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Abstract. An accurate characterization of global snow water
equivalent (SWE) is essential in the study of climate and wa-
ter resources. The current global SWE dataset from the Euro-
pean Space Agency Snow Climate Change Initiative (Snow
CCI) is derived from the assimilation of passive microwave
satellite data and in situ snow depth measurements. However,
gaps exist in the current Snow CCI SWE dataset in complex
terrain due to difficulties in characterizing mountain SWE
via the passive microwave sensing approach and limitations
of the in situ snow depth measurements. This study applies
a Bayesian snow reanalysis approach with the existing Snow
CCI snow cover fraction (SCF) dataset (1 km resolution) to
develop a SWE dataset over four mountainous domains in
western North America for water years (WYs) 2001–2019.
The reanalysis SWE estimates are evaluated through com-
parisons with independent SWE datasets and a parallel SWE
reanalysis generated using snow extent retrieved from Land-
sat imagery (30 m resolution). Biases in Snow CCI reanal-
ysis SWE were diagnosed by comparing Snow CCI snow
cover with the Landsat reference. Both the number of SCF
images and their characteristics (such as zenith angle) signif-
icantly affect the accuracy of SWE estimation. Overall, the
Snow CCI SCF inputs produce reanalysis SWE of sufficient
quality to fill the mountain SWE gap in the current Snow
CCI SWE climate data record. A better characterization of
the SCF uncertainty and a bias correction could further im-
prove the accuracy of the reanalysis SWE estimates.

1 Introduction

Seasonal snowpack in mountainous regions plays a vital role
in the global energy and water cycle. The unique properties
of snow, such as its high albedo and low thermal conductiv-
ity, make it a significant factor in the energy budget of the
lower atmosphere and Earth’s surface. The seasonal snow-
pack conditions also influence the local weather and mon-
soon circulations (Rudisill et al., 2021). Furthermore, moun-
tains act as natural water reservoirs, often referred to as “wa-
ter towers”, by storing water in the form of snowpack and
glaciers at high altitude (Immerzeel et al., 2020). It is esti-
mated that between 50 % and 70 % of the annual precipita-
tion in the mountainous regions of the western United States
(WUS) falls as snow and is stored in the snowpack. During
warmer seasons, this stored water is released as snowmelt,
crucial for meeting downstream water demands and sustain-
ing ecosystems. Many major rivers worldwide, such as the
Colorado (spanning the United States and Mexico), Indus
(flowing through the Himalaya), and Mackenzie (in Canada),
heavily rely on mountain snowmelt. Such water towers are
vulnerable to climatic and socio-economic changes, which
can cause negative impacts on the ∼ 2 billion people (22 %
of global populations) living downstream (Immerzeel et al.,
2020; Mankin et al., 2015). Monitoring and managing the
water resources from mountain snowpacks require accurate
snow water equivalent (SWE) information. However, recent
studies indicate that large discrepancies exist in the climatol-
ogy of seasonal SWE magnitude and timing across different
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global datasets (Fang et al., 2023; Liu et al., 2022; Wrzesien
et al., 2019; Mudryk et al., 2024; Kim et al., 2021) with un-
certainty particularly high in mountain areas.

The European Space Agency (ESA) Snow Climate
Change Initiative (Snow CCI) has developed homoge-
nized, high-quality long-term snow cover fraction and SWE
datasets to contribute to the understanding of snow in the cli-
mate system. In its initial phase, the Snow CCI project fo-
cused on generating consistent multi-sensor time series of
daily fractional snow cover from optical satellite data (Na-
gler et al., 2022) and SWE derived from the assimilation of
passive microwave (PM) satellite data and in situ snow depth.
Snow CCI SWE data adopted the GlobSnow (v3) algorithm,
which estimates SWE by combining PM brightness temper-
atures centered on 19 and 37 GHz from the Scanning Mul-
tichannel Microwave Radiometer (SMMR), Special Sensor
Microwave/Imager (SSM/I), and Special Sensor Microwave
Imager/Sounder (SSMIS) with in situ daily snow depth mea-
surements via Bayesian non-linear iterative assimilation (Lu-
ojus et al., 2021).

The Snow CCI SWE product (and predecessor GlobSnow
versions originally described in Takala et al., 2011) does not
provide data over complex terrain because the coarse grid
spacing (12.5 to 25 km) of the Snow CCI SWE product is
incompatible with the scales of SWE variability in complex
terrain. The Snow CCI SWE retrieval approach of combining
satellite passive microwave measurements with surface snow
depth measurements is not well suited to the complex terrain
and deep snow typical of mountain regions because (1) the
passive microwave sensitivity to SWE saturates when SWE
exceeds 150 mm (Chang et al., 1982, 1987) and (2) the avail-
able snow depth observations are too sparse to meaningfully
capture elevation and topographic variability in snow depth
distribution (Pulliainen, 2006).

This study is motivated by the need to fill the mountain
SWE gap in the Snow CCI SWE product. Specifically, we
explore the use of a Bayesian snow reanalysis framework
(BSRF) previously implemented in various mountain regions
across the globe including the Sierra Nevada, the Andes,
and High Mountain Asia (Margulis et al., 2016; Cortés et
al., 2016; Liu et al., 2021; Fang et al., 2022). The frame-
work combines prior snow estimates from an ensemble of
land surface model simulations with satellite-derived frac-
tional snow-covered area (fSCA) to generate retrospective
time series of snow extent and SWE (Margulis et al., 2019).
The previous implementations have used the Landsat-based
fSCA product (Painter et al., 2003; Cortés et al., 2014) and
the MODIS-based MODSCAG fSCA product (Painter et al.,
2009; Margulis et al., 2019). Because a snow cover fraction
product (MODIS-based) also exists within the Snow CCI
program, it is a natural choice to use it to develop a mountain
SWE product within the same program. There exist numer-
ous snow cover datasets at various resolutions developed us-
ing different input data and retrieval approaches that provide
differing fSCA values and error characteristics, such as the

MODIS-based MOD10 snow cover fraction (SCF) product
(Hall and Riggs, 2016). This study focuses on evaluating one
such product – Snow CCI SCF, hereafter referred to as Snow
CCI fSCA – within the BSRF framework to maintain con-
sistency with the overall Snow CCI development framework
and objectives. The primary objective of this study is to eval-
uate whether using the Snow CCI fSCA product within the
BSRF can provide meaningful SWE estimates in mountain
terrain. The Snow CCI fSCA products are global in coverage,
so this approach can potentially be extended to all mountain
regions in the future. We evaluate this objective by imple-
menting the product across four test watersheds. Two wa-
tersheds are in the WUS where the BSRF was already pre-
viously implemented using Landsat (Fang et al., 2022). For
these regions we can compare the established performance of
the Landsat implementation to performance when using the
Snow CCI fSCA in order to characterize how differences in
the fSCA products result in different SWE estimates. We also
implement the BSRF with Snow CCI fSCA data in two new
watersheds in Canada. By extending the BSRF to a new re-
gion of the globe we have an opportunity to assess challenges
that would arise in a global implementation of the BSRF. The
remainder of this paper is organized as follows. Section 2 de-
scribes the methods, data, and application domain; Sect. 3
provides results and discussion; and Sect. 4 provides the key
conclusions of the study.

2 Data, application domains, and methods

2.1 Description of the Snow CCI fSCA product

The Snow CCI fSCA dataset is globally available at a spa-
tial resolution of 0.01° (∼ 1 km). The 1 km resolution of the
Snow CCI fSCA product is relatively coarse compared to
the resolution of available optical imagery but is well suited
to the potential application across all Northern Hemisphere
mountain areas for gap filling the existing Snow CCI SWE
product. This study uses the MODIS-based Snow CCI Daily
fSCA product (version 2), available over the period 2000–
2020 (http://cci.esa.int/data, last access: 13 May 2025). This
product is based on data from the MODIS sensor aboard
the Terra satellite (MOD021KM and MOD03). While the
MODIS sensor provides radiance data at spatial resolutions
of 250, 500, and 1000 m, the Snow CCI fSCA uses data
from the 1 km Level 1B dataset, which aggregates all radi-
ance data to the largest spatial scale. The processing chain
of the Snow CCI fSCA product includes (1) preprocessing
of satellite data, (2) cloud screening, (3) binary snow pre-
classification based on the normalized difference snow index
(NDSI), and (4) fSCA retrieval using the adapted SCAmod
algorithm (Metsämäki et al., 2012, 2015) described in more
detail in Nagler et al. (2022).

