extant
Hubbard Glacier (Thornton, 2012), with its tidewater termi-
nus located at the head of Disenchantment Bay. The conspic-
uous difference in retreat history between Sít’ Tlein and its
neighbors leads to the principal objective of this paper, which
is to predict its future evolution – and in particular the poten-
tial future disintegration of its piedmont lobe.

Our principal approach is through data-calibrated model-
ing. We use the ice dynamics model SpecEIS (Spectral Ele-
ment Ice Simulator; Brinkerhoff, 2022; described in Sect. 2)
– which we denote M – to explicitly evolve the ice thick-
ness H(x, t) and velocity field u(x,z, t) of Sít’ Tlein from
the year 1915 until 2344 based on past and assumed future
climate forcings. While physics-based models are a useful
tool for answering questions about glacier evolution under
different assumptions of climate forcing, ice flow models in
general and SpecEIS in particular are dependent on several
critical inputs that govern the model’s behavior. These inputs
– so-called parameters – include the elevation of the glacier
bed B(x), the spatiotemporally distributed frictional proper-
ties governing sliding at the glacier base β(x, t) (changes in
which presumably control the observed surging at Sít’ Tlein),
the spatiotemporally distributed specific surface mass bal-
ance rate ȧ(x, t), and an initial ice thickness H0(x) from
which to begin the time evolution of the glacier geometry.
Taken together, these form the vector

m= [H0(x),B(x),β(x, t), ȧ(x, t)]. (1)

Each of these parameters exerts a leading-order control on
glacier evolution. At Sít’ Tlein (and elsewhere), we do not
have a full characterization of m over space and time, which
is an impediment to reliable projections of glacier change;
however, some of its elements are partially observed at dis-
crete locations and times. In this case we have spatiotempo-

rally sparse radar-derived observations of the bed elevation B̂
and surface mass balance â. Such parameters also indirectly
influence remotely sensed observations of surface velocity û
and aerial laser altimetry of surface elevation Ŝ. These data
together form the vector of observations

d = [Ŝ, ûs, B̂, â]. (2)

We seek to use these observations to constrain – to the ex-
tent possible – the model’s parameters such that when used
in conjunction with the ice flow model to predict glacier evo-
lution over the period for which observations exist, predic-
tions are consistent with observations. We do not use these
observations to directly modify the evolving ice sheet ge-
ometry (as might be done in a reanalysis), so all such pre-
dictions are derived from a free-running model in a physi-
cally self-consistent way, similar in spirit to the oceanic in-
ference engine ECCO (Forget et al., 2015). In practice, be-
cause the model parameters are continuous functions in space
and time, we must make assumptions about how to repre-
sent them so as to be representable on a computer and to
exhibit feasible physical properties such as smoothness. The
construction of these representations is the topic of Sect. 3.

Because our observations are both imperfect and sparse,
it is not possible (nor desirable) to identify a single ideal
model configuration, and as such we adopt a probabilistic
approach to prediction. Given a quantity of interest – which
we call 1(t) and which could represent change in elevation
at a point, total ice volume, changes in meltwater flux, or any
other model-derived quantity – we seek to characterize the
probability distribution

P(1(t)|d,F,M)=

∫
P(1(t)|m,f,M)

×P(m|d,M) P (f |F) dm df , (3)

where P(·|·) denotes a probability density function over the
first argument, with the second argument representing given
conditions. This distribution can be interpreted in the sense
of an ensemble of simulations of future change; ensemble
members are drawn from the distribution of exogenous cli-
mate forcings P(f |F) that are plausible under a chosen
future climate scenario F alongside endogenous (but data-
constrained) parameters drawn from P(m|d,M).

As is typical for probabilistic prediction, we characterize
Eq. (3) – the predictive distribution – in two steps. In the first
step, described in Sect. 4, we infer the distribution of model
parameters at Sít’ Tlein given observations; i.e., we solve an
“inverse problem”. This corresponds to finding the distribu-
tion overm such that resulting hindcasts over the historic pe-
riod from 1915–2023 agree with available observations. This
distribution – which we call the posterior – can be expressed
as

P(m|d,M)∝ P(d|m,M)︸ ︷︷ ︸
likelihood

P(m|M)︸ ︷︷ ︸
prior

, (4)
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Figure 1. Sít’ Tlein lobe and its tributary basins (a). A digital elevation model alongside our 1.5 km resolution finite-element mesh (b). The
location of Sít’ Tlein within the US state of Alaska (c, inset in upper right corner). The red outline indicates the model domain.

where we have used Bayes’ theorem to write the poste-
rior distribution as proportional to the product of a likeli-
hood term, which measures the degree to which predictions
made given a particular set of model parameters agree with
the observations in hand, and a priori, which measures how
likely said parameters were before observational constraint.
Because our parameters are high-dimensional and our flow
model nonlinear, characterizing this distribution exactly is
not possible. To partially circumvent this we describe a nu-
merical approximation method based on a local quadratic ex-
pansion and randomized low-rank matrix decomposition.

In the second step, described in Sect. 5, we approximate
Eq. (3) under a handful of assumptions about future cli-
mate and calving dynamics by drawing a finite collection of
random samples over future forcings and model parameters
from the posterior distribution (Eq. 4), and using SpecEIS to
predict a range of plausible glacier changes from present to
2344, with a particular emphasis on assessing the stability of
the piedmont lobe.

2 Ice dynamics model

The posterior distribution over parameters is conditioned on
a choice of model M. This conditioning specifies which
model parameters need to be inferred and also specifies –
through the physical processes that the model represents –
the way that a particular choice of parameter value is trans-
lated into something that can be compared against observa-
tions via the likelihood model.

Here we model glacier dynamics using the ice flow model
SpecEIS (Brinkerhoff, 2023), which solves the coupled equa-

tions of mass conservation and stress balance defined over a
domain � with boundary 0. Mass conservation is expressed
through the continuity equation

∂H

∂t
+∇x ·uH = ȧ, H > 0 on � (5)

(uH) ·nx = qin, on 0in, (6)

where u(x,z, t) is the ice velocity, u(x, t) is its vertical av-
erage, H(x, t) is the ice thickness, and qin is a boundary flux
(which we henceforth take to be zero). The stress balance
(here the Blatter–Pattyn approximation (BPA) to the Stokes
equations; Pattyn, 2003) is

∇x,z · 2ηε̇1 = ρig∇xS, on �, (7)

where ρi and g are ice density and gravitational accelera-
tion, S(x, t)= zB(x, t)+H(x, t) the surface elevation, and

∇x,z ≡

[
∂
∂x1
, ∂
∂x2
, ∂
∂z

]T
. The elevation of the ice base is

zB(x, t)=max
(
zsl−

ρi

ρw
H(x, t),B(x)

)
, (8)

with zsl the sea level. As such, Eq. (7) applies to both
grounded and floating ice. ε̇1 is the strain rate tensor subject
to the simplifications of the BPA:

ε̇1 =

(2 ∂u1
∂x1
+
∂u2
∂x2

)
1
2

(
∂u1
∂x2
+
∂u2
∂x1

)
1
2
∂u1
∂z

1
2

(
∂u1
∂x2
+
∂u2
∂x1

) (
∂u1
∂x1
+ 2 ∂u2

∂x2

)
1
2
∂u2
∂z

 . (9)

The viscosity – which depends inversely on the effective rate
of strain and thus describes a shear-thinning fluid – is given
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by Glen’s flow law

η =
1
2
A−

1
n

(
ε̇2
II

) 1−n
2n
, (10)

with A the ice hardness, n the flow exponent, and ε̇II the
second invariant of the strain rate tensor. At subaerial lateral
boundaries, we assume a stress-free condition, while at sub-
aqueous boundaries we assume a normal stress given by wa-
ter pressure. At the interface between ice and substrate, we
assume a Budd-type sliding law (Budd et al., 1979)

2ηε̇ ·n=−exp(β)Nu, (11)

where N is the effective pressure, with water pressure as-
sumed to be the maximum of 80 % of the ice overburden
pressure or the sea level induced water pressure. This model
of water pressure is motivated by the observation that wa-
ter flows out of the terminus of Sít’ Tlein at sea level,
which places a lower limit on the water pressure beneath the
glacier, alongside water pressure measurements from bore-
holes across many temperate glaciers, suggesting a high frac-
tion of overburden as typical. Deviations from this mean-
field approximation are subsumed into the specification of
the traction coefficient β.

SpecEIS uses a mixed finite-element method for spatial
discretization, representing ice thickness as cell-wise con-
stants and velocity using specialized basis functions on mesh
edges; a more detailed description of our approach can be
found in Appendix A. Time discretization is fully implicit,
using a backward Euler method solved with a damped Pi-
card iteration. Model parameters like initial thickness, bed
elevation, surface mass balance, and basal traction are repre-
sented internal to the model using a finite-element basis, but
in the following sections, we work with those parameters us-
ing more expressive representations. We apply the model to
Sít’ Tlein using a 1.5 km resolution mesh, which is shown in
Fig. 1b.

2.1 Integration with Pytorch

Because we seek to perform statistical inference and op-
timization using this model, we require the derivatives of
(scalar functions of) the model outputs with respect to its in-
puts, i.e., the gradient of the average model error with respect
to a parameter. At its simplest, an ice flow model can be writ-
ten in a fully discrete form for a single time step (using the
Markov property of the equations) as

[H,U,U ′] = SpecEIS(H0,B,β,a;1t), (12)

for some time step size1t and in which upright symbols rep-
resent discretized variables (in this case finite-element coef-
ficients). In this representation, inputs and outputs are both
just arrays of numbers, and the resulting model becomes
amenable to inclusion in a general purpose reverse-mode
automatic differentiation (AD) framework such as Pytorch

(Paszke et al., 2019). In the parlance of Pytorch, Eq. (12) con-
stitutes a forward function. To implement a backward func-
tion we require a routine that efficiently computes the prod-
uct of a vector with the Jacobian of the SpecEIS function. We
use the adjoint method (e.g., MacAyeal, 1993, and Heimbach
and Bugnion, 2009, in the glaciological literature) to eval-
uate such vector-Jacobian products (see Appendix B). This
discrete and modular view is powerful because the thick-
ness of the ice at the beginning of the time step is a function
argument that will have a gradient associated with it when
reverse-mode AD is applied. Reverse-mode AD generally
and Pytorch specifically support arbitrary function compo-
sition; we can arbitrarily compose this discrete function with
other functions. As we will see, these can be either com-
plex routines for characterizing misfit, which will facilitate
complex statistical treatment, or the function itself. The latter
yields a fully time-dependent adjoint that can help determine
the sensitivity of the model at the end of a simulation to pa-
rameter values at all times – for example the sensitivity of
the average surface elevation error through time to a surface
mass balance applied long in the past.

3 Representation of model parameters

The parameters in m to be inferred – the bed elevation B(x),
the basal traction β(x, t), surface mass balance ȧ(x, t), and
initial thickness H0(x) – are each complex and continuous
functions of space and (perhaps) time. As such, we intro-
duce an approximating probabilistic model (i.e., a priori dis-
tribution) for each of these parameters, which we then make
amenable to computer representation via decomposition into
a finite set of basis functions. These representations are sep-
arate from the finite-element discretization, a distinction that
is necessary because the characteristics of a finite-element
mesh do not necessarily impose desired physical proper-
ties. However, we also introduce the necessary mechanisms
for mapping samples from this basis to the finite-element
mesh. In introducing these parameter models, we necessar-
ily make some assumptions about smoothness and charac-
teristic scales of variability while also making our represen-
tation independent of the numerical treatment of the model.
This latter point is important because it allows for a natu-
ral hierarchy of mesh refinement in which some computa-
tional tasks can be performed with a coarsely defined ice flow
model, whereas others can be performed with more detail.
We emphasize that any explicit functional representation of
model parameters is subject to potential misspecification (as
is the flow model itself). However, doing so is also unavoid-
able, so we endeavor to be as transparent as possible about
such assumptions. In addition to the specification of func-
tional forms, it is also convenient to condition these priors
(via Bayes’ rule) when direct observations (i.e., observations
that need not be used in conjunction with the ice flow model)
are available. These data-constrained distributions, by virtue
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Figure 2. The prior mean (a), prior marginal standard deviation (b),
posterior mean (c), and posterior marginal standard deviation (d) of
the inferred bed elevation. The red line corresponds to the profile
plotted in Fig. 4.

of our choice of prior family and data likelihood, are analyt-
ically tractable and are treated as an updated prior from the
perspective of more complex inference involving SpecEIS.

