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Abstract. Arctic shorelines are retreating rapidly due to
declining sea ice cover, increasing temperatures, and in-
creasing storm activity. Shoreline morphology may influ-
ence local retreat rates, but quantifying this relationship re-
quires repeat estimates of shoreline positions and morpho-
logic properties. Here we use a novel combination of shore-
line boundaries from multispectral imagery from Planet and
topographic profiles from the Ice, Cloud and land Eleva-
tion Satellite 2 (ICESat-2) altimeter to compare year-to-year
changes in shoreline position and morphology across dif-
ferent shoreline types, focusing on an 8 km stretch of the
Alaskan Beaufort Sea coast during the 2019–2021 open-
water seasons. We consider temporal and spatial variability
in shoreline change in the context of environmental forcings
from ERA5 and morphologic classifications from the Shore-
Zone database. We find a mean spatially averaged shoreline
change rate of −16.5 m a−1 over 3 years, with local esti-
mates ranging from −66.7 to +18.6 m in a single year. We
posit that annual and kilometer-scale variability in shoreline
change can be explained by the response of different geomor-
phic units to time-varying wave and ocean conditions. Ice-
rich coastal bluffs and inundated tundra exhibited high retreat
that is likely driven by high temperatures and wave exposure,
while the stretch of shoreline with vegetated peat in front of
a large breached thermokarst lake remained relatively stable.
Our topographic profiles from ICESat-2 sample three distinct
shoreline types (a bluff, a small drained lake basin, and a

dune in front of a large drained lake basin) that exhibit dif-
ferent patterns of shoreline change (in terms of both position
and morphology) over the 3-year study period. Analysis of
altimetry-derived morphologic parameters such as elevation
and slope and small-scale features such as toppled blocks and
surface ponding provide insight into specific erosion and ac-
cretion processes that drive shoreline change. We conclude
that repeat altimetry measurements from ICESat-2 and mul-
tispectral imagery provide complementary observations that
illustrate how both the position and the topography of the
shoreline are changing in response to a changing Arctic.

1 Introduction

Decreasing sea ice extent (Overeem et al., 2011; Baran-
skaya et al., 2021), increasing air (Serreze and Barry, 2011;
Baranskaya et al., 2021) and ocean (Timmermans and Labe,
2023) temperatures, and increasing storm frequency (Man-
son and Solomon, 2007; Erikson et al., 2020; Baranskaya
et al., 2021) are driving widespread erosion across Arc-
tic coasts. Pan-Arctic shoreline change rates over the sec-
ond half of the 20th century have been estimated to be
−0.5 m a−1 (where negative shoreline change indicates re-
treat), with the Alaskan Beaufort Sea coast changing at an
elevated rate of −1.5 m a−1 (Lantuit et al., 2012). This ero-
sion threatens coastal communities through damage to in-
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frastructure and cultural sites, loss of economic opportunity,
and loss of access to traditional navigation routes and sub-
sistence practices (e.g., Brady and Leichenko, 2020; Irrgang
et al., 2022). Coastal erosion also adds carbon and nitrogen to
the ocean, impacting primary production (e.g., Terhaar et al.,
2021) and the global carbon cycle (e.g., Irrgang et al., 2022).
Accurate forecasts of coastal retreat rates are needed to in-
form carbon cycling models and coastal resilience efforts.

During the open-water season, i.e., when the coasts are
not sheltered by sea ice, the shoreline is subjected to warm
ocean temperatures and mechanical energy from waves, driv-
ing ground ice thaw and erosion through thermal abrasion
(Aré, 1988; Wobus et al., 2011; Günther et al., 2013; Baran-
skaya et al., 2021). Warm air temperatures can drive top-
down ground thawing and erosion through thermal denuda-
tion (Günther et al., 2013; Baranskaya et al., 2021). Although
observational studies (Nielsen et al., 2020) and models (e.g.,
Nielsen et al., 2022; Rolph et al., 2022) have demonstrated a
correspondence between environmental drivers and decadal-
scale retreat over regional scales (∼ hundreds of kilometers),
studies that consider the spatial distribution of decadal and
annual retreat rates have found them to be highly variable on
local scales (∼ tens of meters) (Gibbs and Richmond, 2015;
Farquharson et al., 2018; Irrgang et al., 2018; Jones et al.,
2018; Baranskaya et al., 2021). These findings suggest that
the local response of shorelines to environmental forcings is
not uniform and may depend on local shoreline characteris-
tics.

Previous work has suggested that shoreline morphology
plays a role in controlling local retreat rates. Farquharson
et al. (2018) found varying shoreline change patterns across
different geomorphic units in the Chukchi Sea, with per-
mafrost bluffs and barrier islands primarily retreating and
beaches and gravel barriers showing a mixture of retreat and
advance. Piliouras et al. (2023) found that shoreline change
along the Alaskan Beaufort Sea coast varied according to
elevation, lithology, and barrier island presence. Some ob-
served differences are likely due to the fact that different ge-
omorphic units are subject to a variety of erosive and accre-
tive processes driven by time-varying ocean and atmospheric
conditions. Steep coastal bluffs are predominately subjected
to erosion from thermal abrasion at their base and thermal
denudation above the water line (Wobus et al., 2011; Aré,
1988; Günther et al., 2013; Baranskaya et al., 2021; Irrgang
et al., 2022). High rates of thermal abrasion can lead to bluff
collapse events, where a cohesive block detaches from the
shoreline. These blocks can temporarily shelter the shoreline
from additional wave activity but tend to disintegrate over
the span of several days (Overeem et al., 2011; Wobus et al.,
2011; Barnhart et al., 2014) or weeks (Jones et al., 2018).
Coastal beaches and dunes, on the other hand, are subject
to erosion or accretion depending on alongshore sediment
transport patterns. Observations of erosion rates and simu-
lated wave runup models in both temperate (Earlie et al.,
2018) and Arctic (Rolph et al., 2022) environments have

suggested that wave-driven retreat is sensitive to shoreline
geometric attributes such as beach slope and the elevation
of the beach–cliff junction. Over time, erosion, accretion,
and ground thaw can drive changes in shoreline morphology,
which can in turn affect retreat rates. For example, surface
subsidence due to ground thaw in flood-prone areas and the
shrinking of beaches and barrier islands protecting the coast
can both lead to accelerated thaw and erosion (Farquharson
et al., 2018; Irrgang et al., 2018). Thaw slump formation
(Lim et al., 2020b) and beach and barrier island growth due to
sediment deposition can lead to the stabilization or advance-
ment of the shoreline (Farquharson et al., 2018; Irrgang et al.,
2018; Erikson et al., 2020).

Quantifying the potential effect of morphology on Arc-
tic shoreline change requires high-resolution, up-to-date es-
timates of shoreline position, topography, and geomorphic
type. The increasing availability and use of high- and mid-
resolution (< 10 m) multispectral satellite remote sensing
has facilitated the estimation of changes in shoreline posi-
tion in the Arctic over large areas and long time periods
(i.e., Günther et al., 2013, 2015; Farquharson et al., 2018;
Irrgang et al., 2018; Jones et al., 2018). Databases such as
the Arctic Coastal Dynamics Database (Lantuit et al., 2012)
and the ShoreZone project (Harper and Morris, 2014) pro-
vide qualitative classifications of the shoreline into geomor-
phic units based on aerial photography and field surveys.
These databases are useful for regional (Farquharson et al.,
2018) and pan-Arctic (Lantuit et al., 2012; Nielsen et al.,
2022) studies but are low resolution (on the order of 10–
100 km) and time-invariant, making them insufficient to ex-
amine local variations or investigate morphologic change
over time. Elevation measurements from airborne lidar (e.g.,
Jones et al., 2013) and aerial photogrammetry (e.g., Gibbs
et al., 2019; Lim et al., 2020a, b) can be used to qualitatively
characterize the shoreline, provide high-resolution estimates
of shoreline position, capture short-term topographic change,
and enable comparisons of retreat rates between different ge-
omorphic units (e.g., Lim et al., 2020a) on seasonal (e.g.,
Gibbs et al., 2019; Lim et al., 2020a) to multiyear (e.g., Jones
et al., 2013) timescales and over kilometer-scale areas (e.g.,
Lim et al., 2020a).