The product contains two fSCA datasets: the viewable
snow cover fraction (SCFV), which is the snow cover frac-
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tion in open areas and on top of vegetation cover, and the
snow cover fraction on the ground (SCFG), which is the snow
cover fraction in open areas (the same as SCFV) and under
the forest canopies. The SCFV dataset is used in this study
since only viewable snow cover (i.e., through forest gaps) is
assimilated in the current snow reanalysis framework as de-
scribed in Sect. 2.3. The Snow CCI fSCA datasets have an
accompanying uncertainty layer. We tested the feasibility of
using this layer to provide spatially and temporally varying
weights within the assimilation framework but found the un-
certainty layer to be poorly suited for this implementation.
Specifically, it does not consider the impact of viewing an-
gle geometry, which is an important influence on MODIS-
derived fSCA (Sect. 2.3.2), so the uncertainty values were
too low for our data assimilation purposes such that the fSCA
images were weighed too heavily, which degraded the perfor-
mance compared to the prior.

2.2 Application domains

The test domains include four mountainous watersheds in
western North America: the Tuolumne basin and Aspen–
Castle Maroon (i.e., Aspen) in the WUS and the Lajoie basin
and Bow River basin in western Canada (Fig. 1). These four
watersheds are selected because (1) they are representative
of snow-dominated mountainous domains that are masked
out in the current Snow CCI SWE product (Fig. 1), (2) re-
motely sensed and in situ SWE reference datasets are avail-
able for verification purposes, and (3) the Lajoie and Bow
River basins are higher-latitude forested basins that repre-
sent different snow climates and have not been explored in
previous applications of the BSRF.

More specifically, the upper Tuolumne Basin is a high-
elevation watershed in the Sierra Nevada of California
(CA). The elevation ranges from approximately 1241 to
3700 m a.s.l. The precipitation is dominated by snowfall dur-
ing the winter. The snowmelt during the spring and early
summer fills the Tuolumne River, which is dammed at Hetch
Hetchy to provide water for San Francisco. Aspen is a high-
elevation domain situated in the Roaring Forking watershed
in central Colorado (CO) on the western side of the Conti-
nental Divide. The elevation varies within the range of 2550
to 4100 m a.s.l. The snowmelt feeds the Castle and Maroon
creeks and contributes to almost all of the water supply to the
city of Aspen.

The Lajoie basin is a watershed in the Coast Mountains of
British Columbia (BC). The elevation within the Lajoie basin
varies from 800 to 2800 m a.s.l. The forested areas at low el-
evations cover 47 % of the total watershed area (Darychuk et
al., 2023). The snowmelt is a critical source of downstream
freshwater to Downton Lake formed by the Lajoie dam. The
Bow River basin in southern Alberta (AB) is a well-studied
basin located in the Canadian Rockies. The elevation spans
from 1250 to 3500 m a.s.l. The snowmelt from the Bow River
Basin provides around 80 % of the Bow River streamflow,

which is vital for hydroelectric power, irrigation, and signif-
icant downstream populations (Wang et al., 2019). Despite
the value of water resources and the frequency of damaging
flood events (Pomeroy et al., 2015), there is no systematic
airborne or satellite snow monitoring program for the moun-
tain regions of western Canada.

The snow reanalysis framework is applied over tiles of
1°× 1° (latitude–longitude). The tiles that cover the appli-
cation domains are outlined in the location map (Fig. 1)
and are used for the reanalysis application. In this study, we
conducted the Snow CCI reanalysis for water years (WYs)
2001–2019 across the study domains, corresponding to the
period of available Snow CCI fSCA data.

2.3 Bayesian snow reanalysis framework

This study uses a previously developed Bayesian snow re-
analysis framework (Margulis et al., 2015) to generate SWE
reanalysis estimates by assimilating the Snow CCI fractional
snow-covered area (fSCA). The SWE reanalysis framework
has been applied to generate snow reanalyses over the Sierra
Nevada (Margulis et al., 2016), the Andes (Cortés et al.,
2016), High Mountain Asia (HMA) (Liu et al., 2021), and the
WUS (Fang et al., 2022) using Landsat-derived fSCA. These
applications of SWE reanalysis have been verified against
available in situ and airborne SWE estimates.

The method combines a spatially distributed land surface
model (LSM) and a particle batch smoother (PBS) to es-
timate snow dynamics. The LSM, specifically the simpli-
fied simple biosphere (SSiB)–snow–atmosphere–soil trans-
fer (SAST) model (SSiB–SAST; Sun and Xue, 2001), is
used to simulate SWE, snow density, and snow depth. The
Liston snow depletion curve (SDC) model (Liston, 2004)
is coupled with the LSM to predict fSCA based on mod-
eled SWE and its sub-grid heterogeneity. The LSM–SDC ac-
counts for prior uncertainties from meteorological forcing,
model parameters, and sub-grid snow variability. Uncertainty
models and parameters used in the LSM–SDC are described
in Fang et al. (2022). In the prior step, these uncertainties
are embedded in an ensemble of model estimates. Assimila-
tion of fSCA measurements to produce posterior SWE esti-
mates is done using a particle batch smoother (PBS) method,
which involves assigning likelihood-based weights to ensem-
ble members. The assimilation of fSCA estimates is intended
to improve SWE estimates relative to the prior. The prepro-
cessing of Snow CCI fSCA for SWE reanalysis including
cloud screening (Sect. 2.3.1) and viewing geometry screen-
ing (Sect. 2.3.2) processes are carefully conducted to avoid
misclassifying cloud, forests, and other non-snow features as
snow.

While previous applications of the SWE reanalysis via the
assimilation of Landsat fSCA (with a native resolution of
30 m and scaled up to∼ 100–500 m and a measurement error
of 10 %) have shown significant promise (Fang et al., 2022),
herein we evaluate SWE estimates derived from the globally

https://doi.org/10.5194/tc-19-2017-2025 The Cryosphere, 19, 2017–2036, 2025



2020 H. Sun et al.: Evaluation of Snow CCI fSCA in mountain SWE reanalysis

Figure 1. Location, forest cover, and elevation maps over the study domains, including the Tuolumne basin (CA) and Aspen (CO) in the
WUS and the Lajoie basin (BC) and Bow River basin (AB) in western Canada. The current Snow CCI SWE mask (that excludes mountainous
areas) is shown in grey in the left panel. The test tiles (1°× 1°) that include the four study domains are outlined in red (Canada) and blue
(WUS) and fall almost exclusively within the Snow CCI SWE mask. Degrees N and W in the left panel correspond to the lower-left corner
of each of these test tiles. The average elevation and forest cover are annotated in the spatial maps, where snow pillow locations are shown
with red triangles and snow courses are shown with red crosses.

available Snow CCI fSCA product at 1 km resolution. We fo-
cused first on the WUS because previous well-validated im-
plementations of the BSRF are available as the baseline. The
implementation and validation over two watersheds in west-
ern Canada were performed in order to assess transferability
to new regions. The Landsat reanalysis is performed in par-
allel to provide a baseline for the comparison.