3.1 Bed

We represent the glacier bed elevation B(x) as a Gaussian
process (GP) in space (Williams and Rasmussen, 2006),
characterized by a mean function and a covariance func-
tion from the Matern family. Based on previous work (Tober
et al., 2023), we set the characteristic length scale to 3 km
and the amplitude to 1000 m. The mean function is mod-
eled as a second-degree polynomial. To manage the compu-
tational complexity associated with GPs, especially for large
spatial datasets, we employ a low-rank approximation of the
covariance matrix. This reduces the parameter space while
retaining the essential spatial correlation structure. This is
done by expressing the bed elevation as a linear combina-
tion of a smaller set of basis functions, effectively reduc-
ing the number of parameters needed to be estimated. The

specific approximation used here is based on structured ker-
nel interpolation (Wilson and Nickisch, 2015), which de-
composes the covariance matrix into a Kronecker product of
smaller 1D covariance matrices, interpolated to the desired
spatial locations. This approach avoids the need to explicitly
construct and store the full covariance matrix. Further, by
using the Nyström approximation for the decomposition of
these smaller matrices we retain a desirable degree of spar-
sity in the resulting representation. This strategy allows for
efficient computation of the GP, enabling us to represent the
bed elevation with 4192 degrees of freedom, which are col-
lected into a vector of basis coefficients with prior distribu-
tion P(zB |B̂)∼N (0,I ), with zB the basis function coeffi-
cients (which can be mapped to B(x) via a linear transforma-
tion). This distribution is conditioned on bed elevation ob-
servations from NASA’s Operation IceBridge (Tober et al.,
2023) and the Copernicus GLO-30 digital elevation model,
resulting in a model that reflects both prior knowledge and
observational data. Finally, we map this posterior distribu-
tion to the finite-element basis used in our ice flow model,
ensuring consistency between the parameterization and the
model’s spatial discretization. The mean and marginal stan-
dard deviation of the resulting data-constrained distribution
over B is shown in Fig. 2a and b. Further details of this pro-
cedure are described in Appendix C1.

3.2 Traction

Similar to the bed elevation, we model the basal traction
field β(x, t) using a low-rank Gaussian process (GP), but
extended to account for temporal variability. This results in
a spatiotemporal GP with a separable covariance structure,
where the spatial and temporal covariances are represented
as a Kronecker product. We assume that the spatial covari-
ance follows a Matern function with a characteristic length
scale of 3 km, mirroring the bed elevation, while the temporal
covariance follows a squared exponential function with a cor-
relation scale of half a year. The spatial component of the GP
is rendered computationally tractable using the same struc-
tured kernel interpolation approach employed for the bed
elevation. The temporal component, being one-dimensional
and relatively small, is computed directly via eigendecom-
position. The resulting parameterization expresses the spa-
tiotemporal basal traction field as a linear combination of
spatial and temporal basis functions, substantially reducing
the number of degrees of freedom. This representation fa-
cilitates efficient computation and allows us to readily map
the field onto the CG1 finite-element basis used in the Spe-
cEIS model. The resulting basal traction parameterization
has 9443 degrees of freedom per year, which we collect into
the coefficient vector zβ .
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Figure 3. (a) Observations of surface mass balance from snow pits
and cores and (b) data-constrained prior mean for surface mass bal-
ance, with the orange square representing the Mt. Logan snow core,
green stars the core measurements described in (a), yellow triangles
the ELA, and purple crosses observed melt measurements.

3.3 Surface mass balance

To parameterize the specific surface mass balance ȧ(x, t),
we decompose it into two components: a spatially varying
but time-invariant component and an elevation- and time-
dependent component. The spatial component is modeled as
a zero-mean Gaussian process with a squared exponential co-
variance function (characteristic length scale of 25 km and
amplitude of 0.3 m a−1). The elevation- and time-dependent
component is modeled as a piecewise linear function of el-
evation, with specified values at key elevations, including
sea level, the 2023 equilibrium line altitude (ELA), the me-
dian elevation of the accumulation zone, and the summit of
Mount Logan. This component is further modulated by a lin-
ear trend in time and seasonal variability, represented by a

scaled Vandermonde matrix and a temporal Gaussian pro-
cess with a half-year timescale, respectively. We do not ex-
plicitly parameterize surface mass balance as a function of
external climate forcing, instead opting to infer these rela-
tionships from observations in conjunction with other model
parameters. This choice is motivated by the limitations and
substantial disagreements among existing reanalysis prod-
ucts over our study region, particularly given the extreme to-
pography of the St. Elias Mountains (Bieniek et al., 2016).
The resulting model has 37 degrees of freedom, which are a
priori distributed as P(zȧ|â)=N (0,I ). This distribution is
constrained with a diverse set of surface mass balance obser-
vations, including snow cores collected on Seward Glacier
(Fig. 3a), aerial radar measurements of snow accumulation
(Li et al., 2019), an inferred ELA from Landsat-8 imagery,
and a high-elevation ice core from Mount Logan (Moore
et al., 2002). We also incorporate a pseudo-observation rep-
resenting a glaciological steady-state condition for the 2013
ice extent. These observations are combined using a least-
squares approach, resulting in a posterior distribution over
the surface mass balance field. The data-constrained prior
mean for surface mass balance is visualized in Fig. 3b.

3.4 Initial thickness

The last parameter that we must define a distribution over is
H0(x), the initial thickness for the simulation (usually de-
fined at some arbitrary time). It is challenging to develop
a tractable representation in a similar manner to those de-
scribed above because it is the only one that also corresponds
to a physical quantity that is predicted by the flow model. It
stands to reason that the initial simulation thickness ought to
be one that is consistent with – or could have been generated
by – the model itself. If this is not the case, then any prognos-
tic model run beginning from this initial state must attribute
some of its dynamical behavior to the shape of the ice sur-
face changing to be consistent with the flow model’s physics
as well as the structural assumptions of the other parameters,
as described in the previous three sections. Such an obser-
vation is not new and is the motivation for long (relative to
the forecasting period) spin-ups of ice sheet models, in which
a flow model is run to approximate steady-state, sometimes
with modifications to bring this steady-state geometry into
closer alignment with observations.

Here we use a data-constrained spin-up to eliminate the
initial condition from consideration as a parameter. Specifi-
cally, instead of parameterizing the initial thickness through
some basis representation, we take it to be given by the ap-
proximate steady-state solution produced by integrating the
ice dynamics model over 2500 years with geometry as de-
fined in Sect. 3.1, traction given by the time-averaged trac-
tion from Sect. 3.2, and the surface mass balance defined in
Sect. 3.3 evaluated at some reference time that we take to
be the start time for further time-dependent simulations. For
this reference time, we take the year 1915, which is approxi-
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mately when the maximum Little Ice Age ice extent occurred
at Sít’ Tlein based on geologic evidence, early cartography,
and local knowledge (Tarr and Martin, 1914; Sharp, 1958).
We note that we do have to specify an initial guess for this
steady-state-finding routine (because we do not have numer-
ical methods that can directly solve for the steady state with-
out pseudo-time stepping, as in Bueler, 2016), and for this we
use the 2013 surface elevation reported in the GLO-30 DEM.
This initial condition does not, in principle, influence the fi-
nal steady-state solution that we use as the initial condition
for further simulations, so long as the steady-state solution
is unique. This is the case for terrestrial glaciers (assuming a
constant traction), where the mass balance uniquely specifies
the ice extent. This may not be true for marine glaciers – for
instance initializing Sít’ Tlein from an ice-free state could
preclude advance across the submarine basin to the present
terminus position because of calving or flotation. However,
because the 1915 and 2013 glaciers are both in extended
configurations, our optimization procedure only explores the
“extended” branch of this bifurcation, which effectively be-
haves as land-terminating.

4 Joint inference of model parameters

We now turn to the simultaneous inference of all parameters
conditioned on all data. Written in terms of the finite basis
function coefficients described above and using some condi-
tional independence assumptions (namely that direct obser-
vations of one parameter do not affect any other parameters a
priori), we write the joint posterior distribution over the com-

bined coefficient vector ζ =
[
zTB zTβ zTȧ

]T
as

P(ζ |Ŝ, B̂, â, û)

∝ P(û|ζ )×P(Ŝ|ζ )

×P(zB |B̂)P (zβ)P (zȧ|â). (13)

The priors are as described above. In order to evaluate this
function, likelihood functions remain to be specified for spa-
tiotemporal observations of the surface elevation and veloc-
ity.

4.1 Surface elevation observations

We utilize two types of surface elevation observations. First,
we use the publicly available Copernicus GLO-30 digital el-
evation model. This is the only product that offers complete
coverage over Sít’ Tlein and has a nominal date of 2013
with an estimated accuracy of 10 m. Second, we use eleva-
tions derived from airborne laser swath mapping, which were
collected between 1995 and 2021 as part of either Opera-
tion IceBridge (Larsen et al., 2015) or an earlier campaign
by Keith Echelmeyer (Arendt et al., 2002). These data were
collected opportunistically and vary widely with respect to

coverage, with earlier surveys characterizing only a prede-
fined “centerline” and “cross-section”, whereas later surveys
flew a denser grid-like pattern, especially over the piedmont
lobe (see Fig. 6 for spatial coverage and elevation relative to
the GLO-30 DEM for each observation year). These products
have a nominal error of less than 2 m. For all elevation prod-
ucts we resample so as to have a density of approximately
one observation per 500 m× 500 m, which we assume to be
a safe minimum distance for assuming uncorrelated measure-
ment error. The likelihood for surface observations is

P
(
Ŝt |S(x, t)

)
=N

(
S(x, t),6′t

)
, (14)

where S(x, t) is the evaluation of the model at observation
points x at time t , and 6′t is covariance matrix at time t en-
coding both observational errors and errors induced by model
discretization. A derivation and precise definition of the co-
variance can be found in Appendix D.

4.2 Surface velocity

We also constrain model parameters via observations of sur-
face velocity. For this project we use an adapted and stan-
dardized version of ITS_LIVEv1 (Gardner et al., 2018),
a worldwide velocity product derived through a speckle-
tracking cross-correlation method applied to LandSats 5,
6, 7, and 8. We use annual velocity mosaics, which have
120 m resolution and are available from 1985 until 2019.
The nominal error in ITS_LIVE is variable, but on the or-
der of 20 m a−1. At Sít’ Tlein, ITS_LIVE does not always
have full coverage, particularly in the earlier years. As be-
fore, we downscale the observational density to one per
500 m× 500 m. We assume that each component of the ve-
locity is normally distributed around the true (or predicted)
value

P(ûit |u(xi, t))=N (u(xi, t),6u), (15)

where ûit is the ITS_LIVE velocity vector observed at loca-
tion xi and time t , and u(xi, t) is the modeled surface ve-
locity at time t evaluated at the observation locations. We as-
sume an observational standard deviation of 50 m a−1; how-
ever, the error statistics of ITS_LIVE are not well under-
stood, and this number is somewhat arbitrary.

4.3 Evaluation of the log-posterior

It is more convenient to work with the logarithm of the pos-
terior distribution, for both numerical reasons (e.g., because
it is less likely to over- or underflow) and symbolic ones
(i.e., the chain rule of differentiation is easier to apply to
a sum than a product). Because this function is monotonic,
it induces no loss of information. We call this log-posterior
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function J (ζ )

J (ζ )= L(ζ )+ I(ζ )+C

L(ζ )=
∑
t∈Du

logP(ût |ζ )

+

∑
t∈DS

logP(Ŝt |ζ )

I(ζ )= ζ T ζ , (16)

where L is the log-likelihood with respect to the (yet-unused)
observations of surface elevation and surface velocity, and I
is the log-prior distribution, which is exceptionally simple on
account of our chosen reparameterizations, which renders all
parameters uncorrelated and unit-normal. The summations
in the above are taken over the years where observations ex-
ist for the given modality. We also note the presence of the
constant C, which is a constant corresponding to the denom-
inator in Bayes’ rule that does not depend on the parameters.

While Eq. (16) describes our probability model in formal
terms, it is also helpful to describe its evaluation narratively.
Given values of zB , zβ , and zȧ (which initially have mean
zero but which might be modified either through optimiza-
tion or sampling), we map these to finite-element model pa-
rameters using our various constructed bases (and with the
traction averaged over time and the mass balance evaluated
ca. 1915. We then use SpecEIS to compute a steady state,
which we take to be representative of the ice geometry in
1915. Using this geometry as an initial state, we run the
model forward in time using a static bed elevation and time-
varying traction and surface mass balance. Upon reaching the
year 1985 (i.e., after 70 years of simulation time), observa-
tions of velocity and/or surface elevation become available,
and while continuing to integrate the model forward in time
until 2019, we also accumulate commensurate log-likelihood
terms. At the end of the period of observations we also add
the log-prior’s contribution to the log-posterior.

The above computations are performed with Pytorch,
which builds a computational graph of all operations, includ-
ing the SpecEIS function described in Sect. 2. As such, af-
ter computing J , we can perform reverse-mode automatic
differentiation on this graph, which computes the gradient
of J with respect to every intermediate computation in the
graph. Importantly, this gradient computation also propa-
gates through the pseudo-time stepping of the initial steady-
state computation, which implies that the influence of the
parameters on this initial condition – and its resulting tele-
connection with the posterior log-probability – is accounted
for.

Maximizing this function provides the most probable con-
figuration of the bed, traction, and surface mass balance
given all available observations, a so-called maximum a pos-
teriori (or MAP) point. Performing this maximization is non-
trivial, and we describe our approach in Appendix E.

4.4 Approximation of the posterior covariance

We seek to approximate the complete posterior given by
Eq. (13), yet the procedure above yields only the most prob-
able parameter values with respect to the posterior distribu-
tion. To quantify the posterior uncertainty, we employ the
Laplace approximation, which approximates the posterior
distribution as a multivariate normal with the MAP point as
its mean. The covariance matrix is then determined through
a second-order Taylor expansion of the log-posterior. Note
that we do not characterize posterior uncertainty in the time-
varying component of basal traction, which is very high-
dimensional and requires prohibitive computation to charac-
terize; however, we do characterize the posterior covariance
over its mean.

