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Abstract. This paper aims to inform researchers and prac-
titioners in radioglaciology about current and future trends
in mapping the englacial stratigraphy of ice sheets. Radio-
echo sounding (RES) is a useful technique for measuring
the subsurface properties of ice sheets and glaciers. One of
the most important and unique outcomes is the mapping
of ice sheets’ englacial layer stratigraphy, mainly consist-
ing of isochronous reflection horizons. Mapping those is still
a labor-intensive task. This review provides an overview of
state-of-the-art (semi-)automated methods for identifying ice
surface, basal, and internal reflection horizons from radar-
grams in radioglaciology. Methods for segmenting (and de-
tecting) different regions of radargrams are also included due
to their data and methodological similarity to methods trac-
ing internal reflection horizons. We discuss a variety of meth-
ods which have been developed or applied to RES data over
the last few decades, including image processing, statisti-
cal techniques, and deep learning approaches. For each ap-
proach, we briefly summarize their procedures, challenges,
and potential applications. Despite major advances, we con-
clude that gaps remain in effectively mapping internal reflec-
tion horizons in an automated way but with deep learning
representing a potential advancement.

1 Introduction

Radio-echo sounding (RES) is a powerful technique which
has been used in radioglaciology for more than 50 years to in-
vestigate subsurface properties of polar ice sheets (Schroeder

et al., 2020). It has proven useful for determining widespread
basal topography and ice thickness on glaciers as well as
in inaccessible regions such as the Antarctic and Greenland
ice sheets. Historically, RES systems applied in glaciology
have also been referred to as ice-penetrating radar (IPR). For
ground-based applications, ground-penetrating radar (GPR)
is used as well (Bogorodsky et al., 1985). To refer to the
most general meaning, we will follow the recommendations
of Schlegel et al. (2022) for terminology and only use radar
or RES, unless more specific terms are necessary in the con-
text. RES data not only reveal information about the base of
the sheet and ice thickness, but also provide insights into its
internal structure. Such insights are obtained from the pres-
ence of englacial reflections and backscatter characteristics
in RES data, most prominently internal reflection horizons
(IRHs), also known as internal radar reflections (Schlegel
et al., 2022). These IRHs are a result of variations in the
dielectric properties of the ice, which can be attributed to
changes in density, impurity content, acidity, or crystal ori-
entation fabric (Moore and Paren, 1987; Eisen et al., 2007).
It has been shown that IRHs, caused by changes in con-
ductivity, are generally isochronous — i.e., one horizon has
the same age everywhere (Gudmandsen, 1975; Siegert, 1999;
Fujita et al., 1999; Eisen et al., 2006) — serving as indicators
for paleoglaciology (Siegert, 1999; Fahnestock et al., 2001;
Miners, 2002; Jansen et al., 2024). Englacial horizons ob-
served in RES datasets have also been utilized to investi-
gate ice dynamics, calibrate ice-flow models, estimate past
accumulation rates, and constrain layer ages from ice cores
(Siegert et al., 2004; Rippin et al., 2006; Conway et al., 1999;
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Waddington et al., 2007; Schroeder et al., 2020; Sutter et al.,
2021). Geometry of isochronal radar reflection horizons, in
conjunction with ice-flow modeling, can provide significant
perspectives into ice dynamics, basal sliding, surface accu-
mulation history, and englacial folding (Waddington et al.,
2007; Nereson and Raymond, 2001; Hindmarsh et al., 2009;
Catania and Neumann, 2010; Leysinger Vieli et al., 2011;
Lenaerts et al., 2014; Jenkins et al., 2016; Holschuh et al.,
2017; Born and Robinson, 2021; Bons et al., 2016; Sutter
et al., 2021; Jouvet et al., 2020; Jansen et al., 2016). Addi-
tionally, stratigraphic information provided by englacial lay-
ers complement ice-core analyses, improving interpretation
of climate changes recorded in ice cores by revealing flow
paths and irregularities that may affect age stratigraphy at
ice-core sites (Fahnestock et al., 2001; NEEM community
members, 2013; Parrenin, 2004). To support joint interna-
tional and collaborative exploitation of the available radar
datasets, the Scientific Committee on Antarctic Research
(SCAR) has endorsed the AntArchitecture Action Group,
specifically dedicated to cataloging IRHs across the entire
Antarctic ice sheet (Bingham et al., 2024).

One of the earliest publications on internal reflections by
Bailey et al. (1964) details the observation of a continu-
ous echo at the depth of 500m as well as a 97 % contin-
uous basal layer after a series of measurement campaigns
in Greenland. They noted that compacted annual accumu-
lation is the cause of such echoes (reflections). Moreover,
other early works such as works of Gudmandsen (1975)
and Robin (1975) exclusively discuss RES measurements
over ice sheets and their interpretations (Paren and Robin,
1975; Clough, 1977). IRHs are traditionally identified by
manually or semi-automatically tracing individual reflections
within RES datasets, a laborious and time-consuming pro-
cess (Nereson et al., 2000; Waddington et al., 2007). It has
been shown that tracing 20 IRHs in 20 000 km of data in such
a way would take 10 operator years to complete (Sime et al.,
2011). To overcome the slowness of manual tracing, since the
1980s, some commercial software programs have been used
for semi-automated mapping of IRHs. Some other programs
have been complemented by open-source software modules
provided by the community, in addition to processing and
analyzing RES data. Some examples include software pack-
ages such as MATLAB (MathWorks, 2022); toolboxes such
as GPRlab (Xiong et al., 2024), GSSI Radan (GSSI, 2024),
ReflexW (Sandmeier, 2016), the Sensors & Software EKKO
Project (Sensors Software Inc, 2024), and Geolitix (Inc.,
2025); and open-source software packages such as the Imp-
DAR (Lilien et al., 2020) library for Python and RGPR pack-
age (Huber and Hans, 2018) for R.

