
The Cryosphere, 19, 2159–2196, 2025
https://doi.org/10.5194/tc-19-2159-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article: Feature tracing in radio-echo sounding products of
terrestrial ice sheets and planetary bodies
Hameed Moqadam1,2 and Olaf Eisen1,3

1Department of Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research,
Bremerhaven, Germany
2Constructor University, Bremen, Germany
3Faculty of Geosciences, University of Bremen, Bremen, Germany

Correspondence: Hameed Moqadam (hameed.moqadam@awi.de)

Received: 3 June 2024 – Discussion started: 28 June 2024
Revised: 20 December 2024 – Accepted: 28 March 2025 – Published: 23 June 2025

Abstract. This paper aims to inform researchers and prac-
titioners in radioglaciology about current and future trends
in mapping the englacial stratigraphy of ice sheets. Radio-
echo sounding (RES) is a useful technique for measuring
the subsurface properties of ice sheets and glaciers. One of
the most important and unique outcomes is the mapping
of ice sheets’ englacial layer stratigraphy, mainly consist-
ing of isochronous reflection horizons. Mapping those is still
a labor-intensive task. This review provides an overview of
state-of-the-art (semi-)automated methods for identifying ice
surface, basal, and internal reflection horizons from radar-
grams in radioglaciology. Methods for segmenting (and de-
tecting) different regions of radargrams are also included due
to their data and methodological similarity to methods trac-
ing internal reflection horizons. We discuss a variety of meth-
ods which have been developed or applied to RES data over
the last few decades, including image processing, statisti-
cal techniques, and deep learning approaches. For each ap-
proach, we briefly summarize their procedures, challenges,
and potential applications. Despite major advances, we con-
clude that gaps remain in effectively mapping internal reflec-
tion horizons in an automated way but with deep learning
representing a potential advancement.

1 Introduction

Radio-echo sounding (RES) is a powerful technique which
has been used in radioglaciology for more than 50 years to in-
vestigate subsurface properties of polar ice sheets (Schroeder

et al., 2020). It has proven useful for determining widespread
basal topography and ice thickness on glaciers as well as
in inaccessible regions such as the Antarctic and Greenland
ice sheets. Historically, RES systems applied in glaciology
have also been referred to as ice-penetrating radar (IPR). For
ground-based applications, ground-penetrating radar (GPR)
is used as well (Bogorodsky et al., 1985). To refer to the
most general meaning, we will follow the recommendations
of Schlegel et al. (2022) for terminology and only use radar
or RES, unless more specific terms are necessary in the con-
text. RES data not only reveal information about the base of
the sheet and ice thickness, but also provide insights into its
internal structure. Such insights are obtained from the pres-
ence of englacial reflections and backscatter characteristics
in RES data, most prominently internal reflection horizons
(IRHs), also known as internal radar reflections (Schlegel
et al., 2022). These IRHs are a result of variations in the
dielectric properties of the ice, which can be attributed to
changes in density, impurity content, acidity, or crystal ori-
entation fabric (Moore and Paren, 1987; Eisen et al., 2007).

It has been shown that IRHs, caused by changes in con-
ductivity, are generally isochronous – i.e., one horizon has
the same age everywhere (Gudmandsen, 1975; Siegert, 1999;
Fujita et al., 1999; Eisen et al., 2006) – serving as indicators
for paleoglaciology (Siegert, 1999; Fahnestock et al., 2001;
Miners, 2002; Jansen et al., 2024). Englacial horizons ob-
served in RES datasets have also been utilized to investi-
gate ice dynamics, calibrate ice-flow models, estimate past
accumulation rates, and constrain layer ages from ice cores
(Siegert et al., 2004; Rippin et al., 2006; Conway et al., 1999;
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Waddington et al., 2007; Schroeder et al., 2020; Sutter et al.,
2021). Geometry of isochronal radar reflection horizons, in
conjunction with ice-flow modeling, can provide significant
perspectives into ice dynamics, basal sliding, surface accu-
mulation history, and englacial folding (Waddington et al.,
2007; Nereson and Raymond, 2001; Hindmarsh et al., 2009;
Catania and Neumann, 2010; Leysinger Vieli et al., 2011;
Lenaerts et al., 2014; Jenkins et al., 2016; Holschuh et al.,
2017; Born and Robinson, 2021; Bons et al., 2016; Sutter
et al., 2021; Jouvet et al., 2020; Jansen et al., 2016). Addi-
tionally, stratigraphic information provided by englacial lay-
ers complement ice-core analyses, improving interpretation
of climate changes recorded in ice cores by revealing flow
paths and irregularities that may affect age stratigraphy at
ice-core sites (Fahnestock et al., 2001; NEEM community
members, 2013; Parrenin, 2004). To support joint interna-
tional and collaborative exploitation of the available radar
datasets, the Scientific Committee on Antarctic Research
(SCAR) has endorsed the AntArchitecture Action Group,
specifically dedicated to cataloging IRHs across the entire
Antarctic ice sheet (Bingham et al., 2024).

One of the earliest publications on internal reflections by
Bailey et al. (1964) details the observation of a continu-
ous echo at the depth of 500 m as well as a 97 % contin-
uous basal layer after a series of measurement campaigns
in Greenland. They noted that compacted annual accumu-
lation is the cause of such echoes (reflections). Moreover,
other early works such as works of Gudmandsen (1975)
and Robin (1975) exclusively discuss RES measurements
over ice sheets and their interpretations (Paren and Robin,
1975; Clough, 1977). IRHs are traditionally identified by
manually or semi-automatically tracing individual reflections
within RES datasets, a laborious and time-consuming pro-
cess (Nereson et al., 2000; Waddington et al., 2007). It has
been shown that tracing 20 IRHs in 20 000 km of data in such
a way would take 10 operator years to complete (Sime et al.,
2011). To overcome the slowness of manual tracing, since the
1980s, some commercial software programs have been used
for semi-automated mapping of IRHs. Some other programs
have been complemented by open-source software modules
provided by the community, in addition to processing and
analyzing RES data. Some examples include software pack-
ages such as MATLAB (MathWorks, 2022); toolboxes such
as GPRlab (Xiong et al., 2024), GSSI Radan (GSSI, 2024),
ReflexW (Sandmeier, 2016), the Sensors & Software EKKO
Project (Sensors Software Inc, 2024), and Geolitix (Inc.,
2025); and open-source software packages such as the Imp-
DAR (Lilien et al., 2020) library for Python and RGPR pack-
age (Huber and Hans, 2018) for R.

The age stratigraphy obtained from the Antarctic ice sheet,
unlike the Greenland ice sheet (MacGregor et al., 2015), has
been limited to specific regions (MacGregor et al., 2015;
Siegert et al., 1998; Eisen et al., 2004; Siegert et al., 2004;
Steinhage et al., 2001; Leysinger Vieli et al., 2011; Cavitte
et al., 2016; Winter et al., 2019), resulting in an incomplete

picture of its englacial architecture. Several challenges slow
down the achievement of a continent-wide stratigraphy. The
considerable time required for tracing IRHs, limited spa-
tial coverage of available data, and a lack of integration be-
tween stratigraphic information from different RES systems
(Cavitte et al., 2016; Winter et al., 2017) are among these
challenges. However, the primary challenge remains to be
the imbalance between the number of available data and the
amount of time required with available methods to map the
stratigraphy. In terms of size, the Antarctic ice sheet sur-
passes the Greenland ice sheet more than 6-fold. While most
of the Greenland data have already been analyzed for internal
stratigraphy, there still exists a significantly larger volume of
unexplored data from Antarctica compared to that of Green-
land. In addition, there are still some areas of the Antarctic
ice sheet over which RES surveys have not been performed
(Frémand et al., 2023).

This limited advancement of methodologies for assessing
the structural configuration of the stratigraphy across large
spatial scales challenges exploration of englacial architecture
of the Antarctic ice sheet (Delf et al., 2020). To overcome
the difficulties associated with manual picking of IRHs, there
has been a growing interest in developing (semi-)automatic
methods for tracing IRHs in RES echograms (also known as
“radargrams”, as well as B-scans; Jol, 2009), in particular
from airborne operations. The motivation behind these ef-
forts is to reduce the amount of human labor required for data
analysis, particularly as radar datasets have expanded over
large spatial scales (Medley et al., 2014; MacGregor et al.,
2015; Cavitte et al., 2016; Koenig et al., 2016; Delf et al.,
2020), as well as reduce subjectivity of interpretations of
IRHs (Dossi et al., 2015). Automated horizon-picking tech-
niques have shown some potential, but they still require some
operator input and are yet to effectively map IRHs.

In the past 2 decades, there have been various research at-
tempts by several research groups at automatically tracing
ice–bed boundaries, mapping reflections, tracing firn-layer
boundaries, and segmenting regions of radargrams from both
ice sheets and planetary radargrams. Yet, a complete account
of this long-lasting endeavor which contains a comprehen-
sive overview of all the methods – and regions these methods
were applied to – has been missing.

In this review paper, we present an overview of the avail-
able methods for tracing layer boundaries and IRHs in radar-
grams. By presenting various studies and approaches, we aim
to provide insights into advancements, challenges, and future
directions. In Sect. 2, we briefly discuss the RES technol-
ogy and the terminology that is necessary for understanding
radar products. Section 3 introduces the methods that have
been employed by various research groups in a timeline of
method development for the task of stratigraphy mapping. A
comprehensive timeline of the published works with a short
summary of each publication, remarking on the more rele-
vant information of each of the publications, is discussed in
Sect. 4. Finally, we provide a discussion and a conclusion and
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outlook in Sects. 5 and 6, respectively, highlighting the need
for automatic methods to fully exploit the extensive datasets
and labor-intensive nature of manual picking and analyzing
recent trends with potential directions of future research.

2 Background

In this section, we provide the necessary concepts and in-
formation related to RES. We start with introducing radio-
glaciology and go on to describe radargrams and IRH rep-
resentations. For further details on radar physics and ap-
plications, we refer the reader to the available radar litera-
ture (Bogorodsky et al., 1985; Plewes and Hubbard, 2001b;
Dowdeswell et al., 2008; Bingham and Siegert, 2007; Pel-
likka and Rees, 2010; Woodward and Burke, 2007; Daniels,
2004).

2.1 Radioglaciology

Radioglaciology is the scientific field that employs radar (ra-
dio detection and ranging) systems to explore the cryosphere,
including both satellite and airborne as well as ground-based
systems. RES is an active remote sensing method which, un-
like satellite imagery, can give a picture of the cross sec-
tion of an ice sheet. An electromagnetic waveform is emit-
ted from a transmitter antenna, penetrates the ice, and is
reflected by changes in the complex-valued permittivity of
ice. The reflection travels back to a receiving antenna. Re-
flective properties are influenced by various factors such as
density (presence of bubbles), the orientation of ice crystals,
inhomogeneities, impurities, and the geometry of the ma-
terials. Applications range from determining ice thickness;
identifying englacial and subglacial properties, e.g., lakes;
reconstructing past ice-dynamic changes; and extrapolating
ice-core records. Related studies have employed airborne,
ground-based, or orbital RES systems on terrestrial and plan-
etary ice bodies. In the following, we will give a brief account
of RES physics and applications but refer the reader to the
available publications previously mentioned for further de-
tails.

For our objective in this review, the important information
derived from radargrams is the englacial layer architecture.
Such layer boundaries, known as IRHs, were formed at the
former ice sheet surface, then advected into the ice by addi-
tional accumulation and deformed by ice flow. At different
depths of the ice sheets, various processes can change the
complex-valued permittivity, causing IRHs. IRHs primarily
originate from density fluctuations in the upper part and vari-
ations in dielectric conductivity (e.g., from acidity; MacGre-
gor et al., 2012) in deeper regions of the ice sheet. In the mid-
dle to deepest layers of the ice sheet, changes in the crystal
orientation fabric can also result in reflections (Fujita et al.,
1999; Eisen et al., 2007).

2.2 Radar products

In radioglaciology applications, out of every single survey
line, a 2D cross-sectional profile of the ice sheet is pro-
duced. This product is called a radargram or an echogram. In
older texts, as well as some contemporary publications, sim-
ilar profiles were called Z-scope records (Schroeder et al.,
2022). A radargram depicts a full profile of the cross section
of the ice sheet as opposed to single traces. It is usually com-
posed of single transmit signals and reflections. In the case
of single-point measurements, they are stored as amplitude
displays which are also called A-scopes (also referred to as
A-scans) and are similar to panels (a) and (b) of Fig. 1. When
reflections are laterally coherent, they appear as continuous
horizons. Every pixel within the radargram corresponds to
the quantification of amplitude (or power) associated with
the radar wave that is reflected by subsurface interfaces po-
sitioned at a designated range (two-way travel time or depth)
location and a spatial coordinate within the azimuthal direc-
tion.

Figure 1 depicts different representations of a trace and a
vertical section of the same profile. Panels (a) and (b) rep-
resent an arbitrary trace with a 60 and 600 ns pulse, respec-
tively. Panels (c) and (d) show a section of a radargram with
the leftmost trace shown in panels (a) and (b), and panels
(e) and (f) show the same radargram sections composed of
differentiated traces. In most cases for older systems, where
the phase was lost because of rectification of the received
signal, studies are done using the differentiated radargrams
as they illustrate a clearer picture of the englacial architec-
ture. In this figure, the ice surface (air–ice interface), base
(ice–base interface), englacial reflection, and so-called echo-
free zone (EFZ, just above the bed) can be seen. The EFZ
in the conventional sense was affected by different factors,
e.g., system sensitivity or a lack of coherent reflections ow-
ing to disturbances possibly from ice flow near the interface
of ice and the base (Drews et al., 2009).

Individual measurements are often noisy, typically due to
the electromagnetic interference from other electronics, such
as aircraft and other components in the vicinity of the instru-
ment, as well as thermal noise. Therefore, radar traces are
usually stacked to increase the signal-to-noise ratio and ob-
tain enhanced subsurface images (Karlsson et al., 2012). In
the presented Fig. 1, each plotted trace is a stack of 10 con-
secutive traces.