Expanding the log-posterior around the MAP point, we
have that

J (ζ )≈ J
(
ζMAP

)
+
∂J

∂ζ

(
ζ − ζMAP

)
+

1
2

(
ζ − ζMAP

)TH(
ζ − ζMAP

)
. (17)

By the definition of the MAP point, the first-order term is
zero, and we recognize this approximated log-posterior as
a normal distribution with a covariance matrix given by the
negative of the inverse of the Hessian H. Following Bui-
Thanh et al. (2013) and Isaac et al. (2015), we decompose
this Hessian into prior and likelihood parts

H= (Hdata+ I ). (18)

The Hessian of the prior (which, once again, is unit-Gaussian
and uncorrelated) is the identity matrix, while Hdata is the
Hessian of L with respect to ζ . Direct computation of the
data Hessian is intractable, both because it is very large and
as such would be difficult to form – let alone invert – and also
because it would require m function evaluations to compute.
We instead approximate the inverse Hessian using a random-
ized matrix decomposition as described in Appendix F. This
provides us with a matrix root to the approximate posterior
covariance, which allows us both to inspect posterior uncer-
tainty in parameters and to draw random samples from the
distribution that we use to generate Monte Carlo forecasts in
the next section.

5 Probabilistic forecasting

In the previous sections we develop a method for quantifying
an approximate set of parameter values that produces model
predictions that are consistent with observations, i.e., the pos-
terior distribution over parameters corresponding to the sec-
ond term inside the integrand in Eq. (3). We now turn to us-
ing these parameter values to make predictions about future
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change at Sít’ Tlein. Our approach to this problem is simple
and does not require a complex numerical treatment; we take
the classic ensemble modeling approach of drawing as large
a set of parameters as computationally feasible and run the
model forward in time with those parameters. The resulting
approximation to the predictive distribution is

P(1(t)|d,F)≈
1
ns

ns∑
j=1

P(1(t)|mj ,fj )

mj ∼ P(m|d)

fj ∼ P(f |F). (19)

While such Monte Carlo methods converge slowly, they are
easy to implement and are embarrassingly parallel.

We integrate the model from a steady state at 1915–2344.
Each model has a different resulting geometry and pattern
of flow, and from these we evaluate quantities of interest at
different times. We qualitatively divide the predictive distri-
bution into a hindcast (from 1915–2023) and forecast (from
2023 onward). The distribution over parameters for the hind-
cast is unambiguous, but forecasting requires some assump-
tions about future changes to time-evolving parameters.

– Steady geometry. We assume that the bed elevation re-
mains constant (although we relax this assumption for
an ancillary experiment).

– Periodic surges. We assume that the 36-year inferred
record of time variation in the basal traction repeats in a
periodic fashion. While we do not believe that this ap-
proach will necessarily predict the precise location, tim-
ing, and magnitude of future surges, we believe that it
will capture their statistical features and their resulting
influence on geometric change. As is evident from the
repeating nature of Sít’ Tlein’s looped moraines (Mus-
kett et al., 2008), we do not expect surge dynamics to
depart qualitatively from the pattern observed before, at
least in the short term, although this assumption is likely
to become less valid if Sít’ Tlein undergoes a major ge-
ometric change. Nonetheless, this choice is also gov-
erned by necessity, since we currently lack a validated
and general mechanistic model for sliding generally and
one that can predict surging specifically. To test whether
this mechanism plays a substantial role in ice evolution,
we also conduct an experiment in which we make pro-
jections with traction fixed to the inferred mean.

– Projected and frozen mass balance. We explore two sce-
narios for future evolution of the surface mass balance.
Recalling that we parameterize the surface mass balance
for different elevations as a linear function of time since
1915, in our first scenario we linearly extrapolate these
trends into the future, which would be roughly com-
mensurate with a linear extrapolation of mean air tem-
perature over the last 4 decades. Based on the CMIP6

ensemble (Lee et al., 2021), this is in rough correspon-
dence to the SSP3-7.0 scenario, which represents a high,
but plausible, potential for warming until around 2100
and is somewhat higher than SSP5-8.5 at 2300. As a
second scenario, we consider an end-member case in
which we freeze the surface mass balance field at 2023
and hold it constant into the future, which corresponds
to an immediate cessation of warming.

– Calving. One final consideration that we need to ad-
dress is calving. While contemporary Sít’ Tlein does
not undergo much mass loss due to calving, it does have
small calving fronts on the margins of two proglacial
lakes, and at least one of those lakes is already receiv-
ing tidal inputs of marine saltwater (Thompson et al.,
2021). We therefore expect that if the glacier under-
goes additional retreat, it could develop a broad marine-
or lake-terminating calving front, as is the case for its
nearby neighbors in Disenchantment Bay, Icy Bay, and
the Bering Glacier. Because we cannot yet observe calv-
ing here, we cannot infer the values of parameters gov-
erning a forward calving model. While marginalization
over a calving velocity prior is possible, here we simply
examine two end-member scenarios to bracket possible
future behavior. In the first, we assume that calving does
not occur; this is not to say that ice does not float – we do
allow floating tongues to form. This is perhaps not un-
realistic for lake-terminating glaciers, which in coastal
Alaska have been observed to develop sizable floating
tongues (Truffer and Motyka, 2016). In the second sce-
nario, we adopt a calving-on-flotation criterion and as-
sociate with floating ice a calving velocity of 1 km a−1,
which roughly corresponds to the observed retreat rate
at Columbia Glacier.

We perform ensemble experiments using combinations of
each calving and climate evolution assumption stated above,
for a total of four experiments. In each of these four exper-
iments, we assume both steady geometry and periodic surg-
ing.

6 Results

In this section we describe both the posterior distribution
over data-informed model parameters alongside the predic-
tive distributions over both the hindcast and forecast periods
generated by sampling from the posterior and running the ice
dynamics model from 1915 until 2344. An analysis of model
performance against unseen data is given in Appendix G.

6.1 Bed geometry

We begin with an analysis of the inferred bed elevation. Fig-
ure 2c shows the most probable bed elevation. Much of this
map reflects direct observations of the bed taken via radar
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Figure 4. Profile of ice geometry corresponding to the red line in Fig. 2 at 2013, 2073, and 2173. Solid cyan and blue lines are surface
elevations corresponding to individual ensemble members for climate assumptions in which surface mass balance is frozen at 2023 values
or extrapolated into the future, respectively. Dotted cyan and blue lines are the corresponding surface mass balance curves. The dashed red
line shows the 2013 ice surface for reference. The black line indicates the most probable bed elevation, with the gray envelope showing 2
standard deviations. The vertical dash-dotted line shows the approximate location at which the Sít’ Tlein piedmont lobe begins.

sounding; however, features that were not imaged by radar,
particularly in the accumulation area at the northern end
of the map, are also captured. Most salient of these is the
presence of a subglacial mountain range (Transect A-A’ in
Fig. 2c) that continues trending southeast from the flanks of
Mt. Logan, which divides the principal accumulation area for
the Seward Lobe into two separate regions. The surface ex-
pression of this feature as visible on a digital elevation model
is subtle; however, on the ground this feature is conspicuous
and associated with a large crevasse field and an increase in
ice surface gradient. Interestingly, the uncertainty in bed el-

evation over this region (shown in Fig. 2d) is relatively low,
indicating that the surface observations of velocity and espe-
cially surface elevation strongly constrain the bed in this re-
gion. In contrast, the basins to the northeast and southwest of
this ridge, while fast-flowing, have relatively homogeneous
topography and low gradients, which leads to greater uncer-
tainty. Another region that exhibits high uncertainty in eleva-
tion are the areas very near the margin of Sít’ Tlein’s pied-
mont lobe. This uncertainty is the result of the lack of dynam-
ics in this region; without significant flow, the observations of
velocity (which are nearly zero) and geometry (which is un-
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informative in low-slope regions) provide little information,
and the posterior variance is nearly the same as that of the
prior. While there are few bed measurements within the fast-
flowing trunk of Seward Glacier as it flows through the gap
in the St. Elias range, the posterior uncertainty there is simi-
lar to that in regions constrained by direct bed observations,
indicating that ice dynamics provides a strong constraint.

It is also instructive to observe the geometry in cross-
section. Figure 4a shows the inferred bed elevation along the
red profile indicated in Fig. 2c. We also see here the pattern
of relatively high bed uncertainty in the accumulation zone,
with low uncertainty in areas with fast flow or direct mea-
surements. This figure also shows the resulting surface ge-
ometry for 50 random samples drawn from the posterior dis-
tribution and integrated through time, evaluated at the year
2013. We see a strong agreement between random surface
samples and the observed surface elevation, especially rel-
ative to the vertical scale of the system, in which all simu-
lations are atop one another at this scale. The surface mass
balance curves associated with each of these profiles show
considerable variability, primarily due to annual noise that
cannot be reduced by temporally limited observations and
the influence of which has little direct influence on annual
surface elevation or velocity changes. Nonetheless, we infer a
mean contemporary surface mass balance at sea level, which
was not part of the observational dataset, to be approximately
4 m a−1.

6.2 Elevation change

Zooming in on the surface and plotting the modeled and ob-
served surface elevations relative to 2013 for years in which
observations exist (Fig. 5), we find that the predicted surface
elevation matches observations in both absolute magnitude
and in trend. However, there is still some spread in the distri-
bution due to assumed uncertainties in the surface elevation
observations. Figure 6 shows the spatial distribution of the
model’s most probable predicted elevation change relative
to 2013 alongside sparse observations. We find good agree-
ment between the broad spatial patterns, but the match is
imperfect, particularly in later years over the piedmont lobe
in which the data indicate a drawdown that is presumably
the result of a surge that we have not adequately captured,
alongside a perhaps too-simple surface mass balance param-
eterization. Of particular scientific interest, it is evident from
observations that the ablation zone is thinning much more
quickly than is the accumulation zone, and the spatiotempo-
ral variability in the inferred surface mass balance – and the
resulting modeled thinning – reflects this pattern as well. The
misfit between the model and observations is shown in Fig. 7.
We generally find that the MAP surface approximates obser-
vations to within 20 m over smooth, ice-covered regions.

6.3 Traction and velocity

Figure 8a shows the inferred mean basal traction field. re-
gions of fast flow exhibit low traction, with relatively low
posterior variance (Fig. 8b) in regions well constrained by
velocity observations. As is to be expected, steep or ice-free
areas without velocity measurements exhibit a high posterior
variance.

More interesting than the traction fields themselves –
which mostly alias unknown physical processes – is the re-
sulting velocity field, the temporal mean of which is shown
in Fig. 8d alongside the mean observation. While this is an
expected result since the inference of basal traction to match
surface observations is well established, we find good con-
gruence between the modeled and observed value over areas
with fast-flowing ice. This fit is once again not perfect, par-
ticularly in steep regions (where the model predicts relatively
fast flow that corresponds to what would likely be avalanche
transport in the real world) and in slow regions of the lobe,
where faster flow than is identified in the observations is nec-
essary to maintain contemporary geometries. This latter ef-
fect could be attributed to two (not mutually exclusive) possi-
bilities. First, the flow rates in the slow parts of the lobe may
simply be below ITS_LIVE detection thresholds and so are
spuriously assigned a zero velocity. Alternatively, it may be
the case that some parts of the piedmont lobe are replenished
by velocity configurations that do not exist in the 36-year ob-
servational record. Sít’ Tlein is a surge-type glacier, so it is
reasonable to imagine that some parts of the lobe were not re-
cipients of upstream ice flux during this time period, yet the
model must route ice to these areas to ensure that they are
not modeled as ice-free. This in turn could be exacerbated by
errors – particularly those induced by model inadequacy – in
the modeled surface mass balance field.

While the primary long-term dynamics of Sít’ Tlein are
likely controlled by time-averaged velocity, we also explic-
itly model a time-varying traction so as to match the evident
surges in the observational record. Fig. 9 shows the time se-
ries of velocity magnitude averaged over the three profiles
shown in Fig. 8c. In Sít’ Tlein’s fast-flowing trunk, we re-
cover the time series of velocity with high fidelity. Because
the posterior uncertainty in traction is low there, and also be-
cause we do not capture the posterior variance over the time-
varying component of the traction, the predicted variance in
velocity is also low. The moderately fast-accumulation area
exhibits similar properties. Again, we find that areas near the
ice margin generally have flow speeds that are somewhat too
fast, for reasons described previously. A complete spatially
and temporally distributed comparison of predicted versus
modeled velocity anomalies is shown in Figs. S1–5.

6.4 Forecasted change

Figure 10 shows the evolution of ice thickness from 1915–
2023. At the beginning of this hindcast period, we see Sít’
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Figure 5. Observed (dashed) and MAP-predicted (solid) surface elevations relative to the 2013 COP30 DEM for a selection of years plotted
along the red line shown in Fig. 2. Envelopes represent the range of elevations for these computed for 50 random samples from the posterior
distribution.

