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Abstract. Snow avalanches are one of the most impact-
ful natural hazards in mountainous areas. Thus, the assess-
ment and forecasting of avalanche danger are of great im-
portance for the protection of life and property. A chang-
ing climate may lead to changes in avalanche danger, al-
though the manifestation is unclear. Since climate change is
regionally different, an assessment of potential avalanche-
danger changes should be conducted on a regional basis.
Here the focus is on avalanche danger in the Troms region
in northern Norway, i.e. a region in the Arctic. To estimate
the linkage between avalanche danger and weather condi-
tions in this region, we utilise expert assessments of regional
avalanche-danger level (ADL), the 3 km Norwegian Reanal-
ysis (NORA3), and snow-cover information from the snow
model seNorge. Random forest (RF) models are trained and
optimised for a binary case and for a four-level case. The
binary-case RF model exhibits a much higher overall accu-
racy (76 %) than the four-level case RF model (57 %), which
is due to the latter model often misclassifying ADL 1 as
ADL 2 and ADL 4 as ADL 3. Still, the misclassification
difference is seldom larger than one ADL, and the distribu-
tion of the frequencies of the different ADLs is reproduced.
The most important predictive features are related to new
snow and wind accumulated and averaged over several days.
The binary-case RF model is used to hindcast avalanche-
day frequency (ADF) from 1970 to 2024. In this period,
the spring season (March–May) shows a small increase in
ADF, whereas the winter season (December–February) ex-
hibits negative trends. Moreover, the ADF is found to be cor-
related with the Arctic Oscillation (AO) index especially in
winter, although this correlation appears to have deteriorated
in recent years. Given recent advances in skill of representing

the AO in decadal prediction systems, this is an encouraging
result for the predictability of future avalanche-danger ten-
dencies in northern Norway.

1 Introduction

Environmental and climate indicators associated with, for ex-
ample, natural hazards and human activities, both on land
(e.g. the danger of avalanches and landslides) and at sea
(e.g. changes in nutrient concentration or stratification es-
sential for fishery), represent important information when it
comes to society planning and policy-making, especially un-
der changing conditions. Prediction of such indicators, for
instance avalanches that are a large risk to life and prop-
erty, is of great importance, especially in densely populated
areas or tourism hot spots. Other environmental indicators,
such as nutrient concentration, may be related more to the
conditions for industry, farming, and fishery and are thus
strongly important for the planning of these industries and
their infrastructure (e.g. agricultural and marine spatial plan-
ning). However, because of the great complexity of the en-
vironment in which these indicators emerge, they are often
not directly modelled, implying a paucity of information and
hampering of planning for the present and especially the fu-
ture. Nonetheless, some information may be inferred indi-
rectly, i.e. from other environmental properties that are di-
rectly modelled. This may be done using statistical meth-
ods that quantitatively relate the indicator in question to the
modelled properties. One type of such properties for which
a rich pedigree of direct modelling and observational mon-
itoring exist is meteorological data. Thus, these data and
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their changes are often used to infer knowledge about – and
changes in – indicators that are not directly modelled. An
important benefit of this is that a diverse set of modelled fu-
ture scenarios exists for meteorological data. This offers the
opportunity to investigate potential future changes of envi-
ronmental parameters based on climate scenarios.

One environmental indicator that is associated with natu-
ral hazards and that is related to meteorological parameters is
snow avalanche danger or hazard (e.g. Statham et al., 2018).
The terms danger and hazard are synonyms in this context
(e.g. Statham, 2008; Engeset et al., 2018b), but according to
Müller et al. (2016a), the former is more often used in Eu-
rope, while the latter is more typical in North America. In
the following, avalanche danger is used.

Avalanche danger aggregates information about the like-
lihood of occurrence as well as the size of avalanches to
a single integer – the avalanche-danger level (ADL; e.g.
Müller et al., 2016b). A standardised five-level ADL scale
was agreed upon by the European Avalanche Warning Ser-
vices (EAWS) in 1993 and subsequently (in 1994) adopted in
North America as well (e.g. Statham et al., 2010; Schweizer
et al., 2020). However, the North American scale was later
revised with a focus on risk communication (Statham et al.,
2010). The ADL is typically forecast regionally by a team of
experts based on (1) snowpack stability, (2) the frequency
of snowpack stability, and (3) avalanche size (e.g. Müller
et al., 2023). As Pérez-Guillén et al. (2022) noted, ADL
forecasting still follows the experience-based approach al-
ready described by LaChapelle (1980). Nonetheless, in re-
cent years advances have been made in incorporating physi-
cal (snowpack) modelling in the forecast (Morin et al., 2020).
Moreover, in Switzerland an approach relying exclusively
on machine-learning models (i.e. without expert input as in
Schweizer and Föhn, 1996) to predict regional ADL with
promising accuracy rivalling that of human experts (see e.g.
Techel and Schweizer, 2017) has been developed for dry
avalanches (Pérez-Guillén et al., 2022) and was implemented
operationally for the first time in the winter of 2021/22
(Pérez-Guillén et al., 2025). Employing machine learning to
robustly predict ADL offers the possibility of (1) hindcasting
and potentially connecting ADL to known climate patterns,
(2) providing quicker and more fine-resolution predictions of
ADL based on numerical weather forecasts (e.g. van Her-
wijnen et al., 2023), and (3) obtaining prediction of ADL
based on numerically modelled future climate change sce-
narios. The latter is highly important for future planning for
stakeholders (e.g. ski-tourism industry or infrastructure de-
partments) as a changing climate likely impacts avalanche
occurrence and danger (e.g. Castebrunet et al., 2014; Laute
and Beylich, 2018; Dyrrdal et al., 2020; Mayer et al., 2024).

In this study we follow an approach similar to Pérez-
Guillén et al. (2022) to train machine-learning models to
predict ADL in northern Norway. In northern Norway snow
avalanches are among the most important natural hazards,
causing road closures and access disruptions to towns, as

well as casualties associated with, for example, skiing, riding
a snowmobile, driving cars, or even being in houses. In an
analysis of the Norwegian mass movement database (https:
//skredregistrering.no/, last access: 9 May 2025) and records
from Varsom (https://varsom.no/, last access: 9 May 2025),
Dyrrdal et al. (2020) found that between 1730 and Jan-
uary 2020 in Troms, 307 casualties were caused by snow
avalanches.

While deterministic prediction of avalanche release will
likely remain out of reach for the time being (Schweizer
et al., 2003; Dkengne Sielenou et al., 2021), the possibil-
ity of using weather data to forecast avalanches was recog-
nised decades ago (e.g. Atwater, 1954; LaChapelle, 1966).
In the years since, many studies have focused on statisti-
cal prediction of avalanche occurrence from meteorological
data (e.g. Judson and Erickson, 1973; Bakkehøi, 1987; Davis
et al., 1999; Kronholm et al., 2006; Jomelli et al., 2007;
Jaedicke et al., 2008; Hendrikx et al., 2005, 2014; Gauthier
et al., 2017; Mayer et al., 2023; Viallon-Galinier et al., 2023;
Hao et al., 2023). These studies are based on observational
avalanche records and typically focus on small regions with
strong observational coverage. As observational records for
larger regions are likely incomplete (e.g. Schweizer et al.,
2020), especially in the sparsely populated regions such as
northern Norway (Jaedicke et al., 2008), direct forecasting
of the probability of avalanche occurrence for larger areas
appears so far infeasible. Instead, as indicated above, the
forecasting of ADL is more promising. While there have
long been attempts to forecast ADL with the help of statis-
tical models (mostly nearest-neighbour methods; Schweizer
and Föhn, 1996; Brabec and Meister, 2001), this research
has gained more momentum only in recent years (Dekanová
et al., 2018; Joshi et al., 2018, 2020; Fromm and Schön-
berger, 2022; Pérez-Guillén et al., 2022; Blagovechshen-
skiy et al., 2023; Sharma et al., 2023; Pérez-Guillén et al.,
2025; Fromm and Schönberger, 2024; Maissen et al., 2024).
However, the nearest-neighbour model of Brabec and Meis-
ter (2001) based on data from 60 manual weather stations
in Switzerland yielded only a 52 % prediction accuracy. In
contrast, the expert system of Schweizer and Föhn (1996),
tested in the Davos region in Switzerland, achieved up to
73 % accuracy, although only in the case where an expert
was allowed to interact with the forecast. Schirmer et al.
(2009) compared several different machine-learning meth-
ods to forecast avalanche danger. Notably, they also included
snow-stratigraphy data from simulations with the physically
based snow-cover model SNOWPACK (Bartelt and Lehning,
2002; Lehning et al., 2002a, b). They found the best method
(73 % cross-validated accuracy) to be a nearest-neighbour
classifier, which, however, included the ADL from the pre-
vious day as input. While this may improve the accuracy
with respect to daily ADL, it likely deteriorates the perfor-
mance for days when the ADL changes compared to the pre-
vious day (e.g. Pérez-Guillén et al., 2022). Recently, focus-
ing on regional dry-snow avalanche conditions in the Swiss
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Alps, Pérez-Guillén et al. (2022) achieved the best results of
predicting ADL based on meteorological and SNOWPACK-
simulated snow-stratigraphy data with a random forest (RF)
classifier (about 75 %). Their approach is purely data-driven
and does not require expert inputs. The Pérez-Guillén et al.
(2022) RF model has since been used in a test setting for op-
erational ADL forecasting in Switzerland with an agreement
rate with human experts of about 70 % (Pérez-Guillén et al.,
2025). It may be noted that the RF model has become a gen-
erally popular method in avalanche forecasting; however, it
appears to be mostly used for forecasting avalanche activ-
ity (e.g. Möhle et al., 2014; Dkengne Sielenou et al., 2021;
Mayer et al., 2023, 2024; Viallon-Galinier et al., 2023) and
not ADL. Contrarily, there has been a number of studies us-
ing an artificial neural network (ANN) to predict ADL in dif-
ferent mountain regions. However they report considerably
different accuracies. For example, Dekanová et al. (2018),
building on earlier work by Stephens et al. (1994), used an
ANN to predict avalanche danger in the Western Tatras (Slo-
vakia) based on weather station data, obtaining accuracies
of 59 %–66 %. A somewhat higher accuracy of about 71 %
was obtained by Joshi et al. (2020), who used an ANN-
model chain first to predict snowpack information and subse-
quently ADLs. Conversely, Blagovechshenskiy et al. (2023)
reported much higher accuracies of 77 %–91 % for an ANN
trained for the Ile Alatau Ridge in Kazakhstan. It is gener-
ally difficult to compare prediction accuracies across the dif-
ferent studies as they concern contrasting topographies and
climates as well as different kinds of warning regions (e.g. in
Norway the average warning-region size is about 9000 km2,
as shown in Table S1 and Fig. S1 in the Supplement, while in
Switzerland it is 200 km2; Pérez-Guillén et al., 2025). More-
over, the data quality and the chosen predictive features also
differ between studies. Thus, one reason for the discrepancies
may be that Blagovechshenskiy et al. (2023) used informa-
tion about the snow stratigraphy as predictive features, while
the information of Dekanová et al. (2018) about snow was
confined to “actual snow depth” and “new snow depth” (see
their Table 2), and Joshi et al. (2020) used snowpack infor-
mation predicted by an ANN based on meteorological data.
Furthermore, there are differences in the generation of the
ADL data set, as Blagovechshenskiy et al. (2023) had to re-
construct most of the ADLs based on actual avalanche obser-
vations, while Dekanová et al. (2018) and Joshi et al. (2020)
were able to use a historical record of ADL forecasts. Sharma
et al. (2023), who trained and optimised an ANN using the
same data as Pérez-Guillén et al. (2022), reported a best-case
accuracy of about 77 % with respect to their validation data.
However, unfortunately no information about the split into
training and validation data is provided. If the validation data
are chosen randomly, temporal correlations may cause severe
overestimation of model accuracy. A further reason for the
comparatively high accuracy of Sharma et al. (2023) is likely
that their data were confined to dry-snow avalanches. These
points may explain the discrepancy in model performance