2.3 Internal reflection horizons

In the radargram of Fig. 1, reflection signatures can be seen
in different regions such as close to the surface, englacially,
and subglacially. The most general term to refer to any sig-
nal in the data which is not noise is event. Such events are
illustrated in Fig. 2, which is a simplified schematic of a
radargram, where differences between ice layers and IRHs
are depicted. The ice surface at the top (blue line) and basal
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Figure 1. An example of a vertical section of a radargram and a single trace from it. The section is from a flight performed in 1999 between
Dome Fuji and Kohnen station (Steinhage et al., 2013): (a) trace (A-scope) with 60 ns pulse; (b) trace (A-scope) with 600 ns pulse; (c) vertical
section of raw radargram (Z-scope) with 60 ns pulse; (d) vertical section of raw radargram (Z-scope) with 600 ns pulses; (e) vertical section
of differentiated radargram (Z-scope) of panel (c); (f) vertical section of differentiated radargram (Z-scope) of panel (d). Panels (c), (d), (e),
and (f) show the same section.

reflection (black line) at the bottom of the ice are also shown.
The first reflection of each transmitted pulse of an airborne
survey is the reflection from the ice surface.

For the sake of facilitating analyses of radargrams, one of
the common practices is to synchronize all traces to time
zero at the air–ice interface, omitting topographical varia-
tions. This flat ice surface naturally appears in ground-based
systems; however, for airborne systems, this assigning of the
surface time as zero is a step during data processing. The
black line depicts the basal reflection. The red lines in the
radargram indicate IRHs. In an ice sheet, these represent the
interfaces between the neighboring ice layers of different di-
electric properties.

2.4 Applications of englacial stratigraphy in
glaciological research

Englacial stratigraphies deduced from RES data are increas-
ingly used to benchmark and validate ice-dynamic models
(Sutter et al., 2021; Björnsson and Pálsson, 2020; Bing-
ham et al., 2024). Several englacial features can be seen in
radargrams, which can be studied in both quantitative and
qualitative ways (Plewes and Hubbard, 2001a; Pellikka and
Rees, 2010). Quantitative studies take advantage of the am-

plitude and phase of traces and are often used to derive phys-
ical properties of ice (Plewes and Hubbard, 2001b). Quali-
tative studies, in contrast, mostly utilize stratigraphy to in-
fer the current of past flow dynamics or boundary condi-
tions, e.g., surface accumulation (Arcone et al., 2005) or
basal melting (Bogorodsky et al., 1985). Some of the many
applications of englacial stratigraphy are to study past ice
stream dynamics (Keisling et al., 2014; Winter et al., 2015;
Jansen et al., 2024; Carter et al., 2023), glacier–volcano inter-
actions (Björnsson and Einarsson, 1990), meltwater drainage
(Pitcher et al., 2020), glacier hydrology and dynamics (Eisen
et al., 2020), glacier response to climate shifts (Guðmunds-
son et al., 2009), mass balance (Kowalewski et al., 2021),
glacier evolution (Aðalgeirsdóttir et al., 2011), and volcanic
activities (Brandt et al., 2005b). RES is also used to identify
subglacial properties, such as lakes (Bowling et al., 2019),
which appear as strong and rather flat features at the bottom
of the ice, owing to the high permittivity of liquid water in
contrast with the overlaying ice.

For a variety of applications such as developing compi-
lations of bedrock topography (Lythe and Vaughan, 2001;
Frémand et al., 2023), synchronizing ice cores (Steinhage
et al., 2013; Cavitte et al., 2016), paleoglaciological studies
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(Parrenin et al., 2017), ice dynamics (Jansen et al., 2024),
mass balance derivation (Brandt et al., 2005a), and ice sheet
modeling (Sutter et al., 2021), the key is to have a mapped
englacial stratigraphy or mapped basal surface. In the next
section, we look into the most common methods that have
been used to map englacial stratigraphy.

3 Overview of applied methods

In this section, we provide a brief overview of the methods
that have been applied to tracing IRH and segmenting radar-
grams for identification of different classes or targets. The
subsections related to each method provide information on
how the respective method has been used for this task. We
present more details on implementation in the timeline of
publications in Sect. 4.

Given the versatile applications of RES across various do-
mains (as mentioned in Sect. 2.4), efforts to characterize fea-
tures within radargrams or to map reflections have proven
valuable across various fields, including contamination as-
sessment, hydrology, archaeology, geotechnical engineering,
and glaciology (Jol, 2009).

Based on a number of studies, it seems that constructing
an automated tracing method for RES encounters a signifi-
cant challenge when dealing with closely spaced layers. This
situation gives rise to numerous horizon candidates that are
nearly identical but slightly offset from each other. If the al-
gorithm mistakenly selects the wrong candidate, it may veer
into adjacent horizons, leading to inaccurate tracing (Pan-
ton, 2014). This situation is more relevant when regarding
deep IRHs. The IRHs in snow and firn radargrams have much
less compaction as well as vertical fluctuation (Winter et al.,
2019). This is the primary reason why automatically identify-
ing and differentiating deep englacial horizons is much more
challenging than detecting near-surface and basal reflections.

The methods to map the near-surface, basal, or englacial
architecture of the ice can be categorized on the basis of
a variety of criteria. One such criterion is if a method op-
erates semi-automatically or fully automatically. By semi-
automatic, we refer to methods that require manual tweak-
ing, interference, or initialization by a user. Another category
is if the proposed method does or does not include machine
learning algorithms. It is also possible to categorize meth-
ods based on the depth or specific reflection that they are
designed for. Some methods (mostly earlier ones) are only
aimed at tracing surface and basal reflections in order to es-
timate ice thickness; others look into englacial events.

The complexity of tracing englacial layers is caused by

– the limitation of vertical resolution (e.g., two IRHs
merging into one);

– the limitation of horizontal resolution (e.g., steep IRHs
leading to spatial aliasing);

– a small signal-to-noise ratio;

– a lack of discrete boundaries between layers;

– complex englacial structures, e.g., folds and interrupted
horizons.

We will give a short summary of the methods that have
been utilized in mapping and segmenting radargrams. The
summaries of methods provided are intended to give a first
overview and to later aid the understanding of the method-
ological evolution presented in Sect. 4.

3.1 Cross-correlation and peak following

Cross-correlation identifies similarities between two signals.
Peak following typically refers to a control strategy used in
systems where one variable is controlled to follow the peaks
or high points of another (Fahnestock et al., 2001). This
method is sensitive to noise and is prone to tracing discon-
tinuous IRHs. Stratigraphy mapping, cross-correlation, and
peak following enforce and complement each other in a man-
ner whereby first a peak is calculated within a certain vertical
window, which is the strongest return in the case of radar-
grams. Next, the cross-correlation is used to find a similar
pattern in the radargram. Depending on the backscatter char-
acteristics and spatial coherence, each method performs more
efficiently in different areas of a single radargram (Fahne-
stock et al., 2001). This method has its roots in seismic ap-
plications, which have often been used for data processing
and analysis in glaciology (Eisen et al., 2004, 2006). The as-
sumption of this method is that ice stratigraphy is supposed
to be rather smooth and without steep variations.

3.2 Edge detection and thresholding

An edge in an image is considered to be the location of abrupt
change in pixel intensity. One of the most prominent filters
used in edge detection is the Canny operator (Canny, 1986).
It is a special filter kernel that is convolved with the image,
smoothes the image to remove some noise, and simultane-
ously calculates the gradient of the image to determine loca-
tions with high spatial derivatives. The next step is to follow
along the gradient and suppress pixels that are not maxima,
a process called non-maxima suppression. Lastly, it is nec-
essary to apply thresholding and remove weak edge pixels.
Having been in use for more than 3 decades, the Canny edge
detector is still widely used and efficient in detecting edges
in a number of applications, e.g., to capture sharp breaks or
discontinuities in an image (Canny, 1986). Speckle noise,
which appears as a grainy pattern in radargrams, can create
difficulties for the Canny filter. This noise often shows up as
sudden changes in pixel intensity, which the gradient calcu-
lation in the Canny filter might mistake for edges. To reduce
the effect of speckle, applying a pre-filtering step, such as
a Gaussian or median filter, before performing edge detec-
tion could be a solution. Thresholding is a simple process for
segmentation as well. A brightness leap between an object
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Figure 2. Schematic of a radargram. The blue line at the top represents the surface of the ice sheet (ice–air boundary). It is conventionally
set as time zero discarding topography. The red lines are IRHs which represent the changes in the permittivity that could be present on the
boundaries between different layers. The black line at the bottom is a representation of the ice base. The x axis is the distance in the direction
of the flight, and the y axis can be shown as either two-way travel time (TWT) or depth.

or edge and background can be determined to differentiate
objects and the background (Sonka et al., 2015). As a simple
and computationally inexpensive method, it has been widely
used in simple applications. However, more nuanced sorts of
thresholding can be adaptive thresholding, p-tile threshold-
ing, histogram-based thresholding, entropy-based threshold-
ing, and so on (Sankur, 2004). Based on these properties im-
age processing is expected to be an efficient method in trac-
ing englacial horizons and has been applied to near-surface
reflections (e.g., Freeman et al., 2010). However, it has been
concluded that this detector works well only for the detection
of surfaces due to presence of noise in radar and closeness
and weakness of horizon boundaries (Mitchell et al., 2013a).

3.3 Active contour

3.3.1 Snake

A well-known computer vision method of active contours is
the Snake (Kass et al., 1988). It consists of splines that are
forced by external constraints and influenced by pixel inten-
sity. In the context of active contours, a spline is a mathemat-
ical curve that is used to represent the contour or shape of an
object or region of interest in an image. From there, two con-
straints are to be satisfied. One is for the spline to align with
the high-gradient energy pixels, and the other is avoidance
of having discontinuities between splines. An energy func-
tion is defined, and the cost of the first spline is calculated.
Then the energy function is minimized to find the most opti-
mum location in relation to the two constraints (Kass et al.,
1988). In radargram applications, an active contour compris-

ing a single particle per column is initially positioned at the
uppermost portion of the radargram and subsequently sinks
down until it reaches the designated horizon. The contour at-
tains a convergence of optimization through the interplay of
three distinct “forces”: (1) a gravity-like force exerted to pro-
pel the contour in a downward direction; (2) an upward force
influenced by image edges, akin to buoyancy; and (3) a ten-
sion force operating between adjacent particles (Reid et al.,
2010; Gifford et al., 2010). Active contour models have the
advantage that they do not require radargrams with manually
traced IRHs. The main disadvantage is that a Snake model
is not able to maintain the complex topology of the evolving
curve (Rahnemoonfar et al., 2017a). In terms of the automa-
tization level, on the grounds of the initial seeding and curve
placement, they are mostly considered semi-automatic meth-
ods. Figure 3 depicts the stages of the active contour, from
the initial contour to the final one reaching the edge bound-
ary. The arrays in the figure are some of the forces applied to
the contour at each stage.

3.3.2 Level set function

This approach uses level set functions (LSFs) and presents
a significant advancement in boundary delineation and im-
age contours (Osher and Sethian, 1988; Malladi et al., 1995).
It is a scalar field that signifies the signed distance to the
nearest edge or boundary (Joshi et al., 2019). Distinguished
from conventional Snake active contour model, the level set
framework can work as well with no explicit initial contour
parameterization (Lin et al., 2004), making it well-suited for
the intricate analysis of radargrams. Optimizing a level set
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Figure 3. Application of a Snake or active contour method; the series from left to right shows the evolution of the initial contour until it
reaches the boundary.

involves creating an energy or cost function, which governs
the iterative minimization of the function to detect the ob-
ject boundaries, using image attributes such as gradients and
curvatures (Chan and Vese, 2001). The evolution of the ini-
tial curve is determined by a speed function, which in turn
depends on factors such as image gradient, and involves a
halting criterion which reduces the speed function to zero in
high gradients delineating boundaries (Lin et al., 2004). The
level set method has also proven efficient in other domains
such as semi-automatic image segmentation for medical im-
agery (Lin et al., 2004; Chunming Li et al., 2011).

3.4 Statistical analysis

This method has been employed mostly for the characteriza-
tion of subsurface target classes (Ferro and Bruzzone, 2012;
Ilisei and Bruzzone, 2014, 2015). Its backbone is statisti-
cal analysis of the distribution of the radar signals. This is
obtained by fitting several probability distribution functions
(pdf’s) to the histogram of samples from each target class in
the radargram. The pdf’s used to fit the signals are parametric
models such as Rayleigh and Nakagami distributions (Ferro
and Bruzzone, 2012; Ilisei and Bruzzone, 2014, 2015). The
choice of such parametric models for the fits results from
their proven capability to model radar amplitude fluctuations
in signal backscatter (Oliver and Quegan, 2004).

3.5 Layer slope inference

Layer slope inference is not in fact a method but a combi-
nation of methods to calculate the dip angles of the hori-
zons. It consists of the following: denoising using averaging
techniques, thresholding to obtain the binary image from a
radargram, discretizing the data horizontally to detect short
segments of boundaries, eliminating the invalid objects, and
finally compiling the non-uniformly distributed information
on object dip (Sime et al., 2011). This method is rather easy
to implement, but it does not map IRHs. Instead, it yields es-
timates of the potential layer boundaries and their dips and
slopes (Sime et al., 2011; Holschuh et al., 2017).

3.6 Hough and Radon transforms

Hough (Hough, 1962) and Radon transforms (Radon, 1917)
are very closely related to each other (van Ginkel and van
Vliet, 2004). Radon (1917) introduced a method to express a
function on the basis of its (integral) projections, and Radon
transform is the mapping of this function onto its projection.
As it maps from image space to parameter space, the func-
tion that is formed in the parameter space includes peaks
which correspond to shapes or edges in the image space (van
Ginkel and van Vliet, 2004; Radon, 1986; Epstein, 2007).
The Hough transform is similarly mapping from image space
to parameter space. In principle, the Hough transform is a
discrete version of the Radon transform. It was originally de-
veloped to detect straight lines in black and white images
(Hough, 1962). An accumulator array is set up, with each of
its elements representing the number of votes that indicate
the presence of a shape or edge with corresponding parame-
ters of that element, signifying strong evidence for the exis-
tence of that line or edge (Duda and Hart, 1972; Bailey et al.,
2020).