Tlein in a relatively extended configuration, with an oceanic
interface where the ice extended past the top of the contem-
porary foreland. While we did not use historic observations
of early 20th-century ice extent as a constraint, the model’s
inferred configuration in 1915 is in good qualitative agree-
ment with maps from this time period (Russell, 1893; Tarr
and Martin, 1914). In 2023, the ice extent and geometry
match the present configuration by design. Figures 11 and 12
show the ice extent and thickness of the piedmont lobe in
2073 and 2173 under each combination of assumed calving
and assumed future mass balance. Fifty years from present,
we forecast with high probability that Sít’ Tlein’s lobe will
disengage from the foreland and will terminate in a lake or
marine embayment of increasing size. This modeled config-
uration is qualitatively similar to the contemporary state of
neighboring Bering Glacier, which may serve as a valuable
analog (Lingle et al., 1993). The qualitative differences be-
tween scenarios are minimal, although the presence of calv-
ing and a warmer climate both lead to slightly increased re-
treat. With respect to the latter, while the surface mass bal-
ance rate at high elevations differs by less than 0.1 m a−1

(5 % of contemporary value), the difference in surface mass
balance at sea level is approximately 2 m a−1 (40 % of con-
temporary), yet the integrated effect of this difference over
50 years (a difference of around 50 m of total ablation at sea
level, with smaller effects at higher locations) remains mod-
est relative to the ice thickness. The differences in scenarios
at 150 years from present are more dramatic; under linearly
projected warming, Sít’ Tlein’s piedmont lobe will likely
have mostly disintegrated, which is exacerbated by calving.
Under a frozen climate, the piedmont lobe persists, albeit
with a volume reduction of between 80 % and 90 %, depend-
ing on calving dynamics. At this time the surface mass bal-
ance at sea level is projected to be around 10 m a−1, which
is present twice. In the event that current forelands degrade
in the absence of active glacier sedimentation, it could be the
case that Seward Glacier will terminate in a shallow marine
embayment, not dissimilar to neighboring Hubbard Glacier.
However, the Sít’ Tlein complex’s geometry is not conducive
to further retreat up its tributary fjords, which have beds that
are likely above sea level, a contrast to Hubbard Glacier.
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Figure 6. Modeled (left) and observed (right) surface elevations rel-
ative to 2013 for selected years.

Figure 4b and c show forecasted geometry along-profile
along the red curve in Fig. 10b under both linearly extrapo-
lated and steady-at-2023 climate assumptions. As expected,
the frozen climate exhibits less retreat, particularly at 2173
(also see Figs. 11 and 12). However, the qualitative descrip-
tion in the previous paragraph applies to both cases; even if
warming does not increase beyond present values, Sít’ Tlein
will likely undergo a disintegration of the piedmont lobe by
2173, changing from a mostly terrestrial terminus to a dom-
inantly lacustrine or marine one. Over the 50-year scale, we
expect modest surface lowering in the accumulation area un-
der any scenario. However, 150 years from present under
continuing warming, we see nearly double the surface thin-
ning compared to the frozen experiment. In both cases the
magnitude of changes in the accumulation area are smaller
and less certain than those in the ablation zone. In summary,
mass loss over the piedmont is largely already committed due
to warming that occurred prior to 2023, whereas potential
changes in the accumulation zone are still largely dependent
on the degree to which climate changes in the future.

Finally, Fig. 13 provides the distribution of volume change
for each experiment as a function of time. The influence of
calving is small for the linearly extrapolated climate; the sur-

Figure 7. Predicted surface minus observed surface for all years for
which data are available. The color scale saturates at 20 m.

face mass balance forcing is so strong that calving plays only
a transient role in determining the mass evolution of the sys-
tem. For the frozen climate experiment, scenarios including
calving produce greater mass loss on average. However, such
simulations are also more uncertain, as calving interacts non-
linearly with different random bed topographies. For all sce-
narios, the mass loss 50 years from present is similar, with
a fixed climate (and marginalized over calving assumption)
producing a mass loss with a 95 % credible interval of 323–
444 km3 and a projected climate producing 383–505 km3.
Because much of this ice is already below sea level, this
translates into somewhat less than 1 mm of sea level equiva-
lent. In 150 years from present, the frozen and projected cli-
mates produce 546–728 and 740–900 km3, respectively. In
300 years from present the variability is much greater, and
the range of ice loss over the fixed climate scenarios is 600–
820 and 920–1150 km3 for projected climate. In all scenar-
ios, this corresponds at least to a disintegration of the pied-
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Figure 8. Mean (a) and standard deviation (b) of the basal traction
field. Observed (c) and modeled (d) speed averaged over the years
1985–2019. Included in (c) are also transects over which velocity is
averaged and displayed as a function of time in Fig. 9.

mont lobe and perhaps further mass loss in the erstwhile ac-
cumulation area.

7 Discussion

7.1 The influence of surging

A conspicuous feature of Sít’ Tlein is its surge cycle, which
generates its characteristic looped moraines. The prominent
geomorphological influence of these surges might suggest
that such dynamics play a critical role in determining glacier
shape and long-term dynamics. Indeed, such a hypothesis
leads us to formulate a modeling framework that could cap-
ture the surge cycle. However, it was also not clear a priori
whether surges influence glacier response to warming.

To evaluate this question, we performed a simple ancil-
lary experiment in which – keeping all other variables fixed –
we repeated the present climate with a calving ensemble but
with β(x, t) fixed to its inferred temporal mean. We chose to
maintain calving because its nonlinear interaction with ve-

Figure 9. Time series of average speed computed over the equiva-
lently colored cross-sections in Fig. 8c. Points indicate ITS_LIVE
annual velocity mosaics with assumed 2σ errors, while the contin-
uous lines are associated model evaluations.

locity might serve to magnify the effect of surging, and we
chose to use the present-day climate experiment because the
relative importance of ice dynamics relative to the climate
signal is higher. The resulting mean extents in 2073 and 2173
are overlain in Figs. 11 and 12, and the volume is shown
in Fig. 13. In short, we find that the time-varying traction
contributes little to Sít’ Tlein’s long-term dynamics. This is
perhaps not surprising given that the continuity equation in-
tegrates the flux divergence through time just as it does the
climate; in this context, surging appears as noise relative to
the mean velocity, and this noise tends to average out over
glaciologically relevant length scales.

7.2 The influence of basal sedimentation and alternate
hypotheses for surface elevation change

Another similarly conspicuous feature of Sít’ Tlein is its lack
of mass loss through calving due to the presence of a large
sedimentary morainal bank of varying composition (Thomp-
son et al., 2024). As such, it is reasonable to imagine sedi-
mentation playing a role in potential stabilization of the Sít’
Tlein lobe as it undergoes tidewater retreat. To test this hy-
pothesis, we perform a supplementary experiment in which
we modify the basal topography such that the elevation of
the bed at any location where it is both below sea level and
not in contact with the ice base (in other words the ice has
retreated away from the location) is raised either to the ice
base or to sea level. Thus this experiment represents a maxi-
mal sedimentary end-member where there is an infinite sup-
ply of sediment that is deposited instantly wherever possible.
We apply this experiment to the present-climate case without
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Figure 10. Predicted ice extent at the beginning and end of the hindcast period. Red lines indicate terminus positions of individual ensemble
members. The dashed white line indicates the ice extent circa 2023.

Figure 11. Predicted ice extent at 2073 under different assumptions of calving and projected surface mass balance. Red lines indicate
terminus positions of individual ensemble members. The dashed white line indicates the ice extent circa 2023. The orange line corresponds
to an ancillary experiment with fixed traction.

calving, which would lead to the greatest potential influence
for proglacial sedimentation (Brinkerhoff et al., 2017).

The resulting glacier evolution is effectively identical to
the experiment without sediment dynamics. This lack of sen-
sitivity is again a result of the basic conclusion that the con-
temporary lobe extent is incompatible with current climate;
the retreat is driven by a surface mass imbalance, and as such
modification of losses to calving have little influence.

Despite the small modeled influence of sedimentation un-
der this simplified case, Sít’ Tlein’s current morphology

is undoubtedly controlled by the presence of its terminal
moraine. Indeed, in the absence of a protective moraine, it
is unlikely that Sít’ Tlein could have advanced to its current
position, and thus it is possible also that Sít’ Tlein under-
goes tidewater glacier periodicity (Meier and Post, 1987), in
which slow sediment-driven advances are punctuated by fast
retreats from extended positions. This leads to an alternative
or augmenting hypothesis for contemporary surface lower-
ing at Sít’ Tlein, namely that the observed surface elevation
change signal may be a result not of ice thinning, but rather
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Figure 12. Predicted ice extent at 2173 under different assumptions of calving and projected surface mass balance. Red lines indicate
terminus positions of individual ensemble members. The dashed white line indicates the ice extent circa 2023. The orange line corresponds
to an ancillary experiment with fixed traction.

Figure 13. Volume evolution trajectories of Sít’ Tlein from 1985 until 2344, with cyan and red corresponding to experiments with calving off
or on, respectively, in which the surface mass balance is frozen at inferred 2023 values, and with green and blue corresponding to experiments
with calving off or on, respectively, in which the surface mass balance is linearly extrapolated into the future. The dotted line corresponds to
an ancillary experiment with fixed traction. Shaded regions correspond to 95 % credible intervals for each scenario.

of fluvial erosion of underlying sedimentary structures. In-
deed, observations from nearby Taku Glacier show that con-
temporary surface lowering rates over the lobe are not incon-
sistent with observations of the erosion of subglacial sedi-
ment (Motyka et al., 2006). Furthermore, Sít’ Tlein has ex-
hibited asynchronous retreat relative to its neighbors such as
Hubbard Glacier, which retreated and began re-advancing in
the early 19th century, and the collective terminus of Tsaa,
Guyot, Yahtse, and Tyndall glaciers, which filled contempo-
rary Icy Bay and began a retreat towards its present configu-
ration around the turn of the 20th century. Such asynchronic-
ity implies that climate forcing alone may not be the sole
factor in determining its retreat. On the other hand, observed
surface elevation change is relatively consistent across the

Sít’ Tlein lobe, including over subglacial canyons that are
unlikely to be of sedimentary origin, which implies that bed
elevation changes cannot be responsible for surface lower-
ing there. Detailed exploration of tidewater glacier period-
icity in a large system such as Sít’ Tlein and its neighbors
via coupling of a realistic model of glacier evolution such
as this one to a sediment dynamics model as in Brinkerhoff
et al. (2017) remains an avenue for future work; however,
we think it likely that the contemporary configuration of St.
Elias Range glaciers broadly reflects long timescale sedimen-
tary processes driving natural variability, on top of which a
strong contemporary warming signal is superimposed.
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7.3 Landscape-scale effects

Our results imply that the continued existence of Sít’ Tlein’s
piedmont lobe is inconsistent with contemporary climate
forcing, let alone forcing subject to continued warming.
As such, this system will, over the next century, undergo
a landscape-scale transition from a terrestrially terminating
system grounded on a broad array of ice- and non-ice-cored
moraines into a lake- or ocean-terminating one, presumably
with a new calving front. The degree to which the resulting
system will resemble Bering Glacier to the west, which ter-
minates into a primarily freshwater lake, or Hubbard Glacier
to the east, which terminates into a saltwater bay, depends on
the potential degradation of the Sít’ Tlein forelands.

In either case, the local ecosystem has the potential for
substantial change. In the near term, enhanced melting and
disintegration of the piedmont lobe will lead to an increase
in freshwater flux into the Gulf of Alaska. From an oceano-
graphic perspective, such fluxes are a primary driver of
coastal circulation, while reduced salinities control along-
shore currents resulting from density gradients (Neal et al.,
2010). Such modifications to the local biogeochemistry can
also have impacts on primary productivity for phytoplank-
ton and the various species that feed on it at various trophic
levels, including salmon and marine mammals. From the per-
spective of physical habitat, the opening of a new coastal bay
will also have implications on the presence of wildlife. Pre-
sumably the disintegration of the forelands will have deleteri-
ous effects on local terrestrial ecosystems, including forests
growing upon ice-cored moraines and the wildlife popula-
tions – such as brown bears – that use them, whereas the
increased availability of ice-berg-rich waters will provide a
new habitat for marine mammals such as harbor seals (Blun-
dell et al., 2011). One major impact of piedmont lobe degra-
dation will be the conversion of the terrestrial glacierized
landscape – which is part of Wrangell–St. Elias National
Park and Preserve – into unprotected marine waters. This
could constitute the largest removal of park lands in the his-
tory of the National Park System. It is not yet clear what the
other potential impacts on human uses, including subsistence
use, will be.

7.4 Model limitations

The model ensemble presented here represents our best ef-
fort to produce a credible prediction of future change at Sít’
Tlein, including both a defensible representation of uncer-
tainties and demonstrable skill at hindcasting. However, it
still possesses limitations that should be considered when
contextualizing these results.