2.3.1 Cloud screening for Snow CCI fSCA data

The depletion of fSCA through the snowmelt season is in-
formative to constrain the SWE evolution (Margulis et al.,
2019) in both accumulation and melt seasons. Therefore, the
PBS approach that assimilates time series of Snow CCI fSCA
over the full WY (i.e., all images at once) is used to update
the prior snow estimates in a single step. In previous SWE
reanalysis applications (over the WUS, Andes, and HMA),
the internal cloud mask from the sensor and an ad hoc cloud
fraction threshold were used to identify images with “signifi-
cant” cloud cover that were screened out entirely vs. those
that were included but with cloudy pixels within the im-
age screened out. The tile-wise images with a cloud frac-
tion greater than the threshold were deemed “too cloudy”
such that they might have a significant misclassification of
cloudy pixels as snowy pixels. Previously used cloud fraction
thresholds were 0.4 for Landsat and 0.1 for MODIS-derived

MODSCAG (Painter et al., 2009). There is a trade-off in-
volved in using a single threshold. Opting for a higher thresh-
old increases the pool of fSCA images, albeit with the risk
of higher uncertainty such as misclassifying clouds as snow
pixels. On the other hand, selecting a lower cloud thresh-
old results in screening out more images, potentially yielding
fewer informative measurements but with an enhanced over-
all quality. Therefore, selecting the Snow CCI cloud fraction
threshold across test domains required careful consideration.
Given that Snow CCI fSCA includes a unique internal cloud
mask compared to other products, it is essential to derive
a cloud fraction threshold specific to the Snow CCI fSCA
product. The cloud mask in the Snow CCI product is derived
using an adapted version of the Simple Cloud Detection Al-
gorithm 2.0 (SCDA2.0) (Metsämäki et al., 2015), which is
based on the brightness-temperature difference between 11
and 3.7 µm, with clouds exhibiting significantly large nega-
tive values.

The cloud fraction threshold was estimated through ex-
amination of the historical tile-wise cloud distributions (as
diagnosed by the Snow CCI cloud mask) covering the test
domains. Figure 2 shows the historical cumulative distribu-
tion functions (CDFs) (spanning WYs 2000–2019) of tile-
wise cloud fraction (aggregated by domains) for each WY
in dashed grey curves and for the multi-year (WYs 2000–
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2019) median in solid red curves. The median of the histor-
ical CDF (the intersection of the dashed blue lines) is pre-
sumed to represent a typical tile-wise level of cloudiness
in the binary classification of images into cloudy and less
cloudy categories. However, there is a large variation in the
median cloud fraction across different tiles/domains. It is ap-
parent that the selected tiles in the WUS (Fig. 2a and b) are
less cloudy than those in western Canada (Fig. 2c and d).
The CDF of the tile-wise median cloud fraction across all
test tiles is shown in Fig. 2e. In order to reconcile varying
tile-wise median cloud fractions and identify a single tile-
independent threshold, the median value – approximately 0.6
(indicated by the red asterisk) – was selected as the cloud
fraction threshold. By setting the threshold at the median, we
aim to identify cloudy images while minimizing the risk of
false positives (which could result in eliminating more im-
ages with a lower tile-independent threshold, although cer-
tain snowy pixels remain valuable, particularly for Cana-
dian tiles) and false negatives (including more cloudy im-
ages that likely misclassify snow as cloud, with a higher tile-
independent threshold, especially for the WUS tiles) in the
cloud classification process. Therefore, Snow CCI fSCA im-
ages with an internal cloud fraction greater than 60 % are
removed.

2.3.2 Viewing geometry effects on the fSCA
assimilation

A key difference between the Snow CCI fSCA and the Land-
sat fSCA is the sensor viewing geometry. The 16 d Landsat
repeat frequency is due to its near-nadir viewing geometry.
The Snow CCI fSCA product used in this study is derived
based on data from the MODIS sensor, which has a wide
swath (by scanning at different angles) to provide a daily re-
visit frequency. As a result, some daily images can have sig-
nificant off-nadir viewing angles near the edge of the swath.
This effect has been shown to lead to differences due to dis-
torted irregular pixels at large zenith angles (Dozier et al.,
2008), with negative impacts on the retrieval of fSCA, es-
pecially in forested areas (Margulis et al., 2019; Rittger et
al., 2020). The primary result of this is that fSCA estimates
should reflect less error when derived from near-nadir view-
ing than those pixels at significantly off-nadir viewing. Fol-
lowing Margulis et al. (2019), the error covariance of fSCA
measurements that penalizes the off-nadir viewing geometry
angles can be represented as

CSnow CCI
v (θ)=

CSnow CCI
v (θ = 0)

w(θ)
, (1)

where the measurement error covariance CSnow CCI
v (θ) is a

function of the MODIS sensor viewing angle θ , obtained
from the MOD09GA product. The numerator CSnow CCI

v (θ =

0) is the error covariance at nadir, and w(θ) is a specified
weighting function that is associated with non-nadir scan an-

gles (more detailed explanations are in Dozier et al., 2008):

w(θ)=
p2 cosθ
p‖p⊥

, (2)

where p is the linear pixel dimension at nadir and p‖ and p⊥
are the along-track and cross-track pixel dimensions at a non-
nadir angle. The more off-nadir measurements (with more
significant pixel elongation) have smaller w values and, thus,
larger measurement error covariances. We recognize that in-
creasing the measurement error covariances does not correct
any bias; biases induced by off-nadir effects may still intro-
duce systematic errors in the posterior results. While these
viewing geometry corrections may screen out highly prob-
lematic forested pixels that are significantly affected by the
viewing geometry, it should be noted that Eq. (3) does not
explicitly incorporate the underlying forest cover as a factor
(Rittger et al., 2020). Based on the assimilation of MODIS-
based fSCA (Margulis et al., 2019), the error covariance at
nadir (i.e., CSnow CCI

v (θ = 0)) is specified as ∼ (15%)2 for
the MODIS-based Snow CCI fSCA. The relationship be-
tween the error covariance CSnow CCI

v (θ) and w(θ) can be
specified as

CSnow CCI
v (θ)=

CSnow CCI
v (θ = 0)

w(θ)
≈
(15%)2

w(θ)
. (3)

Note that the weighting function w(θ) varies within (0,1]
by definition. Following the screening method for the view-
ing geometry (Margulis et al., 2019), a threshold of w(θ)
needs to be identified to exclude the measurements at pix-
els with significant distortions. The rationale behind select-
ing the threshold of w(θ) is the need to eliminate measure-
ments with lower quality, which could potentially introduce
noise or inaccuracies into the assimilation. However, there
is a trade-off between the threshold of w(θ) and the number
of informative fSCA measurements for assimilation. If the
threshold were set too high, there is a risk of discarding a
substantial number of measurements, potentially leading to a
loss of valuable fSCA information during the ablation season
and limiting the effectiveness of assimilation.

To determine the threshold of w(θ), we show the impact
of w(θ) on the accuracy of the assimilated fSCA, where the
accuracy (measurement error standard deviation) is given by√
CSnow CCI
v (θ), using CSnow CCI

v (θ) from Eq. (3). A smaller√
CSnow CCI
v (θ) represents a more accurate Snow CCI fSCA.

As shown in Fig. 3, the threshold of w(θ)∼ 0.2 is a reason-
able number to exclude less reliable measurements (w(θ) <
0.2) with a sharp increase in the uncertainty at higher view-
ing angles (θ > 50°) that are unlikely to provide useful infor-
mation in the assimilation step. As w(θ) approaches 1 (i.e.,
θ = 0°), the measurement error approaches that of the Land-
sat fSCA. The measurement error in Landsat fSCA used in
the Landsat reanalysis reference is indicated by the triangle
(i.e., 0.1 at nadir, where w(θ)= 1, θ = 0°) in Fig. 3.
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Figure 2. (a–d) CDFs of tile-wise cloud fraction (aggregated by domains) for WYs 2000–2019 derived from the internal Snow CCI cloud
mask. The dashed grey curves represent the CDF of cloud fraction for each WY, and the solid red curve represents the CDF for the multi-year
period (WYs 2000–2019). The intersection of dashed blue lines indicates the tile-wise median cloud fraction. (e) The CDF of the median
cloud fraction for all tiles, with a red asterisk representing the cloud fraction threshold.