The age stratigraphy obtained from the Antarctic ice sheet,
unlike the Greenland ice sheet (MacGregor et al., 2015), has
been limited to specific regions (MacGregor et al., 2015;
Siegert et al., 1998; Eisen et al., 2004; Siegert et al., 2004;
Steinhage et al., 2001; Leysinger Vieli et al., 2011; Cavitte
et al., 2016; Winter et al., 2019), resulting in an incomplete
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picture of its englacial architecture. Several challenges slow
down the achievement of a continent-wide stratigraphy. The
considerable time required for tracing IRHs, limited spa-
tial coverage of available data, and a lack of integration be-
tween stratigraphic information from different RES systems
(Cavitte et al., 2016; Winter et al., 2017) are among these
challenges. However, the primary challenge remains to be
the imbalance between the number of available data and the
amount of time required with available methods to map the
stratigraphy. In terms of size, the Antarctic ice sheet sur-
passes the Greenland ice sheet more than 6-fold. While most
of the Greenland data have already been analyzed for internal
stratigraphy, there still exists a significantly larger volume of
unexplored data from Antarctica compared to that of Green-
land. In addition, there are still some areas of the Antarctic
ice sheet over which RES surveys have not been performed
(Frémand et al., 2023).

This limited advancement of methodologies for assessing
the structural configuration of the stratigraphy across large
spatial scales challenges exploration of englacial architecture
of the Antarctic ice sheet (Delf et al., 2020). To overcome
the difficulties associated with manual picking of IRHs, there
has been a growing interest in developing (semi-)automatic
methods for tracing IRHs in RES echograms (also known as
“radargrams”, as well as B-scans; Jol, 2009), in particular
from airborne operations. The motivation behind these ef-
forts is to reduce the amount of human labor required for data
analysis, particularly as radar datasets have expanded over
large spatial scales (Medley et al., 2014; MacGregor et al.,
2015; Cavitte et al., 2016; Koenig et al., 2016; Delf et al.,
2020), as well as reduce subjectivity of interpretations of
IRHs (Dossi et al., 2015). Automated horizon-picking tech-
niques have shown some potential, but they still require some
operator input and are yet to effectively map IRHs.

In the past 2 decades, there have been various research at-
tempts by several research groups at automatically tracing
ice-bed boundaries, mapping reflections, tracing firn-layer
boundaries, and segmenting regions of radargrams from both
ice sheets and planetary radargrams. Yet, a complete account
of this long-lasting endeavor which contains a comprehen-
sive overview of all the methods — and regions these methods
were applied to — has been missing.

In this review paper, we present an overview of the avail-
able methods for tracing layer boundaries and IRHs in radar-
grams. By presenting various studies and approaches, we aim
to provide insights into advancements, challenges, and future
directions. In Sect. 2, we briefly discuss the RES technol-
ogy and the terminology that is necessary for understanding
radar products. Section 3 introduces the methods that have
been employed by various research groups in a timeline of
method development for the task of stratigraphy mapping. A
comprehensive timeline of the published works with a short
summary of each publication, remarking on the more rele-
vant information of each of the publications, is discussed in
Sect. 4. Finally, we provide a discussion and a conclusion and
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outlook in Sects. 5 and 6, respectively, highlighting the need
for automatic methods to fully exploit the extensive datasets
and labor-intensive nature of manual picking and analyzing
recent trends with potential directions of future research.

2 Background

In this section, we provide the necessary concepts and in-
formation related to RES. We start with introducing radio-
glaciology and go on to describe radargrams and IRH rep-
resentations. For further details on radar physics and ap-
plications, we refer the reader to the available radar litera-
ture (Bogorodsky et al., 1985; Plewes and Hubbard, 2001b;
Dowdeswell et al., 2008; Bingham and Siegert, 2007; Pel-
likka and Rees, 2010; Woodward and Burke, 2007; Daniels,
2004).

2.1 Radioglaciology

Radioglaciology is the scientific field that employs radar (ra-
dio detection and ranging) systems to explore the cryosphere,
including both satellite and airborne as well as ground-based
systems. RES is an active remote sensing method which, un-
like satellite imagery, can give a picture of the cross sec-
tion of an ice sheet. An electromagnetic waveform is emit-
ted from a transmitter antenna, penetrates the ice, and is
reflected by changes in the complex-valued permittivity of
ice. The reflection travels back to a receiving antenna. Re-
flective properties are influenced by various factors such as
density (presence of bubbles), the orientation of ice crystals,
inhomogeneities, impurities, and the geometry of the ma-
terials. Applications range from determining ice thickness;
identifying englacial and subglacial properties, e.g., lakes;
reconstructing past ice-dynamic changes; and extrapolating
ice-core records. Related studies have employed airborne,
ground-based, or orbital RES systems on terrestrial and plan-
etary ice bodies. In the following, we will give a brief account
of RES physics and applications but refer the reader to the
available publications previously mentioned for further de-
tails.