with Fromm and Schönberger (2022), who obtained an accu-
racy of only 48 % for an ANN trained on meteorological and
SNOWPACK-simulation data (i.e. similar to Sharma et al.,
2023) for a ski resort in the Austrian and Swiss Alps. As test
data, they used one whole winter which was excluded from
the training data, and they considered any type of avalanche.
They also noted that in contrast to Pérez-Guillén et al. (2022)
and Sharma et al. (2023), they did not focus on regional ADL
but instead on a much smaller region, i.e. a single ski re-
sort. The resort is strongly influenced by artificial and inten-
tional avalanche triggering, potentially further hampering di-
rect comparability to the other studies.

So far, the only study investigating statistically the rela-
tion between avalanches and weather data in northern Nor-
way is Jaedicke et al. (2008), although this aspect was not the
main focus of that study, and instead of ADL they predicted
avalanche activity. Moreover, Dyrrdal et al. (2020) investi-
gated climate indices specifically related to avalanches in the
Troms region in northern Norway, but they did not statisti-
cally relate these indices to avalanche danger. Recently, van
Herwijnen et al. (2024) investigated the transferability of sta-
tistical models trained to predict Alpine snowpack stability to
the Arctic snowpack, in particular the snowpack on Kvaløya
in the Troms county. Their findings indicate that, while there
is some potential for transferability, the unique character-
istics of the Arctic snowpack deteriorate the accuracies of
Alpine-trained models. This suggests that statistical mod-
els that predict avalanche-related parameters such as snow-
pack stability and avalanche danger should be trained on re-
gional data representative of the specific regional conditions.
A reason for the historically marginal focus on statistical
avalanche prediction in northern Norway may be due to the
sparse avalanche observations in this region (Jaedicke et al.,
2008), implying that avalanche prediction models based on
observational avalanche records are likely biased. We note
that the analysis in Jaedicke et al. (2008) may suffer from this
problem. To circumvent this shortcoming, we here instead
rely on the expert ADL assessments published by the Nor-
wegian Water Resources and Energy Directorate (NVE). Our
aim is to train and optimise random forest models to (1) pre-
dict avalanche danger and make progress towards opera-
tional data-driven avalanche-danger forecasting and (2) pre-
dict avalanche danger on an aggregated scale (binary case) to
produce hindcasts and future projections (in upcoming work)
of the number of avalanche days in northern Norway.

The study is structured as follows: Sect. 2 first explains the
expert ADL assessments (2.1), the NORA3 reanalysis (2.2),
and the seNorge model (2.3), and it finally gives an overview
of the avalanche-danger prediction features calculated from
the NORA3 data and the seNorge output (2.4). Section 3 de-
scribes the RF model (3.1) and the technique we use to bal-
ance the training data (3.2). In Sect. 4 the RF optimisation
and feature selection procedure is presented, and in Sect. 5
the four-level (5.1) and binary (5.2) RF models are evalu-
ated. The binary-case RF model is used in Sect. 6 to perform
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a hindcast of the number of avalanche days, which is then
connected to known climate patterns. Section 7 offers a sum-
mary and concluding remarks.

2 Data

2.1 Avalanche danger

In northern Norway avalanche observations are sparse and
many avalanches remain undetected. Thus, using avalanche
observation catalogues as training data for statistical mod-
els to predict avalanches likely introduces biases leading to
incorrect or at least uncertain prediction. To avoid this poten-
tial bias, we here instead employ the daily avalanche-danger
level (ADL) assessment as described in Sect. 1. In Norway
the ADL assessment is produced under the scope of the
Norwegian Avalanche Warning Service (NAWS), which was
established in January 2013 (Engeset, 2013; Müller et al.,
2013; Engeset et al., 2018b). The NAWS is a member of the
EAWS, and the ADL assessment follows the EAWS stan-
dards (Engeset, 2013). The ADLs are generated and pub-
lished by a team of experts from the Norwegian Water Re-
sources and Energy Directorate (NVE), the Norwegian Mete-
orological Institute (MET), and the Norwegian Public Roads
Administration (NPRA) at https://varsom.no/ (last access:
9 May 2025; see Johnsen, 2013; Engeset et al., 2018a), ag-
gregating knowledge from snow and weather observations as
well as numerical-weather-prediction modelling output. Due
to the sparse network of automatic weather stations in the
Norwegian mountain areas, an important part of the infor-
mation for the forecasters comes from the qualitative assess-
ments of field observers (Kosberg et al., 2013). For main-
land Norway (i.e. excluding Svalbard), avalanche warnings
are published daily from 1 December to 31 May (Varsom,
2025b) for 23 warning regions with an average size of about
9000 km2. However, note that in special cases avalanche
warnings are sometimes published also in November and
June. For 19 further warning regions (average size about
11 000 km2), avalanche warnings are published on days with
ADL 4 or 5 (see Table S1 and Fig. S1 for more detail on
the Norwegian warning regions). The avalanche warnings
are published before 16:00 LT (Varsom, 2025a) for 3 d at a
time, with a nowcast for the day of production and a fore-
cast for the next 2 d. However, on days with ADL 4 or 5,
warnings are typically published already before 12:00 LT
(Engeset, 2013). We here use the nowcast data available
via NVE’s Regobs platform (https://www.regobs.no/, last ac-
cess: 9 May 2025, Engeset et al., 2018a), which is conve-
niently accessible with the Python library Regobslib (https:
//pypi.org/project/regobslib/, last access: 9 May 2025). Even
though the NAWS has published ADLs since 2013, we here
use ADL data from the avalanche seasons of only 2016/17
to 2023/24, since the warning-region setup was changed in
2016 (Karsten Müller, personal communication, 2024).

In describing the avalanche danger by a single value per
region, the ADL constitutes a large reduction in complexity.
In fact, the avalanche forecaster considers several different
avalanche problems (APs). In accordance with the EAWS’s
standards, the NAWS uses the following APs (EAWS, 2025):
new snow (loose and slab), wind-drifted snow (slab), persis-
tent weak layer (slab), wet snow (loose and slab), and gliding
snow. Based on the estimated likelihood (based, in turn, on
distribution and sensitivity) and size of avalanches, the fore-
caster determines a danger level per AP (Müller et al., 2023).
The final ADL in a given region is taken as the highest dan-
ger level among the different APs. Hence, the ADL is a re-
sult of different APs that are related to different meteorolog-
ical conditions, complicating the relation between ADL and
meteorological data and thus the modelling of this relation.
However, considering only one AP reduces the amount of
available data, making a robust training of statistical models
more difficult. Also, at least some of the APs may be related
to similar meteorological conditions, and we thus believe it is
still feasible to focus on the general ADL. In future work we
will attempt a more detailed decomposition into the different
APs.