Figure 3. The left y axis shows the impact of the w(θ) threshold on
the accuracy, i.e., measurement error standard deviation, of Snow
CCI fSCA for assimilation. The right y axis shows the function
of w(θ). Areas below the threshold of w = 0.2 are excluded from
the assimilation. The measurement error in Landsat fSCA is repre-
sented by the triangle (i.e., 0.1 at nadir).

Figure 4 summarizes the screening process for Snow CCI
fSCA as described in Sects. 2.3.1 and 2.3.2. Figure 4a–c il-
lustrate an example of the cloud screening with the threshold
of 60 % for the Snow CCI fSCA images. In Fig. 4a, all data
within the scene are discarded because the tile-average cloud
fraction (76.5 %) exceeds 60 %, a threshold hypothesized to
increase the likelihood of misclassifying cloud as snow. For
the remaining images (e.g., Fig. 4b and c), pixel-wise clouds
are removed using the internal Snow CCI cloud mask be-
fore assimilation. The remaining data are then screened for
viewing geometry. The pixel-elongation effect caused by off-
nadir viewing geometry is illustrated by Fig. 4c, where the
horizontal stretching pattern is clearly evident. We exclude
these erroneous pixels by removing Snow CCI fSCA mea-

surements with a pixel-wise w(θ) of less than 0.2 as illus-
trated in Fig. 4d–f.

Not all the assimilated fSCA data contribute to the poste-
rior SWE estimate as illustrated in Fig. 5, which displays the
basin-average number of assimilated fSCA measurements
per year for both Snow CCI and Landsat and specifically
those that are informative. The informative fSCA measure-
ments are those that contribute to the posterior update and
can be identified as those that occur when the prior ensem-
ble fSCA spread is greater than zero (most often during the
ablation season). Additionally, the spatiotemporally averaged
measurement error for each case is depicted by the circle that
is projected onto the right y axis of Fig. 5. The Landsat error
is fixed at 10 %, while Snow CCI is 15 % at a minimum but
is closer to 20 % when the viewing geometry is also consid-
ered. It is evident that Landsat provides more accurate fSCA
measurements with a lower measurement error at a lower re-
peat frequency, whereas Snow CCI generally has a higher
number of informative fSCA measurements but with higher
measurement errors.

2.4 Evaluation data and methods

2.4.1 Verification with independent datasets

The performance of the Snow CCI reanalysis estimates is
evaluated through comparisons with independent in situ ob-
servations from automated snow pillows and manual snow
courses as well as airborne lidar-based SWE estimates for
the WUS. Each type of reference data has its strengths and
weaknesses. Snow pillows (Beaumont, 1965) provide daily
or even hourly SWE estimates for a ∼ 10 m2 area, which
may not be spatially representative at the 1 km2 grid scale
(Herbert et al., 2024; Meromy et al., 2013). However, the
high temporal frequency provided by automated snow pil-
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Figure 4. Illustration of cloud and off-nadir screening processes. DOWY means the day of the water year. Panels (a–c) display the cloud
screening of raw Snow CCI fSCA images. The white color represents clouds, and the grey color represents fSCA lower than 10 %. Panel (a)
is discarded completely due to cloud coverage above 60 %. Panel (b) has a domain-wide cloud fraction below the threshold, so only cloudy
pixels are screened out. Panel (c) displays an off-nadir image on a clear day. Off-nadir measurements from panel (c) are excluded in the
(e) pixel-wise screening. Panels (d–f) present the complete screening process of Snow CCI fSCA at a sample pixel (indicated by a red dot on
the left panel). The daily time series of Snow CCI fSCA show (d) raw data, (e) data to be removed through pixel-wise cloud screening and
off-nadir screening, and (f) data to be assimilated.

lows is helpful in capturing the seasonal evolution of SWE,
important within the BSRF framework which relies on a
snow depletion curve (Liston, 2004). Snow courses provide
monthly and/or biweekly SWE measurements. The measure-
ments are averaged along a ∼ 100–500 m long transect. It
is expected that there are discrepancies between the snow
pillows and courses, even if they are collocated, unless the
underlying SWE is spatially homogeneous. Despite the rep-
resentativeness issue when comparing the in situ measure-
ments to 1 km2 gridded estimates and sampling a very small
fraction of the test domains, we perform the verification in
terms of the annual peak SWE and the temporal correlation

of daily SWE, where the correlation is insensitive to biases.
Airborne lidar data provide spatially complete measurements
of SD or estimates of SWE but are available only for specific
dates, typically near peak SWE. Estimates of snow density
are needed to go from SD to SWE (Painter et al., 2016).

In situ SWE measurements are available from the Natu-
ral Resources Conservation Service (NRCS) and the Califor-
nia Data Exchange Center (CDEC) via https://wcc.sc.egov.
usda.gov/reportGenerator/ (last access: 13 May 2025) for the
WUS, and for Canadian domains, access is provided through
the Canadian historical Snow Water Equivalent (CanSWE)
dataset (Vionnet et al., 2021). Table 1 summarizes the num-
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Figure 5. The left axis shows a boxplot of the domain-average num-
ber of all assimilated and informative Snow CCI fSCA and Land-
sat fSCA measurements per year. Informative fSCA measurements
are those that contribute to the posterior update, which only occurs
when the prior ensemble spread of fSCA is greater than zero. The
right axis shows the spatiotemporally averaged measurement error
for Snow CCI (in blue circles) and Landsat (in red circles).

ber of in situ sites and years for each domain. SWE measure-
ments are not available in the Aspen domain, and so only
comparison with airborne lidar estimates is possible over that
domain.

The lidar-based Airborne Snow Observatory (ASO) SWE
estimates available at 50 m spatial resolution over domains
in the WUS are interpolated and aggregated to the Snow CCI
SWE reanalysis resolution (0.01°) for the comparison. The
ASO SWE estimates closest to 1 April are only available
for the WUS domains in recent years (Table 2). The follow-
ing evaluation compares SWE values for these ASO mea-
surement times shown in Table 2. Additional evaluations for
other ASO times are included in Table S1 in the Supplement.

2.4.2 Comparison with the Landsat SWE reanalysis
dataset

In the absence of spatiotemporally continuous reference
SWE, we use a SWE reanalysis dataset produced by assimi-
lating cloud-free Landsat fSCA aggregated to a spatial reso-
lution of 0.01° (∼ 1 km). This dataset is developed using the
same method, which was produced for the WUS at a spa-
tial resolution of ∼ 500 m (16 arcsec) for 1985–2021 (Fang
et al., 2022). The specific thresholds, uncertainty parameters,
etc. are described in Fang et al. (2022) (Table 3). The per-
formance of the Landsat reanalysis SWE is well understood
over the WUS but not over western Canada, as it has not been
produced there previously. We consider the performance of
the Landsat and Snow CCI reanalysis SWE against the inde-
pendent reference data and relative to each other. Such com-
parisons allow us to diagnose the performance of the Snow
CCI reanalysis and understand to what extent the Snow CCI
fSCA can be used for the SWE reanalysis.

3 Results and discussion

In this section, we first evaluate the performance of the re-
analysis framework adapted from using Landsat fSCA to
Snow CCI MODIS fSCA inputs within the well-validated
WUS domains. By comparing with the previously validated
Landsat reanalysis reference, we can analyze the impact of
differences in fSCA datasets on the accuracy of the SWE es-
timation. Subsequently, we extend the study regions to the
western Canadian domains, which are more forested and lo-
cated at higher latitudes than the WUS (Fig. 1). The reanaly-
sis framework has not been applied to the western Canadian
domains yet, and the performance has not been previously
verified.