The Ice, Cloud and land Elevation Satellite 2 (ICESat-
2) laser altimeter collects repeat cross-shore elevation pro-
files, providing the potential to expand on previous elevation-
based work with satellite altimetry and transform our un-
derstanding of Arctic shoreline morphology and change.
ICESat-2’s Advanced Topographic Laser Altimeter System
(ATLAS) emits a laser pulse at 532 nm (green light) and pro-
vides elevations of individual surface-reflected photons in the
ATL03 data product (Neumann et al., 2019). The laser pulse
generated by ATLAS is split into three pairs of beams, illumi-
nating a total of six ground tracks that are nominally centered
around a reference ground track. Each beam within a pair is
separated by 90 m across-track (i.e., perpendicular to the or-
bital motion of the satellite), and each pair is separated by
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3.3 km. ATLAS’s 11 m diameter footprint (Magruder et al.,
2021), 70 cm along-track sampling at full resolution (Markus
et al., 2017), and centimeter-to-decimeter vertical precision
(Brunt et al., 2021) allow for high-resolution measurements
of shoreline topography. Xie et al. (2021) and Liu et al.
(2022) demonstrated the potential for using ICESat-2 al-
timetry to classify the shoreline by geometric unit, although
these studies focused only on one-time characterization. The
ICESat-2 repeat-track orbit revisits the same ground track
every 91 d, which enables measurement of annual and po-
tentially subannual changes in shoreline position, elevation,
and shoreline morphology. Several higher-level data prod-
ucts have been derived from the ATL03 photon product to
reduce data volume and provide more easily interpretable el-
evation estimates for different applications, such as vegeta-
tion (Neuenschwander et al., 2023), land ice (Smith et al.,
2023), and inland water (Jasinski and the ICESat-2 Sci-
ence Team., 2023). However, the resolution of these higher-
level data products (≥ 20 m) is not sufficient to accurately de-
scribe complex Arctic landscapes (Michaelides et al., 2021)
or measure the sub-10 m changes in shoreline position that
characterize much of the Arctic (Lantuit et al., 2012). New
processing techniques are needed to generate coastal eleva-
tion transects from ICESat-2 photon data (ATL03).

Here, we present a case study demonstrating how repeat
altimetry from ICESat-2 can be utilized in tandem with satel-
lite imagery to track annual shoreline change and provide in-
sight into short-term and local shoreline processes. We im-
plement a processing pipeline to generate high-resolution el-
evation profiles from ICESat-2 photon data and extract shore-
line boundaries that can be compared with those derived from
satellite multispectral imagery. We demonstrate the utility
of higher-resolution ICESat-2 elevation data over the 2019–
2021 open-water seasons to investigate changes in cross-
shore topography over time. We focus on the shoreline sur-
rounding Drew Point, Alaska, where shoreline change rates
are both high (averaging −22 m a−1 over the last decade)
and variable (−48.8 to 0 m a−1 on ∼ 10 m length scales)
(Jones et al., 2018), and multiple shoreline types (includ-
ing coastal bluffs and drained lake basins) are present (Jones
et al., 2009). We quantify annual variations in sea ice cover,
wave activity, and ocean and air temperatures to establish
year-to-year environmental forcings on the shoreline. Next,
we derive shoreline positions and annual shoreline change
from satellite multispectral imagery from Planet and evaluate
temporal and spatial variations in the shoreline response to
these forcings. We then analyze ICESat-2 elevation profiles
and discuss the inferred shoreline type, topographic change,
and potential causes of these observed shoreline changes. We
also compare our ICESat-2-derived change estimates with
imagery-derived change estimates. We conclude with a dis-
cussion of the advantages and challenges of characterizing
shoreline structure and change with ICESat-2 altimetry and
how it can be leveraged with other datasets to better under-
stand Arctic shoreline evolution.

2 Data and methods

2.1 Study area

Our study focused on an 8 km stretch of coast to the east
of Drew Point on the North Slope of Alaska (Fig. 1). This
study area largely consists of exposed ice-rich bluffs with
narrow beaches along the coast and thermokarst lakes and
drained lake basins onshore (Jorgenson et al., 2014; Gibbs
and Richmond, 2015). Most of the shoreline in this region
is less than 3 m high, although the bluffs near Drew Point
reach as high as 6 m (Gibbs and Richmond, 2015). Erosion
is largely driven by thermal mechanical notching of bluffs,
followed by bluff collapse (Barnhart et al., 2014; Gibbs and
Richmond, 2015; Jones et al., 2018). The area around Drew
Point is among the most rapidly retreating locations in the
Arctic, with decadal-scale shoreline change rates in excess
of −10 m a−1 (Jones et al., 2009; Gibbs and Richmond,
2015) and evidence that retreat rates are increasing in recent
years (Jones et al., 2009, 2018). Jones et al. (2018) found
highly variable change in this study area, with mean shore-
line change averaged over a 9 km stretch of shoreline varying
from −6.7 to −22.0 m per open-water season between 2007
and 2016. Although they found that the greatest retreat oc-
curred in the year with the most storms and the warmest air
temperatures, they did not find a robust relationship between
spatially averaged retreat rates and open-water days, storm
activity, air temperature, permafrost temperature, or sea sur-
face temperature over the entirety of the 10-year study pe-
riod. Maximum local retreat was 2–3 times higher than spa-
tially averaged retreat, pointing to the potential influence of
local controls (such as morphology) on shoreline change.

We divide our study area into three regions (Fig. 1b.) with
repeated cross-shore ICESat-2 profiles. We delineate these
regions primarily based on visual analyses of 2018 opti-
cal imagery collected by CNES Airbus that was accessed
through Google Earth and draw on Gibbs and Richmond
(2015), Jones et al. (2009), and the ShoreZone database
(Harper and Morris, 2014; Alaska ShoreZone, 2023) to de-
scribe the morphological setting of each region. ShoreZone
includes a classification of variable-length segments of the
shoreline based on aerial photography taken in 2007. These
classifications are based on the substrate and morphology
of the shoreline as well as the dominant erosion and accre-
tion processes thought to be present. Given the high amount
of shoreline retreat in the last decade (Jones et al., 2018),
specific local features identified by ShoreZone in 2007 may
have been removed or modified, but we expect the general
morphologic setting to be consistent with current conditions.
Region 1, the westernmost portion of the study area, pri-
marily consists of steep, ice-rich coastal bluffs (Jones et al.,
2009; Harper and Morris, 2014; Gibbs and Richmond, 2015).
ShoreZone indicates the sporadic presence of low, vege-
tated peat-rich sediment, which is likely the remnants of old
drained lake basins (Jones et al., 2009) that have since been
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Figure 1. (a) Overview of the study area on the Alaskan Beaufort Sea coast, with the extent of the Planet imagery used and the locations of
the ICESat-2 ground tracks indicated. (b) A close-up of the study area and shore-type classifications of the 2007 shoreline from ShoreZone
(Harper and Morris, 2014). We divide our study area into three regions based on geography and shoreline type. Background imagery is from
2018, © 2024 Google Earth CNES/Airbus.

removed by erosion. Region 2 consists of the headlands and
is characterized as having the same shoreline types as Re-
gion 1 (coastal bluffs and drained lake basins). Region 3 is a
large breached thermokarst lake (Jones et al., 2009; Gibbs
and Richmond, 2015) that is classified in ShoreZone as a
large lagoon behind a narrow strip of low vegetated peat. The
easternmost portion of this shoreline is classified as an inun-
dated tundra environment, where the nearshore elevation is
below sea level and where there has been significant thaw
subsidence and flooding.