For our objective in this review, the important information
derived from radargrams is the englacial layer architecture.
Such layer boundaries, known as IRHs, were formed at the
former ice sheet surface, then advected into the ice by addi-
tional accumulation and deformed by ice flow. At different
depths of the ice sheets, various processes can change the
complex-valued permittivity, causing IRHs. IRHs primarily
originate from density fluctuations in the upper part and vari-
ations in dielectric conductivity (e.g., from acidity; MacGre-
gor et al., 2012) in deeper regions of the ice sheet. In the mid-
dle to deepest layers of the ice sheet, changes in the crystal
orientation fabric can also result in reflections (Fujita et al.,
1999; Eisen et al., 2007).
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2.2 Radar products

In radioglaciology applications, out of every single survey
line, a 2D cross-sectional profile of the ice sheet is pro-
duced. This product is called a radargram or an echogram. In
older texts, as well as some contemporary publications, sim-
ilar profiles were called Z-scope records (Schroeder et al.,
2022). A radargram depicts a full profile of the cross section
of the ice sheet as opposed to single traces. It is usually com-
posed of single transmit signals and reflections. In the case
of single-point measurements, they are stored as amplitude
displays which are also called A-scopes (also referred to as
A-scans) and are similar to panels (a) and (b) of Fig. 1. When
reflections are laterally coherent, they appear as continuous
horizons. Every pixel within the radargram corresponds to
the quantification of amplitude (or power) associated with
the radar wave that is reflected by subsurface interfaces po-
sitioned at a designated range (two-way travel time or depth)
location and a spatial coordinate within the azimuthal direc-
tion.

Figure 1 depicts different representations of a trace and a
vertical section of the same profile. Panels (a) and (b) rep-
resent an arbitrary trace with a 60 and 600 ns pulse, respec-
tively. Panels (c) and (d) show a section of a radargram with
the leftmost trace shown in panels (a) and (b), and panels
(e) and (f) show the same radargram sections composed of
differentiated traces. In most cases for older systems, where
the phase was lost because of rectification of the received
signal, studies are done using the differentiated radargrams
as they illustrate a clearer picture of the englacial architec-
ture. In this figure, the ice surface (air-ice interface), base
(ice-base interface), englacial reflection, and so-called echo-
free zone (EFZ, just above the bed) can be seen. The EFZ
in the conventional sense was affected by different factors,
e.g., system sensitivity or a lack of coherent reflections ow-
ing to disturbances possibly from ice flow near the interface
of ice and the base (Drews et al., 2009).

Individual measurements are often noisy, typically due to
the electromagnetic interference from other electronics, such
as aircraft and other components in the vicinity of the instru-
ment, as well as thermal noise. Therefore, radar traces are
usually stacked to increase the signal-to-noise ratio and ob-
tain enhanced subsurface images (Karlsson et al., 2012). In
the presented Fig. 1, each plotted trace is a stack of 10 con-
secutive traces.

2.3 Internal reflection horizons

In the radargram of Fig. 1, reflection signatures can be seen
in different regions such as close to the surface, englacially,
and subglacially. The most general term to refer to any sig-
nal in the data which is not noise is event. Such events are
illustrated in Fig. 2, which is a simplified schematic of a
radargram, where differences between ice layers and IRHs
are depicted. The ice surface at the top (blue line) and basal
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Figure 1. An example of a vertical section of a radargram and a single trace from it. The section is from a flight performed in 1999 between
Dome Fuji and Kohnen station (Steinhage et al., 2013): (a) trace (A-scope) with 60 ns pulse; (b) trace (A-scope) with 600 ns pulse; (c) vertical
section of raw radargram (Z-scope) with 60 ns pulse; (d) vertical section of raw radargram (Z-scope) with 600 ns pulses; (e) vertical section
of differentiated radargram (Z-scope) of panel (c); (f) vertical section of differentiated radargram (Z-scope) of panel (d). Panels (c), (d), (e),

and (f) show the same section.

reflection (black line) at the bottom of the ice are also shown.
The first reflection of each transmitted pulse of an airborne
survey is the reflection from the ice surface.

For the sake of facilitating analyses of radargrams, one of
the common practices is to synchronize all traces to time
zero at the air—ice interface, omitting topographical varia-
tions. This flat ice surface naturally appears in ground-based
systems; however, for airborne systems, this assigning of the
surface time as zero is a step during data processing. The
black line depicts the basal reflection. The red lines in the
radargram indicate IRHs. In an ice sheet, these represent the
interfaces between the neighboring ice layers of different di-
electric properties.