3.1 Application over previously studied WUS domains

3.1.1 Verification against in situ SWE measurements

Posterior peak SWE estimates from both the Snow CCI re-
analysis and Landsat reanalysis are compared with in situ
measurements (snow pillows and courses) available in the
Tuolumne watershed. In general, the Landsat reanalysis per-
forms better than the Snow CCI reanalysis with a Pearson
correlation of 0.91 and root mean square deviation (RMSD)
of 0.26 m, compared to a Pearson correlation of 0.47 and
RMSD of 0.53 m. The scatterplot in Fig. 6 presents the com-
parison of the in situ peak SWE against collocated posterior
peak SWE estimated from the Snow CCI reanalysis. To in-
corporate the Landsat posterior SWE estimates into this com-
parison, we use different colors to represent absolute relative
differences in basin-average peak SWE estimated from Snow
CCI relative to Landsat. These values are computed as abso-
lute differences in basin-average peak SWE, normalized by
basin-average peak SWE from the Landsat reference. Lower
values of absolute relative differences indicate years when
Snow CCI posterior SWE is more similar to Landsat pos-
terior SWE on a basin scale and vice versa. For example,
the Snow CCI estimates closely match the in situ measure-
ments when the absolute relative differences are within the
range of 0–0.1 (in red). Conversely, the estimates are more
scattered when the Snow CCI estimates diverge significantly
from the Landsat reference (e.g., greater than 0.5 in grey).
The right panel in Fig. 6 displays the statistics (i.e., corre-
lation and RMSD) of the verification against in situ peak
SWE. The statistics are computed for each range bin, using
data points represented in different colors. The Snow CCI re-
analysis performs well in years when the basin-average peak
SWE better matches the Landsat reference and the relative
differences are lower than 0.3. In such cases, correlation val-
ues are greater than 0.8 and the RMSD are lower than 0.5 m.
However, other years with divergence in basin-average peak
SWE between Snow CCI and Landsat exhibit lower correla-
tion and higher RMSD values relative to the in situ measure-
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Table 1. Number of in situ sites, site years, and sources of SWE measurements used in this study. SNOTEL: SNOwpack TELemetry Network.
n/a: not applicable.

Domains Number of Years Source
sites

Automated snow pillows

Tuolumne, California 4 2001–2019 NRCS–CDEC SNOTEL
Aspen, Colorado 0 n/a –
Bow River, Alberta 5 2001–2019 CanSWE v5 (Vionnet et al., 2021)
Lajoie, British Columbia 2 2001–2019 CanSWE v5 (Vionnet et al., 2021)

(one is only 2015–2019)

Manual snow course

Tuolumne, California 8 2001–2019 CDEC snow courses
Aspen, Colorado 0 n/a –
Bow River, Alberta 20 2001–2019 CanSWE v5 (Vionnet et al., 2021)
Lajoie, British Columbia 2 2001–2019 CanSWE v5 (Vionnet et al., 2021)

Table 2. Lidar-based measurement days closest to 1 April over
study domains in the WUS (for SWE).

ASO domains Water Day of the
year water year

Tuolumne, California 2015 185
2016 184
2017 183

Aspen, Colorado 2019 189

ments. The reason for discrepancies between Landsat- and
Snow CCI-derived SWE is discussed below in Sect. 3.1.3.

Figure 7 displays the temporal (daily) SWE comparison
for pixels containing snow pillows in the Tuolumne domain.
The locations of snow pillow sites are shown in Fig. 1.
The correlation square is computed by comparing Snow CCI
and Landsat posterior daily SWE against in situ daily SWE
greater than 1 cm. In the Tuolumne domain, posterior daily
SWE at snow pillow pixels have high correlations against
in situ SWE. The average R2 values are 0.85 and 0.92 for
the Snow CCI and Landsat reanalysis, respectively. The bot-
tom panel depicts differences in the R2 relative to the prior
daily SWE comparison. Specifically, cases in blue colors and
highlighted by the black boxes represent site years where the
reanalysis improves the correlation of daily SWE. For the
Snow CCI reanalysis, 30 out of 59 site years show improve-
ments in the R2, while the assimilation of Landsat fSCA im-
proves the R2 for 48 out of 59 site years. For some years
where there is degradation in the correlation after assimilat-
ing Snow CCI fSCA, such as 2003, 2006, 2011, and 2019,
Snow CCI fSCA is likely negatively biased over the domain
during the ablation season (Fig. 10). Such biases in fSCA
could cause significant shifts in the time of peak SWE and

the snowmelt season, which degrade the correlation of the
daily SWE compared to in situ measurements.

3.1.2 Verification against ASO SWE

For the Tuolumne domain, the assimilation of Snow CCI
fSCA significantly improves the correlation relative to the
prior SWE on the days near 1 April compared to the ASO
SWE (Table 3). The posterior Snow CCI SWE is highly cor-
related with ASO SWE, with correlation values ranging from
0.75 to 0.87, while the prior correlation values range from
0.48 to 0.54. The most significant improvement in the cor-
relation occurs in WY 2017 (Fig. 8), where the RMSD de-
creases from 0.6 to 0.46 m. The assimilation of the aggre-
gated Landsat fSCA shows a larger improvement in all WYs
in terms of the correlation and RMSD (Table 3). The pos-
terior Landsat SWE exhibits high correlation values rang-
ing from 0.83 to 0.92, comparable to the statistics in previ-
ous work (refer to Table 6 in Fang et al., 2022). Evaluations
with ASO surveys outside of peak SWE (Table S1) have per-
formance consistent with those from near 1 April. Figure 8
shows that in Tuolumne, the prior SWE has positive biases
over lower SWE areas at lower elevations and negative biases
over higher SWE areas at higher elevations. After assimilat-
ing the aggregated Landsat fSCA, the systematic errors are
reduced, with random errors more dispersed across the do-
main. When assimilating Snow CCI fSCA, negative biases
exist in posterior SWE across most of the domain.

For the Aspen domain (Table 3), the correlation of the pos-
terior SWE in WY 2019 is comparable to the value of the
prior SWE, while the RMSD decreases from 0.45 to 0.33 m
(for Snow CCI) and 0.21 m (for Landsat). The correlation
values are lower than the values seen in the Tuolumne do-
main. This could be because the snow albedo uncertainty is
not well characterized in Colorado (Fang et al., 2022), where
studies have shown that snow albedo is influenced by factors
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Table 3. SWE comparison statistics between ASO SWE estimates against prior and posterior snow reanalysis SWE on ASO measurement
days (day of the water year, DOWY) closest to 1 April.

ASO basin Year DOWY Pearson correlation RMSD (m) Bias (m)

Prior Landsat Snow CCI Prior Landsat Snow CCI Prior Landsat Snow CCI
posterior posterior posterior posterior posterior posterior

Tuolumne 2015 185 0.48 0.83 0.75 0.07 0.047 0.055 −0.04 −0.01 −0.02
2016 184 0.64 0.89 0.85 0.37 0.22 0.32 −0.24 −0.14 −0.26
2017 183 0.54 0.92 0.87 0.6 0.27 0.46 −0.14 −0.05 −0.31

Aspen 2019 189 0.51 0.53 0.54 0.45 0.21 0.33 0.40 −0.06 −0.27

Figure 6. Scatterplot of Snow CCI posterior peak SWE vs. in situ peak SWE at snow pillow sites (triangles) and snow course sites (circles)
in the Tuolumne domain. The color represents the unitless relative differences in basin-average peak SWE relative to the Landsat posterior
SWE reference. Bar plots show variations in the Pearson correlation and RMSD with in situ measurements across different ranges of relative
peak SWE differences relative to the Landsat reference.

such as dust, black carbon, and other light-absorbing parti-
cles (Deems et al., 2013). The spatial map (Fig. 8) shows
that the prior SWE is higher than the ASO SWE across As-
pen. The assimilation of remotely sensed fSCA lowers the
SWE estimates, with Snow CCI exhibiting more negative bi-
ases than the Landsat reference.