Here, the ADLs from the northern Norwegian A-type re-
gions of Nord-Troms, Lyngen, Tromsø, Sør-Troms, and In-
dre Troms are considered (average size about 6800 km2). The
regions are depicted in Fig. 1. From Fig. 2a, it is clear that
there is considerable variation in the frequency of the differ-
ent ADLs, with level 2 being the most frequent and level 4 the
least frequent, while level 5 was never forecast in northern
Norway. Hence, the ADL scale in this study is constrained
to four levels. The figure also shows that the frequency of
the ADLs is similar across the different regions. Conversely,
the ADL frequency varies across the different recorded years
(Fig. 2b), especially between levels 1 and 2. For example, in
2020 there were almost no days with level 1 but many more
days with level 2 than in the other years. In contrast, in 2018
and 2021 there were much fewer days with level 2 and many
more with level 1 compared to the other years. The distri-
bution of ADLs per year is important information when it
comes to the splitting of training and test data for the statisti-
cal models. Figure 2c shows the distribution of ADLs for the
test data (winters ending in 2021 and 2023) and the training
data (remaining years) used in this study.

As Pérez-Guillén et al. (2022) discussed, one source of
noise in the ADL data is forecast error, i.e. incorrect labels.
For example Techel and Schweizer (2017) found that the re-
gional forecasts match local nowcasts only 71 % of the time.
Pérez-Guillén et al. (2022) thus attempted to generate a re-
fined subset of their ADL data by including additional infor-
mation such as observational data and the outcomes of sev-
eral verification studies. For northern Norway, no such ver-
ification studies exist, although there is one study that com-
pared remote-sensing-derived avalanche activity with fore-
cast ADLs, which indicated that ADL forecasts are conser-
vative (Eckerstorfer et al., 2017). Attempts are currently un-
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Figure 1. Study region. The black square in the inset indicates the
location of the study region in Norway. The topography information
is taken from NORA3.

derway to increase remote-sensing coverage and detection
algorithm quality, but the probability of detection has been
found to depend on the type of avalanche and is overall only
about 57 % (Müller et al., 2021). Furthermore, while there
are in situ observational avalanche records in northern Nor-
way, these are very sparse due to the comparatively large area
and the low population density. Even using a combination of
in situ and remote-sensing observations to tidy up our ADL
data would strongly reduce our available data so as to make
robust training of a statistical model infeasible. With these
reservations in mind we are here bound to use the raw ADL
forecast data.

In this study, we consider two types of avalanche-danger
scales. First, we employ the full ADL scale (henceforth the
four-level case). Second, we generate a binary scale (hence-
forth the binary case) where the ADLs 1 and 2 are com-
bined to “non-avalanche day” (non-AvD) and the ADLs 3
and 4 are combined to “avalanche day” (AvD). We call the
number of avalanche days per winter season the avalanche-
day frequency (ADF). Due to its higher accuracy compared
to the four-level case (see Sect. 5), the binary-case model
will give a more robust, albeit rougher, estimate of the gen-
eral tendency of avalanche danger. Furthermore, the ADF ap-
pears related to avalanche activity, since Pérez-Guillén et al.
(2024a) in a case study in the Swiss Alps using an automated
seismic avalanche detection system found that on days with
no avalanche, the mean ADL was 1.9± 0.8, while on days
with at least one avalanche, it was 3.2±0.5, hence providing
a clearly binary appearance. Similarly, in an investigation of
Swiss backcountry GPX tracks as a proxy for non-avalanche
events, Techel et al. (2024) found that for non-events the me-
dian probability of ADL ≥ 3 was only 0.14, while for events
it was 0.58. Hence, on a day with ADL 3 or 4, avalanche
events are likely, while they are unlikely on days with ADL
1 or 2, justifying our definition of AvD and non-AvD. We use

the binary-case model in a hindcast of the ADF to find poten-
tial linkages to known climate patterns/modes (see Sect. 6).

2.2 NORA3

The meteorological data used in this study are taken from
the 3 km Norwegian Reanalysis (NORA3). NORA3 is an at-
mospheric hindcast for the North Sea, the Norwegian Sea,
and the Barents Sea as well as the Scandinavian Peninsula,
including further parts of northern and western Europe and
north-west Russia (Haakenstad et al., 2021). More precisely,
it may be viewed as falling somewhere between a hindcast
and a full reanalysis as it includes data assimilation only
for surface parameters (Haakenstad et al., 2021; Haakenstad
and Breivik, 2022). NORA3 provides a regional downscal-
ing to a 3 km horizontal resolution of the latest version of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis, ERA5, with a 31 km horizontal reso-
lution (Hersbach et al., 2020). To produce NORA3, the non-
hydrostatic convection-permitting numerical weather model
HARMONIE-AROME (Bengtsson et al., 2017) was run on
a 3 km horizontal resolution and with 65 vertical layers, us-
ing ERA5 fields as initial and boundary conditions. At the
time of writing, data availability covers the period from Jan-
uary 1970 to September 2024 and is constantly updated with
a few months lag.

Pertinent to the present study, NORA3 has been found to
significantly improve the representation of 2 m temperature,
10 m wind, and daily precipitation, particularly regarding ex-
tremes and in coastal and mountainous areas compared to its
host reanalysis (ERA5) and its predecessor (NORA10; Reis-
tad et al., 2011). These improvements appear mostly due to
the higher resolution as well as the resolved deep convection
(Haakenstad et al., 2021; Haakenstad and Breivik, 2022).
Still, Haakenstad and Breivik (2022) reported at least two
biases that may be important for the present study, namely
a significant underestimation of spring temperatures as well
as too-long-lasting snow cover in regions with few observa-
tions.

Previous studies that attempted to relate weather data to
avalanches note that meteorological parameters above a cer-
tain elevation are most important regarding avalanche re-
lease (e.g. Kronholm et al., 2006; Laute and Beylich, 2018;
Dyrrdal et al., 2020). We have conducted our analysis using
several different elevation thresholds, selecting grid cells be-
tween 400 and 900 m a.s.l., 500 and 1000 m, 600 and 1100 m,
and 300 and 1300 m. However, the choice of elevation thresh-
old had little impact on the final results. The results presented
here are based on the elevation interval 400–900 m, and the
number of grid cells selected per region is shown in Table 1.

2.3 seNorge

The NORA3 reanalysis lacks data on the snow conditions
at the surface. Thus, in order to obtain information about
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Figure 2. Summary of the avalanche-danger level (ADL) data in northern Norway from winter 2016/17 to 2023/24. In panel (a) the number
of days per ADL per region is shown, panel (b) shows the number of ADL days per year (× markers indicate the test data), and panel (c)
depicts the fraction of winter days on which a given ADL was determined separated into (red) test (winters ending in 2021 and 2023) and
(black) training (remaining years) data.

Table 1. Number of selected grid cells between elevation levels 400
and 900 m a.s.l. for the NORA3 grid cell selection.

Region Number of cells

Indre Troms 461
Lyngen 136
Nord-Troms 594
Sør-Troms 146
Tromsø 41

parameters related to snow cover, e.g. the snow depth and
density and snow water equivalent (SWE), we employ the
snow model seNorge (Saloranta, 2012) version 1.1.1 (Salo-
ranta, 2014, 2016). Due to a lack of both in situ and satel-
lite observational data on snow, seNorge is the main tool
used to provide information on snow for the avalanche warn-
ing system in Norway (Saloranta, 2012; Morin et al., 2020).
Daily gridded (1 km resolution) snow maps are generated
with seNorge and published on https://www.senorge.no/ (last
access: 9 May 2025).

The tool seNorge is a simple process-based single-layer
snowpack model demanding little computational resources,
thus being convenient for application to large high-resolution
grids (Saloranta, 2016; Morin et al., 2020). The model con-
sists of two sub-modules for (1) snowpack water balance and
(2) snow compaction and density, calculating the snow water
equivalent, the melt/refreeze rate, and run-off as well as snow
depth and density, respectively. As input data, seNorge only
requires daily temperature and precipitation.

To keep our snow and weather data consistent, we rerun
the seNorge model using NORA3 daily 2 m air temperature
and total precipitation amount as input. To obtain reason-
able initialisation data for seNorge, the model was first run
for the years 1970 through 1975, with the initial values be-
ing zero everywhere. The final simulation outputs from 1975
were then used as model initialisation data for 1970, and the

model was run from 1970 through 2024 to produce the snow-
cover data.