2.2 Time-varying environmental conditions

To investigate the drivers of year-to-year variations in shore-
line positions, we considered ocean wave conditions, air tem-
perature, and sea ice concentration from the European Centre
for Medium-range Weather Forecasts Reanalysis v5 (ERA5)
dataset (Hersbach et al., 2020; Hersbach et al., 2023). ERA5
provides hourly estimates of atmospheric and sea ice con-
ditions at a 0.25° resolution and wave conditions at a 0.5°
resolution.

2.2.1 Sea ice and ocean waves

During the open-water season, waves transport heat and me-
chanical energy to the base of permafrost bluffs, driving re-
treat via thermal and mechanical abrasion (Aré, 1988; Wobus
et al., 2011; Baranskaya et al., 2021). The vast majority of
shoreline retreat along the Beaufort Sea coast occurs during
the open-water season, and the length of the open-water sea-

son has been proposed as first-order predictor of retreat rates
(Overeem et al., 2011). For each year, we estimated the du-
ration of the open-water season from the ERA5 daily mean
sea ice concentration. Following Overeem et al. (2011), we
defined the open-water season as the period over which the
daily mean sea ice concentration is < 15 %. The open-water
season spans the period starting from the first day sea ice con-
centration falls below 15 % for at least 2 consecutive days to
the first day sea ice concentration remains above 15 % for at
least 2 consecutive days. We also counted the total number of
open-water days (owds) spanned by each pair of Planet and
ICESat-2 acquisitions, including single-day breakup events
that occur outside of the open-water season.

The majority of wave-driven retreat is thought to occur
during storms with large waves (Barnhart et al., 2014), al-
though time lapse imagery has shown that thermal erosion
and bluff collapse can occur even under relatively calm
conditions (wave heights < 0.3 m) as long as waves make
contact with the base of the bluffs (Overeem et al., 2011;
Wobus et al., 2011). Thus, we considered both the frequency
of extreme wave events and total wave exposure over the
open-water season. We calculated the integral of the squared
hourly significant wave height (Hs) as a proxy for cumulative
wave energy. We defined the count of extreme events as the
number of hours for which Hs ≥ 1.4 m, corresponding to the
upper 5 % of wave heights over the 3-year study period.
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2.2.2 Air and sea surface temperature

Ocean temperatures are an important driver of thermal me-
chanical erosion, as warm temperatures are required to melt
frozen sediments, which are then removed by waves. Mod-
eling of ice-rich bluffs by Barnhart et al. (2014) showed that
large retreat events only occur when ocean temperatures ex-
ceed 0 °C. Subaerial retreat, which drives the loss of sedi-
ment from the upper shoreline via permafrost thaw, is driven
by warm air temperatures (Wobus et al., 2011; Barnhart et al.,
2014; Baranskaya et al., 2021).

We aggregated daily mean air temperature from ERA5 be-
tween 1 June and 31 October of each year (following Jones
et al., 2018) and the daily mean sea surface temperature for
each open-water season, when the base of the shoreline is ex-
posed to the ocean. For both the air and sea surface tempera-
ture for each measurement period, we calculated the number
of accumulated degree days of thaw (ADDT), defined as the
sum of daily temperatures > 0 °C. We also recorded the mean
air and ocean temperature between 1 June and 31 October of
each year.

2.3 Shoreline identification from satellite multispectral
imagery

We estimated annual shoreline positions using 3 m multi-
spectral (red, green, blue, and near-infrared) images from
Planet Labs’ Super Dove, Dove R, and Dove Classic satel-
lite constellations (Planet Team, 2023). We used four images,
each collected near the beginning of each open-water season
from 2019 to 2022 (Table 1, Fig. 2). Frequent cloud cover in
2019 necessitated the use of imagery from 25 June, when a
small amount of snow or ice remained visible near the shore-
line.

Historically, shoreline change has been estimated from
satellites via manual delineation of the shoreline (Günther
et al., 2015; Farquharson et al., 2018; Jones et al., 2009; Ir-
rgang et al., 2018). Recent workflows such as CoastSat (Vos
et al., 2019) have been developed to automatically detect the
shorelines at a subpixel resolution, but they have focused on
lower-latitude beaches and may not perform well in Arctic
regions where sea ice is present. Here, we implement our
own shoreline detection method, following some of the same
steps as Vos et al. (2019). For each image, we calculated the
normalized differenced water index (NDWI) from the green
(G) and near-infrared (NIR) bands:

NDWI=
G−NIR
G+NIR

. (1)

We identified the NDWI threshold corresponding to the land–
water boundary using Otsu’s method, which determines the
threshold that divides a set of pixels into two classes such
that the interclass variance is maximized (Otsu, 1979) (see
the histograms in Fig. A1). We identified the subpixel land–
water boundary from our NDWI images using a march-
ing squares algorithm implemented in matplotlib contour in

Python (Hunter, 2007). We found that calculating our thresh-
old using all image pixels resulted in an adequate shoreline
estimate for all four of our images, such that an initial iden-
tification of land and water pixels (as is done in Vos et al.,
2019) is not necessary. We visually identified and masked
out regions where the shoreline appeared to be misidentified
due to an ambiguous land–water boundary (shaded regions in
Fig. 3). In order to improve the visual agreement of the de-
rived shorelines with the visible shoreline in imagery and to
ensure regular along-shore sampling intervals, we smoothed
each shoreline using a 30 m along-shore running mean and
sampled every 10 m alongshore to produce our final shoreline
segments (Fig. 2). Finally, we estimated shoreline change us-
ing an approach similar to that of the USGS Digital Shore-
line Analysis Software (Himmelstoss et al., 2021). In this
workflow, a reference shoreline (hereafter referred to as the
baseline) is selected. Cross-shore transects are generated at
regular intervals along-shore that are perpendicular to this
baseline. The change between consecutive shorelines is then
calculated along these transects. We created a baseline by
smoothing the raw 2020 shoreline with a 60 m along-shore
running mean in order to make sure that adjacent cross-shore
transects did not intersect on the time interval of our study
site. Transects were generated every 10 m along the base-
line using a modified version of the SDS_transects routine
from the CoastSat Toolbox (Vos et al., 2019; Vos et al.,
2024), which generates transects that bisect the shoreline.
The change along each transect was calculated between each
successive shoreline.

The estimated shorelines are subject to uncertainty from
image geolocation errors, tidal- and storm-driven wave runup
influences on the land–water boundary, and errors in the
threshold determined with Otsu’s method. The tides in this
region tend to be less than 0.2 m, but storm surges can result
in temporary relative sea level increases of up to 1.4 m (Jones
et al., 2018). However, given that much of this region consists
of steep bluffs with narrow or no beaches (Gibbs and Rich-
mond, 2015), changes in the local relative sea level are not
expected to have a large impact on the observed land–water
boundary. To estimate the uncertainty in our shoreline esti-
mates, we identified six clusters of three to six images (25 im-
ages in total) taken within a week of one another in the early
summer (mid June through late July). Modeling of coastal
bluff retreat in this region by Barnhart et al. (2014) sug-
gests that large (> 2.5 m) retreat events are concentrated in
late summer (late July–late September) and driven by storms.
Therefore, we do not expect large retreat events during early
summer, such that the dominant source of change over short
periods will be transient signals, such as relative sea level
changes and geolocation offsets. We calculated the cross-
shore difference between each shoreline position and the
mean position of its cluster and pooled the residuals across
all shorelines (Table A1). We defined our shoreline estima-
tion uncertainty to be the standard deviation of the pooled
residuals.
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Figure 2. Planet Labs imagery (© 2024 Planet Labs Inc) used to estimate shoreline positions. Shorelines delineated using Otsu thresholding
are overlain and show good agreement with the visible land–water boundary.

