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Abstract. Key to the success of spaceborne missions is un-
derstanding snowmelt in our warming climate, as this has im-
plications for nearly 2 billion people. An obstacle is that sur-
face reflectance products over snow show an erroneous hook
with decreases in the visible wavelengths, causing per-band
and broadband reflectance errors of up to 33 % and 11 %, re-
spectively. This hook is sometimes mistaken for soot or dust
but can result from three artifacts: (1) background reflectance
that is too dark, (2) an assumption of level terrain, or (3) dif-
ferences in optical constants of ice. Sensor calibration and
directional effects may also contribute. Solutions are being
implemented.

1 Introduction

Current and future hyperspectral missions, such as the Earth
Surface Mineral Dust Source Investigation (EMIT), Precur-
sore Iperspettrale della Missione Applicativa (PRISMA), or
Surface Biology and Geology (SBG), offer improved spec-
tral resolution and fidelity, yet surface reflectance products
lag sensor advances. Of the terms in the energy balance,
snowmelt is most sensitive to albedo. Because of snow’s im-
portance as a water resource, it is among the “most impor-
tant” objectives for future NASA missions, requiring mea-
surement and modeling accurately enough to close the sur-
face radiation balance to within 10 % of the absorption (Na-

tional Academies of Science, Engineering and Medicine,
2018). The prevalent erroneous hook, where (in the decreas-
ing case) the surface reflectance sharply decreases with de-
creasing visible wavelength (e.g., brighter at 600 nm than at
400 nm), compromises this most important objective. The de-
creasing hook is easily mistaken for the presence of light-
absorbing particles (LAPs) such as soot or dust. This paper
shows examples of the hook, analyzes the causes, and of-
fers solutions that are being implemented. The objective is to
document the cause of these common hooking errors so that
they can be prevented, thereby allowing scientific goals to be
met for current and future missions.

2 Examples of erroneous hooking

Standard surface reflectance products are rife with hooking
errors. Figure 1a shows modeled spectra for clean snow. Fig-
ure 1b shows modeled spectra for dirty snow, which include a
legitimate hook in the visible wavelengths. Figure 1c shows
the problematic hook, likely due to an atmospheric correc-
tion error (Sect. 3.1), in a surface reflectance retrieval from
PRISMA compared to an in situ spectrometer measurement.

Surface reflectance products also show erroneous hooking
in AVIRIS-NG (Green et al., 2023), EMIT (Green, 2022),
and Landsat 8 (Crawford et al., 2023) (Fig. 2a–c). The mea-
sured and modeled spectra in Figs. 1a–c and 2a–c are from
level and fully snow-covered areas, i.e., no vegetation within
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Figure 1. (a) Spectra for clean snow modeled with SNICAR-ADv4 (Whicker et al., 2022); (b) modeled spectra for snow with San Juan dust
(Skiles et al., 2017) of radii 1.25–2.5 µm; (c) field spectrometer measurements of snow compared to PRISMA surface reflectance (Townsend
et al., 2023).

the pixel or in adjacent pixels and an optically thick snow-
pack. For the measured spectra (Figs. 1c and 2a–c), nearby
snow observations or the field spectrometer measurements
show no visible albedo degradation, indicative of clean snow,
resulting in a 2 % (Fig. 2a), 8 % (Fig. 2b), and 11 % (Fig. 1c)
broadband albedo error. Per-band errors are up to 33 % in
the shortest wavelength, well in excess of the 10 % goal
(National Academies of Science, Engineering and Medicine,
2018). The poor fits in Fig. 2a and b show that the hooking
does not match any type of observed or modeled snow. Yet
the hooking could easily be mistaken for impurities, e.g., in
an approach where the LAP concentration is estimated from
differences between modeled clean and observed snow spec-
tra in the visible wavelengths.

Often, the hook can be diagnosed visually, without model-
ing. For example, fine-grained but dirty snow is suspicious.
This improbable, although commonly seen, combination in
surface reflectance products shows as hooking in the visible
spectrum combined with indicators of fine-grained snow at
wavelengths beyond 1000 nm (Fig. 2a, b). Likewise, a peak
close to 1.0 in any wavelength in the presence of dust or soot
is unlikely.