3.1.3 Comparison to Landsat-based reanalysis

Contributing factors to fSCA differences

The performance of SWE reanalysis over mountain areas is
primarily affected by the accuracy of the assimilated fSCA
and the prior estimates. Since the prior estimates are identical
for the Landsat and Snow CCI reanalysis, any differences in
the posterior are due to fSCA. The annual and interannual
comparison of fSCA observations from Snow CCI against
Landsat provide insight into the impact of fSCA differences
on the accuracy of SWE estimation.

A key difference between the two fSCA products is res-
olution: the raw nadir resolution of Landsat (∼ 30 m) is
significantly higher than that of MODIS (∼ 500 m), which
can improve its ability to resolve spatial patterns and see
through forest gaps. Snow CCI tends to underestimate fSCA
in forested areas (Fig. S1 in the Supplement). Additionally,

the broader range of viewing angles observed by the MODIS
sensor has a “smearing” effect that elongates pixels when
viewed at higher zenith angles (Dozier et al., 2008; Fig. 5).
Beyond considerations of resolution and viewing angle, dif-
ferent retrieval algorithms are used to derive Snow CCI and
Landsat fSCA, which can lead to both systematic (biased)
and random differences. Images of Landsat fSCA used in
this study are retrieved via a spectral end-member unmix-
ing approach (Cortés et al., 2014). Snow CCI fSCA im-
ages are derived using the SCAmod algorithm (Metsämäki
et al., 2012, 2015), a semi-empirical method retrieving fSCA
using observed reflectance with predetermined parameters.
Recognized issues associated with SCAmod include the up-
per/lower bounds of fSCA, which can exceed 0–1 when the
observed reflectance is higher/lower than the limits allowed
by the semi-empirical model (Metsämäki et al., 2015). Al-
though Snow CCI fSCA constrains the bounds to 0–1, bi-
ases could exist when the retrieved fSCA is near the bounds.
For example, Snow CCI fSCA tends to overestimate Land-
sat fSCA over bare soil areas with fSCA values near 100 %
(Fig. S1). The SCAmod algorithm also applies a temperature
threshold of 288 K to mitigate the misclassification of snow
cover caused by reflective non-snow targets. This tempera-
ture threshold has a tendency to remove low fSCA values
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Figure 7. Temporal correlation square (R2) of (a) Snow CCI and (b) Landsat posterior daily SWE vs. snow pillow daily SWE measurements
at snow pillow pixels in the Tuolumne domain. Panels (c–d) display differences between the posterior correlation and the prior correlation
(posterior R2

− prior R2). Station years with improvements are in the black boxes. Cases where snow pillow measurements are incomplete
and/or annual peak SWE values were lower than 2 cm are greyed out.

Figure 8. Comparison of ASO SWE with prior and posterior SWE at WUS ASO sites: Tuolumne basin on 1 April of WY 2017 and Aspen
on 8 April of WY 2019.

(Riggs and Hall, 2012). Snow CCI fSCA tends to be under-
estimated compared to Landsat fSCA during the late ablation
season when snow cover depletes (Fig. S1).

Long-term SWE climatology

The spatial pattern of climatological peak SWE from the
Snow CCI reanalysis is similar to the Landsat-based refer-
ence with correlation values of 0.89 and 0.86 for Tuolumne
and Aspen, respectively (Table 4). Both spatial maps of peak
SWE and time series of the seasonal cycle (Fig. 9) show
that Snow CCI underestimates SWE over the Tuolumne do-
main and is closer to the Landsat reference over Aspen. The
mean difference in peak SWE is −0.16 m for Tuolumne and
−0.03 m for Aspen, while the corresponding RMSD is 0.21
and 0.1 m (Table 4). The impact of forest cover and aspect
on the accuracy of Snow CCI SWE estimates is illustrated in
Fig. 9c. In both domains, the relative difference in posterior
SWE increases with the forest cover fraction. This is likely
because the Snow CCI fSCA has a coarser spatial resolu-

tion and cannot see through tree gaps within forested pixels
as well as Landsat can. Additionally, the relative difference
in posterior SWE is more negative in areas facing north and
less negative (even positive) in areas facing south/east in both
domains. South-facing slopes tend to receive more short-
wave radiation, leading to more reflectance compared to the
north-facing slopes. Note that Snow CCI fSCA is retrieved
based on the SCAmod algorithm, which uses the observed re-
flectance data along with predetermined reflectances of snow,
snow-free ground, and forest canopy via a semi-empirical
reflectance-model-based method (Metsämäki et al., 2015).
It is possible that the prevailing snow reflectance on south-
facing slopes is higher than that applied in the SCAmod al-
gorithm, resulting in higher values of Snow CCI fSCA than
Landsat (Metsämäki et al., 2015). This result highlights a
need for further work on the fSCA retrieval algorithm in re-
lation to terrain aspect.
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Figure 9. (a) Average seasonal cycle of basin-average posterior SWE from WY 2001 to WY 2019. The 19-year averages are displayed in
solid lines, while the shaded regions represent the full range across WYs. (b) Spatial maps of the 19-year peak SWE and differences relative
to the Landsat estimate. (c) Bar plots of relative differences (i.e., (Snow CCI−Landsat)/Landsat) as functions of forest cover and aspect.

Table 4. Comparison statistics for the spatial maps of 19-year me-
dian peak SWE between Snow CCI and Landsat posterior estimates.

Domain Correlation Mean difference RMSD
[m] [m]

Tuolumne 0.89 −0.16 0.21
Aspen 0.86 −0.03 0.10

Interannual variability in SWE

The interannual variability in Snow CCI posterior SWE is
similar to the Landsat-based estimates in most WYs on
the basin-average scale (Fig. 10a). The basin-average dif-
ferences in Snow CCI posterior fSCA estimates compared
to the Landsat reference are averaged for each month from
February–September (Fig. 10b displays the Tuolumne and
Aspen domains as examples). The differences in the basin-
average peak SWE for all WYs are significantly correlated
with the average fSCA differences during the ablation sea-
son across both domains, indicated by a correlation of 0.93
(Fig. 10c). The snowmelt timing suggested by fSCA datasets

also influences the accuracy of SWE estimation. The differ-
ences in the fSCA melt-out month are correlated with the
differences in peak SWE by R = 0.97 (Fig. 10c).

For illustration purposes, two sample WYs with com-
parable performance are highlighted with blue boxes (i.e.,
2002 and 2010 for Tuolumne and 2006 and 2012 for As-
pen), while two typical WYs of differing performance are
highlighted with magenta boxes (i.e., 2006 and 2011 for
Tuolumne and 2011 and 2018 for Aspen). The fSCA values
during the ablation season and snowmelt timing estimated
from the Snow CCI reanalysis match the Landsat-based esti-
mates for the comparable WYs. In contrast, significant biases
exist in the snowmelt duration and fSCA values for WYs in
blue boxes. In the Aspen domain, peak SWE generally oc-
curs in April, with February and March receiving substantial
snowfall. While the seasonal cycle of SWE is comparable to
the Landsat reference (Fig. 9a), WY 2018 is a case of poor
performance but with significant positive biases in posterior
SWE. Correspondingly, Snow CCI predicts an abnormally
long snowmelt season (April–September) characterized by
significant positive biases in fSCA compared to the Land-
sat reference, particularly before July (Fig. 10b). This is a
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Figure 10. (a) Daily time series of basin-average posterior SWE from the Snow CCI and Landsat reanalysis. Cases of consistent performance
vs. inconsistent performance between the two reanalyses are highlighted in blue and magenta, respectively. (b) Monthly basin-average
posterior fSCA differences (i.e., Snow CCI fSCA−Landsat fSCA). Months when both datasets indicate snow cover melt-out are greyed out.
The black circles indicate the snowmelt season estimated from the Snow CCI reanalysis (peak SWE time and the time of fSCA melt-out), and
the red crosses represent the snowmelt season from the Landsat reanalysis. (c) Scatterplots of differences in peak SWE vs. mean differences
in the ablation-season fSCA and vs. differences in the fSCA melt-out day.

unique case where Snow CCI exhibits low-quality (biased)
estimates in the Aspen domain, and the specified measure-
ment error cannot correct biases in fSCA. Future efforts to
better understand the unique behavior observed in the Aspen
domain, which could help inform future algorithm develop-
ment, are warranted.