Table 1. Observation intervals from Planet imagery and ICESat-2. The number of open-water days (owds) spanned by each acquisition is
listed in parenthesis.

Interval Planet dates ICESat-2 dates

2019–2020 25 Jun 2019–25 Jul 2020 (154 owds) 7 Apr 2019 (weak)–4 Jan 2020 (strong) (138 owds)
2020–2021 25 Jul 2020–2 Jul 2021 (97 owds) 4 Jan 2020 (strong)–2 Jul 2021 (strong) (111 owds)
2021–2022 2 Jul 2021–1 Jul 2022 (91 owds) 2 Jul 2021 (strong)–31 Dec 2021 (weak) (91 owds)

2.4 Elevation profiles from ICESat-2 altimetry

Outside of the poles, the majority of ICESat-2 revisits be-
tween 2019 and 2022 were off-pointed from their nomi-
nal ground track location to increase aerial coverage, such
that subsequent revisits did not cover the same ground lo-
cation. However, “target of opportunity” requests over the
North Slope of Alaska resulted in exact repeats of every fifth
descending reference ground track starting in April 2019.
We analyzed repeat ICESat-2 elevation profiles from three
ground tracks (ground tracks 3r, 2r, and 1r, labeled in Fig. 1a)
from a single reference ground track crossing our study area.
Due to frequent cloud cover in the summer and fall, as well
as the relatively low surface reflectivity of the snow-free tun-
dra, the majority of observation dates with sufficient surface-
reflected photons to accurately identify the surface occurred
in the winter (January and April), with 2021 being the only
year with snow-free profiles available. We selected four ob-
servation dates spanning the 2019–2021 open-water seasons
(Table 1), resulting in 12 individual profiles.

For each profile, we used 200 m of cross-shore ATL03
photons (Neumann et al., 2023) for our analysis. Each pho-
ton from ATL03 is assigned a confidence code ranging from
0 (noise) to 4 (high confidence) to indicate how likely it
is to be a transmitted photon that was reflected from the
surface (i.e., a signal photon). From each ATL03 profile,
we selected all high-confidence (confidence score= 4) and
medium-confidence (confidence score= 3) photons for fur-
ther processing. These photon data were plotted and in-
spected to provide a qualitative analysis of small-scale fea-
tures. We used the SlideRule Python client (Shean et al.,
2023) to run a customized version of the ATLAS/ICESat-
2 L3A Land Ice Height (ATL06) algorithm (Smith et al.,
2019), which estimates surface elevations using an iterative
process of filtering and linear fitting of individual photon el-
evations. In this process, a linear fit is performed over fixed-
length along-track segments of signal photons, outliers are
filtered out based on a specified window above and below
the linear surface, and the remaining photons are refit. This
process is iterated using a successively narrower outlier win-
dow until either it converges or the outlier window reaches
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a user-specified minimum value. The reported elevation for
each segment is the height of the midpoint of the final lin-
ear interpolation. SlideRule provides the root-mean-square
(RMS) error between the photons used in the final fitting and
the final linear fit, as well as the photon-level elevation error
that is propagated through the linear fit. The photon elevation
error is assumed to be uniform for a given segment and is es-
timated as the maximum of the segment’s RMS error and the
robust spread of photons as defined by Smith et al. (2019).
This robust spread is based on the vertical distribution of sig-
nal photon heights and the estimated rate of background pho-
tons (i.e., photons that are not surface signals).

For coastal applications, a high along-track resolution is
preferable to capture abrupt elevation changes at the shore-
line. However, shorter segments may not provide enough
photons for a robust linear fit and may result in height es-
timates that are subject to along-track variations in photon
density. A longer segment length results in a smoother pro-
file at the cost of not capturing small-scale features. In or-
der to strike a balance between these two considerations, we
implemented the SlideRule ATL06 algorithm for 10 m long
segments spaced every 2 m along track, such that consecutive
segments overlapped by 80 %. A 10 m section was only con-
sidered valid if it contained at least five signal photons and if
those photons were distributed over at least 1 m along track.
Bright surfaces such as surface ponds can lead to after pulses
in the ATL03 data, which appear as secondary surfaces start-
ing ∼ 0.45 m below the true surface (Lu et al., 2021; Arndt
and Fricker, 2024). The original ATL06 algorithm sets the
minimum height of the outlier window to 3 m, which leads to
the inclusion of these after pulses in the final surface eleva-
tion estimate. To avoid including after pulses in our analysis,
our custom ATL06 processing allows for an outlier window
height as narrow as 0.80 m (i.e., 0.4 m above and below the
identified surface).

To estimate shoreline change from our custom ICESat-2
elevation profiles, we needed to reliably identify shoreline
boundaries from the derived elevation profiles. The presence
of sea ice and snow in three of the ICESat-2 tracks prevents
the accurate identification of a land–water boundary. Instead,
we identified the boundaries of the backshore, defined here as
the relatively steep region between the beach or ocean and the
onshore region. We manually identified the point correspond-
ing to the backshore–onshore boundary (henceforth referred
to as the “upper shoreline”) and backshore–offshore bound-
ary (the “lower shoreline”) based on the visual breaks in the
along-track slope (see Fig. A2). Since beaches in this region
are very narrow when present (Gibbs and Richmond, 2015),
we expect the lower shoreline from ICESat-2 to be similar to
the land–water boundary. We identified the intersection be-
tween each ICESat-2 track and the corresponding imagery-
derived shoreline and compared the shoreline positions and
cross-shore retreat estimates derived from Planet and the two
ICESat-2 boundaries. Under the assumption that the major-
ity of the observed position change in our ICESat-2 bound-

aries is due to cross-shore change, we projected our ICESat-
2-derived change estimate in the local cross-shore direction.
The local cross-shore vector was based off of the baseline
transect (as defined in Sect. 3.2) that was located closest to
the geographic midpoint of the four ICESat-2 transects asso-
ciated with each ground track.

In order to characterize the morphology of each profile,
we calculated both the backshore elevation and the back-
shore slope. The backshore elevation was defined as the el-
evation difference between the backshore–onshore boundary
and the mean offshore (north of the backshore–offshore) el-
evation from the 2 July 2021 elevation profiles, which we
used as a proxy for local sea level (illustrated in Fig. A2).
The backshore slope was estimated using a linear fit of
all points between the backshore–onshore and backshore–
offshore boundaries, projected into the local cross-shore di-
rection.

To estimate the uncertainty in our ICESat-2-derived
boundaries, we use the geolocation uncertainties estimated
by Luthcke et al. (2021), who coregistered ATL03 data with
ArcticDEM and reported the distribution of offsets between
the original and shifted locations for each beam. We consider
the total uncertainty, defined as the mean offset plus 1 stan-
dard deviation for each beam. This total uncertainty ranges
from 2.8 to 4.8 m for individual beams. We consider the
worst-case scenario where this error is entirely in the cross-
shore direction. The satellite performs a “yaw flip” twice
every 502 d where it is reoriented by 180° (Luthcke et al.,
2021). This means that the specific beam sampling a given
ground track, and therefore the associated geolocation un-
certainty, alternates between repeats. We take the uncertainty
in the shoreline change between two observation dates as the
sum in quadrature of the uncertainties in the individual mea-
surements and find that they range from 4.0 to 5.9 m.

3 Results

3.1 Environmental conditions

We observed the most extreme environmental conditions as
measured by all measured metrics in 2019 (Table 2). The
2019 erosion year had the longest open-water season, with
sea ice breaking up sooner (late June) and re-forming later
(mid-November) than in the other 2 years. It also had the
highest wave energy, the most storms, highest air tempera-
tures, and over twice as many ocean thawing degree days as
the following 2 years. By contrast, the 2021 open-water sea-
son was the shortest, with sea ice breakup occurring in late
July (although ERA5 suggests a 1 d ice breakup on 27 June)
and freeze-up occurring in late October. There were slightly
warmer ocean and air temperatures but lower wave activity
(in terms of both wave energy and hours of high waves) in
2021 compared to 2020.
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Table 2. Summary of environmental variables from ERA5 (Hersbach et al., 2020).