2.4 Applications of englacial stratigraphy in
glaciological research

Englacial stratigraphies deduced from RES data are increas-
ingly used to benchmark and validate ice-dynamic models
(Sutter et al., 2021; Bjornsson and Palsson, 2020; Bing-
ham et al., 2024). Several englacial features can be seen in
radargrams, which can be studied in both quantitative and
qualitative ways (Plewes and Hubbard, 2001a; Pellikka and
Rees, 2010). Quantitative studies take advantage of the am-
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plitude and phase of traces and are often used to derive phys-
ical properties of ice (Plewes and Hubbard, 2001b). Quali-
tative studies, in contrast, mostly utilize stratigraphy to in-
fer the current of past flow dynamics or boundary condi-
tions, e.g., surface accumulation (Arcone et al., 2005) or
basal melting (Bogorodsky et al., 1985). Some of the many
applications of englacial stratigraphy are to study past ice
stream dynamics (Keisling et al., 2014; Winter et al., 2015;
Jansen et al., 2024; Carter et al., 2023), glacier—volcano inter-
actions (Bjornsson and Einarsson, 1990), meltwater drainage
(Pitcher et al., 2020), glacier hydrology and dynamics (Eisen
et al., 2020), glacier response to climate shifts (Gudmunds-
son et al., 2009), mass balance (Kowalewski et al., 2021),
glacier evolution (Adalgeirsdéttir et al., 2011), and volcanic
activities (Brandt et al., 2005b). RES is also used to identify
subglacial properties, such as lakes (Bowling et al., 2019),
which appear as strong and rather flat features at the bottom
of the ice, owing to the high permittivity of liquid water in
contrast with the overlaying ice.

For a variety of applications such as developing compi-
lations of bedrock topography (Lythe and Vaughan, 2001;
Frémand et al., 2023), synchronizing ice cores (Steinhage
et al., 2013; Cavitte et al., 2016), paleoglaciological studies
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(Parrenin et al., 2017), ice dynamics (Jansen et al., 2024),
mass balance derivation (Brandt et al., 2005a), and ice sheet
modeling (Sutter et al., 2021), the key is to have a mapped
englacial stratigraphy or mapped basal surface. In the next
section, we look into the most common methods that have
been used to map englacial stratigraphy.

3 Overview of applied methods

In this section, we provide a brief overview of the methods
that have been applied to tracing IRH and segmenting radar-
grams for identification of different classes or targets. The
subsections related to each method provide information on
how the respective method has been used for this task. We
present more details on implementation in the timeline of
publications in Sect. 4.

Given the versatile applications of RES across various do-
mains (as mentioned in Sect. 2.4), efforts to characterize fea-
tures within radargrams or to map reflections have proven
valuable across various fields, including contamination as-
sessment, hydrology, archaeology, geotechnical engineering,
and glaciology (Jol, 2009).

Based on a number of studies, it seems that constructing
an automated tracing method for RES encounters a signifi-
cant challenge when dealing with closely spaced layers. This
situation gives rise to numerous horizon candidates that are
nearly identical but slightly offset from each other. If the al-
gorithm mistakenly selects the wrong candidate, it may veer
into adjacent horizons, leading to inaccurate tracing (Pan-
ton, 2014). This situation is more relevant when regarding
deep IRHs. The IRHs in snow and firn radargrams have much
less compaction as well as vertical fluctuation (Winter et al.,
2019). This is the primary reason why automatically identify-
ing and differentiating deep englacial horizons is much more
challenging than detecting near-surface and basal reflections.

The methods to map the near-surface, basal, or englacial
architecture of the ice can be categorized on the basis of
a variety of criteria. One such criterion is if a method op-
erates semi-automatically or fully automatically. By semi-
automatic, we refer to methods that require manual tweak-
ing, interference, or initialization by a user. Another category
is if the proposed method does or does not include machine
learning algorithms. It is also possible to categorize meth-
ods based on the depth or specific reflection that they are
designed for. Some methods (mostly earlier ones) are only
aimed at tracing surface and basal reflections in order to es-
timate ice thickness; others look into englacial events.

The complexity of tracing englacial layers is caused by

— the limitation of vertical resolution (e.g., two IRHs
merging into one);

— the limitation of horizontal resolution (e.g., steep IRHs
leading to spatial aliasing);

— a small signal-to-noise ratio;
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— alack of discrete boundaries between layers;

— complex englacial structures, e.g., folds and interrupted
horizons.

We will give a short summary of the methods that have
been utilized in mapping and segmenting radargrams. The
summaries of methods provided are intended to give a first
overview and to later aid the understanding of the method-
ological evolution presented in Sect. 4.

3.1 Cross-correlation and peak following

Cross-correlation identifies similarities between two signals.
Peak following typically refers to a control strategy used in
systems where one variable is controlled to follow the peaks
or high points of another (Fahnestock et al., 2001). This
method is sensitive to noise and is prone to tracing discon-
tinuous IRHs. Stratigraphy mapping, cross-correlation, and
peak following enforce and complement each other in a man-
ner whereby first a peak is calculated within a certain vertical
window, which is the strongest return in the case of radar-
grams. Next, the cross-correlation is used to find a similar
pattern in the radargram. Depending on the backscatter char-
acteristics and spatial coherence, each method performs more
efficiently in different areas of a single radargram (Fahne-
stock et al., 2001). This method has its roots in seismic ap-
plications, which have often been used for data processing
and analysis in glaciology (Eisen et al., 2004, 2006). The as-
sumption of this method is that ice stratigraphy is supposed
to be rather smooth and without steep variations.