2.4 Avalanche-danger prediction features

Based on the NORA3 weather data, several parameters are
constructed to be used as potential predictors of ADL, partly
following earlier studies (e.g. Hendrikx et al., 2014; Gau-
thier et al., 2017; Pérez-Guillén et al., 2022). An overview
of these potential predictors is presented in Table 2. They
include the accumulated new liquid precipitation r1 on the
day of the publication of the ADL nowcast (see Sect. 2.1),
as well as the new liquid precipitation accumulated during
1 to 6 d before and including the day of the nowcast (r2,
. . . , r7). Equivalently, solid precipitation is represented by the
features s1, . . . , s7. The hourly precipitation-amount values
from NORA3 were classified as liquid or solid based on the
hourly 2 m air temperature being larger or smaller than 0 °C,
respectively. The daily total precipitation sum, including both
rain and snow, is represented by Ptot. The parameters rh,
rh2, . . . , rh7 correspond to the daily and 2–7 d averages of
the relative humidity. The maximum and minimum of 2 m
air temperature (tmax, tmin) and 10 m wind speed (wmax)
represent the daily maximum and minimum of hourly val-
ues from NORA3, respectively. The diurnal cycles dtr, dtr1,
dtr2, and dtr3 represent the difference between the maximum
and minimum hourly 2 m air temperatures on the day of and
up to 3 d before the ADL nowcast. The thermal amplitudes
dtrd1, dtrd2, and dtrd3 represent the largest thermal range of
hourly 2 m air temperatures between the day of and 1 to 3 d
before the nowcast. The ftc is a Boolean flag indicating if a
freeze–thaw cycle was present on the day of the nowcast, i.e.
if the daily tmax was larger than 0 °C and the daily tmin was
smaller than 0 °C. The positive-degree days (pdd) are calcu-
lated as the 7 d sum (including the day of the nowcast) of the
daily mean 2 m air temperature (t1) for days with t1 > 0°C.
The drift index (wdrift) combines precipitation and wind (see
Table 2) to represent the effect of snow drift (Hendrikx et al.,
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2005). The cubed drift index (wdrift3) is also included as
this is more in line with the current understanding of snow
transport by wind (Hendrikx et al., 2014). Further parame-
ters include the net short-wave and long-wave radiation at
the surface (nsw and nlw, respectively) averaged over 1 to
7 d. As described in Sect. 2.3, we also use parameters gener-
ated with the seNorge snow model. These are the snow wa-
ter equivalent (SWE), snow depth (SDP), snow density (SD),
and melt/refreeze rate (MR). The parameters are included as
daily and 2 d to up to 7 d means.

The predictive features are calculated for all days for
which ADLs are available, covering the period of winter
2016/17 to 2023/24. The avalanche period is considered as
lasting from December to May, including these months, al-
though in a few cases, there are ADLs for days in late
November and early June. The data are split into a train-
ing and a test data set. To avoid a potential overestimation
of model skill due to intra-seasonal correlation, we use the
two full avalanche seasons of 2020/21 and 2022/23 as test
data and the remaining seasons as training data. The two test
seasons are rather different in terms of ADL frequencies (see
Fig. 2), thus covering at least some interseasonal variation.
When training the statistical models, we average the predic-
tive features for each of the five avalanche regions separately
(Fig. 1). However, we train one model for all five regions
combined because there are not enough data to robustly train
a statistical model per region (especially for level 4 with only
164 cases for all regions combined; see Fig. 2a). We note that
we have tested taking the 90th percentile of the grid cells per
region instead of the average, but this had no impact on our
final results.

3 Methods

In the following we introduce the random forest (RF) model
used to predict avalanche danger based on meteorological
data and then give a brief description of the oversampling
method used to balance the data.

3.1 Random forest

The random forest (RF; Breiman, 2001) model is a non-
linear supervised classifier based on an aggregation of
weaker classifiers (the decision tree). The decision tree (DT;
Breiman et al., 1984) establishes splitting rules for the con-
tinuous features to predict the discrete target variable (i.e. the
ADL). The splitting rules are here obtained by minimising
the Gini index of diversity (e.g. Breiman et al., 1984):

Gini=
N∑

i=1
(pi (1−pi)) , (1)

where N is the number of classes in the data and pi is the
probability of correctly classifying item i. Higher and lower

Gini indices correspond to greater and smaller misclassifica-
tion, respectively. The user may determine both the number
of splitting rules setting the depth of the DT and the mini-
mum number of data samples that must remain after a split.

The RF grows multiple DTs, and the final outcome (i.e.
the ADL based on a specific set of predictive feature values)
is obtained by the majority vote of the outcome of the in-
dividual DTs. Using a large number of DTs typically helps
to prevent overfitting. As another measure to prevent overfit-
ting, the individual DTs are trained on bootstrapped subsets
of the data.

The RF method offers the possibility to gauge the impor-
tance of the individual predictive features in the prediction
of the target variable. This is done by calculating the average
impurity decrease computed across all DTs in the RF due to
the respective predictive feature.

Note that while an individual DT may be humanly under-
standable (given it is not too large), the RF typically consists
of hundreds of DTs, thereby becoming a “black box”. How-
ever, due to the large number of features (up to 109 features
are considered potential predictors here), a black box model
is likely unavoidable when it comes to ADL prediction. Fur-
thermore, promising efforts have recently been undertaken
employing explanation models to explain the role of the in-
dividual predictive features in the ADL predictions of an RF
model (Pérez-Guillén et al., 2025).

In the context of the prediction of snow avalanches, the
RF method has become quite popular. However, it seems to
be mostly used for the prediction of avalanche activity based
on avalanche observations (e.g. Möhle et al., 2014; Dkengne
Sielenou et al., 2021; Mayer et al., 2023, 2024; Viallon-
Galinier et al., 2023), and Pérez-Guillén et al. (2022) appear
to be the first applying an RF to ADL prediction.

Here we use the RF implementation in the Python li-
brary scikit-learn version 1.5.1 (https://scikit-learn.org/, last
access: 9 May 2025).

3.2 Class balancing – synthetic minority oversampling

Since our avalanche-danger data are highly imbalanced, i.e.
the different ADLs have different frequencies (Sect. 2.1,
Fig. 2), we employ the widely used (e.g. García et al.,
2016; Fernandéz et al., 2018) synthetic minority oversam-
pling technique (SMOTE; Chawla et al., 2002; Fernandéz
et al., 2018) to oversample the minority classes. The SMOTE
algorithm selects a random instance from the minority class
and searches for the k nearest neighbours (k = 10 in the
present study). Then one of these neighbours is randomly
chosen, and the synthetic instance is generated by interpo-
lating in the feature space between the original instance and
the selected neighbour. The new synthetic instance may be
visualised as a random point along a “line segment” between
the original instance and the selected neighbour (Fernandéz
et al., 2018, see their Fig. 1). We here use the implementation
of the SMOTE algorithm in the Python library imbalanced-
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Table 2. Potential predictors constructed from NORA3 meteorological data. The nowcast day refers to the day of publication of the avalanche-
danger nowcast (see Sect. 2.1 for details). The capitalised abbreviations indicate that the parameter in question was derived with the seNorge
model. See the text for more details on the parameter definition.

Feature name Description

Ptot Daily total accumulated new precipitation (mm)
r1, . . . , r7 Daily to 7 d accumulated new liquid precipitation (mm)
s1, . . . , s7 Daily to 7 d accumulated new solid precipitation (mm)
rh, rh2, . . . , rh7 Daily to 7 d mean of relative humidity
t1, . . . , t7 Daily to 7 d mean temperature (K)
tmin Daily minimum temperature (K)
tmax, tmax2, . . . , 7 Daily to 7 d maximum temperature (K)
dtr Daily temperature range (K)
dtr1, dtr2, dtr3 Diurnal cycle 1 to 3 d before nowcast day (K)
dtrd1, dtrd2, dtrd3 Thermal amplitude between 1 to 3 d before and nowcast day (K)
ftc Daily freeze–thaw cycle (ftc= 1)
pdd Positive-degree days (7 d sum of t1 for days with t1 > 0°C)
w1, . . . , 7 Daily to 7 d mean wind speed (ms−1)
wmax, wmax2, . . . , 7 Daily to 7 d maximum wind speed (ms−1)
w_dir Daily wind direction
wdrift Drift index (w1× s1) (ms−1

×mm)
wdrift3 Cubed drift index (w13

× s1) (ms−3
×mm)

wdrift_2, 3 As wdrift but mean wind and precipitation sum over 2 and 3 d
wdrift3_2, 3 As wdrift3 but mean wind and precipitation sum over 2 and 3 d
nsw, nsw2, . . . , nsw7 Daily to 7 d mean of net short-wave radiation at surface (Wm−2)
nlw, nlw2, . . . , nlw7 Daily to 7 d mean of net long-wave radiation at surface (Wm−2)
SWE, SWE2, . . . , SWE7 Daily to 7 d mean of snow water equivalent (mm)
SDP, SDP2, . . . , SDP7 Daily to 7 d mean of snow depth (mm)
SD, SD2, . . . , SD7 Daily to 7 d mean of snow density (kgL−1)
MR, MR2, . . . , MR7 Daily to 7 d mean of melt/refreeze rate (mmd−1)

learn version 0.12.3 (https://imbalanced-learn.org/, last ac-
cess: 9 May 2025). In this implementation the SMOTE al-
gorithm is applied to each minority class separately, over-
sampling to the same frequency as the majority class. We
note that we have tested several other methods to balance
the class frequency (SVMSMOTE, ADASYN; see e.g. Fer-
nandéz et al., 2018, for a brief review), but this did not im-
prove the overall accuracy or the distribution of the predicted
results.