3.7 Continuous wavelet transform

Unlike traditional methods such as gradient-based edge de-
tection (e.g., Sobel; Sobel and Feldman, 2015, Roberts
Roberts, 1963), which rely on discrete derivatives, continu-
ous wavelet transform (CWT) operates by analyzing the im-
age at multiple scales and positions simultaneously (Mallat
and Hwang, 1992). Considering all the values of the trans-
lation and scale parameters is the point where CWT dif-
fers from discrete wavelet transform, making it a preferred
method for detecting specific features in images (Antoine
et al., 1993). Mallat and Hwang (1992) established edge de-
tection in a multi-scale method using wavelet transform. Lo-
cating an edge involves initially identifying the scale where
the power spectrum, derived from the wavelet transform,
reaches its peak. At this scale, the position of the peak in the
squared CWT can be identified. CWT’s advantages include
multi-scale analysis for edge detection at various levels of
detail and handling non-stationary signals, making it effec-
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tive for complex image analysis (Mallat and Hwang, 1992;
Kaspersen et al., 2001; Heric and Zazula, 2007). Another ad-
vantage is that CWT-based methods do not necessarily re-
quire thresholding, which reduces the complexity of an algo-
rithm (Kaspersen et al., 2001).

3.8 Hidden Markov model and Viterbi algorithm

The application of hidden Markov models (HMMs) in the
context of edge detection is an approach rooted in proba-
bilistic modeling (Ekisheva and Borodovsky, 2006). HMMs,
well-known for their efficiency in capturing sequential pat-
terns, offer a great framework for identifying edges in com-
plex and noisy radargrams (Carrer and Bruzzone, 2017;
Donini et al., 2022b). They are based on augmenting the
Markov chains which describes the probabilities of se-
quences of random variables to compute probabilities of ob-
servable events. In the case of radargrams, the observable
events are pixel intensities. For edge detection, pixels within
a radargram are conceptualized as hidden states, each one
associated with emission probabilities indicating local inten-
sity gradients. Transition probabilities, inferred from the gra-
dients of neighboring pixels, represent the likelihood of go-
ing from one pixel to another, capturing the contextually de-
pendent edge characteristics. By optimizing the sequence of
hidden states, HMMs effectively capture IRHs in radargrams
(Stauffer and Grimson, 1999; Ekisheva and Borodovsky,
2006; Zhang et al., 2008; Bouguila et al., 2022; Carrer and
Bruzzone, 2017).

For any task containing hidden variables, it is important to
find which sequence of such hidden variables is the underly-
ing source of the desired observation. This is called decoding.
One common such algorithm used along with HMMs is the
Viterbi algorithm (VA; Viterbi, 1967), a dynamic program-
ming technique, which finds the most plausible sequence of
concealed states within a Markov field, depending on a series
of observations (Bouguila et al., 2022).

3.9 Gibbs sampling

The Gibbs sampler (Casella and George, 1992) is a Markov
chain Monte Carlo (MCMC) method for indirectly generat-
ing random variables from a (marginal) distribution, remov-
ing the need to directly calculate the density. Every pixel or
region within the image is allocated a label representing its
class or segment. Through iterative sampling of labels, con-
sidering conditional probabilities in neighboring pixels or re-
gions, Gibbs sampling facilitates the partitioning of the im-
age into coherent segments (Casella and George, 1992; Xiao
Wang and Han Wang, 2004).

3.10 Support vector machine

The support vector machine (SVM) (Vapnik et al., 1996) is a
supervised learning approach for image segmentation which
can handle both two-class and multi-class classification prob-

lems (Liu et al., 2021). It works by maximizing the mar-
gin between classes in an n-dimensional feature space. The
closest data points to the decision boundary are called sup-
port vectors, and they are crucial in defining the discrimina-
tion function. While there may be multiple possible decision
boundaries, SVMs can identify the optimal surface, reducing
the risk of overfitting during training (Burges, 1998).

3.11 Machine learning and deep learning in image
processing

Machine learning, particularly a subset of it called deep
learning (DL), enables automatic extraction of meaningful
patterns from data through the use of multi-layered artificial
neural networks (LeCun et al., 2015). Unlike traditional ap-
proaches that require manual feature engineering, DL meth-
ods transform raw input data into abstract and task-relevant
features hierarchically (Hinton et al., 2006; LeCun et al.,
2015; Zeiler and Fergus, 2013; Tomasini and Wyart, 2024).
This capability makes them particularly suitable for prob-
lems such as image classification (Rawat and Wang, 2017),
object detection (Arkin et al., 2023), and semantic segmen-
tation (Minaee et al., 2020), including the analysis of radar-
grams.

In the context of radargram analysis, DL is important be-
cause radargrams often contain subtle and noisy features that
are difficult to detect using conventional image processing
and probabilistic methods. Using supervised learning, where
labeled radargram data are used to train the network, DL can
effectively learn to classify and segment features of interest,
such as IRHs or regions of interest in radargrams.

One of the main challenges with DL is its reliance on large
labeled datasets to achieve optimal performance. Insufficient
training data can lead to overfitting. This is the case where
a model performs well on the training set but struggles to
generalize to new unseen data (Goodfellow et al., 2016).
This limitation is especially critical in radargram analyses,
where labeled datasets are often scarce. Techniques such as
data augmentation, transfer learning, and regularization can
be used to address these challenges and improve model gen-
eralization.

3.11.1 Convolutional neural networks

Convolutional neural networks (CNNs), a subset of artifi-
cial neural networks (ANNs), are among the most widely
used deep learning algorithms, particularly for image and
video processing (LeCun et al., 1989; Lecun et al., 1998;
Krizhevsky et al., 2017a). CNNs are designed to process data
that can be represented as grids, such as 1D sequences (e.g.,
text), 2D images, or 3D video data (LeCun et al., 2015). Un-
like traditional neural networks, CNNs can automatically de-
tect important features from the input data, without the need
for manual feature engineering (Gu et al., 2017). This ability
is achieved through the use of convolutional layers, which
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apply a set of filters (or kernels) to input data, generating
feature maps that capture various characteristics of the data
(LeCun et al., 2015; Goodfellow et al., 2016).

The architecture of CNNs typically consists of an input
layer, convolutional and pooling layers, one or more fully
connected layers, and an output layer (LeCun et al., 2010;
Zhao et al., 2024). Figure 4 (Lecun et al., 1998) depicts a
simplified CNN architecture for image classification. Con-
volutional layers are the core components, where filters are
applied to input data to extract features like edges, textures,
or shapes. Pooling layers follow to reduce the spatial size
of feature maps, helping to reduce computation and increase
the network’s tolerance to small shifts in the data (LeCun
et al., 2015). After several convolution and pooling layers,
the network uses fully connected layers, where every neu-
ron is connected to every neuron in the previous layer. This
fully connected part allows the network to make the final de-
cision based on the features learned in earlier layers. Overall,
CNNs are highly efficient for tasks such as image classifi-
cation, object detection, and segmentation, where extracting
meaningful spatial hierarchies from the data is essential. In
recent years, CNN applications have been expanded to the
field of glaciology as well, for instance in calving-front de-
lineation using synthetic aperture radar (SAR) imagery (Mo-
hajerani et al., 2019; Zhang et al., 2019), grounding-line de-
lineation (Mohajerani et al., 2021), and automatic stratigra-
phy mapping (e.g., Varshney et al., 2021b; Cai et al., 2022;
Wang et al., 2020b; Donini et al., 2022c).

3.11.2 U-Net

The U-Net architecture, introduced by Ronneberger et al.
(2015), has become one of the most widely used neural net-
works for image segmentation. It was originally developed
for biomedical applications, but it has proven versatile and
has been adopted in a number of fields, including the remote
sensing of the cryosphere (e.g., Ji et al., 2019; Mohajerani
et al., 2021; Varshney et al., 2020; Donini et al., 2022a).
Many variations of U-Net have also been proposed, each im-
proving or adapting the design for specific tasks, such as Re-
sUNet (Jha et al., 2019) and U-Net++ (Zhou et al., 2020).

The architecture features a U-shaped design, which con-
sists of an encoder–decoder structure connected by skip con-
nections. The encoder path down-samples the input image
using convolutional and pooling layers, capturing high-level
features and contextual information. The decoder path then
up-samples these features, gradually restoring spatial resolu-
tion to generate a segmentation map. The skip connections
link corresponding layers of the encoder and decoder, ensur-
ing that high-resolution features from the encoder are inte-
grated into the decoding process. This combination allows
U-Net to segment objects with detailed boundaries, even in
datasets with complex spatial structures (Ronneberger et al.,
2015; Siddique et al., 2021). Figure 5 is an example of U-Net
architecture for image segmentation.

3.11.3 Transfer learning and pre-training

CNNs typically require large datasets for effective training,
which can be a significant difficulty when annotated data
are limited (Lecun et al., 1998). Transfer learning provides
a practical solution to this problem by allowing the use of
pre-trained models as a starting point. This involves training
a model on a large general-purpose dataset, such as ImageNet
(Krizhevsky et al., 2017a), and then fine-tuning it using the
smaller task-specific dataset available for the target applica-
tion (Weiss et al., 2016).

There are a number of CNN models such as AlexNet
(Krizhevsky et al., 2017b), GoogleNet (Szegedy et al., 2014),
and ResNet (He et al., 2016) that are pre-trained on large
datasets such as ImageNet. Pre-training on these datasets
helps models to learn general feature representations that can
be adapted to new tasks, which reduces the risk of over-
fitting and improves the robustness of the learning process
(Hendrycks et al., 2019). This approach could be valuable in
applications such as radargram analysis due to the scarcity of
annotated training data.

3.11.4 Holistically nested edge detection

Holistically nested edge detection (HED) (Xie and Tu, 2015)
is an end-to-end technique designed for edge detection that
learns hierarchical features essential for understanding an
image in its entirety (Long et al., 2014). HED is inspired by
fully convolutional neural networks and incorporates deep
supervision based on the Visual Geometry Group network
(VGG-Net) architecture (Simonyan and Zisserman, 2014).
Contrary to traditional edge detection algorithms that rely
on abrupt changes in local pixel intensity, HED approaches
edge detection as a holistic problem (global image-to-image
mapping). Moreover, it uses side outputs, compensating for
the absence of deep supervision which is a characteristic of
fully convolutional neural networks. This design enhances
the ability of the model to detect edges by investigating both
local and global contexts.

3.11.5 Multi-scale learning

Multi-scale learning (Elizar et al., 2022) offers significant ad-
vantages using discriminative-feature representation to im-
prove information acquisition. This is achieved through the
fusion of low- and high-resolution data and the integration
of diverse data sources. Multi-scale learning brings about a
higher level of understanding the data and learning through
collective results at different scales. The fundamental con-
cept behind multi-scale feature learning involves the simul-
taneous construction of multiple CNN models with varied
contextual input sizes. These models operate in parallel, and
their respective features are merged at the fully connected
layer (Elizar et al., 2022). An edge detection technique can
be implemented at every scale for feature detection (Yari
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Figure 4. A simplified CNN architecture for an image classification task. The architecture is similar to the one of LeNet, which is an early
CNN and was used for handwritten-digit recognition (Lecun et al., 1998).

Figure 5. Schematic of a U-Net architecture and its conventional components, inspired by Ronneberger et al. (2015). Left- and rightmost
images show a radargram and its representation with two IRHs predicted by U-Net.

et al., 2020). For example, in radargram segmentation, small-
scale structures may capture fine features, such as local fluc-
tuations in layer boundaries, while larger scales focus on
broader trends (Cai et al., 2022). Additionally, it is a feasible
method to combine with other advanced networks, e.g., gen-
erative adversarial networks (Suh et al., 2022).

3.11.6 Recurrent neural networks

Recurrent neural networks (RNNs) (Cho et al., 2014)
are designed to handle sequential data, such as sentences
(Mirowski and Vlachos, 2015), time series (Hewamalage
et al., 2021), and biological sequences (Aggarwal, 2018).
Unlike other neural network architectures, where variables
are independent of each other, RNNs process data in a se-
quential manner, with the input of each node being a combi-
nation of input and the hidden state from the previous time
step (Goodfellow et al., 2016). In image segmentation appli-

cations, RNNs treat the task as a sequence prediction prob-
lem. This sequential processing is the strength of RNNs for
image segmentation tasks (Salvador et al., 2019), making
RNNs effective for tasks involving capturing relationships
where a sequence is important.

4 Progression of IRH mapping and radargram
segmentation techniques

In this section, we provide a concise description of the most
important and relevant studies that have been done on map-
ping englacial stratigraphy. For the sake of simplicity, our
timeline (Fig. 6) starts in the year 2000 to focus on more
modern approaches. As Wang et al. (2020b) pointed out, at
first the task of tracing IRHs from radargrams seems like a
straightforward classic computer vision problem; however in
practice it becomes obvious that it is a very challenging en-
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deavor. Difficulties emerge for multiple reasons, such as high
spatial variability, complex features, abundance of noise, an
unknown number of horizons, and horizon discontinuity and
merging.

Over the last decade, various studies have put forth the
use of pattern recognition methodologies in the examination
of RES signals (e.g., Li et al., 2020). The primary focus of
these investigations lies in the identification of specific sub-
terranean entities, such as mines, pipelines, or tanks buried
at shallow depths, through ground-based GPR. These enti-
ties mostly exhibit hyperbolic signatures in radargrams, a dis-
tinct contrast to most signatures in radargrams obtained from
all platforms (ground, air, orbital) over ice. Consequently,
we primarily abstain from including those investigations and
their methodological proposals within the purview of this pa-
per.

Automatic edge detection methods have been applied to
a variety of applications of RES. Some of these include as-
phalt/pavement thickness measurements (Zhang et al., 2022),
subsurface distress detection (Li et al., 2022), detection of
structures beneath rail tracks (Peng et al., 2004), concrete
feature tracking (Todkar et al., 2017), mine detection (Frigui
et al., 2005; Reichman et al., 2017), and tunnel lining (Zeng
et al., 2023). As for ice, this task is traditionally done manu-
ally or semi-automatically. Semi-automated methods include
a certain degree of subjectivity. The two steps in which this
subjectivity plays the main role are positioning of the seed
points (to be connected to each other automatically) and crit-
ical evaluation of the results (Dossi et al., 2015). In recent
years, there have been studies that have attempted to perform
this task with automated methods. Such studies include a va-
riety of approaches such as CNNs (Reichman et al., 2017;
Zhang et al., 2022), Laplace transform artificial neural net-
works (Szymczyk and Szymczyk, 2015), and multilayer per-
ceptron (Sukhobok et al., 2019), to name a few. However, as
a result of radar systems differing in frequencies and wave-
form characteristics (thus resolution and penetration depth),
studies applied to GPR and RES systems over mediums other
than ice do not provide considerable insights. Therefore, the
description of methods in our timeline (Fig. 6) concentrates
on the studies that have focused on radargrams from ice
sheets and other large ice masses, whether on Earth or plan-
etary bodies.