Year 2019 2020 2021

Open-water duration 27 Jun–13 Nov 10 Jul–26 Oct 27 Jul–20 Oct
Open-water days 138 111 91
Cumulative wave energy (m2 d) 113.9 74.0 58.9
Number of extreme wave events (h) 263 180 122
Mean air temperature (Jun–Oct) (°C) 3.4 1.6 1.8
Mean ocean temperature (open-water season) (°C) 3.1 1.8 2.3
ADDT air (°C d) 583.8 359.1 404.9
ADDT ocean (°C d) 434.1 210.6 214

Figure 3. (a) Shorelines derived from Planet images, overlain on imagery from 25 July 2020 (© 2024 Planet Labs Inc). The locations of the
three ICESat-2 ground tracks are also shown. (b) Cross-shore shoreline change calculated between successive years. Areas where there was
an ambiguous land–water boundary are masked out (shaded areas) and excluded from analysis. The boundaries of the three regions shown
in Fig. 1 are shown as dashed lines.

3.2 Imagery-derived shoreline position and retreat
rates

The spatially averaged shoreline change rate in our study
area was −16.5 m a−1 (corresponding to retreat) between
2019 and 2021, with notable year-to-year and local variabil-
ity (Table 3, Fig. 3). The year 2019 had the most shoreline
loss, with a mean shoreline change of −23.7 m and single-
segment (i.e., 10 m scale) shoreline change values as ex-
treme as −66.7 m. The year 2020 experienced more mod-
erate shoreline change, with a mean shoreline change of
−15.4 m (ranging from−41.0 to+6.0 m). The year 2021 ex-
perienced similar but slightly lower rates, with a mean shore-
line change of −10.5 m (−30.9 to +5.6 m).

Based on the uncertainty estimation described in Sect. 2.3,
we estimated the precision of our shoreline position estimates
to be 2.2 m. Assuming that the error in each shoreline is inde-
pendent of the others, this corresponds to a position change
uncertainty of 3.1 m. We define substantial shoreline change
as any value that exceeds this threshold.

Our shoreline change estimates for each region (Table 3,
Fig. 3b) indicate that there was spatial variability between
regions. Region 1 showed high retreat, with a mean change
rate of −12.9 m a−1 over 3 years and single-segment year-
to-year shoreline change estimates ranging from −29.4 to
+1.6 m. Shoreline change consisted almost exclusively of
retreat, with the maximum observed advancement (+1.6 m)
falling below our estimated uncertainty threshold (3.1 m).
We observed the greatest spatially averaged retreat in 2019
(−18.5 m) and the lowest in 2021 (−7.1 m). While every
shoreline segment in Region 1 underwent retreat in 2019 and
2020, 16 % of valid shoreline segments (all in the western
half of Region 1) did not exhibit substantial (> 3.1 m) shore-
line change in 2021.

Region 2 exhibited the largest overall retreat, with a 3-
year spatially averaged mean change rate of −24.3 m a−1

and year-to-year single-segment change estimates ranging
from −58.2 to −3.0 m. As with Region 1, we observed the
largest amount of shoreline change in 2019 (−38.4 m), with
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Table 3. Estimated shoreline change between each successive image observation date in each of the three regions identified in Fig. 3, as well
as across the whole study area. The mean and range are listed.

Year Region 1 Region 2 Region 3 Total

2019 −18.5 m (−29.4 to −7.0 m) −38.4 m (−58.2 to −15.7 m) −0.6 m (−66.7 to +18.6 m) −23.7 m (−66.7 to +18.6 m)
2020 −13.0 m (−21.6 to −3.4 m) −16.8 m (−27.6 to −3.0 m) −13.5 m (−41.0 to +6.0 m) −15.4 m (−41.0 to +6.0 m)
2021 −7.1 m (−14.2 to +1.6 m) −17.7 m (−30.9 to −5.6 m) −3.9 m (−20.7 to +5.6 m) −10.5 m (−30.9 to +5.6 m)
2019–2021 −12.9 m (−29.4 to +1.6 m) −24.3 m (−58.2 to −3.0 m) −6.0 m (−66.7 to +18.6 m) −16.5 m (−66.7 to +18.6 m)

similar and smaller change in 2020 (−16.8 m) and in 2021
(−17.7 m).

Region 3 exhibited the smallest amount of shoreline
change, with a 3-year spatially averaged rate of −6.0 m a−1.
Region 3 was the only region in our study area where sub-
stantial shoreline advance (up to +18.6 m locally in 2019)
occurred. Although 2019 was not the year with the highest
spatially averaged shoreline change (−0.6 m) in Region 3,
it was the most dynamic year, with both the maximum ob-
served local retreat (−66.7 m of shoreline change) and ad-
vance (+18.6 m of shoreline change). We found that 24 %
of valid shoreline segments, concentrated almost exclusively
in the easternmost third of the region, underwent significant
retreat, whereas the central 62 % of shoreline segments expe-
rienced substantial advance. The remaining 14 % did not ex-
hibit substantial retreat or advance. In 2020, the mean shore-
line change across the region was higher (−13.5 m), but the
change at individual segments was lower in magnitude (with
a local maximum of −41.0 m) and spread over a larger area
(the eastern 66 % of the basin). Only 3 % of shoreline seg-
ments showed substantial advance, whereas the remaining
31 % experienced no significant change. Relative to 2020,
retreat in 2021 was lower in magnitude (with a maximum
shoreline change of −20.7 m) and present across less of the
region (40 %), resulting in a lower spatially averaged shore-
line change (−3.9 m), with 19 % of segments showing sig-
nificant advancement (with a maximum of +5.6 m) and the
remaining 41 % experiencing no significant change.

3.3 Cross-validation of ICESat-2 altimetry and
Planet-imagery-derived shoreline positions

Altimetry from ICESat-2 provides an independent estimate
of shoreline change at multiple positions along the shore-
line profile, which can be compared to Planet-derived shore-
line positions for validation. We find that overall shore-
line positions estimated from both datasets are consistent.
We would expect the land–water boundary from Planet to
be located seaward (north) of the lower backshore bound-
aries identified by ICESat-2. However, we found that the
Planet-derived land–water boundary consistently falls land-
ward (south) of the ICESat-2-derived lower boundary (by
8.6± 4.2 to 41.1± 4.5 m) and either seaward (by up to
36.0 m± 4.5 m) or slightly landward of the ICESat-2-derived
upper boundary (by up to 3.3± 4.0 m) (Fig. 4), such that it

Table 4. Onshore heights and slopes derived from the upper and
lower boundaries identified for each ICESat-2 observation.