4 Random forest optimisation and feature selection

As mentioned above, our focus in this study is the random
forest (RF) model, and the model optimisation and feature se-
lection procedure mostly follows Pérez-Guillén et al. (2022).
However, note that we here consider both the four-level case
and the binary case (see Sect. 2.1). Consequently, the opti-
misation and feature selection procedure is conducted sepa-
rately for these cases.

The RF model is a complex machine-learning method in-
corporating several hyperparameters which may be tuned to
optimise the model. We start by performing a randomised
grid search over several hyperparameters using the full set

of 109 features (see Sect. 2.4). During the grid search, a 3-
fold cross-validation is performed employing the F1-macro
score (i.e. the unweighted mean of F1 scores for each class;
see Appendix A) to gauge model performance. Since our
training data comprise six winter seasons, the folds are con-
structed such that in each fold four winters are used to train
the model and the remaining two winters are used for val-
idation. As described in Sect. 3.2, we use the SMOTE al-
gorithm to oversample the minority classes and balance the
data before optimising the RF model. Note that in the binary
case the balancing was undertaken after the aggregation from
ADL to AvD and non-AvD. The RF with the set of hyper-
parameters achieving the best (i.e. highest) F1-macro score
is then used to gauge the importance of the individual pre-
dictive features as described in Sect. 3.1. In a next step, the
cross-correlation (Pearson R) between all the predictive fea-
tures is calculated. Those features which exhibit R2 > 0.9
with another feature of greater importance are then removed.
This leaves 53 and 54 features in the four-level and the bi-
nary case, respectively. Their feature importances are shown
in Fig. 3. Employing only the remaining 53 and 54 features,
we perform another grid search around the best hyperparam-
eters found in the first step. This yields the final set of hy-
perparameters as shown in Table B1 in Appendix B. Finally,
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we test the optimal number of features to be included. As
can be seen in Fig. 4a, for the four-level case median perfor-
mance is highest for 30 features, although the improvement
from 20 to 30 is only marginal. However, in an analysis of
the confusion matrices (not shown), we find that including
30 features improves the prediction of instances with ADL
4. Thus, we choose 30 features for the four-level case. For
the binary case there is a considerable increase in median
model performance from 10 to 20 features, while including
more than 20 features improves the performance only very
little (Fig. 4b). Hence, we choose 20 features in the binary
case. The features above the black lines in Fig. 3 consti-
tute the final sets of features used in further analysis. Fig-
ure 4 shows the RF performance derived from a 3-fold cross-
validation (i.e. using four winters as training and two winters
as test data). The same optimal feature numbers are obtained
in a 6-fold cross-validation (i.e. using five winters as training
and one winter as test data, which essentially corresponds to
a leave-one-out cross-validation; see Fig. S2 in the Supple-
ment). Note that Pérez-Guillén et al. (2022) similarly found
30 to be the optimum number of predictive features, although
they used different features (including SNOWPACK-derived
snow-stratigraphy parameters; compare their Fig. 5 with our
Fig. 3a).

Generally, the most important parameters in both the four-
level and the binary case are related to new snow accumu-
lating over several days (e.g. s4, s5, s6) together with snow
density (SD5, SD7) and wind drift (e.g. wdrift3_2, wdrift_3).
This is expected and broadly consistent with Pérez-Guillén
et al. (2022, 2025) as well as other studies which, however,
investigate avalanche activity instead of ADL (e.g. Gauthier
et al., 2017; Jaedicke et al., 2008; Bakkehøi, 1987; Kronholm
et al., 2006; Hao et al., 2023), since both new snow and wind,
especially associated with storms (e.g. Davis et al., 1999), are
prominent avalanche triggers (see e.g. Jaedicke et al., 2008;
Dyrrdal et al., 2020, specifically for northern Norway). A pa-
rameter associated with the net short-wave radiation (nsw7)
is among the most important features in both the four-level
and the binary case. This is remarkable, since for most of
the northern Norwegian winter polar-night conditions per-
sist, meaning the sun does not rise and there is no short-
wave radiation. Indeed, while nsw7 never exceeds 2 Wm−2

in winter (December through February), in spring (March
through May) typical values are between 30 and 50 Wm−2

(see Fig. S3 in the Supplement). Accordingly, the importance
of nsw7 should be concentrated in the spring months. This
parameter is likely related directly to melting and refreez-
ing (e.g. nsw7 and MR7 are highly correlated; see Fig. S4 in
the Supplement) but also to clouds. As clouds are linked to
precipitation and wind, this partly explains its comparatively
high importance. Furthermore, as documented by Conway
et al. (1988), on southerly slopes, avalanches are often re-
leased after the snow has been warmed by solar radiation.
A few features directly related to temperature are among
the most important features, mostly as longer averages (t7).

However, it is unclear how these temperature features impact
avalanche danger since, as noted by Kronholm et al. (2006),
higher temperatures can have both stabilising and destabil-
ising effects on the snowpack. Higher temperatures may, for
example, lead to more meltwater that can percolate through
the snowpack (destabilising), while they may also decrease
the time during which weak layers are present in the snow-
pack (stabilising). The features related to temperature change
(e.g. dtrd2) are of minor importance in the four-level case and
are not among the variables used in the binary case at all, in-
dicating that short-term temperature changes (up to 3 d) are
not important for the ADL in our analysis. For the four-level
case, some rain-related features (e.g. r1, r7) are used in the fi-
nal model. However, their importance is generally lower than
that of snow and total precipitation. This indicates that wet-
snow avalanches, which are often caused by rain-on-snow
events (e.g. Conway et al., 1988; Heywood, 1988), mostly
do not determine the general ADL. As described in Sect. 2.1,
we here consider only the general ADL. Focusing instead on
individual avalanche problems would likely lead to a differ-
ent set of most important predictive features used in the RF
model, being more directly connected to the specific type of
avalanche (wind slab, wet snow, etc.).

5 Model evaluation

The model performance is evaluated with respect to both the
original unbalanced test data and the balanced test data. For
the latter, the minority classes were oversampled using the
SMOTE technique (Sect. 3.2) to equalise class frequencies
in the same manner as for the training data. Summaries of
the model performance with respect to the unbalanced test
data (i.e. the winter seasons 2020/21 and 2022/23) for the
four-level and binary cases are presented in Tables 3 and 5,
respectively. Heat maps of the corresponding confusion ma-
trices are shown in Fig. 5, and Table 4 gives the difference of
the forecast to the true ADL and AvD/non-AvD. The perfor-
mance with respect to the balanced test data is shown in the
Supplement (see Tables S2 and S3 in the Supplement for the
four-level and binary case, respectively, as well as Fig. S5 for
the confusion matrices). Our following discussion is focused
on the four-level case (Sect. 5.1), including a comparison of
our results to previous studies. The results of the binary case
are presented only briefly (Sect. 5.2), as the authors are un-
aware of previous similar work.

5.1 Four-level case

The overall accuracy in the four-level case is 57 % (see Ta-
ble 3). Considering the confusion matrix (Fig. 5a) it is evi-
dent that while most of the ADL-2 and ADL-3 cases are clas-
sified correctly, ADL 1 is most often misclassified as ADL 2.
Most ADL-4 cases are also misclassified as ADL 3. Thus, a
large part of the misclassification is due to the confounding
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Figure 3. Feature importances for the random forest models trained for (a) the four-level case and (b) the binary case. The horizontal black
lines indicate the cutoff point determined in the optimal feature number test described in the text. For a description of the features see Table 2.

of levels 1 and 2 and levels 3 and 4. While this means that a
large fraction of instances is misclassified, the misclassifica-
tion difference exceeds one ADL only in about 2 % of cases
(see Table 4). The leftmost column in Table 4 based on the
unbalanced test data shows that more cases have a classifi-
cation difference of +1 than a difference of −1, indicating

that our RF model has a tendency to over-predict the ADL.
However this is likely due to most cases being either ADL
1 or 2 (Fig. 6), and most ADL-1 cases are misclassified as
ADL 2 (Fig. 5a). Accordingly, for the balanced test data (Ta-
ble 4, second column) the situation is reversed, exhibiting an
under-prediction of ADL (see also the confusion matrix for
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Figure 4. The F1-macro skill score of the random forest dependent on the number of included features based on a 3-fold cross-validation for
(a) the four-level case and (b) the binary case. Note the different y-axis scales. See Fig. S2 for the results of a 6-fold cross-validation.

Figure 5. Confusion matrices for the random forest classification with respect to the unbalanced test data for (a) the four-level case with
avalanche-danger levels (ADLs) and (b) the binary case with non-avalanche days (non-AvD) and avalanche days (AvD). The values on the
diagonals correspond to the recall scores shown in Tables 3 and 5, respectively. For the confusion matrices with respect to the balanced test
data see Fig. S5.

the balanced test data in Fig. S5a). From Fig. 6 it appears
that the overall frequencies of the individual ADLs are re-
produced for the unbalanced test data. However, this is not
true for the balanced test data, where a severe overrepresen-
tation of ADLs 2 and 3 is evident while ADLs 1 and 4 are
strongly underrepresented. The confusion matrix based on
the balanced test data (Fig. S5a) shows that about half of the
ADL-1 and 4 cases are misclassified as ADL 2 and 3, respec-
tively. This indicates that many of the synthetically generated
cases for ADLs 1 and 4 are interpreted by the RF model as
ADL-2 and ADL-3 days, respectively.