In a number of studies, radargrams were analyzed to
find different segments or subsurface targets (e.g., englacial
boundaries, EFZ, basal units) and classes of events in each
radargram (e.g., Donini et al., 2019; Goldberg et al., 2020;
García et al., 2021, 2023). Even though we focus on the
methods for mapping englacial ice structure and tracing IRHs
and/or layer boundaries, we also take a look at studies done to
detect regions and targets in radar products, since those are,
in terms of methodology, in the close vicinity of stratigraphy
mapping endeavors.

Table 1 gives a comprehensive overview of the published
work for a quick lookup of published studies in tracing

englacial stratigraphy. It contains published year, method(s)
applied, traces mapped, and the type of radar system and the
regions it was applied to.

We present published studies classified into three main cat-
egories of methods, labeled with their respective subsection
number:

4.1 Computer-vision-based and signal processing methods.
This category consists of filtering and thresholding
methods, peak following, layer slope inference meth-
ods, transform methods such as Radon and wavelet
transforms, and active contour methods.

4.2 Probabilistic and statistic methods. This consists of
Markov methods, Viterbi, statistical mapping, support
vector machine, and Gibbs sampling.

4.3 Deep learning methods. This includes CNN-based mod-
els and related architectures and modifications.

In the following subsections, we present published stud-
ies within these three main categories, grouping connected
works in individual paragraphs. Furthermore, the citations in
italics indicate the main reference considered in the summary
paragraph. For studies which employed multiple approaches,
we have included each in the category to which its main
method belongs. It should be kept in mind that categorization
in separate groups mainly serves readability and coherence
and does not indicate strict separation between categories.

4.1 Applications of traditional computer vision and
signal processing methods

Gades et al. (2000) and Nereson et al. (2000) have both em-
ployed a semi-automatic picking routine for bed and deep
horizons, respectively. Their method finds the maximum am-
plitude of each of the RES traces in a prescribed time win-
dow. Their pre-processing step is the noise removal using a
fourth-order Butterworth band-pass filter. Similarly, Fahne-
stock et al. (2001) used peak following and cross-correlation
and applied them to the pulse-compressed coherent radar
data. Peak following was used to select and follow IRHs
on the radargrams taken by the NASA radar system. This
method is mainly automatic; however there is an operator-
assisted element to ensure accuracy. Radargrams were visu-
ally improved by normalizing them from the depth of 400 m
and lower in order for the operator to better identify the
reflections. The authors remark that peak following is the
method of choice for areas where peaks are distinctly visible
but patterns are ambiguous. The correlation method, in con-
trast, is more suitable for instances where peaks are faded and
patterns are more distinct. Lines et al. (2019) present a hy-
brid method founded upon Fahnestock et al. (2001) to track
the IRHs in radargrams covering the snow and firn columns.
These interactive semi-automatic methods seem to be sensi-
tive to noise, acting as a weakness for GPR data. The method
is called the average square difference function layer picking
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Figure 6. Evolution of selected methods for IRH tracing in chronological order, linked to the year each method was applied for the first time.

system (ALPS), named after the algorithm it uses for tracing
IRHs. Connecting discontinuities that exist in radargrams, es-
pecially near crevassed terrain or close to the ice sheet mar-
gin, is a weakness of this method.

In the planetary ice sheet domain, Freeman et al.
(2010) implemented a method to detect near-surface ice
layers in Mars’ ice-rich northern polar layered deposits
(NPLD) from radargrams of the Shallow Subsurface Radar
(SHARAD) mounted on NASA’s Mars Reconnaissance Or-
biter. SHARAD radargrams are equipped with linear fre-
quency modulation (LFM), which operates in the range of
15–25 MHz. SHARAD’s products are often used for tracing
or segmenting IRHs and regions of ice. As a pre-processing
method, the authors use a Gaussian blur and a high-pass fil-
ter. The main techniques for detecting IRHs are thresholding
and morphological processes.

Gifford et al. (2010) used the edge method and edge-based
active contour to pick the surface and basal reflections in an
attempt to estimate the thickness of ice sheets. To estimate
the ice thickness, one needs two reflections: the first peak
representing the ice surface and the last peak representing
the base. These two peaks are the strongest in the vicinity of
every individual trace. The authors list some of the short-
comings of traditional segmentation methods for this task
such as watershed (Beucher and Lantuejoul, 1979), level set
(Chunming Li et al., 2011), and region growing (Pal and Pal,
1993) methods. The main reason for these shortcomings is
that the base reflection of an ice sheet is neither reliably con-
tinuous nor connected, e.g., in regions with steep topogra-
phy of very thick ice (> 4 km). Other obstructions are the
presence of noise and the non-uniformity of the characteris-
tics of ice sheets because of the deep reflections and surface
multiples. Furthermore, the basic edge detection techniques
suffer from a lack of continuity, stiffness, and smoothness,
which makes them not optimal stand-alone choices for this
task. The authors applied their approach to the data from the
University of Kansas, the Center for Remote Sensing of Ice

Sheets (CReSIS). They present a visual comparison of the
basal horizon picked by (1) a human expert, (2) an edge-
based approach, and (3) an active contour approach. It is
concluded that the active contour method provides the best
approximation of the base, with a trade-off in terms of time,
as it takes longer compared to the edge detection method for
the contour to end up on the basal reflection. The advantage
of the active contour over the edge-based approach mostly
lies in its ability to bridge the discontinuities. However, the
weakness of the active contour seems to be in regions where
the texture below the base is rough or where strong IRHs
or other reflection signatures occur near the ice sheet base
(Gifford et al., 2010). Automatic mapping of the air–ice and
ice–bed boundaries is a task which has been tried by vari-
ous studies throughout the years to calculate surface or basal
topology or ice thickness. Reid et al. (2010) used two dif-
ferent methods to map the ice surfaces and basal reflections,
aiming to estimate the ice thickness, in a manner similar to
techniques presented by Gifford et al. (2010). They applied
their implementation to data from CReSIS and concluded
that although edge-based methods are faster than the active
contour method, the latter is more robust to image artifacts
and yields better continuity in traced IRHs. One interesting
suggestion is that the edge-based methods can be used as the
initialization for the active contour method.

Sime et al. (2011) used an automated finite-segment
method to obtain englacial reflector dip angles, from both
airborne and ground-based radar observations. In fact, this is
not an interface-picking method, as dips are horizontally in-
tegrated to produce synthetic isochrones. Integration of the
slope of local layers yields a first-order approximation of the
layer location. The method is a horizontal averaging tech-
nique that reduces the noise and identifies the layers but does
not attempt to trace complete horizons. Similar approaches,
e.g., that of Holschuh et al. (2017) on computing slope infor-
mation from radargrams, have further improved our under-
standing of the inner structure of the ice sheets.
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Ferro and Bruzzone (2013) focused on automatic char-
acterization of the linear features in radargrams taken from
Mars NPLD. They considered some previous studies em-
ploying the Hough transform for radargrams (Gamba and
Lossani, 2000; Pasolli et al., 2009) to be useful for detect-
ing hyperbolae or straight lines. Nonetheless, the efficacy
of such approaches decreases significantly when applied to
radargrams, which include features that are not straight; this
is also the case with GPR products from glacier ice. The out-
put is a vector object described by its local width, and com-
puting features’ geometrical characteristics without further
post-processing is possible. The method is composed of a
combination of some image processing techniques, namely
pre-conditioning, block matching and 3D-filtering processes
(BM3D), to remove the noise and subsequently a Steger filter
(Steger, 1998) for ridge detection. For denoising, the main
filter used is BM3D (Dabov et al., 2007), which, while re-
moving noise, preserves linear features (Ferro and Bruzzone,
2013). It is worth mentioning that this and similar studies
that investigate planetary data are subject to different types of
noise and radiometric characteristics compared to data taken
from aircraft or on terrestrial ice sheets.

To investigate the depth of the Bølling–Allerød intersta-
dial, an important warming event of the last deglaciation,
Karlsson et al. (2013) presented an automatic fitting method.
Having dated the transition at an ice-core drill site, they ex-
tended this transition further away from the ice-core site.
They noticed that the upper half of the radargrams from CRe-
SIS RES data from Greenland contains many more reflec-
tions than the lower one, and they subsequently fit a ramp
function to represent the standard deviation of the data. They
constructed the data histogram using an optimal number of
bins and reconstructed the radargram using intensities of the
mean values of each bin. They then fit a 2D version of the
ramp function to the more interesting parts of the recon-
structed radargram. Finally, the location of most of the fits
was selected as the depth of the transition. They concluded
that the absence of the transition is the result of ice flow hav-
ing disrupted the layering (Siegert et al., 2004) and that it
is not possible to recognize layering in thin ice (Fahnestock
et al., 2001).

Mitchell et al. (2013a) used the method proposed by Ste-
ger (1998) to find the estimated position of the curves be-
longing to horizons. They combine off-the-shelf methods to
estimate near-surface layers in radargrams of the snowpack.
They find points with high probability of being part of curvi-
linear structures, and therefore, the features are more parallel
and less fluctuating. A user is required to initially determine
the number of visible layers. The pipeline starts with edge
detection to estimate the layer location, curve point classi-
fication to estimate reflection location, and finally an active
contour (Snake) to distinguish lower reflections from the up-
per ones. They noted that the Canny operator is only suitable
for identifying near-surface and not deeper reflections due
to fainter layers boundaries and inherent noise of the radar-

grams. Panton (2014) introduced two methods that infer the
local slope and track a boundary, respectively, from the initial
estimate. The methods trace IRHs by optimizing the position
of the entire IRH to improve the areas with poor radargram
quality. After pre-processing, local boundary slopes are esti-
mated and seed points are picked by a human expert. From
here, the Snake algorithm traces the boundaries from the
picked seed points. In areas where there are discontinuities
in the IRHs, for instance in the presence of shear margins or
disturbing fast flow, the method yields incorrect slope fields;
therefore it is not recommended for areas where stratigraphy
is visibly complex. In a similar work, Mitchell et al. (2013b)
also employed LSF to semi-automatically estimate the sur-
face and basal interface from a multichannel coherent radar-
gram. An expert provides two initial contours for the air–ice
and ice–base boundaries. These lines then evolve at each step
while a cost function is calculated, and this continues until
the cost function reaches a minimum using gradient descent.
This method was applied to 20 radargrams and provided a
comparison between this approach and the HMM approach
of Crandall et al. (2012), and it was shown that level set per-
forms between 3 and 5 times better than HMM for air–ice
and ice–base boundaries, respectively. Rahnemoonfar et al.
(2017a) also used a LSF method to detect the topology of
surface and basal boundaries. They tested the approach on
323 radargrams from NASA’s Operation Ice Bridge (OIB)
mission and iterated 800 times from the initial curve to over-
lap with the air–ice and ice–base boundaries. The difficul-
ties of processing air–ice and ice–base boundaries are classi-
fied as follows: (i) subglacial topography is greatly variable;
(ii) there are artifacts in the data, mainly a result of electric
devices around the radar as well as the aircraft itself; and
(iii) ice–base boundaries exhibit low signal-to-interference-
and-noise ratios (SINRs). In another study, Rahnemoonfar
et al. (2017b) detect air–ice and ice–bed boundaries inspired
by Coulomb’s electrostatic law based on the projection pro-
file of the contours. IRHs are interpreted as contours. The
grayscale intensity of a pixel symbolizes the electrical charge
associated with each particle. By establishing specific crite-
ria that translate electrical charges into pixel characteristics,
the resulting computation of the electric field for each pixel
is used to define the edges within the radargram. To remove
noise, an anisotropic difference is applied.

The Semi-Automated Multi-layer Picking Algorithm
(SAMPA) introduced by Onana et al. (2015) is an algo-
rithm that traces annual accumulation layers from firn radar-
grams from both airborne and ground-based radar systems. A
Radon transform is used to map the features which represent
firn-layer boundaries, which are later traced using thresh-
olding of the amplitude. SAMPA was applied to radargrams
from West Antarctica where the firn layers are known to be
rather flat. Deeper boundaries are more difficult than shallow
ones for SAMPA to trace because of attenuation and low con-
trast resulting from low variance in trace amplitude. Xiong
and Muller (2016) mention that the difficulty of tracing inter-
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nal IRHs is due to the presence of non-contiguous IRHs, and
they relate that to local anomalies such as folds and crevasses
caused by ice dynamics. The underlying method here is also
the Radon transform, similarly to Onana et al. (2015), to
extract IRHs from radargrams of NEEM station. However,
the authors note that Onana et al. (2015) extracted firn IRHs
which are represented as horizontal lines in radargrams, and
in this study, the goal was to also extract deeper IRHs with
larger slope bending. Therefore, they adapt SAMPA, which
is based on block processing, and convert it to slice pro-
cessing. They present a comparison of the two methods in
one radargram and conclude that the present method func-
tions more effectively, especially for deeper IRHs. It is worth
mentioning that the only measure of effectiveness presented
is qualitative. Continuous wavelet transform as a strong sig-
nal processing tool was used together with Hough transform
(Ballard, 1981) by Xiong et al. (2017) to semi-automatically
trace IRHs and infer the local dips and propagate them away
from the CWT seed points. The critical problem with peak
following is that there is a high possibility of falling onto
neighboring layers. Moreover, in determining which pixel-
s/regions might constitute peaks and which might not, they
note that high-amplitude peaks do not always correspond to
layers, while, conversely, low-amplitude points can indeed
signify peaks. A post-processing algorithm is triggered that
connects the lines that belong to each other. The authors com-
pare their results with those of MacGregor et al. (2015) and
show that more horizons were traced using CWT and Hough
transform. This is related to the fact that seed picking in
the method of MacGregor et al. (2015) was done manually,
and consequently only prominent horizons were picked. For
instance, IRHs around folds are not picked in the Radios-
tratigraphy and Age Structure of the Greenland Ice Sheet
(RRRAG) dataset (MacGregor et al., 2015). There is good
agreement between their result and the published RRRAG ra-
diostratigraphy dataset, while the average vertical difference
(between the traced IRHs of the two methods) is 15 pixels,
which corresponds to 40 m.