3 Approach

The bihemispherical spectral reflectance of snow, commonly
called spectral albedo, at a wavelength Rλ is expressed as

follows:

Rλ =
Dλ

Iλ
, (1)

where Dλ is the reflected radiation and Iλ is the combined
direct and diffuse irradiance. Non-Lambertian behavior of
snow has been known for over 70 years (Middleton and
Mungall, 1952); however, bidirectional reflectance distribu-
tion models struggle over rough surfaces, such as ablation
hollows, as the viewing geometry causes shadowing (Bair et
al., 2022). Thus, because of the unknown lighting geometry
over rough surfaces, albedo is used here to model the hook-
ing. This albedo can be adjusted for atmospheric effects to
estimate the reflectance at the Earth’s surface, with the ad-
justment involving approximations for both the numerator
and denominator in Eq. (1). Instead, a simpler approach is
taken in which the denominator can be rewritten, omitting
the λ for readability, as follows:

I (δ,µs, rb)= Idirect+ Idiffuse, (2)

where µs is the cosine of the illumination angle on a slope,
and Idirect and Idiffuse are the respective direct and diffuse ir-
radiance that depend on atmospheric properties δ that include
aerosol, water vapor concentration, optical thickness, target
altitude, air temperature, terrain configuration, and many oth-
ers. Additionally, Idiffuse depends on the spectral reflectance
rb of the areas adjacent to the target, caused by atmospheric
scattering of reflected radiation. The numerator in Eq. (1)
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Figure 2. Erroneous hooking spectra from flat, level, and fully snow-covered areas for EMIT (a), AVIRIS-NG (b), and Landsat 8 OLI (c).
For EMIT and AVIRIS-NG, the colored lines show modeled snow fit to measured grain sizes, 245 µm (a) and 125 µm (b), with modeled
San Juan dust from 0 to 1000 ppmw (parts per million by weight). For Landsat 8 OLI (c), the blue line shows measurements from a field
spectrometer.

contains all of the terms of the denominator; the terms for
the target direct and diffuse reflectance, Rdirect and Rdiffuse;
and snow properties γ (grain radius and LAP concentration):

D(γ,µs,δ,rb)= Rdirect× Idirect+Rdiffuse× Idiffuse. (3)

3.1 Hook caused by atmospheric correction algorithm

Widely used atmospheric radiative transfer codes – e.g.,
MODTRAN, 6S, SMARTS, and libRadtran – allow for a va-
riety of background reflectance rb options, from constant val-
ues to user-defined spectra to spectral libraries, or even spec-
tral mixtures. Concentrating on the background reflectance,
the spectral reflectance in a snow-covered region can be mod-
eled as follows:

R =
D

(
rb, snow|γ,µs,δ

)
I
(
rb, snow|µs,δ

) , (4)

where the numerator is calculated with Eq. (3), the denom-
inator is the sum of the direct and diffuse irradiances, and
rb, snow is the spectral background reflectance in the area
around the snow-covered pixel of interest. Parameterizations
differ widely, but for operational products, instead of using
the rb, snow spectra, which varies with wavelength (Fig. 1),
a constant rb value similar to Earth’s planetary albedo, 0.25–
0.30, is typically used. The decreasing hook error can be sim-
ulated by recognizing that the background reflectance rb is
too dark in snow-covered terrain. To model the decreasing

hook with Eq. (4), an rb, dark = 0.25 is used in the numera-
tor, while rb, snow is used in the denominator, signifying that
the downwelling radiation is correctly modeled, whereas the
upwelling radiation is incorrectly modeled:

Rupwelling error =
D

(
rb, dark|γ,µs,δ

)
I
(
rb, snow|µs,δ

) . (5)

To simulate an increasing hook, the error is inverted, with the
downwelling radiation incorrectly modeled but the upwelling
radiation correctly modeled:

Rdownwelling error =
D

(
rb, snow|γ,µs,δ

)
I
(
rb, dark|µs,δ

) . (6)

3.2 Hook caused by assuming flat topography

Likewise, because diffuse irradiance is weighted toward the
blue end of the solar spectrum, errors in the modeled spec-
tral shape will occur when topography is assumed to be flat.
This type of error can be modeled assuming a slope that faces
either toward or away from the Sun, where the numerator
in Eq. (1) is modeled correctly as the slope angle changes,
but the denominator uses direct irradiance for a level surface.
With µ0, the illumination cosine on a level surface, the ap-
parent terrain reflectance is as follows:

Rterrain =

Rdirect (γ,µs)× Idirect (δ,µs)
+Rdiffuse (γ )× Idiffuse (δ,rb)

Idirect (µ0, rb)+ Idiffuse (δ,rb)
. (7)
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Figure 3. Hooking in the modeled albedo of 200 µm snow, µ0 = 0.6. (a) Upwelling and downwelling atmospheric correction errors: up-
welling and downwelling errors are for clean snow; dirty snow includes 100 ppmw of San Juan dust of radius 1.25–2.5 µm. (b) Spectral
shape changes due to lack of terrain correction, with downwelling direct/diffuse radiation errors when not adjusted for slope angles 0 (no
error) to 20°. (c) Differences due to optical properties of ice.