The overall accuracy of 57 % in the four-level case ap-
pears low compared to other studies (Schweizer and Föhn,
1996; Schirmer et al., 2009; Dekanová et al., 2018; Joshi
et al., 2020; Pérez-Guillén et al., 2022; Sharma et al., 2023;

Blagovechshenskiy et al., 2023) although it is slightly higher
than in Fromm and Schönberger (2022) and Brabec and
Meister (2001). Most of these studies used meteorological
station data as well as sophisticated information on snow
and/or SNOWPACK simulations, which may partly explain
their better performance. As previously mentioned, Sharma
et al. (2023) did not clarify if they selected their validation
data randomly or used whole winters. We note that this has
an immense influence on the purported model performance:
when we randomly select 33 % of the data as test data, ac-
curacies exceeding 85 % are obtained (both for the four-level
and the binary case; not shown). This indicates that strong
temporal correlations exist, confounding the model perfor-
mance when test/validation data are chosen randomly. A fur-
ther reason for the lower model performance here than in
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Table 3. Classification report for the four-level case with unbal-
anced test data. The ADL is the avalanche-danger level. Precision
(Prec.), recall (Rec.), F1 score, and overall accuracy (Acc.) are de-
fined in Appendix A. Support corresponds to the number of occur-
rences of the ADL in question. The macro average indicates the
unweighted average over all ADLs, and the weighted average in-
dicates the average weighted with respect to the support of each
ADL. See Table S2 for the classification report with respect to the
balanced test data.

ADL Prec. Rec. F1 Support

1 0.44 0.38 0.41 310
2 0.60 0.63 0.61 917
3 0.59 0.58 0.58 563
4 0.26 0.30 0.28 30

Acc. 0.57 1820
Macro average 0.47 0.47 0.47 1820
Weighted average 0.56 0.57 0.56 1820

Table 4. Difference between true and predicted danger level for the
four-level and binary cases. The numbers are the percentages of
days with the given danger level difference between predicted and
true level. The columns Unbal. and Bal. refer to the performance
with respect to the unbalanced and balanced test data, respectively.

Four-level case Binary case

Difference Unbal. Bal. Unbal. Bal.

−3 0.0 0.0
−2 0.77 0.63
−1 19.89 26.28 14.02 11.1
0 56.59 53.54 76.77 76.48
1 22.25 18.87 9.21 12.42
2 0.49 0.68
3 0.0 0.0

Pérez-Guillén et al. (2022) is that they had 20 years of data
available and focused only on dry-snow avalanches, while
we are restricted to 8 years of data and use the general ADL
including all avalanche types/problems (see Sect. 2.1). Here
we acquiesce to the noisier ADL data to have more training
data available for our model, given that our training data set
covers only six seasons. However, in future work we will at-
tempt a more detailed analysis with respect to the different
avalanche problems. Further reasons may explain (at least
in part) the higher accuracies in most of the other studies.
For example, Schweizer and Föhn (1996) let a human ex-
pert interact with their system, likely increasing the accu-
racy. Schirmer et al. (2009) used the ADL from the pre-
vious day, which increased the model performance. How-
ever, Pérez-Guillén et al. (2022) found that this strongly re-
duced the model accuracy for days where the ADL changes
from the previous day. Thus, we here refrain from using the
previous-day ADL as predictive feature. Another reason for

Table 5. As Table 3 but for the binary case. The rows non-AvD
and AvD represent non-avalanche days and avalanche days, respec-
tively. See Table S3 for the balanced test data.

Prec. Rec. F1 Support

Non-AvD 0.83 0.82 0.82 1227
AvD 0.63 0.66 0.65 593

Acc. 0.76 1820
Macro average 0.73 0.74 0.74 1820
Weighted average 0.77 0.76 0.77 1820

Figure 6. Frequencies of occurrence of (squares) predicted and (cir-
cles) true test data danger levels for (a) the four-level case with
avalanche-danger levels (ADLs) and (b) the binary case with non-
avalanche days (non-AvD) and avalanche days (AvD). Shown are
both the (black) unbalanced and (grey) balanced test data.

not including the previous-day ADL in our statistical model
is that our aim is to apply the model in a hindcast setting
(Sect. 6) as well as to future climate change projections (in
upcoming work) of avalanche danger for which previous-day
ADL does not exist. As discussed by Fromm and Schön-
berger (2022), the extent and scale of the investigated region
likely also impacts the results. They concentrated on a much
smaller region which is more strongly affected by acciden-
tal and intentional avalanche release, potentially confound-
ing their results compared to studies focusing, like here, on
larger areas (e.g. Pérez-Guillén et al., 2022; Sharma et al.,
2023; Schirmer et al., 2009). Notably, our warning regions
in northern Norway have an average size of about 6800 km2

(see Table S1), while in Switzerland the average size is about
200 km2 (Pérez-Guillén et al., 2025). The smaller warning
regions potentially imply a clearer connection of avalanche
danger to meteorological conditions and thus generally less
noisy data, which may explain part of the higher predic-
tion accuracies of the Swiss models. More fundamentally,
the different climates and topographies of the different study
regions generally complicate comparisons among studies.
Much of the cited work was conducted in central Europe (i.e.
in the mid-latitudes), while our study area is in northern Nor-
way and thus in the Arctic. The mountains in the Alps are
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often higher and the climate is more continental than in the
fjord landscape of northern Norway. This leads to different
snow and avalanche characteristics (e.g. van Herwijnen et al.,
2024) and potentially implies differences in predictability,
thus hampering comparability across studies.

Despite the relatively low overall accuracy, the fraction of
misclassification larger than one ADL is similar to that found
by Pérez-Guillén et al. (2022). However, Pérez-Guillén et al.
(2022) generally obtained smaller differences in misclassi-
fication across the different classes, leading to their higher
overall accuracy. Misclassifying ADL 4 as ADL 3 is es-
pecially undesirable since most avalanche accidents occur
when the published ADL is 3 (see Fig. 4 in SLF, 2024; Mc-
Clung, 2000). We have tested different class weights with a
focus on ADLs 3 and 4 during the model training process, but
this did not significantly reduce the misclassification. This in-
dicates that our data are too noisy to effectively distinguish
between ADLs 3 and 4, likely due to the considerable size of
the warning regions (see Fig. S1 and Table S1).

Judging from the comparison of the model performance
with respect to the unbalanced and balanced test data, our RF
model has a tendency to over-predict the occurrence of the
most frequent classes despite the efforts undertaken to bal-
ance the training and cross-validation test data (see Sect. 4).
Another interpretation is that the model over-predicts the fre-
quency of the medium classes (ADLs 2 and 3) at the expense
of the more extreme classes (ADLs 1 and 4), which may be,
at least in part, due to our decision of averaging over multiple
grid cells to generate the predictive features (see Sect. 2.2).
However, we have tested taking the 90th percentile instead of
the average over the grid cells, but this led to similar frequen-
cies being predicted for ADLs 2 and 3 (not shown). More
fundamentally, we again point to the large warning regions
in Norway. Various meteorological conditions may simulta-
neously be prevalent within a given region, implying a noisy
relationship between the weather data and the ADLs, likely
contributing to the high rates of misclassification. A decrease
of warning-region size may be necessary for a clearer re-
lationship between weather data and ADLs to substantially
reduce misclassification and increase prediction accuracy.

We note that we have trained an artificial neural network
(ANN) with the structure suggested in Sharma et al. (2023)
on the training–test data setup presented here. The perfor-
mance of the ANN was found to be similar to that of the RF
model (not shown).

5.2 Binary case

For the binary case the overall accuracy is 0.76 (see Table 5),
being much higher than in the four-level case. The higher ac-
curacy is explained by the frequent confounding of ADLs 1
and 2 and ADLs 3 and 4, which in the binary case are ag-
gregated into non-AvD and AvD, respectively. From Table 5
and Fig. 5b it appears that our binary-case RF model is better
at predicting non-AvDs than AvDs. This concurs with the re-

sults from the four-level case, showing a better performance
in predicting ADLs 1 and 2 than ADLs 3 and 4 (Fig. 5a and
Table 3). Moreover, as expected from the results of the four-
level case, the binary-case model to some degree tends to
under-predict the AvDs with respect to the unbalanced test
data, while for the balanced test data the AvDs are slightly
over-predicted (Table 4). The authors are unaware of pre-
vious work similarly aggregating ADLs to AvDs and non-
AvDs.