Phase information has also been useful in developing IRH
tracing methods. Dossi et al. (2015) developed a method to
detect and trace reflections with lateral phase continuity and
to assess polarities (to evaluate the materials) in GPR and
seismic data using attribute analysis (Taner et al., 1979). As
any single reflection is the outcome of a series of phases
with alternating polarities, it is difficult to determine the ini-
tial phase, i.e., polarity. The method is rooted in automatic
identification of the reflection phase using the cosine of the
instantaneous phase and search for sub-parallel events, in
other words, tracking events whose phase continues later-
ally. The cosine phase of signals was employed to reconstruct
the reflected wavelet’s shape. Synthetic GPR data created
with GPRmax (Giannopoulos, 2005) were used for testing
the method, in addition to real data from Alpine glaciers and
archaeological surveys. Similarly to other methods, it was
found that a limitation of polarity assessment is that there ex-

ist many closely spaced parallel reflections and these could
be recognized as single events. As with intensity gradient
methods, including a thresholding step is a necessity to select
only stronger events. The method is able to pick numerous
short-length horizons but falls short in dealing with disconti-
nuities, in a manner whereby the method picks up phases of
unrelated events as a single horizon. MacGregor et al. (2015)
introduced two interactive semi-automatic methods to pre-
dict internal stratigraphy based on phase information as well.
They rely on calculating reflections’ slopes, similarly to the
works of Sime et al. (2011) and Panton (2014). Integrating
the slope in the along-track direction yields the stratigraphy
(predictions). The first method uses the smooth horizontal
phase changes along the radar track and the natural coher-
ence of radar signals to predict reflection morphology, bene-
fiting from recordings of coherent radar while implementing
SAR techniques as a backbone (Raney, 1998). The second
method calculates the reflection slope by extracting informa-
tion from the wavenumber of the Doppler centroid in radar
data. Fourier transforms are computed on brief segments of
radar data to examine the Doppler spectrum of englacial re-
flections. Goldberg et al. (2020) developed an algorithm to
detect basal units. They introduced a SAR processing method
and employed unique phase shift response functions to clas-
sify feature types such as englacial layers and potential basal
units. The method can distinguish between feature types by
matching model phase shift responses to pixel data.

Noise removal is the initial step for most of the methods,
such as that of Koenig et al. (2016), who applied a median
filter to remove noise and detected the snow surface simply
by thresholding. They devised a semi-automated snow-layer
boundary detection algorithm and applied it to radargrams
from NASA’s OIB Arctic campaign taken from 2009–2012
and surveyed by CReSIS’ ultra-wideband snow radar. Identi-
fication of peaks is facilitated by the distinction between spa-
tial variability in the travel-time–depth domain across high
and low frequencies, functioning as a high-pass filter. These
identified points are subsequently linked to form coherent
IRHs by utilizing the half-maximum width of the wave-
form associated with each peak. After connecting the picked
points using spline fitting, an expert examines the picked
IRHs by correcting indices, filling gaps, deleting, adding, and
performing other corrections.

Delf et al. (2020) performed an inter-comparison of au-
tomated IRH tracing and layer-dip-estimation methods. In
order to asses their capabilities, two types of algorithms
were implemented: those that trace IRHs and those that ex-
tract the slope or dip of the horizons; and their capabil-
ity to propagate an age–depth model was tested. The au-
thors used two CReSIS Multichannel Coherent Radar Depth
Sounder (MCoRDS) datasets from Antarctic ice sheet sur-
veys for the inter-comparison study and implemented three
algorithms: (i) the Automated RES Englacial Layer-tracing
Package (ARESELP) implemented by Xiong et al. (2017),
(ii) the Steger algorithm implemented by Ferro and Bruzzone
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(2013), and (iii) the Sobel–Feldman operator (also called So-
bel; Sobel and Feldman, 2015). To assess each method, its
impact on propagation of a simple age–depth relationship
(Nye, 1963; Leysinger Vieli et al., 2007) was investigated.
The central conclusion was that there is a requirement for
further studies and advances in such algorithms, as even in a
region with relatively simple geometry, the methods do not
show promise in linking age–depth profiles between two lo-
cations. It is important to note that all three methods per-
formed better in dip estimation compared to their perfor-
mance in IRH tracing.

4.2 Applications of probabilistic and statistical
methods

Smock and Wilson (2012) developed a layer boundary detec-
tion identification algorithm for GPR radargrams captured
by vehicle-mounted sensor arrays. Their work is an exten-
sion of Smock et al. (2011). Finding base and surface reflec-
tions in radargrams was implemented using VA, represent-
ing radargrams as trellis graphs. To investigate subsurface
layer boundaries, one has to look for multiple disjoint paths
through the trellis graphs. The authors propose a criterion for
choosing multiple disjoint paths called a reciprocal pointer
chain. However, due to lack of ground truth, no quantitative
comparison was provided.

The statistical analysis by Ferro and Bruzzone (2011)
presents a method to detect scattering areas of a radargram,
namely the basal returns. The data are from SHARAD in
a lower frequency range of 1–20 MHz. The authors classi-
fied radargram regions, such as strong layers, weak layers,
no target, and basal layers. For each of these classes, they
analyzed the statistical distribution of their corresponding re-
turns by means of fitting three pdf’s, namely the Rayleigh,
Nakagami, and K pdf’s. Using maximum likelihood, the pa-
rameters of these pdf’s for each class type were estimated.
For evaluation, they calculated the root mean square error
(RMSE) and the Kullback–Leibler divergence (Lin, 1991)
between the normalized histogram of data and the obtained
histogram. The best fit is shown to be the K-pdf distribution
in almost all the cases. The product of the method is used
to calculate the NPLD thickness, local geology, and seasonal
variations. To ascertain a selection of statistical distributions
capable of characterizing amplitude variations caused by dis-
tinct subsurface categories, Ferro and Bruzzone (2012) ana-
lyzed radar sounder products from Mars NPLD once more
with two main objectives. One is computing statistical prop-
erties of radargrams, and the other is devising two methods
for automated extraction of subsurface features. They previ-
ously found that the signal statistical distribution pertaining
to different targets can be modeled efficiently using the K-
pdf distribution and that the background noise can be mod-
eled by a Rayleigh distribution (Ferro and Bruzzone, 2011).
They generated a map for the different subsurface classes and
additionally identified and mapped the deepest scattering ar-

eas. They considered their approach to be a first step for a
general framework for analysis of radargrams.

Crandall et al. (2012) proposed finding boundaries be-
tween layers of different materials (such as air, ice, or rock)
in radargrams as an inference problem on a statistical graph-
ical model using Markov random field (MRF), HMM, and
VA (Crandall et al., 2012). This inference model includes
a number of constraints, such as layer boundaries being lo-
cated where there are high radargram contrasts, being con-
tinuous, and not intersecting with others. The hidden vari-
ables are pixels that belong to an IRH, and VA is supposed
to return the maximum likelihood path of the HMM. The au-
thors used 827 radargrams with a size of 700× 900 pixels
from NASA’s OIB mission as test data. These radargrams
were manually labeled as well, serving as ground truth. They
divided their dataset into a training and test set with almost
50 % for each set. The method showed better results for iden-
tification of the air–ice interface and could pick these IRHs
in a rather short time. By adding the constraints and human
interaction, the error was decreased to some extent. One no-
table advantage of probabilistic models is their robustness
against inherent radar noise. Lee et al. (2014) also consid-
ered the task of tracing air–ice and ice–bed boundaries as
a probabilistic inference problem and used a Markov chain
Monte Carlo approach to sample from the joint distribution
over all the possible layers in each radargram. The advan-
tage of this approach is that it brings multiple possibilities
of integrating over and obtaining the layer boundaries, as
opposed to edge detection techniques, which present hard
singular boundaries. IRHs are computed from expectations
of the distributions, and confidence intervals are computed
from the variance of samples. The Gibbs sampling is used
due to its ability to characterize uncertainties by calculat-
ing confidence intervals. The authors show that their method
yields an improvement over the approach of Crandall et al.
(2012). The challenges are the presence of noise, faint reflec-
tions between boundaries, and the confusing structure that is
a result of signal reflections and clutter. Random noise pre-
vents correct picking because of serious signal distortion. Xu
et al. (2017) aimed to reconstruct a 3D structure of the ice
sheet from available 2D profiles. They approached this as
an inference problem and employed a probabilistic graphi-
cal model, namely MRF to resolve the reconstruction. This
model searched for a surface that minimizes a discrete en-
ergy function on a first-order MRF. This study took advan-
tage of 3000 radargrams for each of the seven topographic
sequences which were resolved, corresponding to 50 km. Re-
sults were compared to the extruded results of Crandall et al.
(2012) and Lee et al. (2014), showing that the Xu et al. (2017)
study presented a more robust method. Berger et al. (2018)
worked on modifications to the previous methods (Crandall
et al., 2012; Xu et al., 2017). They assumed that the surface
boundary was known a priori, and the focus was on the ex-
traction of the ice–base boundary. Another useful assump-
tion was that the interface between ice and base was single-
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valued in the radargram, which meant that every column of
the radargram could only contain 1 pixel belonging to this in-
terface. By trial and error, they concluded that the optimum
result was obtained for 50 iterations. The modified Viterbi al-
gorithm achieved a significantly improved performance and
made the method more appropriate for a wide range of radar-
grams, based on comparison with results of Crandall et al.
(2012), Lee et al. (2014), and Rahnemoonfar et al. (2017a) in
terms of absolute column-wise difference.

To calculate ice thickness and basal properties, Ilisei et al.
(2012) used the MCoRDS data to construct a statistical map
that accentuates the predominant subsurface features within
the ice. The map was subsequently partitioned, facilitating
the identification of regions associated with basal scattering.
Additionally, the method identified the surface, thereby en-
abling precise ice thickness computation. The map was seg-
mented into distinct sectors such as the base, englacial fold
zones, and englacial layers. It was applied to seven radar-
grams that had been pre-processed using the minimum vari-
ance distortionless response (MVDR) approach. Manual ini-
tialization is integrated into the procedure, rendering it a
semi-automatic method. Weaknesses are presented as (i) re-
sults depending on the presented model of the radargram (not
usable for other radar systems) and (ii) the method using
spatial correlation of the subsurface features. To recognize
specific ice subsurface targets and estimate their characteris-
tics, Ilisei and Bruzzone (2014) suggested a semi-automatic
method based on statistical map generation. It is based on a
comprehensive understanding of the statistical attributes of
the radar signal and the spatial arrangement of subsurface
targets. Firstly, a statistical analysis of the radargram was
performed to yield a statistical map of it. This was followed
by thresholding and segmenting this map into the areas of
interest (horizons, noise, EFZ, and base). Having the same
objectives as Ilisei and Bruzzone (2014), Ilisei and Bruzzone
(2015) proposed a different method to obtain specific subsur-
face targets, applying feature extraction and automatic classi-
fication consecutively. The features were extracted using sta-
tistical analysis, similarly to Ferro and Bruzzone (2012), and
spatial distribution of subsurface targets. The classification
was performed using the SVM classifier (Cortes and Vapnik,
1995). They performed statistical analysis by fitting pdf’s,
as well as other manually designed features, such as parame-
ters of the best-fitting statistical model, texture (entropy), and
a statistical distance measure (Karhunen–Loève (KL) diver-
gence). The next step was to obtain an approximation of the
location and spatial distribution of the classes, e.g., the ex-
pected order of the classes and their extension in the along-
track direction. Once these targets and their features were
known statistically, this information was preserved as in-
put to an SVM for predicting regions in unseen radargrams.
SVM was chosen mostly thanks to its capabilities in general-
ization and non-linearity comprehension. The technique has
proven to be robust in handling radargram heterogeneity, as a
result of the integration of both statistical and machine learn-

ing methodologies. Moreover, SVM is capable of objective
extraction since the same criteria for feature extraction were
used for all radargrams. Furthermore, it is possible to paral-
lelize the method and it can perform at high speed. Another
attempt to classify various englacial regions was made by
Khodadadzadeh et al. (2017). The novelty of this work lies
in the fact that the window for region classification is not
fixed but its size is adaptively changed with regard to charac-
teristics of englacial structure in order to classify the radar-
gram into ice, base, and noise. Using this adaptive window,
the method is able to extract features from a radargram via
piecewise constant representation of the backscattering sig-
nal in the vertical direction to adapt the window size. These
extracted features were used in an SVM to perform the clas-
sifications in the same way as in Ilisei and Bruzzone (2015).
The authors compared their results to their previous work
(Ilisei and Bruzzone, 2015) and observed an improvement.

Shifting from classifying regions, ice base, and ice surface
IRHs to tracing internal IRH, Carrer and Bruzzone (2017)
used radargrams taken from Mars NPLD by SHARAD and
implemented a method to automatically trace (shallow and
deep) IRHs. Their approach uses a combination of local-
scale HMM and VA. Detection of IRHs involves inferring the
most probable boundaries within a section of the radargram,
employing an algorithm to patch together local IRH loca-
tions. Furthermore, a radargram enhancement and denoising
technique are introduced. One issue with VA is that when
two IRHs are very close to each other, it mistakenly inter-
prets them as one layer and might jump from one to the other
while tracing. To facilitate the comparison, the same radar-
grams as those of Ferro and Bruzzone (2013) were used.
Similarly to Ferro and Bruzzone (2013), the authors inves-
tigated the upper part of the radargram as it is the shallow
region near the surface where the spatial density of the IRHs
is high. The high computational complexity caused by large
IRH density and long-azimuth acquisition is resolved by the
divide-and-conquer approach; i.e., the radargram is divided
into blocks, within which both inference and discrimination
between noise and layer boundaries are conducted. For the
ultimate purpose of finding an alternative place to Earth for
humans, the Moon has been investigated and lava tubes have
been proposed to be an optimal place for human habitat.
Donini et al. (2018) developed a method to detect such fea-
tures using analysis of radar sounder data. Their method is
composed of two steps: (i) extraction of linear features from
radargram amplitude and phase using the method of Car-
rer and Bruzzone (2017) (HMM+VA) and (ii) evaluation of
features using a fuzzy-logic-based system in order to detect
the tubes. Another attempt to automatically detect subsur-
face lava tubes on the Moon was performed by Donini et al.
(2022b). A fuzzy system that extracts these tubes on the ba-
sis of their geometrical features in radargrams is utilized. The
method is an extension of that of Donini et al. (2018). It is an
unsupervised method, and the analysis itself is a fuzzy detec-
tion system. The steps include firstly improving the signal-to-
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noise ratio using a conditional density function (CDF) of the
noise and the signal, then using HMM and VA to detect the
lava tube signatures. Eventually, a fuzzy-logic-based system
analyzes the extracted lines in the radargram.