3.2 [Edge detection and thresholding

An edge in an image is considered to be the location of abrupt
change in pixel intensity. One of the most prominent filters
used in edge detection is the Canny operator (Canny, 1986).
It is a special filter kernel that is convolved with the image,
smoothes the image to remove some noise, and simultane-
ously calculates the gradient of the image to determine loca-
tions with high spatial derivatives. The next step is to follow
along the gradient and suppress pixels that are not maxima,
a process called non-maxima suppression. Lastly, it is nec-
essary to apply thresholding and remove weak edge pixels.
Having been in use for more than 3 decades, the Canny edge
detector is still widely used and efficient in detecting edges
in a number of applications, e.g., to capture sharp breaks or
discontinuities in an image (Canny, 1986). Speckle noise,
which appears as a grainy pattern in radargrams, can create
difficulties for the Canny filter. This noise often shows up as
sudden changes in pixel intensity, which the gradient calcu-
lation in the Canny filter might mistake for edges. To reduce
the effect of speckle, applying a pre-filtering step, such as
a Gaussian or median filter, before performing edge detec-
tion could be a solution. Thresholding is a simple process for
segmentation as well. A brightness leap between an object
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Figure 2. Schematic of a radargram. The blue line at the top represents the surface of the ice sheet (ice—air boundary). It is conventionally
set as time zero discarding topography. The red lines are IRHs which represent the changes in the permittivity that could be present on the
boundaries between different layers. The black line at the bottom is a representation of the ice base. The x axis is the distance in the direction
of the flight, and the y axis can be shown as either two-way travel time (TWT) or depth.

or edge and background can be determined to differentiate
objects and the background (Sonka et al., 2015). As a simple
and computationally inexpensive method, it has been widely
used in simple applications. However, more nuanced sorts of
thresholding can be adaptive thresholding, p-tile threshold-
ing, histogram-based thresholding, entropy-based threshold-
ing, and so on (Sankur, 2004). Based on these properties im-
age processing is expected to be an efficient method in trac-
ing englacial horizons and has been applied to near-surface
reflections (e.g., Freeman et al., 2010). However, it has been
concluded that this detector works well only for the detection
of surfaces due to presence of noise in radar and closeness
and weakness of horizon boundaries (Mitchell et al., 2013a).

3.3 Active contour
3.3.1 Snake

A well-known computer vision method of active contours is
the Snake (Kass et al., 1988). It consists of splines that are
forced by external constraints and influenced by pixel inten-
sity. In the context of active contours, a spline is a mathemat-
ical curve that is used to represent the contour or shape of an
object or region of interest in an image. From there, two con-
straints are to be satisfied. One is for the spline to align with
the high-gradient energy pixels, and the other is avoidance
of having discontinuities between splines. An energy func-
tion is defined, and the cost of the first spline is calculated.
Then the energy function is minimized to find the most opti-
mum location in relation to the two constraints (Kass et al.,
1988). In radargram applications, an active contour compris-
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ing a single particle per column is initially positioned at the
uppermost portion of the radargram and subsequently sinks
down until it reaches the designated horizon. The contour at-
tains a convergence of optimization through the interplay of
three distinct “forces”: (1) a gravity-like force exerted to pro-
pel the contour in a downward direction; (2) an upward force
influenced by image edges, akin to buoyancy; and (3) a ten-
sion force operating between adjacent particles (Reid et al.,
2010; Gifford et al., 2010). Active contour models have the
advantage that they do not require radargrams with manually
traced IRHs. The main disadvantage is that a Snake model
is not able to maintain the complex topology of the evolving
curve (Rahnemoonfar et al., 2017a). In terms of the automa-
tization level, on the grounds of the initial seeding and curve
placement, they are mostly considered semi-automatic meth-
ods. Figure 3 depicts the stages of the active contour, from
the initial contour to the final one reaching the edge bound-
ary. The arrays in the figure are some of the forces applied to
the contour at each stage.

3.3.2 Level set function

This approach uses level set functions (LSFs) and presents
a significant advancement in boundary delineation and im-
age contours (Osher and Sethian, 1988; Malladi et al., 1995).
It is a scalar field that signifies the signed distance to the
nearest edge or boundary (Joshi et al., 2019). Distinguished
from conventional Snake active contour model, the level set
framework can work as well with no explicit initial contour
parameterization (Lin et al., 2004), making it well-suited for
the intricate analysis of radargrams. Optimizing a level set
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Figure 3. Application of a Snake or active contour method; the series from left to right shows the evolution of the initial contour until it
reaches the boundary.

involves creating an energy or cost function, which governs
the iterative minimization of the function to detect the ob-
ject boundaries, using image attributes such as gradients and
curvatures (Chan and Vese, 2001). The evolution of the ini-
tial curve is determined by a speed function, which in turn
depends on factors such as image gradient, and involves a
halting criterion which reduces the speed function to zero in
high gradients delineating boundaries (Lin et al., 2004). The
level set method has also proven efficient in other domains
such as semi-automatic image segmentation for medical im-
agery (Lin et al., 2004; Chunming Li et al., 2011).