7.4.1 Geometry models

First, our prior distribution over the bed elevation is simplis-
tic relative to the true richness of the region’s geomorphic re-

ality. While convenient and flexible, a Gaussian process with
fixed kernel parameters cannot capture the effects of the full
range of geomorphological processes acting in this region,
especially the qualitative difference between the topography
that is currently beneath the ice (which is relatively muted
and smooth) versus the subaerial topography comprising the
St. Elias range’s dramatic aretes and peaks (Cotton et al.,
2014). In particular, our terrain model is in many places too
smooth, while in others it is too rough. Terrain models that
rely on an adaptive basis, for example using generative adver-
sarial networks trained on natural topography, might present
an alternative (Voulgaris et al., 2021). However, a fundamen-
tal challenge remains in that the effective dimensionality re-
quired to represent spatial variability increases with decreas-
ing spatial regularity, which is particularly challenging when
trying to compute posterior covariance matrices. A similar
criticism is reasonable for the basal traction, though we have
little basis for understanding the spatial correlation structure
for traction given that it is not directly observable.

Finally, our spatial discretization of the model physics is
fairly coarse, which was necessary for computational effi-
ciency. We performed some qualitative experiments to as-
sess the impact of this. In particular, we performed the time-
independent phase of the MAP estimation using a mesh with
nominal 750 m resolution. We also ran one member from
each of the ensemble experiments above with this high-
resolution mesh (using parameters inferred from the lower-
resolution version). In each case, we did not find major qual-
itative differences. However, this does not constitute a full-
convergence analysis, and the influence of higher-resolution
meshes remains a topic of future study.

7.4.2 Spatial parameterization of surface mass balance

As emphasized previously, a critical limitation is our use of
a simple parameterization of surface mass balance, which re-
flects our lack of detailed process understanding. This model
is perhaps inadequate in several ways, particularly when
taken in conjunction with our general lack of knowledge
about the spatial distribution of accumulation and melt in
the St. Elias range. First, we assume surface mass balance
to vary with elevation according to a piecewise linear func-
tion with change points defined at sea level, the ELA, the
median elevation of the principle accumulation zone, and the
highest elevation. This captures some phenomenological fea-
tures that are observed and that also sometimes show up in
other models. For instance, such a model can represent the
different relationship between surface mass balance below
and above the ELA induced by differing physical processes
of melting ice versus snow (which appear as differing degree
day factors in temperature index models; Hock and Holm-
gren, 2005). It also parameterizes the typical rarefaction of
precipitation at very high elevations. Nonetheless, despite in-
cluding the capacity for explicit spatial variation, we do not
believe that this parameterization fully captures the region’s
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dramatic orographic effects like rain shadowing, topographic
steering of precipitation, or the influences of solar aspect.
Critically, this parameterization also does not take into ac-
count the influence of debris mantling, which could have an
impact in the near-terminus region. Indeed, in some regions
near the ice terminus, sufficient material has accumulated to
support a rich plant community (including trees), and melt
has essentially stopped. In such regions, the semantic dis-
tinction between glacial ice and ice-cored moraine also be-
comes somewhat ambiguous. Regardless of such definitions,
we lack validated models both for predicting debris thickness
and for estimating its influence on melt rates.

7.4.3 Temporal parameterization of surface mass
balance

Similarly, the variation in surface mass balance in time is
parameterized solely as a linear trend (and random inter-
annual variability), which ignores potential knowledge of
local and global temperature and precipitation trends – al-
though the extrapolation of such knowledge at Sít’ Tlein
represents a challenge. Nonetheless, a better approach that
could deal with both of these simplifications might be to
use a high-resolution regional climate model (e.g., Bieniek
et al., 2016) – perhaps in conjunction with linear orographic
precipitation theory (Smith and Barstad, 2004) to accommo-
date additional topographic detail – to derive time-varying
precipitation alongside a surface energy balance model (e.g.,
Hock and Holmgren, 2005) to estimate melt. However, such
models have many parameters themselves and are not easily
amenable to integration within an automatic differentiation
framework. Combined with the paucity of observations for
the glacial system considered here, it is not clear that the re-
sulting more sophisticated model would lead to an increase in
predictive skill, and high-quality surface mass balance mod-
eling in mountains remains an active research area.

7.4.4 Ice–ocean interactions

Our model makes use of a simplified frontal ablation param-
eterization, and we explore two representative configurations
of such physics: one in which frontal ablation does not occur
and one in which it occurs at a rate similar to a previously
observed tidewater retreat. Nonetheless it is possible that this
simplified approach could miss more nuanced processes. For
example, our model does not explicitly account for the intru-
sion of warm, oceanic saltwater, which we know to be oc-
curring at Sitkagi Lagoon and not at Malaspina Lake (yet, to
our knowledge). As such, the details of potential tidewater
retreat – particularly during early stages in which the glacier
is still interacting with its terminal moraine – might not be
fully captured. Nonetheless, because the primary driver of
the surface elevation change at Sít’ Tlein is very likely to
be a profound surface mass imbalance, we believe that these
inaccuracies are unlikely to modify the longer-term conclu-

sions presented here regarding the stability of the piedmont
lobe (as is indicated in Fig. 13).

7.4.5 Models of observational uncertainty

Finally, with respect to the inference procedures described
here, we make use of simplified models of measurement
noise for all observed quantities. While we make heavy use
of normal distributions to model noise in all of our datasets, it
is very likely the case that all observations are biased in com-
plicated (and unmodeled) ways and also that the uncertainty
characteristics admit outliers. We do not have a good under-
standing of observational uncertainty for most products even
when provided. Even if we had a detailed understanding of
marginal error statistics (i.e., the observational uncertainty in
surface velocity at a single point), spatial and temporal corre-
lations in error are unreported and unknown. While we have
tried to be conservative in defining our likelihood models,
it is undoubtedly the case that we have induced additional
model error through misspecification of such likelihoods.

7.5 Methodological contribution of this paper

The current paper combines methodological advances devel-
oped over several decades of research in glaciological inverse
problems. The linchpin is an adjoint model for ice flow which
allows for the efficient computation of gradients of model
inputs with respect to outputs. Adjoint models, introduced
by MacAyeal (1993), have become a workhorse for prac-
tical ice sheet modeling, variously being used to determine
traction and/or rheological parameters (Joughin et al., 2004;
Morlighem et al., 2013; Sergienko and Hindmarsh, 2013;
Habermann et al., 2013; Petra et al., 2014; Isaac et al., 2015;
Arthern et al., 2015; Riel et al., 2021; among others).

The simultaneous inference of multiple fields, as we do
in this paper, has been explored previously; for example,
Gudmundsson and Raymond (2008) simultaneously inferred
traction and bed geometry from surface expressions using a
transfer function approach. Petra et al. (2012) inverted for
both the rheological prefactor and traction coefficient, while
Gudmundsson et al. (2019) performed a similar inversion
across the whole of Antarctica. Ranganathan et al. (2021)
invert for the traction coefficient and rheological prefactor
over ice streams in Antarctica, developing a specialized reg-
ularization approach in hopes of finding a unique partitioning
between parameters. Here, our parameters represent not only
the basal traction and topography, but surface mass balance
as well. This simultaneous inference is essential to producing
a model that is free of spurious transient dynamics – after all,
the configuration of a real glacier represents the long-term in-
tegration of ice motion, thickness, and surface mass balance
at once, and we have endeavored to reproduce numerically
that same physical self-consistency. Of particular relevance,
Perego et al. (2014) inverted simultaneously for traction and
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bed geometry so as to match velocities and also produce an
ice sheet initial condition free from spurious transients.

One way that our work departs from most adjoint-based
data assimilation methods is its integration of temporal ob-
servations in an explicitly time-dependent fashion. Gold-
berg and Heimbach (2013), in perhaps the first application
of a time-dependent adjoint to inverse problems in glaciol-
ogy, simultaneously inferred traction and bed geometry for
a synthetic case from time-dependent observations of sur-
face velocity and elevation; these methods were extended to
state-consistent modeling of several glaciers in West Antarc-
tica (Goldberg et al., 2015). Similarly, Larour et al. (2014)
combined a spin-up process with the inference of time-
dependent surface mass balance and traction fields condi-
tioned on surface elevation and surface velocity observations
for the Northeast Greenland Ice Stream, also employing a
time-dependent adjoint. Choi et al. (2023) recently applied a
time-dependent adjoint to a time series of velocity observa-
tions in Greenland. We follow in the footsteps of these works
but apply their ideas to a broader set of parameters and obser-
vations. A novel aspect of our model with respect to imple-
mentation is its integration within the general purpose auto-
matic differentiation tool Pytorch (Paszke et al., 2019), which
allows for seamless access to complex linear algebra opera-
tions and differentiation through time. We have used this tool
for the particular purpose of determining a set of optimal
model parameters via gradient-based optimization through
time (and their associated uncertainty quantification); how-
ever, it is quite general and could be used to infer other pa-
rameters or establish sensitivities of different quantities of
interest with little modification, particularly because the in-
tegration with Pytorch makes it straightforward to compute
gradients of other non-misfit functions with respect to model
inputs (for example, the sensitivity of future grounding line
flux with respect to initial conditions).

Allowing multiple parameters to vary at once also leads to
ambiguity in their inferred values – is a particular observed
surface velocity the result of thick ice moving mostly via
deformation or thin ice that is sliding faster? As such, we
view at least an approximation of posterior covariance be-
tween potentially equifinal parameters as essential. To this
end, building on previous works we utilize a well-known
method – the Laplace approximation – to derive the uncer-
tainty over inferred parameters. In particular, Isaac et al.
(2015) adapted the methods of Bui-Thanh et al. (2013) to
the ice sheet context, developing the methodology for the
low-rank Laplace approximation to the posterior covariance
that we employ in this work. Such methods have been ex-
tended a few times since; Koziol et al. (2021) used a simi-
lar approach to perform a snapshot inversion with estimated
posterior covariance of traction for a synthetic case but also
propagated the resulting uncertainty forward through time.
Recinos et al. (2023) extended these methods to three West
Antarctic ice streams. Here we apply this framework to a di-
verse set of spatiotemporal observations and in conjunction

with a higher-order time-dependent model with both chang-
ing velocity and geometry, a first in both cases. More broadly
the methodological advances here provide a framework for
the creation of ice flow model predictions that accommodate
a broad range of observational constraints (and that produce
hindcasts that agree with time-dependent observations) while
remaining robust to the absence of unknown inputs and quan-
tifying the resulting induced uncertainties.

The inclusion of time-dependent inference and uncertainty
quantification is not without cost, and both of these factors
lead to significantly increased computational expense rela-
tive to a time-static and deterministic inversion. With respect
to the former, every evaluation of the likelihood elicits eval-
uation of the model over the observational period (and per-
haps beyond, as in our case). This cannot be reduced because
the model must produce a prediction at every time for which
data exist. However, it may be possible to accelerate models
via emulation, particularly of the stress balance solver as in
Jouvet et al. (2022), although it remains to be seen whether
such models are sufficiently robust to handle the diversity of
flow conditions in systems such as Sít’ Tlein. With respect
to uncertainty quantification, both the randomized Laplace
approximation and simple Monte Carlo forecasting that we
employ here are embarrassingly parallel, a key advantage for
computational tractability, particularly given the widespread
availability of compute cores in the cloud. We emphasize,
however, that such expense is unavoidable for credible mod-
eling of data-limited systems such as Sít’ Tlein.

Nonetheless, the amount of computation needed to ac-
curately characterize inferred parameters of our predicted
quantities of interest scales with the complexity of the prob-
lem, and application of these methods to larger systems like
Greenland or Antarctica may be much more expensive. How-
ever, we have been careful – particularly in our construction
of parameter representations – to take advantage of approx-
imate sparsity and low-rankness, and we believe that our
approach is still reasonable at the ice sheet scale; for refer-
ence, the complete computational pipeline for this work took
around 20 h using one eight-core i9-13900HX processor. The
bulk of this time (60 %) was spent computing Hessian vec-
tor products, while 20 % was spent computing the projection
ensemble. As mentioned previously, both of these tasks are
trivial to parallelize and would see a linear speedup with the
addition of computing power.

8 Conclusions

Sít’ Tlein, the world’s largest piedmont glacier, will with
high probability undergo a transformation over the next cen-
tury as its low-elevation piedmont lobe disintegrates and
transitions into a lake or marine terminating glacier. This
conclusion is supported by data-constrained probabilistic ice
flow modeling. We used spatiotemporal observations of ve-
locity, radar observations of the glacier bed, a diverse time
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series of surface elevations, and sparse observations of spe-
cific surface mass balance to inform a joint probability dis-
tribution over the critical parameters of the SpecEIS ice
flow model. Because the system is high-dimensional and the
model expensive to evaluate, we apply a number of exist-
ing and novel tools to render the problem tractable: the inte-
gration of the time-dependent model with the general pur-
pose automatic differentiation tool Pytorch, careful finite-
dimensional representations of model parameters, and low-
rank Laplace approximation to the posterior covariance. Our
model exhibits very good agreement with observations over
the historic record. We then sampled from parameter distri-
butions to drive a model ensemble characterizing Sít’ Tlein’s
future evolution over 4 centuries. While there is spread in
total mass loss (between 600 and 1300 gt at 300 years from
present), we find the vulnerability of Sít’ Tlein’s piedmont
lobe to be robust to variations in forcing, parameters, and
model structure.