Track Date Backshore Backshore
elevation slope

(m) (%)

Ground track 3r 7 Apr 2019 5.02 15
(Region 1) 4 Jan 2020 4.87 28

2 Jul 2021 4.89 28
31 Dec 2021 4.96 11

Ground track 2r 7 Apr 2019 1.33 2.4
(Region 2) 4 Jan 2020 0.93 3.9

2 Jul 2021 0.70 6.7
31 Dec 2021 2.04 3.5

Ground track 1r 7 Apr 2019 1.89 3.6
(Region 3) 4 Jan 2020 1.67 5.9

2 Jul 2021 1.64 7.0
31 Dec 2021 1.64 4.3

is located on the backshore or onshore section of the ele-
vation profiles. Given the published geolocation errors from
ICESat-2 (up to 4.8 m; Luthcke et al., 2021) and Planet
(< 10 m; Planet Team, 2023), the difference between ICESat-
2- and Planet-derived shorelines is not thought to be due
to a consistent geolocation offset between the two satel-
lite estimates. The difference could be explained by a con-
sistent landward bias in our NDWI thresholding technique
(Sect. 2.3) or by differences introduced by snow cover and
variations in the local water level. Although observations
from ICESat-2 and Planet span different time intervals (Ta-
ble 1, Fig. 4), the number of open-water days spanned by
both are similar, allowing for a direct comparison between
our imagery and altimetry-defined shoreline change esti-
mates. We perform an orthogonal distance linear regres-
sion and find a high correlation between the Planet-derived
change estimates and changes in the ICESat-2-derived up-
per boundary (r2

= 0.79, p = 0.0008) and moderate corre-
lation with changes in the ICESat-2-derived lower boundary
(r2
= 0.52, p = 0.007) (Fig. 5a).
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Figure 4. Time series of the positions of the upper and lower boundaries and coastal boundaries from ICESat-2 and the land–water boundary
derived from Planet. Positions are given as the cross-shore distance from the Planet-derived shoreline from 25 June 2019. Ice-on intervals
are shaded. Dashed lines indicate the trajectory of the shoreline based on a linear rate of change during the open-water season and no change
during ice-on periods.

Figure 5. (a) Comparison between shoreline change estimates from Planet and shoreline change estimates from the upper (orange) and
lower (blue) boundaries derived from ICESat-2. (b) Comparison between the measured change between each open-water season across the
upper and lower boundaries derived from ICESat-2. The coefficient of determination excluding the outlier drained lake measurement (gray)
is reported. Linear fits were estimated using orthogonal distance regression. A 1–1 line is shown for reference.

3.4 Topographic change from satellite altimetry

Our SlideRule-derived elevation profiles (Fig. 6b, d and f) fit
the ATL03 photon data well, with RMS errors ranging from
0.04 m to 1.3 m and a mean RMS error of 0.15 m (Figs. A3,
A4, A5). The propagated vertical uncertainty ranges from
0.0024 to 0.27 m, with a mean uncertainty of 0.029 m. We
now discuss the time evolution of the shoreline horizontal po-

sition (Table A2), backshore elevation, and backshore slope
(Table 4) at each ICESat-2 ground track.

Ground track 3r in Region 1 (Figs. 6a, b, 4a) shows a
coastal bluff (such as the one shown in Fig. A6a) that under-
went retreat with little change in morphology. The upper- and
lower-shoreline boundaries showed consistent retreat in 2019
and 2020, with cross-shore change at each boundary ranging
from−16.9 to−28.4 m. During these 2 years, we observed a
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Figure 6. (a, c, e) Detailed view of the ICESat-2 sampling location from 2018 satellite imagery (© 2024 Google Earth CNES/Airbus) for
(a) ground track 3r; (c) ground track 2r, and (e) ground track 1r. The location of the Planet shoreline and corresponding ICESat-2 pass
for each year is shown. (b, d, f) ATL03 photon clouds from each ICESat-2 pass, with the SlideRule-derived (ATL06-SR) elevation profile
overlaid on the photon clouds for (b) ground track 3r, (d) ground track 2r, and (f) ground track 1r. The estimated locations of the upper- and
lower-shoreline boundaries for each date are marked, along with the cross-shore locations of the Planet-derived shorelines. The colors follow
the same legend as (a), (c), and (e).

steepening of the backshore slope from 15 % in 2019 to 28 %
in 2020 and 2021. In July 2021, we note a cluster of photons
that is ∼ 1 m high and ∼ 5 m across at the base of the bluff
(Fig. 7a) that may correspond to toppled bluff material. Be-
tween 2021 and 2022, we observed slight retreat of the up-
per boundary (−6.6 m of shoreline change) and advance of
the lower boundary (+20.3 m), resulting in a reduction in the
backshore slope to 11 %. In December 2021, we again note
a ∼ 1 m high cluster of photons at the base of the bluff that
gently slopes down towards the mean offshore height over
∼ 20 m (Fig. 7a). The backshore elevation remained stable,
ranging from 4.89 to 5.02 m over the 3-year study period.

Ground track 2r (Figs. 6c, d, 4b) in Region 2 passes
over the remnant basin of a ∼ 150 m diameter lake that was

breached and drained as a result of shoreline retreat prior
to our study. This profile underwent large changes in both
the shoreline position and morphology. Aerial imagery from
ShoreZone (Fig. A6b) showed the lake pre-drainage, and the
lake basin was clearly visible in Airbus imagery from Google
Earth (Fig. 6c) and in our 2019 ICESat-2 profile (Fig. 6d).
Between 2019 and 2020,−45.3 m of upper-shoreline change
and −67.2 m of lower-shoreline change occurred, corre-
sponding to the loss of about half of the basin. This resulted
in a 0.40 m drop in the backshore height, from 1.33 to 0.93 m,
and an increase in the backshore slope from 2.4 % to 3.9 %.
By contrast, between early 2020 and early 2021 there was
almost no change in the upper-shoreline position (−2.5 m)
and only moderate change in the lower-shoreline position
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Figure 7. ICESat-2 ATL03 photon data show small-scale features,
including (a) returns over what may be toppled block material at the
base of the bluff at ground track 3r and (b) surface ponding in the
drained lake basin at ground track 2r.

(−12.5 m), resulting in a further increase in the backshore
slope to 6.7 %. We also observed a slight lowering of 0.23 m
of the backshore height. The photon distribution over the lake
basin in July 2021 is concentrated in a narrow height band,
with a secondary reflection below the surface (Fig. 7b). This
feature is indicative of an after pulse due to surface pond-
ing (Lu et al., 2021), suggesting the presence of shallow wa-
ter. The rest of the lake basin was eroded between July and
December 2021, resulting in −62.1 m of change in the up-
per shoreline and −20.3 m of change in the lower shoreline.
This necessitated the definition of a new, substantially higher
(2.04 m) backshore boundary and resulted in a shallowing of
the backshore slope from 6.7 % to 3.5 %.

Ground track 1r (Figs. 6e, f, 4c) in Region 3 passes over
a 1.71 m high dune in front of a ∼ 2.6 km wide breached
thermokarst lake (shown in more detail in Fig. A6c) that
showed little shoreline change relative to other regions. We
observed between +1.7 and +10.2 m of advance in the up-
per boundary each year, while the lower boundary retreated
in 2019 (−7.7 m) and 2020 (−10.0 m) and then advanced in
2021 (+15.6 m). We note a 0.22 m drop in the backshore el-
evation (from 1.89 to 1.67 m) between 2019 and 2020, af-
ter which the elevation remained stable from 2020 to late
2021 (1.64 to 1.67 m). The backshore slope steepened be-
tween 2019 and 2021, from 3.6 % to 7.0 %, and then relaxed
to 4.3 % in late 2021.

4 Discussion

4.1 Spatiotemporal variability in shoreline change in
the context of previous observations

Our estimates of spatially averaged (regional) mean annual
shoreline change (−10.5 to −23.7 m a−1) across our study
region are higher than long-term historical estimates and are
similar to recent observations (Fig. A7). Gibbs and Rich-
mond (2015) estimated a regional mean of −6.3 m a−1 and
a local maximum of −18.6 m a−1 between Drew Point and
Cape Halket between 1947 and 2002. Jones et al. (2009)
estimated shoreline change across this region over multi-
ple time intervals and found −6.8 m a−1 of change between
1955 and 1979, −8.7 m a−1 between 1979 and 2002, and
−13.6 m a−1 between 2002 and 2007. A follow-up study by
Jones et al. (2018) estimating shoreline change over a 9 km
region covering our study area found a 10-year mean shore-
line change rate of −17.2 m a−1 between 2007 and 2016. In
addition to estimating a 10-year mean, Jones et al. (2018) re-
ported regional year-to-year rates, which ranged from −6.7
to −22.6 m a−1. Our mean retreat rates in 2020 and 2021 fall
within the range of the year-to-year rates observed by Jones
et al. (2018), whereas our mean retreat in 2019 (−23.7 m)
slightly exceeds that range. Our 3-year mean of observed re-
treat rates (−16.5 m) is similar to the decadal-scale estimate
from Jones et al. (2018) and is consistent with an increase in
local shoreline change rates compared to 2002–2007 (Jones
et al., 2009). Our retreat estimates and the post-2002 esti-
mates of Jones et al. (2009) and Jones et al. (2018) are all
higher than the pre-2002 decadal-scale estimates of Gibbs
and Richmond (2015) and Jones et al. (2009). This increase
could be reflective of a long-term increase in retreat rates,
although it may also be due to differences in timescales be-
tween studies, as short-term estimates of shoreline change
tend to be higher in magnitude than long-term estimates
(Sadler and Jerolmack, 2015).