3.4 Statistical analysis

This method has been employed mostly for the characteriza-
tion of subsurface target classes (Ferro and Bruzzone, 2012;
Ilisei and Bruzzone, 2014, 2015). Its backbone is statisti-
cal analysis of the distribution of the radar signals. This is
obtained by fitting several probability distribution functions
(pdf’s) to the histogram of samples from each target class in
the radargram. The pdf’s used to fit the signals are parametric
models such as Rayleigh and Nakagami distributions (Ferro
and Bruzzone, 2012; Ilisei and Bruzzone, 2014, 2015). The
choice of such parametric models for the fits results from
their proven capability to model radar amplitude fluctuations
in signal backscatter (Oliver and Quegan, 2004).

3.5 Layer slope inference

Layer slope inference is not in fact a method but a combi-
nation of methods to calculate the dip angles of the hori-
zons. It consists of the following: denoising using averaging
techniques, thresholding to obtain the binary image from a
radargram, discretizing the data horizontally to detect short
segments of boundaries, eliminating the invalid objects, and
finally compiling the non-uniformly distributed information
on object dip (Sime et al., 2011). This method is rather easy
to implement, but it does not map IRHs. Instead, it yields es-
timates of the potential layer boundaries and their dips and
slopes (Sime et al., 2011; Holschuh et al., 2017).
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3.6 Hough and Radon transforms

Hough (Hough, 1962) and Radon transforms (Radon, 1917)
are very closely related to each other (van Ginkel and van
Vliet, 2004). Radon (1917) introduced a method to express a
function on the basis of its (integral) projections, and Radon
transform is the mapping of this function onto its projection.
As it maps from image space to parameter space, the func-
tion that is formed in the parameter space includes peaks
which correspond to shapes or edges in the image space (van
Ginkel and van Vliet, 2004; Radon, 1986; Epstein, 2007).
The Hough transform is similarly mapping from image space
to parameter space. In principle, the Hough transform is a
discrete version of the Radon transform. It was originally de-
veloped to detect straight lines in black and white images
(Hough, 1962). An accumulator array is set up, with each of
its elements representing the number of votes that indicate
the presence of a shape or edge with corresponding parame-
ters of that element, signifying strong evidence for the exis-
tence of that line or edge (Duda and Hart, 1972; Bailey et al.,
2020).

3.7 Continuous wavelet transform

Unlike traditional methods such as gradient-based edge de-
tection (e.g., Sobel; Sobel and Feldman, 2015, Roberts
Roberts, 1963), which rely on discrete derivatives, continu-
ous wavelet transform (CWT) operates by analyzing the im-
age at multiple scales and positions simultaneously (Mallat
and Hwang, 1992). Considering all the values of the trans-
lation and scale parameters is the point where CWT dif-
fers from discrete wavelet transform, making it a preferred
method for detecting specific features in images (Antoine
et al., 1993). Mallat and Hwang (1992) established edge de-
tection in a multi-scale method using wavelet transform. Lo-
cating an edge involves initially identifying the scale where
the power spectrum, derived from the wavelet transform,
reaches its peak. At this scale, the position of the peak in the
squared CWT can be identified. CWT’s advantages include
multi-scale analysis for edge detection at various levels of
detail and handling non-stationary signals, making it effec-
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tive for complex image analysis (Mallat and Hwang, 1992;
Kaspersen et al., 2001; Heric and Zazula, 2007). Another ad-
vantage is that CWT-based methods do not necessarily re-
quire thresholding, which reduces the complexity of an algo-
rithm (Kaspersen et al., 2001).

3.8 Hidden Markov model and Viterbi algorithm

The application of hidden Markov models (HMMs) in the
context of edge detection is an approach rooted in proba-
bilistic modeling (Ekisheva and Borodovsky, 2006). HMMs,
well-known for their efficiency in capturing sequential pat-
terns, offer a great framework for identifying edges in com-
plex and noisy radargrams (Carrer and Bruzzone, 2017;
Donini et al., 2022b). They are based on augmenting the
Markov chains which describes the probabilities of se-
quences of random variables to compute probabilities of ob-
servable events. In the case of radargrams, the observable
events are pixel intensities. For edge detection, pixels within
a radargram are conceptualized as hidden states, each one
associated with emission probabilities indicating local inten-
sity gradients. Transition probabilities, inferred from the gra-
dients of neighboring pixels, represent the likelihood of go-
ing from one pixel to another, capturing the contextually de-
pendent edge characteristics. By optimizing the sequence of
hidden states, HMMs effectively capture IRHs in radargrams
(Stauffer and Grimson, 1999; Ekisheva and Borodovsky,
2006; Zhang et al., 2008; Bouguila et al., 2022; Carrer and
Bruzzone, 2017).

For any task containing hidden variables, it is important to
find which sequence of such hidden variables is the underly-
ing source of the desired observation. This is called decoding.
One common such algorithm used along with HMMs is the
Viterbi algorithm (VA; Viterbi, 1967), a dynamic program-
ming technique, which finds the most plausible sequence of
concealed states within a Markov field, depending on a series
of observations (Bouguila et al., 2022).