With the aim of categorizing radargrams into four distinct
regions – ice layering, refreezing ice, base, and the EFZ and
thermal noise – Donini et al. (2019) proposed a method for
radargram segmentation. The class termed “refreezing ice”
refers to liquid water, which creates a particular structure
when it is in contact with ice and accretes to the overlying
ice at the ice–bed interface (Carter et al., 2017). The labeled
samples are described by a set of features that discriminate
between the different structures present in the radargram. The
segmentation process involves applying a pixel-based classi-
fication using an SVM classifier with a Gaussian radial ba-
sis function (RBF) kernel. The classification is supervised,
meaning that the classifier learns the characteristics of the
different classes from a set of labeled samples selected from
the radargrams. The authors performed cross-validation to
determine the optimal parameters for the RBF kernel of the
SVM classifier. Once the classifier is trained, it assigns a la-
bel to each pixel of the radargram based on its learned charac-
teristics. The resulting segmentation map shows the distinct
regions of the radargram, categorizing the different geolog-
ical structures and noise present in the data. The algorithm
was applied to radargrams obtained in northern Greenland
and showed high accuracy in mapping the refreezing ice.

Keeler et al. (2020) devised a fully automatic probabilis-
tic method to estimate the surface mass balance from radar-
grams. The method primarily utilizes successive peak fol-
lowing and Monte Carlo simulations. The authors present
the Probabilistic Automated Isochrone Picking Routine
(PAIPR), with the aim of estimating annual surface mass bal-
ance in the upper 25 m of dry firn. The data are obtained by a
frequency-modulated continuous-wave (FMCW) radar, both
ground-based and airborne. After amplifying the signal-to-
noise ratio, the layer gradient field is estimated using a local
Radon transform with a moving window. The next step is
to find peaks and subsequently group them together to form
IRHs. Afterwards, they assign the likelihood of isochrones
using a logistic regression algorithm. Lastly, the age–depth
scale for each of the picked layer boundaries is estimated.
After comparison with the method of Onana et al. (2015), it
is concluded that this study presents a more robust method.
Furthermore, some of the limitations of the presented method
are stated, one being that it requires radargrams which are
taken from spatially longer sections.

4.3 Applications of deep learning methods

In this subsection, summaries and the main points of the stud-
ies that used deep-learning-based methods are presented. We
would like to note that although the primary focus of some
of the works, e.g., Donini et al. (2021), Donini et al. (2022c),
Garcia et al. (2021), García et al. (2023), Ghosh and Bovolo

(2022a), and Ghosh and Bovolo (2023b), lies in radargram
region segmentation, they are included in this review because
of their methodological relevance for the overall objective.

To perform the same task as Xu et al. (2017), i.e., 3D
reconstruction of the ice sheet using 2D radargrams, Xu
et al. (2018) present a DL-based method for tracing basal or
englacial IRHs. A multi-task spatio-temporal neural network
that combines 3D ConvNets and RNN is constructed. The
specific RNN is comprised of gated recurrent units (GRUs),
commonly used for learning sequential data, which are cou-
pled to a convolutional 3D (C3D) network (Tran et al., 2014).
The authors’ dataset and study regions are the same as those
of Xu et al. (2017). Comparison with Crandall et al. (2012)
and Lee et al. (2014) shows that the approach achieves bet-
ter results, as methodologies of those studies were designed
for 2D segmentation. Additionally, another comparison with
Xu et al. (2017) concludes that the approach yields slightly
poorer results because Xu et al. (2017) utilize more informa-
tion, i.e., additional non-visual data such as prior weak infor-
mation about ice thickness information from satellite maps.
However, without this information, the study yielded more
accurate results. Also, the method is much faster than that of
their previous study (Xu et al., 2017) as the former method
rests on statistical analysis. To further evaluate the method,
the authors ran several baselines to gauge the different com-
ponents of their architecture, observing that all the compo-
nents play a vital role in the final outcome.

To trace the ice–air and ice–bed interfaces, Kamangir et al.
(2018) initially applied an undecimated wavelet transform
for removing speckle noise from the radargrams due to its
translation invariance. The next step is a multi-step neural
network to extract the edges from the radargram. The archi-
tecture is a pre-trained HED, built from a series of convolu-
tions. After each set of convolutions, there are two outcomes,
one of which goes through a max pooling step and next step
of the convolution (thus shrinking in size) and another one
that is taken as a side output. These independent networks
combined with the result of each side output form the fi-
nal output of the model. Yari et al. (2019) used NASA OIB
ICE2012 data to implement a multi-layer learning HED to
map the shallow IRHs. Three experiments were performed:
(i) using a pre-trained model, (ii) training on a synthetic radar
dataset, and (iii) training with a normal distribution initial-
ization. Pre-training was performed on the BSDS500 data
(Martin et al., 2001) and their augmentation (Arbeláez et al.,
2011). Even though transfer learning seems to be a good ap-
proach, because most neural networks are trained on opti-
cal imagery with much less noise, the pre-training approach
yielded poor results or did not converge overall. The syn-
thetic dataset uses a simple linear superposition for IRHs,
and a layer thickness model generated by a smoothed Gaus-
sian random process produces a simplified and not very re-
alistic dataset. Thus, training on synthetic data did not re-
turn acceptable results either. It was concluded that training
a model from scratch gives the best results out of the three.
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To synthesize radargrams, a generative adversarial net-
work (GAN) (Goodfellow et al., 2014) was used by Rah-
nemoonfar et al. (2019), and later an HED model was trained
using this synthetic dataset. The authors noted that such
radargrams cannot completely replace the use of real radar-
grams for training since they do not contain all characteris-
tics of real radargrams such as noise and the Doppler effect.
Along with quantitative tests, a qualitative test was under-
taken to evaluate the produced radargrams, which resulted
in synthetic and real radargrams being indistinguishable to
the observers. After training an HED network for tracing
englacial boundaries, it was observed that the network’s re-
sults improved when trained with actual and synthetic data.
Due to their inability to reproduce nuances of real radar-
grams, training solely on synthetic data cannot produce high-
quality results. The best results came from the experiment
with an equal number of synthetic and real radargrams for
both training and testing, and the worst came from a com-
bination that was trained on synthetic radargrams and tested
on real ones. An important conclusion is that while synthetic
data are visually and statistically similar to real data, they fail
to represent the physics. Khami et al. (2021) also used GAN
to remove strip noise and confine layers in RES data. To re-
move the chance of the model learning implicit assumptions
of operators for filtering criteria, they chose an unsupervised
approach to GAN called CycleGAN. This is a GAN net-
work for image-to-image translation between two unpaired
domains (Zhu et al., 2017). CycleGAN requires two sets of
data. In this study, they have used one real-world unfiltered
dataset and one synthetic dataset (on the basis of Hall et al.,
2015). The framework consists of two generators, each of
which learns to translate images to the domain of the other
generator and subsequently feeds the output to the other gen-
erator. One generator receives real unfiltered radargrams (Hi-
CARS version 1 radar data; Blankenship et al., 2017), with
strip noise, and the other one receives synthetic dataset, with
clear but simple stratigraphy. This unsupervised GAN was
chosen because of the limited number of paired noisy and in-
terpreted radargrams available for training. Their model was
rather effective in tracing the ice–bed interface in radargrams
with minimal strip noise. However, with larger amounts of
strip noise, it was not successful. Their synthetic data also
prove to be inadequate in representing transitions as details
at the ice base in the radar data are removed.

Cai et al. (2020) developed a framework performing pixel-
level classification using a deep convolutional classifier with
the goal of classifying the englacial regions of ice sheets.
The network architecture is composed of filter processing
and an encoder–decoder. For training and validation, radar
products provided by CReSIS are used. Their initial stage
is to remove the noise using bilateral filtering. The encoder
contains atrous spatial pyramid pooling (ASPP), whose func-
tion is to improve classification and obtain multi-scale fea-
ture extraction, and the backbone network is the ResNet3 (He
et al., 2016). In the decoder, high- and low-level features are

proportionally concatenated so that the low-level edge infor-
mation can be used. The model manages to yield the same
F measure as Kamangir et al. (2018).

Ibikunle et al. (2020) used a multi-class neural network
and the iterative “row–block–column” approach and pre-
sented their preliminary results for automatically tracing the
snow-layer boundaries from snow radargrams of CReSIS.
They simulated the training data, which are considered to
not capture all the details of real radargrams in snow but
nevertheless show some promise for training. The iterative
approach starts from the known IRH using the rows below
it and continues in the direction of deeper snow boundaries.
Using the same iterative approach, Ibikunle et al. (2023) en-
hanced their previous work and trained a multi-class classifi-
cation deep neural network to identify the index for the next
layer boundary in each column, using a RowBlock approach.
A “columnpatch”, which is the N neighboring columns of
the current column under the iterative process, is used to
enhance robustness and spatial awareness of the algorithm.
Since this method is grounded in selecting a number of rows
beneath each known IRH, it is methodologically inappropri-
ate for deeper boundaries and suitable only for snow-layer
boundaries. Firstly, the deeper in the radargram one goes,
the steeper variability there is in the geometry of the bound-
aries. Secondly, owing to layer compaction from overburden
pressure, the deeper IRHs are closer to each other, making
it much more difficult to choose a suitable number for each
row block.

Acknowledging that automatically tracing englacial IRHs
is much more challenging than detecting the ice–base bound-
ary, Wang et al. (2020b) implemented a CNN to detect the
surface boundary, estimate layer thickness, and estimate the
number of visible IRHs. They frame the task as a tiered seg-
mentation problem (Felzenszwalb and Veksler, 2010), and
the aim is to solve this tiered labeling with the use of DL
methods. An RNN refines the boundaries of the IRHs below
the surface. This is a more general version of tiered segmen-
tation as in this case the number of tiers (labels) is not known.
For this reason, this new approach is one that could handle a
large and unknown number of labels.

Yari et al. (2020) implemented a multi-scale learning pro-
cess with an edge detection function as well as several side
outputs at each level. Their aim was to track shallow IRHs
in radargrams from different radar systems. There are two
training paths: one uses the output of Koenig et al. (2016) for
training, which was later corrected by a human expert, and
the other path is training from scratch. They importantly in-
dicate that tracing IRHs is a more complicated task compared
to tracing the air–ice and ice–base boundaries. The second
method of training gives the best results, as the shortcomings
of the first method were most probably due to the presence
of noise.

Varshney et al. (2020) applied a fully convolutional net-
work (FCN) and performed a multi-class semantic segmen-
tation on snow radargrams to infer the thickness of snow lay-
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ers. The layers are detected, and their thicknesses are sepa-
rately calculated using an automated technique. The authors
noted that methods that employed DL had so far been fo-
cused on the binary detection of each pixel, while in their
approach they focused on separately detecting each IRH
uniquely. The algorithm uses pixel-wise annotations for each
IRH for training. This means that each pixel has a label stat-
ing if it belongs to one horizon or another. As ground truth,
the output of Koenig et al. (2016) was utilized. Since the
goal is to find complete snow layers, as opposed to layer
boundaries, the regions of the radargrams where the labels
followed a discontinuous layer boundary were cropped out.
One of the disadvantages of this method is that by cropping
out regions with incomplete training labels, about 50 % of
the training dataset is diminished. As this is done manually,
it is a substantial task that requires a lot of operator time to
perform. Three different architectures for semantic segmen-
tation are trained – U-Net (Ronneberger et al., 2015), PSP-
Net (Zhao et al., 2016), and DeepLabv3+ (Chen et al., 2018)
– to produce multi-class results. The authors concluded that
DeepLabv3+ yielded the best results in terms of both spa-
tial information and the global textual prior, attributed to
its more advanced architecture. Varshney et al. (2021b) also
used FCN to trace snow-layer boundaries. This publication
is a combination of Varshney et al. (2020) and Rahnemoon-
far et al. (2021) and also employs the same architectures as
the latter. Their training data come from Koenig et al. (2016)
and are labeled as a separate class. Cropped radargrams were
used as in Varshney et al. (2020) so that only continuous
picked horizons prevail to reduce the effects of noise. Varsh-
ney et al. (2020) performed a similar pre-processing step.
They form semantic layers from the cropped radargrams and
the annotated layer boundaries. Varshney et al. (2022) used
the regional climate model Modèle Atmosphérique Régional
(MAR) (Fettweis, 2007) to compute the surface mass bal-
ance for the past 30 years to match the corresponding stratig-
raphy seen in the snow radargrams, corrected with density
variations in depth using Herron and Langway (1980) den-
sification. Radargrams with manually detected and corrected
layer boundaries are selected for training. These annotated
labels and labels taken from MAR in the regression model
of Varshney et al. (2021a) are taken into account to estimate,
learn, and predict the thickness of the snow layers.

Varshney et al. (2021a) used a CNN regression network
to estimate the thickness of the snow layer. For training,
the traced boundaries of Koenig et al. (2016) and the pre-
processing product of Varshney et al. (2020), which are
cropped for incomplete IRHs, were employed. This study
is built on the work of Varshney et al. (2020), in which the
snow-layer boundaries were traced and used as ground truth.
Rahnemoonfar et al. (2021) employed CNN architectures for
multi-scale learning and HED in order to perform automatic
tracing of IRHs. They selected this approach to overcome
the noisy nature of the radargrams and to extract both local
and global features. Training data come from the output of

Onana et al. (2015), corrected by a human expert in a previ-
ous study (Koenig et al., 2016). For another experiment, syn-
thetic radargrams are used. A number of deep neural network
architectures were employed for training, such as AlexNet
(Krizhevsky et al., 2017b), VGG-net (Simonyan and Zisser-
man, 2014), GoogleNet (Szegedy et al., 2014), and ResNet
(He et al., 2016). It was concluded that the best results come
from training the multi-scale model on real data. Other ex-
periments, i.e., training the model on an augmented bench-
mark dataset and training the model on synthetic data, and
traditional edge operator (Canny) results do not show com-
paratively satisfactory outcomes. The authors highlighted
that while numerous renowned DL methodologies exhibit re-
markable performance when applied to optical imagery, their
efficacy tends to wane significantly when extended to non-
optical domains, such as radargrams, as discussed in the lit-
erature (Heaven, 2019). Another important conclusion from
this paper is that transfer learning is not an optimal solution
for radargrams and that training from scratch leads to signif-
icantly superior outcomes, the drawback being the necessity
of a large number of annotated data. Further work on pro-
ducing synthetic data with higher quality that could represent
real data more realistically might be a suitable solution.