The interannual differences in the basin-average posterior
SWE are also associated with the number of high-quality
fSCA measurements in the ablation season. Due to the lim-
ited number of coincident days when both Snow CCI and
Landsat fSCA are available, the quality of the Snow CCI
fSCA at each pixel is identified through a comparison with
the posterior fSCA curve constrained by the Landsat fSCA.
The Snow CCI fSCA measurements that are more than
±0.15 (i.e., the measurement error in Snow CCI fSCA at

the nadir angle) from the Landsat posterior fSCA curve are
excluded. The number of Snow CCI fSCA measurements
varies across the years, as does the basin-average ratio of the
number of high-quality measurements vs. the total number of
measurements in the ablation season (Fig. 11). This ratio is
negatively correlated with the absolute relative difference in
basin-average peak SWE compared to the Landsat reference.
In general, biases in the basin-average peak SWE tend to de-
crease as the availability of good-quality Snow CCI fSCA
data in the ablation season increases. This relationship is sig-
nificant for the Tuolumne domain (correlation of −0.61) but
less significant for the Aspen domain (correlation of −0.28,
−0.32 when the anomalous WY 2018 is excluded). In sam-
ple cases of good performance (as illustrated in Fig. 10), the
fraction of good-quality Snow CCI fSCA measurements is
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Figure 11. (a, b) Bar plots of the ratio of high-quality Snow CCI
fSCA in the ablation season relative to Landsat fSCA. (c, d) Scat-
terplots of the ratio of high-quality Snow CCI fSCA in the ablation
season vs. relative differences in basin-average peak SWE. Cases of
good performance vs. poor performance are highlighted in blue and
magenta, respectively, as illustrated in Fig. 10.

typically higher than 0.4, whereas the sample cases of poor
performance have a fraction as low as 0.2. The abnormal
WY 2018 in the Aspen domain, highlighted by the grey cir-
cle in the scatterplot, is characterized by fewer than 30 %
of all fSCA measurements being good quality (Fig. 11) and
by significant positive biases in Snow CCI fSCA during the
ablation season (Fig. 10). Together, these factors contribute
to a significant relative difference (> 1.5) in the basin-wide
peak SWE compared to Landsat. This analysis demonstrates
the challenges and limitations of defining and implementing
a single global threshold. Further, it suggests there is scope
to further refine the thresholds for cloudiness and the sensor
viewing angle, for example by developing regionally varying
thresholds, to increase the quality of Snow CCI fSCA mea-
surements being assimilated.

3.2 Application over the western Canadian domains

3.2.1 Verification against in situ SWE measurements

The performance of the Snow CCI reanalysis is evaluated
through the comparison of peak SWE against in situ sites in
the Bow and Lajoie domains. The Landsat reference is val-
idated in parallel since, unlike the WUS example, the SWE
reanalysis has not been applied to Canadian domains in pre-
vious work. Table 5 summarizes the statistics of the com-
parison of peak SWE against in situ measurements for both
the Snow CCI and Landsat reanalysis. The Landsat reference
performs well in both basins, with high correlation values of

Table 5. Comparison statistics for the 19-year peak SWE between
reanalysis posterior estimates and in situ measurements.

Domain No. of site Correlation RMSD [m]

years Landsat Snow CCI Landsat Snow CCI
posterior posterior posterior posterior

Bow 653 0.61 0.46 0.20 0.24
Lajoie 60 0.75 0.16 0.21 0.49

0.61 and 0.75 and a low RMSD of 0.2 and 0.21 m for Bow
and Lajoie, respectively. We acknowledge that the number of
site years is limited in the Lajoie domain and the verifica-
tion is constrained to only part of the domains. The posterior
SWE estimates from the Landsat reference have better accu-
racy than the Snow CCI reanalysis in both domains relative
to available in situ measurements. Therefore, similar to the
WUS basins, the Landsat reanalysis will serve as a compari-
son reference.

Figure 12 displays the comparison of Snow CCI poste-
rior peak SWE against in situ peak SWE, where the colors
represent the relative differences in basin-average peak SWE
compared to the Landsat reference. For both domains, the
correlation between posterior Snow CCI peak SWE and in
situ peak SWE can be as high as 0.6 for the relative differ-
ence bin of 0–0.2 and can be as low as 0.4 and negative for
the relative difference bin of > 0.4. The RMSD in the peak
SWE is higher when the basin-wide relative differences are
larger at the basin scale. For the Lajoie domain, the num-
ber of snow pillows and snow courses is limited. The perfor-
mance of the Snow CCI reanalysis is especially poor at the
low-elevation densely forested Green Mountain site (Fig. 12,
transparent colors), where Snow CCI SWE estimates are sig-
nificantly lower than in situ SWE, which significantly de-
grades the statistics.

The temporal (daily) SWE comparison (similar to
Sect. 3.1.1) is performed for snow pillow pixels in the Bow
and Lajoie domains over all WYs (Fig. 13). The average R2

between in situ and posterior daily SWE is 0.85 and 0.89 for
Snow CCI and Landsat, respectively. The temporal (daily)
R2 is much stronger than that of peak SWE. This is likely
due to the strong seasonal cycle of SWE and the fact that the
temporal comparison is unaffected by systematic biases. The
assimilation of Snow CCI fSCA (Landsat) improves the R2

values in 61 (69) out of 109 site years compared to the R2 of
prior estimates.

Typical fSCA and SWE time series at sample in situ sites
in the Bow and Lajoie domains are displayed in Fig. S2. In
selected samples, Snow CCI fSCA is generally lower than
Landsat fSCA at the densely forested site (Mount Odlum),
leading to an earlier snowmelt and lower SWE compared to
both snow pillow measurements and Landsat reanalysis esti-
mates. In contrast, Snow CCI fSCA is saturated and higher
than Landsat fSCA at the bare soil site (Downton Lake), re-
sulting in higher SWE and a later snowmelt season. Never-
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Figure 12. Same as Fig. 6 but for the Bow and Lajoie domains. Transparent colors for the Lajoie domain indicate the performance at the
Green Mountain site described in the text.

Figure 13. Same as Fig. 7 but for the Bow and Lajoie domains with snow pillow names in black and blue, respectively.

theless, Snow CCI fSCA can provide benefits when the avail-
ability of Landsat fSCA is limited at the moderately forested
site (Sunshine Village).

3.2.2 Landsat comparison

The comparison of the seasonal cycle of the basin-average
SWE for the Bow and Lajoie domains is shown in Fig. 14a.
The median seasonal cycle of Snow CCI posterior SWE gen-
erally matches the Landsat reanalysis with slightly negative
differences. The full range of Snow CCI posterior SWE for
the Lajoie domain is larger than that of Landsat posterior
SWE, indicating a higher interannual variability. The spa-

tial pattern of long-term peak SWE climatology from the
Snow CCI reanalysis is compared with the Landsat reference
(Fig. 14b and Table 6). Snow CCI and Landsat posterior peak
SWE have similar spatial patterns with correlations of 0.82
and 0.8 for the Bow and Lajoie domains, respectively. Snow
CCI and Landsat have comparable peak SWE for the Bow
domain (mean difference of −0.04 m and RMSD of 0.09 m),
whereas more significant differences exist in Lajoie with a
mean difference of −0.13 m and RMSD of 0.34 m.

To investigate the impact of forest cover fraction and as-
pect on relative differences in peak SWE identified in the
WUS example, we similarly bin the relative differences in
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Figure 14. Same as Fig. 9 but for the Bow and Lajoie domains.

Table 6. Comparison statistics for the long-term median peak SWE
between the Snow CCI and Landsat posterior estimates.