3.9 Gibbs sampling

The Gibbs sampler (Casella and George, 1992) is a Markov
chain Monte Carlo (MCMC) method for indirectly generat-
ing random variables from a (marginal) distribution, remov-
ing the need to directly calculate the density. Every pixel or
region within the image is allocated a label representing its
class or segment. Through iterative sampling of labels, con-
sidering conditional probabilities in neighboring pixels or re-
gions, Gibbs sampling facilitates the partitioning of the im-
age into coherent segments (Casella and George, 1992; Xiao
Wang and Han Wang, 2004).

3.10 Support vector machine

The support vector machine (SVM) (Vapnik et al., 1996) is a
supervised learning approach for image segmentation which
can handle both two-class and multi-class classification prob-
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lems (Liu et al., 2021). It works by maximizing the mar-
gin between classes in an n-dimensional feature space. The
closest data points to the decision boundary are called sup-
port vectors, and they are crucial in defining the discrimina-
tion function. While there may be multiple possible decision
boundaries, SVMs can identify the optimal surface, reducing
the risk of overfitting during training (Burges, 1998).

3.11 Machine learning and deep learning in image
processing

Machine learning, particularly a subset of it called deep
learning (DL), enables automatic extraction of meaningful
patterns from data through the use of multi-layered artificial
neural networks (LeCun et al., 2015). Unlike traditional ap-
proaches that require manual feature engineering, DL meth-
ods transform raw input data into abstract and task-relevant
features hierarchically (Hinton et al., 2006; LeCun et al.,
2015; Zeiler and Fergus, 2013; Tomasini and Wyart, 2024).
This capability makes them particularly suitable for prob-
lems such as image classification (Rawat and Wang, 2017),
object detection (Arkin et al., 2023), and semantic segmen-
tation (Minaee et al., 2020), including the analysis of radar-
grams.

In the context of radargram analysis, DL is important be-
cause radargrams often contain subtle and noisy features that
are difficult to detect using conventional image processing
and probabilistic methods. Using supervised learning, where
labeled radargram data are used to train the network, DL can
effectively learn to classify and segment features of interest,
such as IRHs or regions of interest in radargrams.

One of the main challenges with DL is its reliance on large
labeled datasets to achieve optimal performance. Insufficient
training data can lead to overfitting. This is the case where
a model performs well on the training set but struggles to
generalize to new unseen data (Goodfellow et al., 2016).
This limitation is especially critical in radargram analyses,
where labeled datasets are often scarce. Techniques such as
data augmentation, transfer learning, and regularization can
be used to address these challenges and improve model gen-
eralization.

3.11.1 Convolutional neural networks

Convolutional neural networks (CNNs), a subset of artifi-
cial neural networks (ANNs), are among the most widely
used deep learning algorithms, particularly for image and
video processing (LeCun et al., 1989; Lecun et al., 1998;
Krizhevsky et al., 2017a). CNNs are designed to process data
that can be represented as grids, such as 1D sequences (e.g.,
text), 2D images, or 3D video data (LeCun et al., 2015). Un-
like traditional neural networks, CNNs can automatically de-
tect important features from the input data, without the need
for manual feature engineering (Gu et al., 2017). This ability
is achieved through the use of convolutional layers, which
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apply a set of filters (or kernels) to input data, generating
feature maps that capture various characteristics of the data
(LeCun et al., 2015; Goodfellow et al., 2016).

The architecture of CNNs typically consists of an input
layer, convolutional and pooling layers, one or more fully
connected layers, and an output layer (LeCun et al., 2010;
Zhao et al., 2024). Figure 4 (Lecun et al., 1998) depicts a
simplified CNN architecture for image classification. Con-
volutional layers are the core components, where filters are
applied to input data to extract features like edges, textures,
or shapes. Pooling layers follow to reduce the spatial size
of feature maps, helping to reduce computation and increase
the network’s tolerance to small shifts in the data (LeCun
et al., 2015). After several convolution and pooling layers,
the network uses fully connected layers, where every neu-
ron is connected to every neuron in the previous layer. This
fully connected part allows the network to make the final de-
cision based on the features learned in earlier layers. Overall,
CNNs are highly efficient for tasks such as image classifi-
cation, object detection, and segmentation, where extracting
meaningful spatial hierarchies from the data is essential. In
recent years, CNN applications have been expanded to the
field of glaciology as well, for instance in calving-front de-
lineation using synthetic aperture radar (SAR) imagery (Mo-
hajerani et al., 2019; Zhang et al., 2019), grounding-line de-
lineation (Mohajerani et al., 2021), and automatic stratigra-
phy mapping (e.g., Varshney et al., 2021b; Cai et al., 2022;
Wang et al., 2020b; Donini et al., 2022c).