Zalatan and Rahnemoonfar (2023) consider that two
weaknesses of CNNs are sensitivity to noise and their in-
ability to perform spatio-temporal tasks. Therefore, to trace
snow-layer boundaries from radargrams, the authors utilize
a recurrent graph convolutional neural network (GCN; Kipf
and Welling, 2016). It converts the thickness of the snow lay-
ers into temporal graphs and use them as inputs. Similarly to
the RNN, a long short-term memory (LSTM) is also imple-
mented. One improvement of the model is its capabilities to
expand to a higher number of traced IRHs. The model is ca-
pable of detecting five shallow IRHs. Liu and Rahnemoonfar
(2024) build upon Zalatan and Rahnemoonfar (2023) and de-
velop a framework called PSAGE-LSTM, which combines
GraphSAGE (Hamilton et al., 2018) with long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997) struc-
ture. It also incorporates physical properties from the MAR
regional climate model (Fettweis, 2007) as additional infor-
mation. The authors employ this framework for predicting
the thickness of deeper ice layers from radargrams measured
over Greenland. Similar to other works that predict snow-,
firn-, and ice-layer thicknesses, they do not require training
data with IRHs that span long distances. Thus their training
radargram sections can be as short as a few tens of pixels
along the survey direction.

Varshney et al. (2023) developed a wavelet-based multi-
scale DL architecture to detect layers in firn. The multi-scale
backbone architecture is the one of Yari et al. (2019) and
Rahnemoonfar et al. (2021). The authors set up two multi-
scale CNNs which differ in the point of where to apply the
wavelet transform, i.e., to the image (so-called WaveNet) or
to each side output (so-called Skip-WaveNet). These two ar-
chitectures are each combined with three popular discrete
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wavelets. The authors use the OID dataset for training and
compare their results of inferred firn-layer thickness with
some in situ stake measurements taken ∼ 16 km away from
some parts of the radar profile. Six experiments were per-
formed with each of the two architectures and three wavelet
transforms. Overall, the authors report some enhancement in
detection from the Skip-WaveNet architecture with the dmey
discrete wavelet (Daubechies, 1992).

Donini et al. (2021) took advantage of unsupervised learn-
ing to extract information from subsurface geological targets.
The choice of unsupervised learning is both to utilize the
capability of DL (as opposed to classical machine learning
and statistical analyses) and to overcome the lack of suffi-
cient labeled data. It is worth noting that this work is among
the ones which try to detect subsurface targets in radargrams
and not necessarily in layer boundaries. The method entails
three steps: (i) generation of a coarse segmentation map of
each radargram, (ii) refining this map using DL, and (iii) fur-
ther analysis of these features. Each radargram is considered
to consist of two classes, i.e., background and target, and
the target class is further subdivided using the unsupervised
method. The first step, after patch extraction of the radar-
grams, is to use the method of Ferro and Bruzzone (2012)
to fit distributions to each patch to classify them into back-
ground and features classes. Similarly to Garcia et al. (2021),
the selected unsupervised architecture is the W-Net (Xia and
Kulis, 2017). In this network, each convolutional layer learns
semantic features from the background class. The normalized
reconstructed error maps are exploited to gain information
on the two classes. This error is small for the background
and large for features. The MARSIS data from Mars’ South
Pole are used for evaluation. Garcia et al. (2021) attempted
to segment the radargrams into five classes (air, ice sheet,
ice shelf and crevasses, base, and noise). Since Ilisei and
Bruzzone (2015) required hand-labeled radargrams and in-
put features such as entropy and the Kullback–Leibler dis-
tance (Lin, 1991), they replaced SVMs with more modern
DL techniques such as CNN. However, the CNNs also re-
quire a large number of annotated training data and there are
not many available annotated radargrams for training. This
challenge was overcome using W-Net (Xia and Kulis, 2017),
an unsupervised, fully convolutional autoencoder architec-
ture. Overall, the authors were more successful in detecting
the air and noise classes compared to other classes. Moving
away from unsupervised learning, García et al. (2021) at-
tempted to reach the same objectives as Garcia et al. (2021)
using an autoencoder CNN, and to overcome the lack of la-
beled training data, a pre-trained network in another domain
(ImageNet; Russakovsky et al., 2015) was used. The role of
transfer learning is to adapt the pre-trained CNN weights in
the radar sounder domain. Domain adaptation is established
by the addition of a convolutional layer in the upstream of
the CNN so that the model can handle different properties
of a radargram. Furthermore, the pre-trained CNN’s last lay-
ers are removed so that it is not too specifically tailored to

the features of the source domain. The kernel of the archi-
tecture is MobileNet V2 (Sandler et al., 2018). The results
show the network’s robustness and that the learned features
from the source domain are extendable to the radar sounder
domain. The network seems to correctly distinguish between
ice sheet and ice shelf; nevertheless the results without fine-
tuning seem to be of poor quality.

To obtain the locations of geological targets, Donini et al.
(2022c) implemented a U-Net architecture including ASPP
for controlling the resolution of features used for training,
as introduced by Guo et al. (2020). The training is a two-
step process. In the first step, the network initializes param-
eters and extracts features by minimizing the loss between
input and output. In the second step, a supervised training
takes place to yield the final classes. Data augmentation has
been performed to increase the data 5-fold. The segmentation
takes places within multiple scales, and the ASPP expands
the receptive feature space to host more context while using
a lower number of parameters. The initial weights are taken
from pre-training to optimize the loss function. U-Net is also
equipped with an attention gate which has the function to dis-
card irrelevant information through the skip connections. Ad-
ditionally, morphological filters are convolved to refine the
outcome of U-Net. The final product of this method is a map
that segments each radargram into four classes: (i) englacial
layers, (ii) basal ice, (iii) base, and (iv) noise. The best out-
come has been the detection of basal ice and noise classes.

The aim to segment subsurface regions in a radargram was
continued by García et al. (2023), who published their work
on a weakly supervised approach to segment radar prod-
ucts, a combination of the methods in Garcia et al. (2021)
and García et al. (2021) made to segment a revised version
of the classes of Donini et al. (2022c). The main driver for
the choice of transfer learning was to overcome the insuffi-
ciency of labeled data and the class imbalance which is the
case for radargrams. Regions of each radargram are classi-
fied into five discrete classes, i.e., free space, noise, inland
ice, crevasses and englacial features, and base. Two transfer
learning methods are presented and the method comprises
two designs. One network (a lightweight CNN) is pre-trained
in a domain other than radargrams in a supervised manner,
following the idea of Garcia et al. (2021). The second ap-
proach is a very deep network, pre-trained with radar sounder
radargrams in an unsupervised manner (García et al., 2021).
A set of four experiments was performed, each with and
without data augmentation and transfer learning and with dif-
ferent sizes of pre-training sets. Their results show a proof for
the effectiveness of transfer learning, and both designs show
good performance. However, the first one (a lightweight
CNN pre-trained with non-radargrams) seems to be the bet-
ter choice on the grounds of being lightweight and not re-
quiring much time and computation power, even though the
deeper network’s accuracy is slightly higher. Data augmen-
tation shows enhanced accuracy for one of the datasets, the
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smaller and more simple one (5 % higher for MCoRDSv1
data).

To automatically calculate ice sheet thickness, Cai et al.
(2022) constructed a method to automatically trace the ice
sheet surface and base boundaries. To this end, they make use
of a multi-scale fusion network (MFFN) and a multi-scale
convolution (MSM) module learns these representations. As
the name suggests, in this method the provided ground truth
guides the outcome at every stage. The authors employ a
CE-focal loss function, which is a combination of the cross-
entropy of weight balance and cross-entropy with a modu-
lating factor. It is shown that this loss function is an optimal
way to counterfeit the class imbalance of the data. A total
of 4700 and 974 radargrams were used for training and vali-
dation, respectively, cropped in 400× 400 pixels. The model
was compared with other available DL methods such as VGG
(Simonyan and Zisserman, 2014), HED, PiDiNET (Su et al.,
2021), and DexiNed (Soria et al., 2021) and showed bet-
ter precision and recall. However, the authors observed that
the proposed method is not very efficient in detecting faint
boundaries.

Dong et al. (2022) introduced EisNet, a deep neural net-
work fusion architecture to trace different types of IRHs,
i.e., ice–base and IRHs. EisNet is composed of a convolu-
tional discriminator and two convolution extractors. To train
the extractors, the authors produced a synthetic dataset, and
the discriminator is pre-trained with the synthetic data, while
the real data are used for transfer learning. The discriminator
categorizes the radargram fed to it according to the presence
or absence of the basal interface (ice–base boundary). If the
radargram contains this interface, it goes through a convo-
lutional encoder–decoder (the same as U-Net; Ronneberger
et al., 2015). In the case of no basal interface, another convo-
lutional encoder–decoder is chosen to perform the extraction.
In testing with the real data, the shallow part near the surface
and the last 522 time intervals are discarded because they
lack discernible features. Overall, they report some short-
comings in the results, which are attributed to noise and ob-
scure interface features. Tang et al. (2022) proposed a fusion
method that combines filtering methods for both noise reduc-
tion and horizon extraction. They propose a combination of
these methods, which is expected to enhance the quality of
noise removal and horizon tracing. The noise removal filters
are Karhunen–Loève (KL; Karhunen, 1946), the frequency–
wavenumber domain (F–K), and F–K migration (Loève,
1977), and the neural network for noise removal is DnCNN
(Zhang et al., 2017). The basic idea is that this network is
based on residual learning and learns from the residual dis-
tribution of the noise in the radargram and that this distribu-
tion is subtracted from the radargram to remove the noise.
After seeing low-quality results for horizon tracing using a
U-Net architecture, the idea is to merge the classical F–
K and KL filtering methods for noise removal and EisNet
of Dong et al. (2022) for the horizon extraction. Neverthe-
less, although lowering noise levels, the results of this fusion

method seem to contain some discontinuity and require some
post-processing for the extraction of IRHs.

A combination of a CNN and probability graphical model
(PGM) (Jordan, 2004; Ghahramani, 2015) was tested by Liu-
Schiaffini et al. (2022) to automatically identify the ice–
base interface. While DL networks have the ability to learn
features from complex data, they fail to understand ex-
plicit structures. On the contrary, PGMs are able to capture
such structures through encoding relationships among ran-
dom variables. The method has two steps: a CNN to ex-
tract the overall and large-scale structure of the ice–base in-
terface and a continuous conditional random field (CCRF;
Qin et al., 2008), a type of PGM, in order to produce the
detailed structure and distinguish the nadir ice–bed inter-
face at a smaller scale. This two-stage learning has been
performed on the University of Texas Institute for Geo-
physics high-capability radar sounder (HiCARS) (Schroeder
et al., 2013) radargrams from East Antarctica. Quantitatively,
the combined CNN+CCRF model has similar results as
the CNN only, but the combined model captures different
features on smaller scales. Qualitatively, the CNN+CCRF
model yields more continuous reflections compared to the
CNN’s results. Thanks to its stochastic components, the com-
bined model captures uncertainties more effectively. Also,
CNN+CCRF results oscillate much less in the vertical di-
mension (along the interface) compared to both the CNN and
human-annotated results. It was noticed that human anno-
tations of the ice–bedrock interface are misleadingly influ-
enced by off-nadir reflections due to noisy returns, causing
humans to annotate side reflectors mistakenly instead of the
interface itself.

Transformer-based models, known for their ability to
capture long-range sequential context and the global spa-
tial contextual prior in contrast to traditional CNN-based
methods that primarily capture local spatial context, were
tested on radar sounder data as well by Ghosh and Bo-
volo (2022a, b). Subsurface targets are characterized us-
ing a hybrid TransUNet–TransFuse architectural framework,
TransSounder. The study uses the MCoRDS dataset and
compares the performance of TransSounder with other ar-
chitectures such as TransUNet (Chen et al., 2021), Trans-
Fuse (Zhang et al., 2021), and U-Net. The results show that
TransSounder achieved the highest overall accuracy and ef-
fectively captured global and local spatial contextual fea-
tures in radargrams. In another unsupervised attempt, Ghosh
and Bovolo (2023a, b) built upon a previous work on a
self-supervised transformer (Hamilton et al., 2022) called
Self-Supervised Transformer with Energy-based Graph Op-
timization (STEGO). This work is to test the capability of
this network. It was enhanced by incorporating an expan-
sive network to increase the resolution of detailed visual fea-
tures from a middle segmentation stage to a reconstructed
signal. Each radargram is classified into three target class-
es/regions: ice, bedrock, and noise. The modification com-
pared to STEGO (Hamilton et al., 2022) is adding an ex-
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pansive network in order to up-sample dense features from
an intermediate segmentation head. Although not as good as
other architectures, such as U-Net or that of Ghosh and Bo-
volo (2022b), the approach is more effective than the orig-
inal STEGO, keeping in mind that it was not designed for
radar sounder data. Overall, this shows that without any train-
ing data, it is possible to extract some meaningful semantics
from the radargrams. Ghosh and Bovolo (2024) built on their
previous work and utilized STEGO in an unsupervised ar-
chitecture, in addition to an expansive network. Inspired by
pre-trained transformer approaches in natural language pro-
cessing, the framework embeds discriminative pixel features
with rich semantic information. The framework is called un-
supervised radargram segmentation (URS) architecture and
is another attempt in the semantic segmentation of regions in
radargrams. The aim is to segment three classes: ice layers,
bedrock, and noise. The choice of an unsupervised network is
partly due to the weakness of encoders to accurately capture
global spatial contexts in radargrams. The authors have de-
vised a loss function that minimizes the loss between the fea-
tures of the input radargram and the reconstructed ones from
the latent space. This work demonstrates that self-supervised
vision transformers (ViTs) are able to perform unsupervised
semantic segmentation of radar data.

Atefeh Jebeli et al. (2023) aimed at annotating bed and
surface horizons using a two-step semi-supervised annota-
tion (TSSA) approach which works on the backbone of ARE-
SELP by Xiong et al. (2017) for producing training data. A
U-Net architecture is trained on these data to trace the target
boundaries. U-Net is combined with pre-trained VGG19 (Si-
monyan and Zisserman, 2014) and inception U-Net (Deliba-
soglu and Cetin, 2020) architectures, also taking advantage
of data augmentation to enhance the training outcome. The
designed experiments are a combination of the three archi-
tectures’ augmentation methods. The authors report that U-
Net+ inception U-Net with data augmentation yields the
best results.