Appendix A: Discretization

SpecEIS discretizes in space using a mixed finite-element
method. Finite-element methods represent spatial functions
as a linear combination of fixed basis functions that are de-
fined on a mesh, which we take here to be a triangular tes-
sellation of the model domain (Fig. 1b); each triangle in the
mesh is called a cell, and in SpecEIS we represent the thick-
ness field as a weighted sum of cell-wise constants (e.g., as
a function in the zero-order discontinuous Galerkin space,
hereafter abbreviated DG0; Boffi et al., 2013).

H(x, t)≈
∑
k∈|T |

φk(x)Hk(t), (A1)

where T is the set of mesh cells,

φk(x)=

{
1 if x ∈ Tk
0 else,

(A2)

and Hk(t) is the time-varying thickness coefficient, which
here can reasonably be interpreted as the average thickness
across mesh cell k. The velocity is similarly represented as a
weighted sum of basis functions

u(x,z, t)≈
∑
k∈|E|

3∑
l=1

ψkl

[
U kl +

U ′kl

n+ 1
((n+ 2)ςn+1

− 1)
]
, (A3)

where E is the set of mesh edges, ψkl(x) is the lth Mardal–
Tai–Winther basis function (of which there are three per
edge; Mardal et al., 2002) associated with the kth edge,
and U kl and U ′kl are coefficients associated with the depth-
averaged and depth-varying components of the ice velocity
(the monolayer higher-order approximation; Dias dos Santos
et al., 2022). In contrast to the thickness discretization, these
velocity coefficients represent the magnitude of the velocity

field normal and tangential to cell edges. This combination of
finite elements generalizes the so-called Arakawa staggered
C-grid (Arakawa and Lamb, 1977) that is frequently used for
shallow-ice models to correctly account for the longitudinal
stresses of the Blatter–Pattyn approximation and is known to
maintain thickness positivity and uphold mass conservation
while being free from spurious numerical wiggles. SpecEIS
discretizes in time using the backward Euler method applied
simultaneously to both equations and as such is fully implicit.
The resulting nonlinear system of equations is solved using a
damped Picard iteration. A detailed description of this model,
as well as a full suite of experiments quantifying and verify-
ing model performance, is found in Brinkerhoff (2023).

Internal to the model, we maintain a finite-element repre-
sentation of the parameters m. H0(x) is represented identi-
cally to H(x, t), and we refer to its coefficients as H0. The
surface mass balance and bed elevation are also represented
using the DG0 space, with coefficients ȧ and B, respectively.
In contrast, the basal traction uses a first-order continuous
Galerkin (piecewise linear, CG1) basis with coefficients β
associated with a nodal basis.

We discretize the contributing area of Sít’ Tlein at a rel-
atively coarse 1.5 km horizontal resolution. The resulting
mesh has 3898 cells, 1997 nodes, and 5824 edges. While it
is possible in this framework to adapt mesh element sizes
with respect to a desired criterion (commonly velocity mag-
nitudes, strain rate magnitudes, or grounding line proximity),
we expect both the velocity and geometry to change signif-
icantly over the course of our simulations, so we opt for a
nearly uniform element size distribution under the assump-
tion that this mesh is of sufficient resolution to capture the
glacier’s essential features.

Appendix B: Gradients via the adjoint method

The adjoint method aims to efficiently compute the gradi-
ent of a cost function L(V ,m) with respect to parameters
m= [H0,B,β,a], where V = [H,U,U ′] is the vector of
state variables. We begin by writing a new constrained cost
function

J (m)= L[V ;m] +A[λ,V ;m], (B1)

where A[λ,V ;m] is the constraint, and λ= [λ1,λ2] repre-
sents Lagrange multipliers. The constraint here is the semi-
discretized weak form of the coupled forward model (Eqs. 5
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and 7)

A[λ,V ;m] =
∫
�

λ1

(
Hk+1−Hk

1t
− ȧk+1

)
dA

+

∫
∂�

[λ1nx] · ûH ds,

+

∫
0out

(λ1nx ·uk+1Hk+1) ds

−

∫
�T

∇x,zλ2 :
(
2ηk+1Hk+1ε̇1,k+1

)
dV

−

∫
�T

ρig
[
∇x · (λ2Hk+1)

]
Sk+1 dV

−

∫
�T

[
β2
t+1N

p

t+1‖u‖
m−1
k+1 (λ2 ·uk+1)

]
ς=1

dA

−

∫
0W

α(u ·nx)(λ2 ·nx) ds

−

∫
∂�

ρig
[
nx ·λ2Sk+1

]
{Hk+1} dA, (B2)

where we have used integration by parts to substitute natural
boundary conditions and in which jump, average, and nu-
merical flux terms appear due to the discontinuous Galerkin
discretization of the thickness field. A full description of the
above manipulations can be found in Brinkerhoff (2023).

We seek to compute the gradient with respect to the param-
eters by eliminating the state variables and Lagrange multi-
pliers. Taking the first variation (i.e., the Gateaux derivative)
of Eq. (B1) with respect to the (basis expansion of the) La-
grange multiplier in the direction of a test function and set-
ting the result to zero recovers the weak form of the forward
model, which can be solved via finite elements as usual. Tak-
ing the first variation with respect to the (basis expansion of
the) model state variables in the direction of a test function
and equating the result with zero yields a weak form of the
adjoint equation, with the right-hand side given by ∂L

∂V
, the

derivative of the cost with respect to the forward model’s
output and precisely the quantity delivered by reverse mode
automatic differentiation.

The adjoint equation is structurally similar to the forward
equation, with both an adjoint transport equation (which
propagates misfit information opposite in time and spatial
direction relative to the forward model) and an adjoint stress
balance equation (which has a more complex viscosity term).
The adjoint equations are linear in λ and can be solved with
finite elements using similar methods to the forward model.

With forward and adjoint systems solved, the gradient
terms can be readily computed by taking the Gateaux deriva-
tive of Eq. (B1) with respect to m in the direction of suit-

able test functions. The resulting expressions will generally
depend on both λ and V and can be evaluated to find the de-
sired derivatives in terms of the basis coefficients ∂L

∂m
, which

can be used directly or – as in our case – propagated further
back in the computational graph to compute gradients of the
cost with respect to the arguments of the functions used to
form m. We do not calculate the analytical representation of
either the adjoint equation or gradient expressions by hand,
instead relying on the symbolic differentiation capabilities of
Firedrake.

Appendix C: Representations of model parameters

C1 Bed elevation

We parameterize the probability distribution over the bed el-
evation as a Gaussian process (GP; Williams and Rasmussen,
2006, from whom we also adopt notation) in space, which as-
sumes that the function value at any two coordinates x and x′

are jointly normal, with a covariance given by a kernel func-
tion k(x,x′) and mean function m(x). Throughout this and
the following sections, we use this notation frequently for
different parameters and do not differentiate between them
for concision of presentation. We hope that which parameter
we refer to is clear from context. Evaluated at a finite set of
spatial points X ∈ Rn×2 (for example, the finite set of obser-
vation locations or the quadrature points of a finite-element
mesh), we can describe the distribution over this function
with a normal distribution

P(B(X))=N (µ,K), (C1)

where K ∈ Rn×n is the covariance matrix Kij = k(Xi,Xj ),
and µ=m(X) ∈ Rn is the mean vector. While unrealisti-
cally simplistic for representing the extreme and glacierized
topography of the St. Elias range, we nonetheless use the
Matern family of covariance functions. The behavior of the
distribution is governed by a length scale, amplitude scale,
and differentiability index. At Sít’ Tlein, based on maximum
marginal likelihood estimation (Tober et al., 2023) we take
the characteristic length scale l as 3 km, the differentiability
ν = 3

2 , and the amplitude to be 1000 m. We model the distri-
bution over the mean function as a polynomial

m(x)= h(x)T α, (C2)

where h is a set of orthogonalized degree-two polynomial
basis functions, and α is a coefficient vector. Taken together
this model assumes that the topography is well approximated
by a quadratic polynomial with local variability given by a
GP.

C1.1 Low-rank decomposition

K is often low-rank, which is to say that some of its columns
contain redundant information (for example when points in
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X are close together relative to the characteristic length scale
of the GP). This property motivates a reparameterization of
P(B) as

B(X)= Lw+Hα, w ∼N (0,I ), α ∈ R6, (C3)

where H= h(X) ∈ Rn×6 is a Vandermonde matrix, and L ∈
Rn×r is an approximate root of the spatial covariance matrix
such that LLT ≈K. Note that L need not be square; if K is
indeed low-rank, then r may be much less than n. Under this
reparameterization the degrees of freedom that characterize
function behavior (and that need to be inferred in the inverse
context) are the coefficients w ∈ Rr , which are a priori unit-
normal. Such a decomposition decouples the number of de-
grees of freedom necessary to represent the function (i.e., the
length ofw) from the number of locations at which this func-
tion is to be evaluated, a desirable property. B(X) under this
choice of representation can be described as a combination
of finite basis functions, and we refer to the matrix L as the
basis for B(X).

C1.2 Structured kernel interpolation

We now turn to the construction of L(X). Many matrix de-
compositions produce an approximate matrix root; however,
some choices are either intractable to compute, not low-rank,
or have undesirable numerical properties. The classic choice
is a (truncated) eigendecomposition; however, this has two
issues. First, it requires the explicit construction, storage, and
manipulation of the matrix K. While randomized methods
can circumvent some of the problematic scaling associated
with computing the decomposition, circumventing the stor-
age requirement is challenging. Second, despite this decom-
position optimally capturing the low-rank structure of the
target covariance matrix, it does not retain the characteris-
tics of the underlying matrix; even though K may be nearly
sparse in the sense that the covariance between distant points
is numerically zero, the associated basis has columns that are
non-sparse. All things equal, we prefer a decomposition that
retains the approximate sparsity of the original matrix.

Here we describe an approach that addresses both of these
issues. In order to circumvent the requirement that we form
the matrix K explicitly, we employ structured kernel interpo-
lation (SKI; Wilson and Nickisch, 2015), which posits that
the covariance matrix can be approximated as

K≈W(Kx
⊗Ky)WT , (C4)

where Kx and Ky are 1D covariance matrices defined over
regular grids in each map-plane dimension independently
and W an interpolation matrix. The Kronecker product of the
two 1D covariance matrices is then a 2D covariance matrix
evaluated on regular grid. In this work, we take each of these
1D grids to extend a few length scales past the boundaries of
our mesh in each dimension with a spacing of l/10. The Kro-
necker product is not any easier to store explicitly; however,

matrix–vector products can be efficiently computed by only
forming each 1D covariance matrix independently.

This grid-evaluated covariance is not useful on its own; it
provides correlations between function values at the wrong
locations. To map this structured covariance to arbitrary lo-
cationsX we employ an interpolation matrix W (in this work
we use inverse distance weighting). W is highly sparse, with
inverse distance weighting leading to only four non-zero en-
tries per row (only the four grid points bounding the desired
evaluation location contribute to the interpolation). As such
the product of Eq. (C4) with an arbitrary vector can be eval-
uated inexpensively. The error induced by this interpolation
is typically small (Wilson and Nickisch, 2015). Again, while
computing the left side of Eq. (C4) is usually intractable, the
computation and storage of each factor on the right side are
straightforward, and their properties allow for the efficient
computation of matrix–vector products.

We can also efficiently produce a matrix root. Again in-
voking the algebraic properties of the Kronecker product, we
write

K≈ LLT

L=W(Lx ⊗Ly), (C5)

where LxLxT ≈Kx and similarly for Ly . Concretely,
rather than decompose the matrix directly, we perform
a component-wise decomposition of separable Kronecker-
factored covariance matrices (which are very small) and then
sparsely interpolate these to evaluation points.

As a final step, we must select a low-rank decomposition
for the coordinate-wise covariance matrices. We use the Nys-
tröm approximation applied to a matrix root to compute the
low-rank factor

Lx =Kx
[:,p]V

x3x−
1
2 VxT ), (C6)

where p represents the indices of pivot columns (here se-
lected rigorously through pivoted QR decomposition) and
where Vx and 3x are the eigenvectors and values of Kx

[p,p],
respectively. The resulting factor’s columns are basis vec-
tors that resemble scaled entries in the covariance matrix
– including the same sparsity patter – but where redun-
dant columns have been eliminated. The resulting procedure
yields a representation with 4192 degrees of freedom.

C1.3 Conditioning on bed observations

Next we turn to constraining bed elevations from direct
observations. NASA’s Operation IceBridge collected over
4000 km of 2.5/5 MHz radar soundings between 2013 and
2023, from which the glacier base can be interpreted with
a nominal error of approximately 25 m based on integrated
analysis at sounding crossover points. A detailed analysis of
this product can be found in Tober et al. (2023). We com-
bine these radar soundings – which are relevant for subglacial
locations – with the Copernicus GLO-30 digital elevation
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model (European Space Agency, 2019) masked to ice-free
regions to produce a combined dataset that provides obser-
vations of the bedrock elevation at varying degrees of spatial
density across our study area. We assume that these observa-
tions are independent and normally distributed about the true
bedrock elevation with an observational standard deviation
σobs = 25 m, or

P(B̂|B(Xobs))=N (B(Xobs),σ
2
obsI), (C7)

where Xobs ∈ Rnobs×2 are the observation coordinates. We
specify the coefficients of the mean function α by the stan-
dard least squares solution

α =
(

HT
obsHobs

)−1
HT

obsB̂, (C8)

where Hobs = h(Xobs). Because both this likelihood and the
prior distribution are normally distributed, and because the
map from GP coefficients w to B is linear, the posterior dis-
tribution has an analytical solution given by

P(w|B̂,α)=N (w,6)

6 =
(

I+LTobsσ
−2
obsLobs

)−1
(C9)

w =6LTobsσ
−2
obs

(
B̂ −Hobsα

)
, (C10)

where Lobs is given by the basis evaluated at observations
points.