Previous observations suggest that the spatial distribution
of change rates across our study area has been variable over
time. Gibbs and Richmond (2015) found the highest rates of
shoreline change in Region 3 (−10 to −18 m a−1), interme-
diate rates in Region 2 (−8 to−12 m a−1), and slightly lower
rates in Region 1 (−6 to−12 m a−1) between 1947 and 2002.
Jones et al. (2009) found a similar pattern between 1955 and
1979, with the shoreline change in Region 3 occurring at
rates in excess of −10 m a−1 and shoreline change in most
of Region 1 and Region 2 occurring at rates between −5 and
−10 m a−1. However, they found that shoreline change rates
in Region 2 increased to be in excess of −10 m a−1 between
1979 and 2002, and change rates in Region 1 followed suit
between 2002 and 2007 such that change rates across the re-
gion were relatively uniform (averaging−18 m a−1) between
2002 and 2007.

In contrast, our observed shoreline change rates between
the three regions between 2019 and 2021 are not uniform.
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Although the relatively high rates of retreat we observed in
Region 2 compared to Region 1 are consistent with Gibbs
et al. (2019) and Jones et al. (2009), the stability of the cen-
tral portion of Region 3 that we observed with both ICESat-2
altimetry and Planet imagery appears to be a recent devel-
opment. Wang et al. (2022) sampled a transect across the
central portion of Region 3 from satellite-imagery-derived
shorelines from 1974, 1985, 1992, 2001, 2009, and 2017 and
estimated a mean shoreline change rate over the full study
period of −55.9 m a−1. When considering the rates between
successive shorelines, Wang et al. (2022) found that 2009–
2017 was the only time interval during which there was no
observed shoreline change, suggesting that stabilization oc-
curred in this time frame after over 4 decades of retreat.

4.2 Drivers of spatiotemporal variability in
imagery-derived shoreline change

Jones et al. (2018) found that the environmental drivers of
year-to-year variability on the Beaufort Sea coast are not
well-defined, but they did observe high retreat in years with
extreme weather, which is consistent with our findings of
both high retreat and extreme environmental conditions in
2019. Compared to 2020 and 2021, 2019 had a long open-
water season and elevated air and ocean temperatures (Ta-
ble 2), all of which likely contributed to the elevated spatially
averaged retreat across the study region.

Although there is correspondence between mean year-to-
year shoreline change and year-to-year variations in wave
and temperature conditions, the response of the shoreline
to these time-varying conditions is not spatially uniform
(Fig. 3b). In 2019, Region 1 and Region 2 both experienced
high retreat, while Region 3 underwent high retreat across
parts of the shorelines and moderate advancement across oth-
ers. While we do not expect air and ocean temperatures to
vary greatly spatially over the study region, local variations
in wave energy due to shoreline orientation, position, and
morphology may contribute to the observed spatial variabil-
ity. For indented shorelines such as our study area, wave en-
ergy is expected to be concentrated towards the headlands
due to wave refraction, such that shorelines with uniform
composition will straighten over time (Van Rijn, 2011). This
provides a potential explanation for increased retreat in Re-
gion 2, particularly in 2019 when wave action was high. The
year 2021 saw the lowest amount of wave energy and fewest
storms (Table 2), and the concentration of wave energy in
the headlands of Region 2 would result in particularly low
wave energy in the hinterlands of Region 1 and Region 3.
We note that while Region 1 and Region 2 both consist pri-
marily of ice-rich coastal bluffs, the shoreline in Region 3
is characterized by ShoreZone primarily as low-lying peat
(Fig. 1b.) that is expected to be subject to low incident wave
energy (Harper and Morris, 2014). The eastern edge of Re-
gion 3 is characterized as inundated tundra, which refers to
areas where thaw subsidence and surface ponding are present

(Harper and Morris, 2014). Based on these characterizations
and on our observed patterns of shoreline change, we posit
that shoreline change in Region 1 and Region 2 is sensitive
to year-to-year variations in wave energy and ocean and air
temperatures, while the western and central portion of Re-
gion 3 are not. The eastern portion of Region 3 (inundated
tundra) is likely subject to ground thaw, high wave energy,
and flooding, resulting in high retreat in response to high
wave activity and high temperatures. The advancement ob-
served in Region 3 may be driven by along-shore transport
of material lost from the surrounding regions.

4.3 Drivers of morphologic change observed from
ICESat-2 altimetry

The elevation profiles from ICESat-2 data provide additional
information on topographic and morphological change at
specific ground tracks (Table 4), which can provide insight
into specific erosion and accretion processes that drive lo-
cal shoreline change. Specifically, we consider changes in
backshore elevation, backshore slope, and relative change be-
tween the upper- and lower-shoreline boundaries.

Based on previous studies in the Beaufort Sea coast area
(e.g., Overeem et al., 2011; Barnhart et al., 2014), we in-
fer that the coastal bluff shown in ground track 3r in Region
1 (Fig. 6b) likely retreats primarily through the formation
of thermal erosional niches, followed by bluff collapse. As
the shoreline retreats, we observed no major morphological
change; the backshore slope remained > 10 % with a stable
(4.87 to 5.02 m) backshore elevation. However, there were
year-to-year fluctuations in the backshore slope due to dif-
ferences in change rates at the upper and lower boundaries of
the backshore. In particular, the relatively low slope (11 %) in
December 2021 is driven by a retreat of the upper boundary
(−6.6 m of shoreline change) coupled with advance of the
lower boundary (+20.3 m of shoreline change) (Table A2).
Based on the ICESat-2 ATL03 photon data from July and
December 2021 (Fig. 7a.), we hypothesize that this reduc-
tion in slope is due to the accumulation of collapsed bluff
material at the base of the cliff that is not removed by the end
of the 2021 open-water season. The low retreat derived from
altimetry in 2021 is consistent with the low retreat estimated
from Planet imagery in the broader Region 1 (which has a
spatially averaged mean shoreline change of −7.1 m) and is
possibly due to relatively low wave energy and fewer storms
in the 2021 open-water season (Table 2). It may be that mul-
tiple locations along the shoreline in Region 1 observed in
imagery were sheltered by un-eroded toppled bluff material
similar to what we observe at ground track 3r.

The drained lake basin captured by ground track 2r in Re-
gion 2 (Fig. 6d) is an example of a more complex feature,
which displays variable retreat as the shoreline migrates from
the lake basin boundary to the bluff on the southern edge. The
transition in shoreline morphology is reflected in an increase
in backshore elevation from 0.70 to 2.04 m and moderate
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fluctuations in the backshore slope (2.4 % to 6.7 %; Table 4).
The changes in slope between 2019 and 2020 and between
early and late 2021 were driven by high and variable change
(−20.3 to −67.2 m) in both the upper and lower boundaries,
while the steepening of the slope between 2020 and 2021
was driven by the retreat of the lower shoreline (−12.5 m of
shoreline change) and by little change in the upper shoreline
(−2.5 m).