6 Hindcasting avalanche danger (1970–2024)

Figure 7 shows the 1970–2024 hindcast of the avalanche-day
frequency (ADF) in the Nord-Troms region. The figures for
the other regions are presented in the Supplement (Fig. S6).
The ADF here refers to the number of avalanche days (AvD;
i.e. days with ADL 3 or 4) per season. While the evolution of
ADF is not the same in the different regions, there are strong
similarities regarding certain features which may be observed
in Fig. 7 and which are briefly summarised in the following.
There is little to no trend in the full-season avalanche data
from 1970 to 2024 (see Table S4 in the Supplement for lin-
ear trends). However, there is a phase of high ADF in the
1990s, mostly due to high ADF in winter (December through
February) since the spring (March through May) ADF gener-
ally varies less. We note that the increase in ADF in the 1990s
is consistent with a simultaneous rise in avalanche activity in
Iceland (Keylock, 2003), and it coincides with high values
of avalanche indicators for western Norway (Saloranta et al.,
2024, see their Fig. 2). The phase of high ADF in the 1990s
is accompanied by an increase in ADF variance (full season),
with a considerable subsequent decrease in variance in 2000–
2010, increasing slightly again after 2010. The ADF variance
before 1990 is mostly due to spring ADF, as little variance is
evident for winter ADF in this period. In the 1990s the vari-
ance in winter and spring appears to be in phase, causing
the strong full-season ADF variance. However, in general,
spring and winter ADF change in opposite ways over time.
In spring there is a small overall increasing trend in ADF,
while there is a small decrease in winter. However, the sta-
tistical significance of these trends is only moderate with p

values of about 0.1± 0.05 (see Table S4). These results ap-
pear broadly consistent with the recent analysis of avalanche
indicators in Norway by Saloranta et al. (2024), who found
only few significant trends for the period 1961–2020.

One of the most prevalent features of the ADF hindcast
is the peak of winter ADF around 1990 in the 7-year rolling
mean which is due to a phase of exclusively high ADF in
these years. This is remarkable, since this period is known
for exhibiting exceptionally high index values of the North
Atlantic Oscillation (NAO; see e.g. Hurrell, 1995; Wanner
et al., 2001) as well as of the Arctic Oscillation (AO; see
e.g. Thompson and Wallace, 1998). The NAO is a measure
of the sea-level pressure (SLP) difference between the Ice-
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Figure 7. Avalanche-day frequency (ADF) in Nord-Troms for the full season (solid), winter (dashed), and spring (dotted) for 1970–2024.
The thin lines correspond to annual data, and the thick lines represent a 7-year rolling mean. See Fig. S6 for the other regions.

landic Low and the Azores High and is one of the most well-
established and pronounced climate patterns influencing Eu-
ropean climate (e.g. Hurrell, 1995; Wanner et al., 2001). The
NAO index used here corresponds to the index by Hurrell
(1995), which can be obtained from the National Center for
Atmospheric Research’s website (NCAR, 2024). The AO
may be viewed as an extension of the NAO to the whole
Northern Hemisphere and interpreted as the surface signa-
ture of modulations of the polar vortex at higher elevation
(Wanner et al., 2001; Thompson and Wallace, 1998, 2001).
The AO data were obtained from the website of the National
Oceanic and Atmospheric Administration (NOAA, 2024).

Many studies have investigated and found a linkage be-
tween the NAO/AO and the weather conditions in Europe,
especially in winter (see e.g. the review by Wanner et al.,
2001). The NAO has also been related specifically to pre-
cipitation in northern Europe, including northern Norway, by
Uvo (2003). This study found that winter precipitation in the
Troms region exhibits correlation coefficients with the NAO
index of up to 0.5–0.6 (see her Fig. 4). Uvo (2003) also notes
that changes in precipitation due to NAO changes are con-
nected to wind and topography. That is, stronger westerly
winds induced by a higher NAO index are intercepted by
the mountains in the proximity of the Norwegian cost, in-
ducing precipitation there. However, she observed that since
the westerly winds generated by the Icelandic Low and the
Azores High do not reach northern Norway directly, this re-
gion is only intermediately influenced by the NAO. Consis-
tently, Rogers (1997) found that North Atlantic storm activ-
ity (see also Alexandersson et al., 2000), which likely im-
pacts wind and precipitation in northern Europe, is more
strongly influenced by low-frequency SLP anomalies in the
extreme north-eastern Atlantic than by the NAO. This ap-
pears to agree with the findings of Thompson and Wallace
(2001), who showed that there is an increase in variance of
the North Atlantic storm track associated with a high AO in-
dex, meaning that more storms reach the far north, inducing
stronger winds and more precipitation there. At low AO in-

dex, conditions correspond more to blocking events, prevent-
ing storms from reaching further north. Note that the AO in-
dex is better correlated with Arctic SLP than the NAO index
(see Fig. S7 in the Supplement).

To the authors’ knowledge, the only studies trying to re-
late the NAO directly to avalanches in Europe are Keylock
(2003), Jomelli et al. (2007), García et al. (2009), García-
Sellés et al. (2010), and recently Bee et al. (2024). Gar-
cía et al. (2009) and García-Sellés et al. (2010) investigated
avalanche activity in the Pyrenees (north-eastern Spain)
and found a negative correlation. Conversely, Jomelli et al.
(2007) found no correlation of avalanche activity and NAO
in the French Alps. Bee et al. (2024) studied two regions in
the western and eastern Italian Alps. Similar to the French
Alps, no correlation was found for the western region, while
the eastern region exhibited a negative correlation, consistent
with the results from the Pyrenees. Finally, Keylock (2003)
investigated avalanche activity in Iceland, hence in a location
more closely related to our region of interest than those in the
other studies. He tentatively concluded that while the NAO
may not affect avalanche size distribution, a positive phase
of the NAO likely increases avalanche activity. We note that
Laute and Beylich (2018) also pointed to a potential linkage
between avalanche activity and the NAO in western Norway,
as a positive NAO index corresponds with higher winter pre-
cipitation there. However, they do not investigate the linkage
directly.

Consistent with Keylock (2003) and the discussion above
regarding the influence of the NAO and AO on northern Nor-
wegian weather, we find that the northern Norwegian ADF is
correlated with both NAO and AO but more so with the lat-
ter (compare Figs. 8 and S7). The correlation is particularly
strong for 7-year rolling means of both quantities, indicat-
ing a stronger linkage at decadal compared to annual scales,
although there is considerable variation across the five dif-
ferent regions (Figs. 8d and S9 in the Supplement). Notably,
Figs. 8b, d, S9, and S10 in the Supplement reveal that while
the correlations for annual means are not particularly strong
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(R = 0.3–0.5), they are more consistent across regions than
for the 7-year rolling means (R = 0.2–0.8), at least in the
winter months (December through February). Furthermore,
comparing the lead–lag correlations in Figs. S9 and S10, it
appears that the clearest correlation between ADF and AO is
in the winter months, with a singular peak at AO-lag-year
0 for both annual and 7-year rolling means. In the spring
months (March through May) there is more variation across
regions, and while there are correlation peaks at AO-lag-year
0, there are further peaks at lead-year 3 and lag-year 4 in the
annual means. Thus, we concentrate our further correlation
analysis on the winter months.

The 7-year rolling mean time series of the winter ADF
and AO index show the strong peak in both quantities in the
1990s. The ADF and AO index decrease subsequently, but
while the AO index increases again quite strongly after about
2010, the ADF shows only a small increase. This develop-
ment is seen in all regions except Indre Troms, where the
ADF corresponds more strongly to the AO index (see also
the high correlation of the ADF and AO index in this region
shown in Fig. 8d).

Since the ADF is here fully determined by the meteoro-
logical conditions, we investigate the predictive features and
their correspondence with the AO index in the winter months.
Figure 9 shows 7-year rolling means of ADF, the AO index,
and w3 and s3 for Nord-Troms. Note that the most important
predictive feature in the binary case is wdrift3_3, which is
a combination of w3 and s3. We decided here to show both
components, as the single parameter wdrift3_3 is more diffi-
cult to interpret and may obscure compensating variance of
s3 and w3. It is evident that both features follow the AO index
quite closely, but while s3 increases with the AO index (with
a slight lag) after 2010, w3 shows little change. The discrep-
ancy in the development after 2010 in s3 and w3 likely causes
the slower increase in ADF predicted by the RF model. Thus,
there is an apparent decoupling of wind speed from the AO
index after 2010, causing a weakening of the correspondence
of ADF and the AO index in most regions. We note that
the decoupling after 2010 is even stronger for the correspon-
dence of ADF with the NAO index (see Fig. S8c). So far, we
have no compelling explanation for this. However, it must be
remembered that the AO index is not the only climate mode
influencing Scandinavian weather. We have investigated sev-
eral more climate indices that are important for northern Eu-
ropean wind and precipitation, and we find that the 7-year
rolling mean of the Polar/Eurasian (PE) pattern index shows
apparently unprecedented low values in the decade 2010–
2020, especially in winter (see Fig. S11 in the Supplement).
This is remarkable since, as Panagiotopoulos et al. (2002)
pointed out, the PE pattern index has a structure similar to the
AO. The index representing another important climate mode,
the Scandinavian (SCA) pattern, exhibits consistently high
values in winter around 2010, with a subsequent decrease
(Fig. S12 in the Supplement). A low PE pattern index and a
high SCA pattern index have been associated with a weaker

polar vortex, likely weakening the westerly winds in the Arc-
tic (e.g. Gao et al., 2017; Panagiotopoulos et al., 2002). Con-
sistently, a higher SCA index has also been associated with
weakened storm-track activity over northern Europe (Bueh
and Nakamura, 2007). Hence, the anomalous states of other
climate modes may cause the recent apparent decoupling of
the AO and northern Norwegian wind speed and, thus, the
weakening of the correspondence of the AO index with the
northern Norwegian ADF.