To detect depth hoar layers from airborne radar data, Peng
et al. (2024) developed a deep learning framework. Their ap-
proach includes pre-processing using Fourier transform and
wavelet reconstruction for noise reduction. They proposed
an improved instance segmentation based on a self-attention
mechanism, called ST-SOLOv2. It builds upon SOLOv2
(Wang et al., 2020a) and captures global contextual infor-
mation. It uses a feature pyramid network (FPN) for multi-
scale feature extraction, a dynamic head for classification,
and dynamic convolution to decouple the mask branch for
better segmentation. The authors used 4230 manually anno-
tated radargrams from NASA OIB snow radar data. The inte-
gration of the Swin transformer backbone improves the abil-
ity to capture global context and fine-scale details simultane-
ously. The proposed method shows an improved performance
compared with traditional networks such as SOLOv2 (Wang
et al., 2020a) and Mask R-CNN (He et al., 2017).

Moqadam et al. (2025) introduced IRHMapNet, a
deep learning framework developed for the automatic trac-
ing of IRHs. The framework is based on a U-Net archi-
tecture trained on a dataset which is comprised of three
groups of data: (i) hand-labeled datasets, in which all the
IRHs are manually traced; (ii) IRHs that are the result of
image processing methods for tracing IRHs; and (iii) layer
slope inference results from the method developed by Sime
et al. (2011). The authors employed extensive multi-staged
hyperparameter tuning using Bayesian optimization. Apart
from the conventional U-Net architecture, Nested U-Net (U-
Net++) (Zhou et al., 2018) is also used for training. Five
experiments were performed, with conventional U-Net per-
forming slightly better than Nested U-Net. Multiple post-
processing steps were also performed on the output of the
deep learning model, such as thresholding, morphological
opening, skeletonization, and connected component analysis.
Challenges such as class imbalance and shortcomings of con-
ventional evaluation metrics led to the introduction of a mean
vertical distance metric to better measure the alignment be-
tween predicted and actual IRHs. The results showed that the
proposed method can successfully trace deep IRHs over large
spatial extents, achieving continuous and reliable detection.

5 Discussion

From the timeline of applications to map englacial stratig-
raphy, we note that methods started off from early-stage
computer vision techniques, such as image processing, ac-
tive contour, Hough transforms, and Radon transforms, and
subsequently, a shift occurred towards solutions rooted in
probabilistic and statistical approaches, with methods such
as HMM emerging as prominent choices. In recent years,
the noticeable trend has transitioned towards the adoption of
DL techniques. This trend towards the use of deep-learning-
based methods is evident from Fig. 7, depicting a categoriza-
tion of methods that we presented in the previous section.
The increasing application of DL techniques across various
fields of applications (Minaee et al., 2020; Chen et al., 2022;
Sarker, 2021) further emphasizes the likelihood of advancing
methods and improving results for radargram segmentation
and IRH mapping.

From an application-oriented point of view, there has been
a notable transition from methods primarily focused on trac-
ing the air–ice and ice–base boundaries in radargrams (e.g.,
Gifford et al., 2010; Rahnemoonfar et al., 2017a), mostly for
estimating ice thickness and basal roughness, to the increas-
ingly emphasized task of accurately tracing englacial layers.
However, most of latter have been employed on layers and
horizons in snow and firn and shallower IRHs (e.g., Varsh-
ney et al., 2022; Yari et al., 2020) but have been much less
often tested on deep IRHs. Table 2 shows a classification of
the published work based on both the category of the used
methods and the IRH, boundary, or regions that those pub-
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Figure 7. Temporal distribution of research methods: count refers to the number of publications within this field for each year in the respective
category (for brevity, again restricted to the time after 2000).

lished works attempted to trace. One of the points that can
be clearly noticed in this table is the inadequacy of published
models for tracing deep IRHs.

The abundance and closeness of features comprising IRHs
in a radargram, often on the order of a couple of wave-
lengths, along with possible merging and discontinuities of
horizons are the main challenges in mapping IRHs. In most
other feature extraction and image segmentation applications
in glaciology, features and edges (if multiple are present) are
usually not located at such short distances from each other
as IRHs could be, for example, in glacier grounding-line de-
lineation (Mohajerani et al., 2021). It remains a complex task
for any algorithm to detect different features as close as a few
pixels from each other and to not merge them when there is
no merging to be done but to separately trace them in the
case of discontinuities, which are another phenomenon that
obstructs mapping attempts (Varshney et al., 2021b). They
could emerge as a result of the tracing algorithm’s shortcom-
ings and inefficient tracing capabilities. Naturally occurring
discontinuities could be due to merging of horizons as a re-
sult of decreasing separation of the actual (physical) reflec-
tors at depth, usually below half a wavelength or bandwidth
limit, e.g., by compaction for firn layers (Varshney et al.,
2021b), ice-dynamic strain thinning (Conway et al., 2002),
unconformities caused by changing environmental condi-
tions at the surface (Siegert et al., 2004), heterogeneity of
microstructures (Koenig et al., 2016), or simply decreasing
surface accumulation along a profile all the way to an erosive
regime. Moreover, as the undulation of IRHs in ice sheets be-
comes more similar to basal topology in the deeper regions,
steeper features are more present in deeper parts of the ice
sheet (Winter et al., 2019). Such steep features are signifi-

cantly more challenging to, first, image by RES systems and,
second, be differentiated in their structure, even for experts.

The DL approaches which have been applied to mapping
and segmenting IRHs are among common architectures and
methods that have already demonstrated success in other do-
mains (Choudhary et al., 2022; Emek Soylu et al., 2023; Sid-
dique et al., 2021). However, their inability to yield more sat-
isfactory results in mapping stratigraphy so far can be asso-
ciated with a number of reasons. One is the aforementioned
complexity of radargrams related to the closeness of features
and horizons to each other. In many cases, if a method maps
an IRH even a few pixels in an incorrect spatial direction,
this could be a false prediction and there could be another
horizon with a different age at this location. Another possi-
ble obstruction for CNN methods is class imbalance, mean-
ing that the number of pixels corresponding to IRHs is far
fewer compared to the number of pixels corresponding to
the background (non-IRH) class. Unlike tasks such as map-
ping glacier calving fronts (Mohajerani et al., 2021), in which
similar methodologies are applied to images with mostly one
boundary in the entire image, radargrams suffer from a much
higher level of imbalance between classes. Some solutions
have been proposed to overcome this (e.g., Cai et al., 2022;
García et al., 2023; Donini et al., 2022a). On the other hand,
CNNs are known to be data-hungry and require a large num-
ber of annotated data for training (Karimi et al., 2020; Li
et al., 2019). Obviously, there seems to be a lack of a large
number of annotated data for mapping deep IRHs to be used
as training. In most glaciological investigations for which
radargrams are annotated, only a handful of IRHs are traced,
resulting in a majority of IRHs remaining unlabeled. Such
annotations are unproductive for training purposes and con-
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Table 2. Presentation of published works by either the mapped IRHs or region and the category of methods used. The plus mark signifies the
studies that were targeted at mapping more than one group of IRHs.

IRH type

Category Surface and
bed reflection

Snow/firn Deep IRHs Regions/segments

Computer vi-
sion
methods

Gades et al. (2000)
Gifford et al. (2010)
Reid et al. (2010)
Mitchell et al. (2013b)
Rahnemoonfar et al. (2017a)
Rahnemoonfar et al. (2017b)
Goldberg et al. (2020)

Mitchell et al. (2013a)
Onana et al. (2015)
Koenig et al. (2016)

Fahnestock et al. (2001)
Freeman et al. (2010)
Sime et al. (2011)
Karlsson et al. (2013)
Panton (2014)
Dossi et al. (2015)
McGregor et al. (2015)
Xiong and Muller (2016)
Xiong et al. (2017)
Lines et al. (2019)
Delf et al. (2020)

Ferro and Bruzzone (2013)

Probabilistic
and
statistical
methods

Crandall et al. (2012)
Ilsei et al. (2012)
Lee et al. (2014)
Xu et al. (2017)
Berger et al. (2018)

Keeler et al. (2020) Smock and Wilson (2012) Ferro and Bruzzone (2011)
Ferro and Bruzzone (2012)
Ilsei et al. (2014)
Ilsei et al. (2015)
Carrer and Bruzzone (2017)
Khodadadzadeh et al. (2017)
Donini et al. (2018)
Donini et al. (2019)
Donini et al. (2021b)

Deep learning
methods

Kamangir et al. (2018)
Xu et al. (2018)
Rahnemoonfar et al. (2019)
Cai et al. (2020) (+)
Khami et al. (2021)
Cai et al. (2022)
Dong et al. (2022) (+)
Liu-Schiaffini et al. (2022)
Jebeli et al. (2023)

Yari et al. (2019)
Yari et al. (2020)
Ibikunle et al. (2020)
Vashney et al. (2020)
Rahnemoonfar et al. (2021)
Varshney et al. (2021)
Varshney et al. (2021)
Varshney et al. (2022)
Ibikunle et al. (2023)
Zalatan et al. (2023)
Varshney et al. (2023)
Liu and Rahnemoonfar (2024)
Peng et al. (2023)
Moqadam et al. (2025) (+)
Wang et al. (2020)

Dong et al. (2022) (+)
Tang et al. (2022)
Moqadam et al. (2025) (+)

Cai et al. (2020) (+)
Garcia et al. (2021a)
Garcia et al. (2021b)
Donini et al. (2021a)
Donini et al. (2021c)
Ghosh and Bovolo (2022)
Ghosh and Bovolo (2023)
Garcia et al. (2023)
Ghosh and Bovolo (2024)

fuse the CNN (Tang et al., 2019; Hyun et al., 2020), as some
features are traced, while other similar ones are left untraced.
In fact, this could have a counter-productive effect for CNN
training (Tang et al., 2019). The useful annotations, which
would be ideal for training, are radargrams in which all, or at
least a large majority, of IRHs are annotated. Figure 8 depicts
an example of this.

Even though there have been numerous semi-automatic
and automatic attempts to trace surface and basal reflections
and a substantial number of attempts regarding snow and
firn boundaries, not much work has been done in develop-
ing methods which can successfully trace deep IRHs. This
lack of methods can be seen in Sect. 4 and Table 1. There are
ongoing attempts to map deep reflections along with ongoing
efforts to apply machine learning, complemented by transfer
approaches, to interpolate and extrapolate layer characteris-
tics across gaps (Bente et al., 2024).

6 Conclusion and outlook

This review aims to provide a contemporary overview of ad-
vancements in mapping the internal structure of ice sheets
over the past 2 decades. While each of the investigations
and developed algorithms presented in this review has con-
tributed to expanding comprehension of mapping the inter-
nal structure of ice sheets, the rising incidence of incon-
clusive and partial results across a number of datasets calls
for a thorough and all-encompassing approach for evaluating
the methodologies and findings. We assessed the employed
methodologies and proposed techniques and outcomes and
delineated emerging trends and prospective trajectories for
future research.

Due to the vastness of the Antarctic ice sheet, there
are still many data that have not yet been adequately or
sufficiently analyzed. Moreover, a comprehensive mapped
englacial stratigraphy of the Greenland ice sheet, though ma-
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Figure 8. A section of a radargram (Steinhage et al., 2013) and its corresponding entirely annotated mask.

jor stratigraphy is available from manual tracing (MacGre-
gor et al., 2015), and a stratigraphy of mountain glaciers
are still points of interest as well. Therefore, the need for
a fully automated IRH tracing tool is more than evident. Us-
ing such methods, we could increase our knowledge of the
age–depth relationship from ice-core sites, which are point
measurements, to larger spatial scales and even synchronize
age–depth relationships between ice-core sites in much more
detail than is currently feasible (e.g., Lilien et al., 2021) and
have a complete picture for larger areas between drill sites.
An automated method also facilitates imaging regions of past
ice-dynamic changes and varying environmental conditions.
This would greatly contribute to our understanding of ice
sheets’ and glaciers’ presently visible englacial structure.

We observe that DL-based methods have taken the lead
in solving the IRH tracing task in the past couple of years.
This can be related to the rapid advances and increasing ca-
pabilities that the DL field has been experiencing. Never-
theless, interpreting radargrams poses significant challenges,
even for experienced human operators. Radargrams are of-
ten noisy and contain a multitude of closely packed fea-
tures. This complexity arises from their representation over
vast depth and length scales, in particular with respect to the
radar wavelengths, spanning up to several kilometers verti-
cally and hundreds of kilometers in the flight direction. Con-
sequently, given the broad range of conditions covered by
the radar, imaged features and IRHs within radargrams can
appear to be discontinuous, merge with each other, or be
inadequately represented. These complexities make it dif-
ficult for both humans and algorithms to accurately anno-
tate and determine the fate of IRHs and the ice–base bound-
ary. The data acquired by radar systems and the presenta-
tion of radargrams have not changed for the past couple of

decades. Although system resolution, the signal-to-noise ra-
tio, and signal penetration depth have increased, the visual-
ization of IRHs has not changed considerably. Current re-
search on mapping englacial stratigraphy continues to grap-
ple with the complexity of the task, focusing on fundamental
challenges rather than solely refining existing algorithms and
methodologies.

The described challenges for automated tracing methods
to work properly could be facilitated by establishing a com-
plete pipeline for tracing IRHs, which was trained on a
benchmark dataset. Such a dataset would provide the advan-
tage of allowing a more objective, quantifiable, and hence
rigorous comparison among different approaches. It has been
discussed that performing comparison among different seg-
mentation and edge detection methods would not be a valid
comparison since results could depend on the specific criteria
of implementation (Kaspersen et al., 2001). Rather, method
evaluation on the same dataset would be a valid and quan-
titative comparison. Since producing datasets such as that
shown in Fig. 8 (Moqadam and Eisen, 2024) is quite cumber-
some, synthetic datasets that represent the complex features
and possibilities of phenomena within radargrams could be
the way to go. In addition to complete labeling efforts ap-
plied to measured datasets, synthetic approaches can provide
progress towards an intermediate solution. There have been
a number of synthetic datasets so far (Rahnemoonfar et al.,
2019; Dong et al., 2022), but they have not yet been widely
considered and used by the community. However, synthetic
datasets cannot replace actual radargrams because they lack
characteristics of real radar systems such as noise, IRH dis-
continuities, and merging, to name only a few. Nevertheless,
since such obstructions are a matter of resources, it is highly
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probable that methods capable of automatically tracing IRHs
will be developed in the near future.
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