3.11.2 U-Net

The U-Net architecture, introduced by Ronneberger et al.
(2015), has become one of the most widely used neural net-
works for image segmentation. It was originally developed
for biomedical applications, but it has proven versatile and
has been adopted in a number of fields, including the remote
sensing of the cryosphere (e.g., Ji et al., 2019; Mohajerani
et al., 2021; Varshney et al., 2020; Donini et al., 2022a).
Many variations of U-Net have also been proposed, each im-
proving or adapting the design for specific tasks, such as Re-
sUNet (Jha et al., 2019) and U-Net + + (Zhou et al., 2020).

The architecture features a U-shaped design, which con-
sists of an encoder—decoder structure connected by skip con-
nections. The encoder path down-samples the input image
using convolutional and pooling layers, capturing high-level
features and contextual information. The decoder path then
up-samples these features, gradually restoring spatial resolu-
tion to generate a segmentation map. The skip connections
link corresponding layers of the encoder and decoder, ensur-
ing that high-resolution features from the encoder are inte-
grated into the decoding process. This combination allows
U-Net to segment objects with detailed boundaries, even in
datasets with complex spatial structures (Ronneberger et al.,
2015; Siddique et al., 2021). Figure 5 is an example of U-Net
architecture for image segmentation.
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3.11.3 Transfer learning and pre-training

CNNss typically require large datasets for effective training,
which can be a significant difficulty when annotated data
are limited (Lecun et al., 1998). Transfer learning provides
a practical solution to this problem by allowing the use of
pre-trained models as a starting point. This involves training
amodel on a large general-purpose dataset, such as ImageNet
(Krizhevsky et al., 2017a), and then fine-tuning it using the
smaller task-specific dataset available for the target applica-
tion (Weiss et al., 2016).

There are a number of CNN models such as AlexNet
(Krizhevsky et al., 2017b), GoogleNet (Szegedy et al., 2014),
and ResNet (He et al., 2016) that are pre-trained on large
datasets such as ImageNet. Pre-training on these datasets
helps models to learn general feature representations that can
be adapted to new tasks, which reduces the risk of over-
fitting and improves the robustness of the learning process
(Hendrycks et al., 2019). This approach could be valuable in
applications such as radargram analysis due to the scarcity of
annotated training data.

3.11.4 Holistically nested edge detection

Holistically nested edge detection (HED) (Xie and Tu, 2015)
is an end-to-end technique designed for edge detection that
learns hierarchical features essential for understanding an
image in its entirety (Long et al., 2014). HED is inspired by
fully convolutional neural networks and incorporates deep
supervision based on the Visual Geometry Group network
(VGG-Net) architecture (Simonyan and Zisserman, 2014).
Contrary to traditional edge detection algorithms that rely
on abrupt changes in local pixel intensity, HED approaches
edge detection as a holistic problem (global image-to-image
mapping). Moreover, it uses side outputs, compensating for
the absence of deep supervision which is a characteristic of
fully convolutional neural networks. This design enhances
the ability of the model to detect edges by investigating both
local and global contexts.

3.11.5 Multi-scale learning

Multi-scale learning (Elizar et al., 2022) offers significant ad-
vantages using discriminative-feature representation to im-
prove information acquisition. This is achieved through the
fusion of low- and high-resolution data and the integration
of diverse data sources. Multi-scale learning brings about a
higher level of understanding the data and learning through
collective results at different scales. The fundamental con-
cept behind multi-scale feature learning involves the simul-
taneous construction of multiple CNN models with varied
contextual input sizes. These models operate in parallel, and
their respective features are merged at the fully connected
layer (Elizar et al., 2022). An edge detection technique can
be implemented at every scale for feature detection (Yari
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Figure 4. A simplified CNN architecture for an image classification task. The architecture is similar to the one of LeNet, which is an early
CNN and was used for handwritten-digit recognition (Lecun et al., 1998).
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Figure 5. Schematic of a U-Net architecture and its conventional components, inspired by Ronneberger et al. (2015). Left- and rightmost
images show a radargram and its representation with two IRHs predicted by U-Net.

et al., 2020). For example, in radargram segmentation, small-
scale structures may capture fine features, such as local fluc-
tuations in layer boundaries, while larger scales focus on
broader trends (Cai et al., 2022). Additionally, it is a feasible
method to combine with other advanced networks, e.g., gen-
erative adversarial networks (Suh et al., 2022).

3.11.6 Recurrent neural networks

Recurrent neural networks (RNNs) (Cho et al., 2014)
are designed to handle sequential data, such as sentences
(Mirowski and Vlachos, 2015), time series (Hewamalage
et al., 2021), and biological sequences (Aggarwal, 2018).
Unlike other neural network architectures, where variables
are independent of each other, RNNs process data in a se-
quential manner, with the input of each node being a combi-
nation of input and the hidden state from the previous time
step (Goodfellow et al., 2016). In image segmentation appli-
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cations, RNNs treat the task as a sequence prediction prob-
lem. This sequential processing is the strength of RNNs for
image segmentation tasks (Salvador et al., 2019), making
RNNs effective for tasks involving capturing relationships
where a sequence is important.

4 Progression of IRH mapping and radargram
segmentation techniques

In this section, we provide a concise description of the most
important and relevant studies that have been done on map-
ping englacial stratigraphy. For the sake of simplicity, our
timeline (Fig. 6) starts in the year 2000 to focus on more
modern approaches. As Wang et al. (2020b) po