For modest slopes, less than about 30°, facing open terrain,
the terrain view factor can be ignored (Dozier, 2022, Eq. 2).

3.3 Hook caused by the refractive index of ice at short
wavelengths

A third (minor and unrelated to the first two) cause of the
hooking depends on values of the imaginary part of the com-
plex refractive index of ice, i.e., the absorption coefficient.
Ice is exceptionally transparent in the wavelengths below the
500 nm range, and there is disagreement in the literature with
respect to its optical properties in this range (Warren, 1984;
Warren and Brandt, 2008; Picard et al., 2016). Specifically,
In any case, the hooking effects due to variations in the ab-
sorption coefficient are small compared to the atmospheric
and terrain correction errors.

4 Discussion and conclusion

Figure 3 summarizes hooking causes, which were modeled
using SNICAR-ADv4, SMARTS version 2.9.9, and Eqs. (4)–
(7). The same results come from Mie theory and two-stream
radiative transfer (Bair et al., 2021) instead of SNICAR.

In summary, the hooking in clean and fully covered snow
pixels is caused by (1) assumed background reflectance that
is too dark, (2) lack of terrain correction, and (3) differ-
ences in optical constants. Picard et al. (2020) and Bohn et

al. (2024) have previously documented the errors in mea-
suring snow reflectance over sloping terrain, but the other
two causes of hooking in the spectra have not previously
been documented. We also suggest that this erroneous hook-
ing could occur over brighter exposed glacier ice, e.g., clean
névé. Two additional causes of hooking that are suspected
(but have not been confirmed through modeling) are sensor
calibration and directional effects. For sensor calibration, the
blue wavelength range is often challenging to calibrate, be-
cause laboratory sources are much dimmer in those wave-
lengths relative to the solar profile (Helmlinger et al., 2016).
Any out-of-band response will result in excessive blue signal
during calibration, causing an inaccurate estimate of calibra-
tion coefficients and a resulting overestimate of instrument
sensitivity. Snow, because of its brightness, often lies near
the upper end of airborne and spaceborne spectrometers’ dy-
namic range, making it susceptible to saturation and associ-
ated nonlinear effects. This error, which could cause increas-
ing or decreasing hooking, is particularly difficult to model
given often unpublished calibration data.

Directional effects for angular new snow may cause an in-
creasing hook, seen in measured spectra (e.g., Painter and
Dozier, 2004), especially in the forward direction (away
from the Sun), towards the limb (high viewing zenith angle),
and when the Sun is low in the sky (high solar zenith an-
gle). However, in the region of optimal remote sensing, i.e.,
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low solar zenith and viewing angles, hooking effects from
anisotropic snow reflectance are minimal.

To address the three modeled causes, the following mea-
sures are recommended: (1) use an atmospheric correction
with an appropriate background reflectance; (2) correct for
terrain illumination angle, but be aware of error propaga-
tion in slope and aspect (Dozier et al., 2022); and (3) use
updated optical constants for ice (Picard et al., 2016) when
performing inversions to solve for snow-covered area, grain
size, and the LAP concentration. For standard surface re-
flectance products, measures 1 and 2 need to be addressed in
processing workflows or perhaps through on-demand prod-
ucts. For example, in the EMIT processing chain, appropri-
ate background assumptions are used and terrain-corrected
reflectances are now supported (Carmon et al., 2022).

Code availability. All of the code used is available on GitHub:
SPIReS is available at https://github.com/edwardbair/SPIRES/ (last
access: 13 June 2025); SNICAR-ADv4 is available at https://github.
com/chloewhicker/SNICAR-ADv4 (last access: 13 June 2025).

Data availability. PRISMA data can be accessed from http://
www.prisma-i.it/index.php/en/ (Agenzia Spaziale Italiana, 2023).
EMIT data can be accessed from https://earth.jpl.nasa.gov/emit/
data/data-portal (Green, 2022). AVIRIS-NG data can be accessed
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