Domain Correlation Mean difference RMSD
[m] [m]

Bow 0.82 −0.04 0.09
Lajoie 0.80 −0.13 0.34

long-term peak SWE from Snow CCI vs. Landsat accord-
ing to forest cover and aspect (Fig. 14c). In both domains,
relative differences generally become more negative as for-
est cover increases, with Bow forest cover of 0 %–10 % ex-
cepted. Note that the bar plots show mean relative differ-
ences in each bin as functions of forest cover and aspect.
The poor performance in the Bow domain for forest cover
of 0 %–10 % is likely due to outlier data points: when con-
sidering the median relative differences in each bin, the per-
formance for 0 %–10 % forest cover is comparable to that
of the 10 %–30 % range. Regions with south-facing slopes
tend to exhibit less negative and positive relative differences
in peak SWE. The largest (and most negative) relative dif-
ferences in peak SWE are found on north-facing slopes for

both domains, indicating that Snow CCI may underestimate
fSCA over lower-illumination areas. Another hypothesis, as
discussed in “Long-term SWE climatology” in Sect. 3.1.3,
is that small snow-covered areas (low fSCA) may still exist
on north-facing slopes during the warm season that are cap-
tured by the Landsat algorithm but are set to zero in Snow
CCI by temperature threshold screening (Metsämäki et al.,
2015). Additionally, forest-covered areas have a mixed-pixel
temperature problem. SCAmod applies a snow temperature
threshold to the combined components in a grid cell, but
the temperatures of individual end-members (e.g., snow) pro-
vide more valuable information. Lundquist et al. (2018) de-
veloped a method to separate snow and forest temperatures
using multispectral unmixing, leveraging differences in mid-
wave and longwave infrared bands. Future work could ex-
plore whether this or a similar method can be applied across
broader areas to address the mixed-pixel temperature issue
affecting the Snow CCI fSCA product.

The interannual variability in basin-average SWE from the
Snow CCI vs. Landsat reanalysis is displayed in Fig. 15a.
The Snow CCI reanalysis generally yields comparable basin-
average SWE relative to the Landsat results in most WYs. As
was demonstrated in the WUS examples, significant fSCA
differences in the ablation period lead to significant differ-
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ences in basin-average peak SWE. This is also true in the
Canadian test cases (Fig. 15c), as indicated by the correla-
tion value of 0.84. It is also apparent that the earlier fSCA
melt-out timing corresponds to the lower peak SWE and vice
versa (Fig. 15c), and the correlation value is 0.93.

4 Conclusions

This study explored the potential for using the Snow CCI
fSCA climate data record (CDR) to constrain mountain SWE
estimates within a Bayesian SWE reanalysis framework.
Four application domains spanning the WUS and western
Canada with various physiographic and climatological con-
ditions are used to evaluate its performance. Since Snow CCI
fSCA is retrieved based on reflectance observations from
the MODIS sensor, we applied the measurement error (stan-
dard deviation of 15 %) used for other MODIS-based prod-
uct applications of the SWE reanalysis technique (Margulis
et al., 2019). We acknowledge that a 15 % measurement er-
ror at nadir viewing is a simplification and that ideally the
spatiotemporally varying estimate uncertainty built into the
Snow CCI product would describe the uncertainty in the SCF
estimates in a way that is meaningful for our data assimila-
tion use case. We also consider the impact of viewing geom-
etry and cloud cover but not canopy correction (Rittger et al.,
2020).

Despite its relatively coarse spatial resolution (0.01°), as-
similating Snow CCI fSCA typically resulted in improved
posterior SWE estimates compared to the prior values in all
four mountain test domains. In particular, assimilating Snow
CCI fSCA improved both the temporal evolution (Figs. 7
and 13) and spatial pattern (correlation with ASO> 0.75,
Sect. 3.1.2) of the reanalysis SWE compared to in situ data
(with some exceptions). A shortcoming of the SWE esti-
mates resulting from assimilation of the Snow CCI product
is that they are generally biased low at peak SWE based on
comparisons with both in situ snow pillows (Tuolumne, Bow,
and Lajoie) and ASO estimates (Tuolumne and Aspen).

Several additional conclusions stem from our comparisons
of SWE estimates based on the Snow CCI product with those
based on the Landsat product. First, we linked how differ-
ences in assimilated fSCA relate to differences in the poste-
rior SWE values (Figs. 10 and 15). Positive (negative) rela-
tive biases in posterior SWE estimates from Snow CCI and
Landsat are associated with higher (lower) fSCA values and
a later (earlier) snow-free date. We hypothesize that these
fSCA differences are due to differences in the products’ re-
spective retrieval algorithms and/or the spatial resolution of
the raw reflectance measurements (Sect. 3.1.3). Secondly,
these comparisons provided further evidence that Snow CCI
posterior SWE is biased low overall. For all four domains,
daily basin-wide climatological SWE estimates from the
Snow CCI reanalysis are lower throughout the snow season
compared to the Landsat reanalysis (Figs. 9a and 14a). In

addition, the spatial pattern of long-term differences in peak
SWE (Figs. 9c and 14c) demonstrates that these biases are
affected by forest cover and aspect, where the magnitude of
the Snow CCI reanalysis bias is largest in densely forested
regions and north-facing aspects. Finally we also tied year-
to-year differences in performance over the WUS to the num-
ber of high-quality fSCA scenes available during the abla-
tion period (Fig. 11). This connection may also explain the
poorer performance of the Landsat reanalysis over the two
Canadian domains compared its performance over the WUS
domains: the Canadian domains have limited good-quality
fSCA scenes due to increased frequency of cloud cover and
higher forest cover fraction.

The Snow CCI reanalysis presented herein aims to pro-
vide a methodology to fill the mountain SWE gap in the
Snow CCI SWE CDR. The main challenges when extend-
ing this framework to untested regions and/or to other sen-
sors (datasets) include (1) a bias correction of fSCA since
the error covariance used in the reanalysis assumes unbiased
measurements, (2) development of an algorithm to accurately
identify cloud/warm surfaces from snow and setting an ap-
propriate cloud fraction threshold for specific regions, and
(3) accurate characterization of uncertainty in fSCA mea-
surements. Another limitation to extending this work is the
limited availability of spatially and/or temporally continu-
ous reference data. Our temporal comparisons benefited from
western North America’s extensive snow pillow network,
but spatial comparisons, which relied mainly on lidar-based
SWE information, were limited outside of the WUS. Ongo-
ing work includes characterizing the fSCA biases across dif-
ferent spatial and temporal (seasonal/annual) scales and cor-
recting fSCA biases in canopy regions (Rittger et al., 2020).
Additional tasks could include a detailed investigation of the
benefits of using Snow CCI fSCA when Landsat measure-
ments are limited (due to single Landsat tile coverage or
significant cloud cover) or combining MODIS-derived Snow
CCI estimates with higher-resolution estimates derived from
Sentinel-2 measurements (Bair et al., 2023; Gascoin et al.,
2020).

Data availability. The Snow CCI SWE reanalysis output datasets
and Landsat SWE reanalysis output datasets are publicly avail-
able at https://doi.org/10.5281/zenodo.13930081 (Sun, 2024). The
MODIS-based Snow CCI Daily SCF product (version 2) is available
at https://doi.org/10.5285/ebe625b6f77945a68bda0ab7c78dd76b
(Nagler et al., 2022). In situ SWE measurements are available
from the Natural Resources Conservation Service (NRCS)
via https://wcc.sc.egov.usda.gov/reportGenerator/ (Natural Re-
sources Conservation Service, 2025) for the WUS, and for
Canadian domains, access is provided through the Cana-
dian historical Snow Water Equivalent (CanSWE) dataset
(https://doi.org/10.5281/zenodo.7734616, Vionnet et al., 2023).
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Figure 15. Same as Fig. 10 but for the Bow and Lajoie domains.

Supplement. The supplement related to this article is available on-
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