With this posterior distribution over the basis coefficients
w, we decompose the posterior covariance matrix, leading to
the linear model

B(X)= L(Cz+w)+Hα, z∼N (0,I ) (C11)

with C a root of 6.

C1.4 Mapping to the model grid

In order to use the bedrock elevation predictions of the Gaus-
sian process described above with the flow model, we need
to map the modal basis coefficients zB to the finite-element
basis coefficients B, which are associated with the piecewise
constant DG0 function space basis. One obvious way would
be to evaluate Eq. (C11) at mesh centroids. However, we ob-
serve that the DG0 basis has less regularity than our GP rep-
resentation, and as such it is better to view the coefficients B
as cell averages. As such, we define Xq ∈ Rd×2 as the loca-
tions of Gauss–Legendre quadrature points for all mesh cells
(here we use a quadrature rule of order 2). Next, we define
the highly sparse matrix M ∈ R|C|×d such that the rows of
M correspond to individual DG0 elements (of which there
are |C|). The columns of this matrix contain the associated
quadrature weights normalized by the cell area. The result-
ing map from basis function coefficients z to finite-element
coefficients B is

B =M
[
Lq(Cz+w)+Hqα

]
. (C12)

C2 Basal traction

Next we develop a similar representation for the basal trac-
tion field. This representation possesses many similarities to
that of the previous section; we use the same low-rank Gaus-
sian process as rendered tractable via structured kernel inter-
polation. However the traction is also a function of time, so
we model it as a spatiotemporal Gaussian process evaluated
at discrete points in space X and time T ∈ Rm. The resulting
β(X,T ) ∈ Rn×m is a random matrix with entries normally
distributed as

P(vecβ(X,T ))=N (µ,Kt ⊗Kx), (C13)

where Kt ∈ Rm×m is a covariance matrix in the time dimen-
sion given by a covariance function, and vec is the vector-
ization operator (e.g., Magnus and Neudecker, 2019), which
stacks the columns of a matrix into a vector. Here we take
the mean function to be a learnable constant. Note that in
writing the spatiotemporal covariance as a Kronecker prod-
uct of temporal and spatial parts, we have made the common
assumption of kernel separability, i.e., that variability in the
space and time dimensions are a priori independent.

Following Sect. C1, we reparameterize β(X,T ) in terms
of a finite basis. Using the properties of the Kronecker prod-
uct, we can write

Kt ⊗Kx = (LtLTt )⊗ (LxLTx )

= (Lt ⊗Lx)(LTt ⊗LTx ), (C14)

where Lt ∈ Rm×rt and Lx ∈ Rn×rx are low-rank factors of
their corresponding covariance matrices. This immediately
leads to the whitened linear model

vecβ(X,T )= (Lt ⊗Lx)z+µ
z∼N (0,I ), (C15)

with z ∈Rmt mx , i.e., a block vector with each length mx
block containing a temporal snapshot of the spatially varying
traction field. We can evaluate this efficiently without form-
ing the Kronecker product of covariance matrices as

β(X,T )= Lx mat(zβ)LTt , (C16)

where mat is the inverse of the vec operator.
We construct Lx as described in the previous section,

here using a Matern covariance function with a characteristic
length scale of 3 km (where we assume that traction varies at
the same length scale as the topography), characteristic am-
plitude of unity, and differentiability index of 3/2. We con-
struct Lt similarly, but with a squared exponential covariance
and a correlation scale of half a year. Because the temporal
covariance matrix is one-dimensional, it is small, and there is
no need for structured kernel interpolation; we simply com-
pute it as Lt = U3

1
2UT , where U and 3 are, respectively,

the eigenvectors and eigenvalues of Kt .
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As in Sect. C1, we must also map to finite-element co-
efficients. However, because SpecEIS defines traction using
a CG1 finite-element basis (which linearly interpolates be-
tween mesh nodes), we simply evaluate Eq. (C16) at the lo-
cations of mesh nodes,

β(T )= β(Xnode,T ). (C17)

This parameterization has 9443 degrees of freedom per year.

C3 Surface mass balance

We seek to follow the same general recipe in parameterizing
the specific mass balance as above, but this is complicated
because specific mass balance ȧ(x,S(x), t) is primarily a
function of elevation and time, with map-plane variability
due to a variety of complex effects such as rain shadowing
and insolation. Rather than parameterize a full 4D GP, we
simplify the problem by assuming that the horizontally vary-
ing component of the mass balance is static in time, while the
elevation component varies

ȧ(X,S(X),T )= ȧx(X)+ ȧz(S(X),T ). (C18)

We model the first term as a zero-mean Gaussian process
with a squared exponential covariance function with length
scale 25 km and amplitude of 0.3 m a1. We decompose as be-
fore into a low-rank factor Lx ∈ Rn×rx , which leads to the
finite-dimensional model

ȧx(X)= Lxwx, wx ∼N (0,I ). (C19)

We define the second term – which again describes the de-
pendence on elevation and time – as

ȧz(S(X),T )= Lz[c1wz+ c2 mat(wt )LTt ]. (C20)

Here Lz ∈ Rn×rz is a piecewise linear “hat” function eval-
uated at S(X) (we note that we keep this elevation static
and fixed to the surface elevation values given by the GLO-
30 digital elevation model) with unit maxima defined at
specified locations (or knots in the language of splines; the
scheme here is equivalent to a spline of order 1). This implies
piecewise linear interpolation between specified elevations,
namely sea level (z= 0 m), the ELA in 2023 (z= 900 m),
the median elevation of the accumulation zone (z= 1600 m),
and the top of Mt. Logan (z= 5950 m). c1 = 10 m a−1 and
c2 = 1 m a−2 are characteristic scales of variability in surface
mass balance rate and trend, respectively.

We assume that the surface mass balance at each eleva-
tion changes as a linear function of time plus seasonal noise,
which is to say that Lt ∈ Rn×(2+rt ) is a scaled degree 1 Van-
dermonde matrix augmented with a low-rank representation
of a temporal Gaussian process with a timescale of half a
year. As such, in this work we do not explicitly parameterize
specific surface mass balance as a function of external cli-
mate forcing but rather attempt to infer it from observations

in tandem with the model’s other parameters. This simpli-
fication reflects a strong inductive bias but is motivated by
an exploratory analysis in which we attempted to parame-
terize surface mass balance as a function of temperature and
precipitation extracted from a variety of reanalysis products,
including MERRA-2, ERA-5, and 20th Century Reanalysis
V3, as well as direct observations from a weather station in
nearby Yakutat, AK. All such products exhibit substantial
disagreement with one another over our study area and typ-
ically do not extend over a sufficient time period to account
for the entire historical modeling period from 1915–2023.
Additionally, these modeling products are of insufficient res-
olution to account for the presence of the extreme topogra-
phy characteristic of the St. Elias mountains – a well-known
challenge (Bieniek et al., 2016). Taken together, we find that
the compounding errors associated with using such products
overwhelm their utility compared to the simple parameter-
izations used here. The resulting model has 37 degrees of
freedom.

C3.1 Conditioning on surface mass balance
observations

We make use of a small observational dataset of specific sur-
face mass balance. In May 2023 we collected four snow cores
at three locations in the accumulation area of Seward Glacier
using a Kovacs drill to depths of approximately 7.5 m, rep-
resenting snow accumulation for the winter of 2022/2023
and total specific mass balance for 2021/2022 (Fig. 3a).
For the 2022/2023 accumulation season, we measured 4.5 m
of snowfall at an average density of 450 kg m−3. For the
2021/2022 snowpack, we measured a total snow thickness
of 2.9 m at an average density of 490 km m−3, which corre-
sponds to approximately 1.55 m a−1 of ice equivalent. These
observations are in rough agreement with observations from
Sharp (1951), who estimated annual specific balance in ice
equivalent of between 0.8 and 1.9 m a−1 between 1945 and
1949 (approximately 12 km to the east at a similar elevation),
and those collected by Marcus and Ragle (1970), who mea-
sured 2 m a−1 of ice equivalent accumulation (collected prior
to the ablation season) in 1965 (approximately 2 km to the
northeast and at a similar elevation). In order to place these
observations in a broader (although still limited) spatial con-
text, we correlated these measurements with aerial radar (Li
et al., 2019) measurements of snow accumulation collected
at the end of spring in both 2018 and 2021. To do this, we
applied a constant offset to the snow radar thickness mea-
surements (separately by year) so as to match the 1.55 m a−1

core observation from the 2021/2022 season (which repre-
sents net surface mass balance) at the point in the snow radar
observations that is closest to the location of the core. We
interpret the resulting product as representing both accumu-
lation and ablation.

We infer the approximate position of the equilibrium line
altitude from Landsat-8 images taken in September of 2023,
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which provides an implicit observation for locations with an
annual surface mass balance of zero; however, there is un-
certainty in this assessment. As a final constraint, we utilize
a core taken from near the summit of Mount Logan and de-
scribed in Moore et al. (2002), which shows an approximate
and relatively stable high-elevation annual mass balance rate
of 40 cm a−1 (with a small increasing trend). While we have
some limited data on ablation rates at various locations on
the Sít’ Tlein lobe, we do not explicitly use these for model
calibration, instead retaining them for validation of inferred
melt rates as described below.

We also introduce a pseudo-observation corresponding to
the glaciological steady-state condition∫
�2013

ȧ d�= 0, (C21)

where �2013 is the spatial extent of ice circa 2013. We
only apply this pseudo-observation to the non-time-varying
component of the surface mass balance parameterization.
This has the effect of producing a more (numerically) well-
behaved prior that postulates that the true time-varying mass
balance field is the result of a perturbation to one that would
have yielded the 2013 ice extent but does not actually restrict
the space of admissible solutions.

We model each of these observations similarly, with

P
(
â|ȧ (Xobs,S (Xobs) ,Tobs)

)
=N (ȧ (Xobs,S (Xobs) ,Tobs) ,6obs) , (C22)

with 6obs a diagonal matrix populated with the observation
variance for the modality associated with that observation.
We assume (stated here in terms of standard deviation) this
uncertainty to be 0.25 m a−1 for both the snow core/radar
and ELA observations (an approximate scale of interannual
variability based on Sharp, 1951) and 0.05 m a−1 for the ice
core, which exhibits much less temporal variability based on
Moore et al. (2002).

Defining Lobs =
[
1⊗Lx,obs 1⊗ c1Lz,obs Lt ⊗ c2Lz,obs

]
,

with 1 a column vector of ones with length m, we have that

vecȧ(Xobs,S(Xobs),Tobs)= Lobsω, (C23)

where

ω =

wxwz
wt

 . (C24)

The above evaluates all locations and times at which an ob-
servation exists, but observations may not necessarily exist
at all times. As such, we also define an observation operator
O, which is a sparse matrix with ones corresponding to the
location and time where there actually exists an observation
in â.

The resulting solution to the least squares problem is given
by

P(ω|â)=N (ω,6)

6 =
[
I +F T6−1

obsF
]−1

ω =6F T6−1
obsâ, (C25)

with F =O L, and where we have assumed an a priori mean
of zero. It is straightforward to then compute a matrix root
CCT =6 such that the observation-constrained distribution
over the mass balance field is given by

vecȧ(X,S(X),T )= L(Cz+ω)
z∼N (0,I ). (C26)

The surface mass balance in SpecEIS is represented in the
DG0 basis, so mapping to the finite-element basis coeffi-
cients a is performed identically to Eq. (C12).

Appendix D: Likelihood model for surface elevation

We assume that a surface observation Ŝij at location xi and
time tj is distributed as

P(Ŝit |S(xi, t))=N (S(xi, t),σ 2I), (D1)

and S(xi, t) is the true (or predicted) surface elevation at the
same locations and time. We use for the observational stan-
dard deviation σS = 25 m, which is inflated relative to the
nominal accuracy posted for each product in order to account
for unmodeled effects such as seasonal variability, firn den-
sification, and inaccurate error characterization.
S(x, t) is produced by the finite-element model, which ex-

presses the surface elevation based on the piecewise constant
DG0 basis. As before, this is problematic because the coeffi-
cients represent, in a physical sense, cell averages rather than
the actual surface. To partially circumvent this and to pro-
duce a smooth version of the surface, we model the surface
elevation using the same (unconstrained) basis as that used
for the bed and solve a small least squares problem to get
basis coefficients (here taken to be the same as those used
to model the bed) that produce a best fit at a given time t
corresponding to observation j

P (zt |St )=N (zt ,6t )

6t = (MLq)T σ−2
model(MLq + I)−1

zt =6t (MLB)T σ−2
model (St −hB(X)αB) , (D2)

where σmodel is the assumed model error (here taken to be
1 m), and St = B +Ht . The full likelihood is then given by

P
(
Ŝt |St

)
=

∫
P
(
Ŝt |zt

)
P (zt |St ) dzt

=N
(
St ,6

′
t

)
, (D3)
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where

Sj = L(x)zt +hB(x)αB

6′t = σ 2I︸︷︷︸
Observational err.