7 Summary and conclusions

In this study we implement a machine-learning approach for
purely data-driven statistical prediction of avalanche-danger
level (ADL) based on gridded meteorological (NORA3)
and snow (seNorge) information in northern Norway. Two
avalanche-danger scales are considered: (1) the original
ADLs (four-level case) and (2) the binary case where ADLs
1 and 2 and ADLs 3 and 4 are aggregated to non-avalanche
day (non-AvD) and avalanche day (AvD), respectively. For
each case a random forest (RF) classifier is optimised and
predictive features are selected. The RF model accuracy is
considerably higher for the binary case (76 %) than for the
four-level case (57 %), consistent with the frequent misclas-
sification of ADL 1 as ADL 2 and ADL 4 as ADL 3 in the
latter case. The accuracy in the four-level case is compara-
ble to or even higher than in some earlier studies (Brabec
and Meister, 2001; Fromm and Schönberger, 2022) but lower
than in many others (Schirmer et al., 2009; Dekanová et al.,
2018; Joshi et al., 2020; Pérez-Guillén et al., 2022; Sharma
et al., 2023; Blagovechshenskiy et al., 2023). However, these
studies, including our work, differ in type and quality of
data, in background climate and topography, and in warning-
region size. Thus, the comparison of accuracies between dif-
ferent studies should be regarded with care. We exploit the
whole available NORA3 record to perform a hindcast of
the avalanche-day frequency (ADF), which we define as the
number of AvDs per season and which we interpret as a mea-
sure of avalanche activity. While there appears to be no gen-
eral trend, there is noticeable variation over time, with a con-
spicuous peak in ADF in the 1990s, especially in the winter
months (December through February). We connect this peak
with a well-known Northern Hemispheric climate mode that
has been shown to impact European climate, the Arctic Os-
cillation (AO). The ADF exhibits significant correlation with
the AO, especially as a 7-year rolling mean.

Within the last decade, decadal prediction systems have
shown an improvement of skill in representing and pre-
dicting AO and European winters (e.g. Riddle et al., 2013;
Scaife et al., 2014; Kang et al., 2014; Stockdale et al., 2015;
Athanasiadis et al., 2017, 2020). Given the here-found con-
nection between ADF and AO, this is encouraging with re-
spect to potential predictability of at least the decadal ten-
dency of avalanche activity in northern Norway. However,
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Figure 8. (a) Annual winter hindcast of avalanche-day frequency (ADF, red) and Arctic Oscillation (AO) index (black) for Nord-Troms.
(b) Correlation coefficients of full-season, winter, and spring ADF with AO index for all regions. Panels (c) and (d) are the same as (a) and
(b), respectively, but for 7-year rolling means. Black and grey colours in panels (b) and (d) indicate p values smaller and larger than 0.05,
respectively, based on a Wald test with a t distribution. See Fig. S8 in the Supplement for a comparison of ADF and the North Atlantic
Oscillation (NAO) index.

Figure 9. Avalanche-day frequency (ADF, red), 3 d mean wind speed (w3, orange), and 3 d sum of new snow (s3, blue) in Nord-Troms and
the Arctic Oscillation (AO) index (black). The values correspond to 7-year rolling means.

the indication that the strength of the connection between the
ADF and the AO has weakened in recent years, potentially
due to the influence of other climate modes and/or as a di-
rect effect of climate change, means that the value of AO
predictability for avalanche forecasting remains uncertain.

An important advantage of a fully data-driven approach
to predict avalanche danger and activity based on gridded
weather/snow data is the potential to generate future pro-
jections of those metrics based on climate change scenario
simulations (see e.g. Castebrunet et al., 2014; Mayer et al.,
2024). Such simulations are mostly conducted by global cli-
mate models (GCMs) with too-coarse resolutions to be us-
able for avalanche prediction. Thus, regional downscalings
are required to produce appropriate data. For Norway such

data are available via the Nordic Convection Permitting Cli-
mate Projections (NorCP; Lind et al., 2023). In future work
we plan to apply our machine-learning model to the NorCP
data and generate ADF and ADL projections for northern
Norway. However, the likely importance of (regional) cli-
mate modes for the development of avalanche activity, as
described above, must be taken into account when consid-
ering future climate projections. It is not guaranteed that cli-
mate modes such as the AO are sufficiently represented in
the GCMs and/or NorCP. Even if present, their variability
will likely be out of phase with actual future development.

As of now the snowpack information for Norway is con-
fined to data based on the simple snow model seNorge. Ef-
forts are currently underway in cooperation with the Norwe-
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gian Water Resources and Energy Directorate (NVE) to im-
plement the much more detailed model SNOWPACK to be
run based on gridded meteorological data (Herla et al., 2024).
In future research we plan to use the snow-stratigraphy in-
formation from SNOWPACK in our machine-learning ap-
proach to predict ADL and ADF. However, we note that re-
sults appear to deviate when it comes to the impact of in-
cluding SNOWPACK output in ADL prediction machine-
learning models: while Schirmer et al. (2009) found an im-
provement due to the inclusion of SNOWPACK data, the re-
sults of Fromm and Schönberger (2022) suggested no im-
provement, and in later work they used simpler snow infor-
mation (similar to the seNorge data used here; Schönberger
and Fromm, 2024; Fromm and Schönberger, 2024). Further-
more, Pérez-Guillén et al. (2025) found that predictions were
mostly driven by precipitation variables and only to a lesser
extent by snowpack-stability variables. Hence, the impact of
the SNOWPACK information on our model performance in
Norway remains to be seen.

Finally, the ADLs as used here do not distinguish between
the different avalanche problems. This likely makes the ADL
data noisy with respect to their relation to meteorological and
snow data because different avalanche problems are caused
by different weather and snow conditions. Here we opt for
the general ADL as it guarantees a larger data set and it ag-
gregates avalanche problems that may be related to similar
weather conditions. However, in upcoming research we aim
to disentangle the different avalanche problems. The most
feasible approach appears to be to select the most frequent
avalanche problem to ensure data availability to robustly train
a statistical model and at the same time filter some of the
noise due to the other, less frequent avalanche problems.

High-quality information on avalanche danger is of great
importance as it enables stakeholders and people in gen-
eral to make well-informed decisions affecting their life and
property. Our study represents an initial step towards auto-
mated avalanche-danger prediction in northern Norway that
may be used to support and improve expert forecasts. As
ongoing and future climate change likely impacts avalanche
characteristics, knowledge about potential future changes of
these characteristics is valuable. Our methodology can be
used to study future changes in avalanche danger and activity
based on future-scenario climate-model projections. This in-
formation may assist governments and stakeholders in plan-
ning of future infrastructure and organisation to prepare for
and adapt to environmental conditions in a changing climate.

Appendix A: Model evaluation metrics

To evaluate and compare model performance, several perfor-
mance metrics (e.g. Sokolova and Lapalme, 2009) are em-
ployed, similar to earlier studies (e.g. Fromm and Schön-
berger, 2022; Pérez-Guillén et al., 2022). We use hits (a),
false alarms (b), misses (c), and correct non-events (d) (see

Table A1) to calculate the following performance metrics:

PC=
a+ d

a+ b+ c+ d
, (A1)

the accuracy or percentage of correctly classified samples;

P=
a

a+ b
, (A2)

the precision score, representing the fraction of hits among
the positive forecasts (i.e. hits and false alarms);

R=
a

a+ c
, (A3)

the recall score, representing the fraction of hits among the
positive observations (i.e. hits and misses); and

F1= 2
P ×R

P +R
, (A4)

the F1 score, which corresponds to the harmonic mean of
precision and recall. Following Pérez-Guillén et al. (2022)
we use the F1-macro score in the cross-validation during the
model optimisation procedure (Sect. 4). A macro score rep-
resents the unweighted mean of the score over all classes,
thus treating all classes equally (e.g. Sokolova and Lapalme,
2009). As noted by Sokolova and Lapalme (2009), precision,
recall, and hence the F1 score are invariant to changes in the
classification of correct non-events.

Table A1. Structure of the binary confusion matrix (see e.g.
Sokolova and Lapalme, 2009; Wilks, 2011).

Observation positive Observation negative

Forecast positive a b
Forecast negative c d

Appendix B: Random forest hyperparameter set

Table B1 lists the hyperparameters found to optimise the per-
formance of the random forest model during the grid-search
procedures. However, we note that we found little variation
of the model performance when testing several different hy-
perparameter combinations.
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Table B1. The sets of hyperparameters used in the random forest
models. The row “Maximum number of features” refers to the num-
ber of features considered at each split in the decision trees. “sqrt”
indicates the square root of the number of all features.

Hyperparameter Binary Four-level

Number of trees 850 350
Maximum depth of the tree 55 40
Maximum number of features sqrt sqrt
Minimum number of samples at leaf node 2 2
Minimum number of samples for each split 13 5

Code and data availability. The programming language Python
was used to perform the data analysis and generate the figures. The
random forest model was generated using the Python library scikit-
learn (Pedregosa et al., 2011). The neural network was generated
with the help of the library Keras (Chollet et al., 2015). The maps
were produced with the library Cartopy (Met Office, 2010–2024).
The code for running the seNorge model (based on NORA3 input),
for producing the NORA3-based predictive features, and for gen-
erating the random forest and neural network models is available
on Zenodo (Eiselt, 2024a). The random forest and neural network
models are also available on Zenodo (Eiselt, 2024b), as are the pre-
dictive features (Eiselt, 2024c).
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line at https://doi.org/10.5194/tc-19-1849-2025-supplement.
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