+L(x)6tL(x)T︸ ︷︷ ︸
Projection err.

(D4)

and where we have used L(xi) to represent the topography
basis evaluated at the set of observation points x. The covari-
ance matrix now represents two sources of error: first, the
irreducible observational uncertainty, and second, the am-
biguity in model-based surface elevation predictions due to
the fact that the ice dynamics model’s representation of the
ice geometry is a spatial average. This also handles cases
in which basis function coefficients to be inferred lie outside
the finite-element mesh and thus cannot be informed by the
model. While 6′t is no longer diagonal, the second term is
low-rank, so the evaluation of its inverse (which is necessary
for evaluation the likelihood) can be accomplished efficiently
using an application of the matrix inversion lemma.

Appendix E: Computation of the maximum a posteriori
point

With a well-defined maximization problem in hand along
with the gradients of log-posterior, we can employ a gradient-
based optimization scheme to find the most probable values
for zB , zβ , and zȧ . The problem is unconstrained (in the
sense of bounds on the variables) but (empirically) exhibits
strong correlations between parameter values and is high-
dimensional. As such, we employ the classic quasi-Newton
algorithm L_BFGS with line search (Zhu et al., 1997). We
use a relatively short memory of 20 iterations, which ensures
that parameter updates that occur in the first few iterations –
which can be large and in directions inconsistent with later
iterations – do not impede later fine-tuning. We find that the
algorithm so configured finds an optimum in a few hundred
iterations (noting that each of these iterations is relatively ex-
pensive, involving upwards of 120 forward and adjoint solu-
tions per likelihood evaluation).

E1 Steady-state problem for initial guess and
estimation of model bias

Here we outline one additional trick that we use to improve
our results. Prior to the solution of the full, time-dependent
minimization problem, we solve a reduced inference problem
in which we find the maximum a posteriori (MAP) solution
to Eq. (16) but for only a single (with respect to time) sur-
face elevation (the GLO-30 DEM) and a single (with respect
to time) velocity field (the ITS_LIVE average mosaic over
the 34-year data record). We adopt steady-state dynamics in
which we only use time averages of the parameters and run
the flow model to a steady state for comparison with obser-
vations. The resulting solution serves two purposes; first, it
provides an initial guess for the full time-dependent problem

that is already very close to optimal, particularly for zB . Sec-
ond, because the steady components of the parameters are
much fewer than the full time-varying fields (and because
this solution is insensitive to the initial surface elevation S0),
the system is less likely to overfit the observations. As such
we interpret the resulting residuals between model predic-
tions and observations as an irreducible bias resulting from
model misspecification. In subsequent calculations, we sub-
tract this bias from model predictions, which limits the poten-
tial for other parameters associated with time-varying fields
from compensating for this bias in non-physical ways. As an
example, foregoing this correction can lead to a tendency for
the optimizer to make the contemporary precipitation fields
too small in an effort to match the zero velocity in ice-free
areas evident in ITS_LIVE. Zero velocity is, of course, not
physical; the annual accumulation in these areas is positive,
and the balance of fluxes requires the annual-average velocity
in such places to be quite high. However, because the primary
mechanism for mass transport is avalanching down to bare
earth, ITS_LIVE cannot account for such processes (whereas
the model does account for mass transport from these re-
gions). By adopting the bias correction approach described
above, we largely circumvent this issue.

Appendix F: Randomized low-rank approximation of
the posterior covariance

The posterior covariance matrix emerging from the Laplace
approximation

6post = (H+ I)−1 (F1)

is intractable to compute. To circumvent this, we follow Bui-
Thanh et al. (2013) and approximate it with a low-rank eigen-
value decomposition

H≈ VDVT , (F2)

with V ∈Rm×r the eigenvectors and D ∈Rr×r a diagonal
matrix containing the leading r eigenvalues of the Hessian.

We use a variant of the randomized methods described in
Halko et al. (2011) to form the approximate decomposition.
The randomized method proceeds as follows. First, given a
low-rank and positive semi-definite matrix, we can write the
following approximation

H≈QQTHQQT , (F3)

where Q ∈Rm×r is an orthonormal basis for the range of H.
In an effort to build a randomized subspace for this range,
we compute the product Y =H�, where � is a random ma-
trix with entries drawn from the standard normal distribution.
Even without being able to directly compute the Hessian, we
can compute Hessian vector products (HVPs) using the clas-
sic finite-difference approximation

Hv ≈
∇ζL

(
ζMAP+ εv

)
−∇ζL

(
ζMAP

)
ε

, (F4)
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where ε is a small constant, and v is an arbitrary vector. This
HVP is not exact (because finite differences are not exact, nor
is our forward solver), which leads to a variation relative to
standard randomized methods for computing eigendecompo-
sitions. With the sample matrix Y in hand, we can compute
the standard QR decomposition

Y=QR (F5)

to produce an approximate orthonormal basis for the range
of H. We then define the factor

B=QTHQ. (F6)

Left- and right-multiplying by �TQ and QT�, respectively,
we have that

�TQBQT�=�TQQTHQQT�. (F7)

Using the identity QQTHQQT
≈H, we have

B= (�TQ)†�TH�(QT�)†, (F8)

which is a square matrix in Rr×r , which can be easily ma-
nipulated. This immediately yields the eigendecomposition

H≈ V3V T , (F9)

where V=QU, and U and3 are the eigenvectors and eigen-
values of B.

In principle, B should be symmetric and positive definite,
but because the matrix–vector products H� are not exact,
this will not necessarily be true. As such, instead of using B
directly in Eq. (F9), we first symmetrize using

B′ =
B+BT

2
(F10)

and then project B′ to the space of positive semi-definite
matrices by ignoring its negative eigenvalues and associated
eigenvectors. This projection is optimal with respect to the
Frobenius norm (Tropp et al., 2017).

With a low-rank approximation to the data Hessian, we
can form an approximation to the covariance matrix for ζ as

6post = I−VDVT , (F11)

where D= 3
3+1 , and we have used the matrix inversion

lemma. For this approximation to be highly accurate, we re-
quire that 3� 1. Nonetheless, even if this condition is not
met, the resulting covariance will strictly overestimate the
posterior variance, since it is formulated as the subtraction of
a positive semi-definite matrix – which in some sense rep-
resents the data gain – from the prior. This matrix is large,
so we never form it directly. Rather, we are interested in
two downstream tasks; first, for the purposes of visualizing
the posterior uncertainty in the inferred bed, traction, and
mass balance, we are interested in the marginal variance for

a model parameter at some spatiotemporal point, which can
be computed as, e.g.,

var[B(x)] =
∑
j

[
L(x)2j −

(
L(x)jV

√
D
)2

j

]
, (F12)

where L(x) is the appropriate prior basis computed at x as
described in Sect. C11 and elsewhere. This is computation-
ally tractable to evaluate, as we never need to form the full
matrix to evaluate its diagonal. Second, we are also inter-
ested in drawing samples from the posterior distribution for
the purposes of evaluating downstream sensitivity. Sampling
for a multivariate normal requires a matrix root; fortunately,
the particular form of 6post allows for a remarkably conve-
nient computation of a root GGT

=6post as

G= I+VPVT , (F13)

where P= 1
√
3+1
− 1.

Appendix G: Comparison of model predictions against
unseen observations

In an effort to understand the validity of the bed and surface
mass balance fields inferred by our model, we compare them
in a few ways to observations.

G1 Inferred bed versus held-out data

As a first experiment, we assess our model performance in re-
covering the observed bed elevation when those observations
are excluded from the analysis. To do this, we repeat the anal-
ysis described in Sect. 4 de novo but eliminate radar-derived
bed observations over the whole domain in a checkerboard
pattern with a block size of 10 km (we keep the bed con-
straints derived from digital elevation models in unglaciated
areas). We then extract the resulting bed elevation prediction
and marginal standard deviation over the profiles shown in
Fig. G1 and plot these elevations (the restricted model) rel-
ative to those inferred when using the complete dataset (the
full model; Fig. G2). Additionally, we plot any data point
that falls within 1 km of the profile. We find that in the ac-
cumulation zone, the restricted model does not deviate much
from the full model. This is because the IceBridge observa-
tions are highly limited in the accumulation area anyways,
so the modeled bed is mostly the result of mass conservation
anyways. Nonetheless in a few locations, namely in profiles
a and c, the restricted model recovers the observed bed even
when it is not provided as a constraint.

G2 Inferred bed versus a new dataset

During the same field campaign in which we collected the
surface mass balance cores described in Fig. 3, we also sur-
veyed a small number of profiles using a ground-based radar
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Figure G1. Map of posterior standard deviation of the bed elevation
when bed data are held out in a “checkerboard” pattern. Overlain
red lines are transects over which we plot the inferred bed using
both the full and restricted model. Red points are radar observations
that lie within 1 km of transects. White-labeled triangles indicate the
location of ablation measurements over summer of 2021.

Figure G2. Posterior bed estimates along the profiles appearing in
Fig. G1. The mean (solid line) and 3σ credible interval (shading) for
both the full (black) and restricted (red) model are shown relative to
the full model mean. Red dots indicate radar observations that lie
within 1 km of the indicated transect. Blue shading implies that the
restricted model does not have access to observations lying within.

system, with bed returns manually picked. These observa-
tions were not included in the analysis described in the main
text; indeed we did not look at them until after the analysis
was complete. The radar-derived bed elevations are plotted
alongside (full) model predictions in Fig. G3. We find that
in areas that the radar suggests are below 800 m deep, the

model and observations exhibit surprisingly good agreement,
with the observations falling within the model’s posterior 3σ
credible interval in most cases. However, the radar returns
also suggest the existence of an exceptionally deep V-shaped
trough (on the order of 1600 m) that the model does not cap-
ture. This disagreement is vexing and points to a physical in-
consistency in one of the datasets involved. Because SpecEIS
has been verified to conserve mass precisely, the classical
glaciological formula of area-integrated mass conservation∫
A

ȧ−
∂H

∂t
dA=

∫
s

uH ·n ds (G1)

holds, where s is the cross-section, and A is the contribut-
ing area. Examining this relation, we observe that there are a
few ways in which the model could produce a thickness that
is too low. First, the surface mass balance could be under-
estimated. While three separate field campaigns spanning 70
years (Sharp, 1951; Marcus and Ragle, 1970; and the present
work) have established approximate accumulation and net
balance rates that are consistent with the model, these ob-
servations also cannot account for potential internal accumu-
lation, which could be a source of discrepancy – although
it is difficult conceptualize a means for meltwater to refreeze
in the relatively temperate climate of coastal Alaska. Second,
the thinning rate (which the model successfully reproduces)
could be underestimated. Although we expect the laser al-
timetry from which it is derived here to be accurate, and
the time differences between measurements are long, there
are also potential confounding factors – such as changes
in firn compaction rates – that may introduce bias. Third,
the ITS_LIVE-based surface velocity observations (which,
again, SpecEIS successfully reproduces) could be overesti-
mated or might not represent the true temporal average which
is required here. Indeed, a reproduction of the inference de-
scribed in the main text with the additional radar-derived
measurements described here can reproduce said measure-
ments – at the cost of locally underestimating surface veloc-
ities relative to observations. We believe that this is the most
likely scenario and hope to perform a more detailed analysis
in future work. Finally, it is possible that the radar observa-
tions themselves are mistaken. It is notably difficult to obtain
high-quality bed returns in extreme topography due to both
clutter from off-nadir returns and the attenuation of signals
in thick, temperate ice, which is why the IceBridge dataset
contains no observations for this location to begin with.

While the disagreement described above remains a mys-
tery, it seems to be relatively localized, and we do not expect
this misfit to materially alter the conclusions of this paper,
particularly since the area undergoing the greatest change –
the piedmont lobe – is extremely well constrained.

G3 Inferred ablation rates versus partial observations

During the summer of 2021, we collected melt measurements
between 4 June and 31 August at four locations at approxi-
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Figure G3. Posterior bed estimates at the color-coded transect locations indicated in the lower right plot (above and to the northwest of the
Seward throat). Bed picks appear as colored dots. The surface elevation is given by the thin blue line. The modeled mean (solid line) and 3σ
credible interval (shading) are shown in black/gray. Dashed lines indicate modeled and observed means.

Figure G4. Modeled and observed surface mass balance rates for four locations on the Sít’ Tlein piedmont lobe indicated in Fig. G1.
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mately 300 m on the Sít’ Tlein lobe (shown in Fig. G1), cap-
turing the majority of the melt season – although these mea-
surements are likely to be an underestimate of the true melt.
The posterior distribution of model predictions is shown
alongside these observations in Fig. G4. While the model’s
predicted mass balance is quite uncertain (because we allow
for annual noise in the prediction), the magnitude of the melt
is in reasonable agreement with observations. It is worth not-
ing that we did not explicitly impose any constraints on the
surface mass balance below the ELA in this analysis; the re-
covery of rates that are reasonable with respect to observa-
tions occurs solely because such rates are required to repro-
duce the observed geometry and its rate of change.
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