In order to assess whether the presence of this lake
basin impacts local retreat rates, we compared the mean
Planet-derived shoreline change across the drained lake basin
(which spans 15 segments over 150 m) to the distribution of
Planet-derived shoreline change across the entirety of Re-
gion 2. In 2019, the mean shoreline change across the lake
basin (−35.3 m) is similar to the retreat in Region 2 overall,
as it falls in the 63rd percentile of observed change. However,
in 2020, shoreline change across the basin (−10.5 m) fell into
the 8th percentile of observed headlands change, and in 2021
it was in the upper 90th percentile (−23.1 m). This suggests
that the presence of the drained lake basin may have con-
tributed to differential retreat during 2020 and 2021 relative
to Region 2 overall. Differential retreat rates in drained lake
basins have been observed before, with Jones et al. (2009)
observing generally higher retreat rates of recently drained
lake basins in this region between 1955 and 2002 relative
to other land types (although this trend did not hold be-
tween 2002 and 2007). They suggested that the low eleva-
tion and presence of thawed sediments likely make drained
lake basins more susceptible to erosion than coastal bluffs
are. Our observation of surface water in July 2021 (Fig. 7b)
is consistent with this interpretation, as it would help keep
the underlying sediments in this basin thawed.

Based on our observations and the theory presented in
Jones (2009), we can infer the processes driving the 3-year
evolution of the drained lake basin. In 2019, wave-driven ero-
sion of the seaward side of the drained lake basin exposed
low-lying thawed sediments. In 2020, debris from this large
erosion event may have sheltered the remainder of this basin,
as evidenced by the retreat at the lower boundary and stabil-
ity of the upper boundary. Once this debris was removed by
waves, the low backshore elevation (0.70 m) would have left
the basin susceptible to overtopping by high waves, and the
thawed sediments would have had low mechanical strength,
making the basin susceptible to rapid erosion, as was ob-
served between early and late 2021. The steeper backshore
slope in 2019 compared to in 2021 may have also contributed
to increased wave runup (Earlie et al., 2018) and therefore in-
creased mechanical erosion.

Both the upper- and lower-shoreline positions at ground
track 1r in Region 3 (Fig. 6f, Fig. 4c) are relatively stable,
whereas the other ground tracks exhibit high retreat. We see
moderate advance (+10.2 m of shoreline change) and a drop
in elevation (−0.22 m) of the backshore boundary in 2019
but very little change in either the position (+1.7 to +1.9 m,
which falls within our estimated uncertainty) or elevation

(which ranges from 1.64 to 1.67 m) of the backshore over the
next 2 years. Fluctuations in the slope between observation
dates are driven primarily by changes in the lower bound-
ary (which undergoes between −10.0 and +15.6 m of shore-
line change per year), which is consistent with sediment de-
position and removal at the beach in front of the lagoon or
changes in snow cover.

In order to understand the relative rates of retreat at the
upper and lower boundaries of the shoreline, we perform an
orthogonal distance regression between the annual change at
both boundaries (Fig. 5b). We exclude change for the drained
lake basin between July and October 2021, where the col-
lapse of the remaining lake basin necessitated the defini-
tion of a new upper-shoreline boundary. We find a moder-
ate correlation between upper- and lower-shoreline bound-
ary change (r2

= 0.63, p = 0.009) and a slope of 0.59 in the
linear fit. Thus, both boundaries exhibit comparable amounts
of change, but the lower shoreline (the interface between the
backshore, beach, and ocean) is more dynamic.

4.4 Potential and challenges of using ICESat-2 for
shoreline characterization

Analyses of both the geolocated photon data and the eleva-
tion profiles derived from ICESat-2 provide valuable insight
into shoreline change. ICESat-2’s geolocated photon prod-
uct resolves coastal topography with a high level of detail,
capturing abrupt elevation changes over horizontal distances
of 5 m or less (e.g., Fig. 6b). We observe process-scale fea-
tures such as toppled blocks and surface ponds in snow-free
ICESat-2 profiles (Fig. 7). We find that the simplified eleva-
tion profiles derived via SlideRule can adequately capture the
shoreline for the assessment of shoreline evolution, although
small-scale features such as the toppled block on ground
track 3r (Fig. 7a) and surface ponding on ground track 2r
(Fig. 7b) are lost. ICESat-2 profiles allow for the identifi-
cation of multiple shoreline boundaries, which can be com-
pared against imagery-derived shoreline positions (Figs. 4,
5a). Furthermore, analysis of morphologic parameters such
as backshore height and backshore slope can provide insight
into specific erosional and accretional processes, such as the
collapse of the small drained lake and the presence of toppled
blocks at steep coastal bluffs.

The highest RMS misfits between the SlideRule-derived
elevation profiles and underlying photons occur in areas with
steep slopes and abrupt elevation changes (Figs. A3, A4, A5).
This is particularly apparent for ground track 3r (Fig. A3),
where the upper-shoreline boundary inferred from SlideRule
often appears 2 to 5 m southward of the boundary that would
be visually inferred from ATL03. The 10 m section length
we used in SlideRule is likely too coarse to adequately cap-
ture abrupt elevation changes, but a shorter segment length
would have relied on fewer photons per segment and would
therefore have been more sensitive to variations in along-
track photon density. An adaptive approach based on local
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topography and photon density may be able to capture steep
and complex features more accurately.

Given the seasonal revisit time of ICESat-2 over our study
region, the high frequency of cloud cover in the summer and
fall, and the low reflectivity of the snow-free tundra, the ma-
jority of usable ICESat-2 data occurs in winter and spring,
when snow and sea ice are present. Snow cover will impact
ICESat-2-based shoreline position estimates, particularly the
location of the lower-shoreline boundary, which will in turn
impact our slope estimates. Although we expect the mag-
nitude of snow-cover-induced changes to be small relative
to the large retreat events observed at ground track 3r (the
coastal bluff) and ground track 2r (the small drained lake),
they may be the dominant source of change in areas with
lower rates of change, such as ground track 1r (the large
breached lake). Future work comparing snow-on ICESat-
2 tracks to snow-off ICESat-2 tracks and snow-off digital
elevation models could help quantify snow distribution at
the shoreline and its impact on shoreline position estimates.
There is also up to 15 m of horizontal offset between repeat
ICESat-2 profiles (Fig. 6a, c, e), meaning that differences in
shoreline position may in part be due to different sampling
locations.

5 Conclusions

We used multispectral imagery from Planet and altimetry
data from ICESat-2 to highlight spatiotemporal variability in
changes in the position and topography of the shoreline along
a dynamic section of the Beaufort Sea coast near Drew Point,
Alaska, USA. We found kilometer-scale variability in annual
shoreline change that reflects the response of distinct geo-
morphic units to time-varying wave and temperature condi-
tions and small-scale variability (∼ tens of meters) that may
be influenced by local shoreline morphology. We used ele-
vation profiles from ICESat-2 altimetry to track changes in
the position, elevation, and cross-shore slope of the shoreline
at three ground tracks. We found that each ground track sam-
ples a distinct shoreline type that is subject to different mech-
anisms of change. At ground track 3r (Region 1) and ground
track 1r (Region 3), we observed changes in shoreline posi-
tion that are consistent with adjacent imagery-derived esti-
mates, and analysis of changes in morphological parameters
(namely elevation and slope) helped to illustrate specific pro-
cesses (such as rapid bluff retreat, sheltering of bluffs by col-
lapsed bluff material, and sediment accumulation/deposition)
that drive the observed shoreline change. Ground track 2r in
Region 2 illustrates how a small-scale feature (in this case a
drained lake basin) can be subject to different processes than
those the surrounding area is subject to, leading to locally
variable retreat.

Overall, we found that annual retreat rates from both
datasets are consistent with recent estimates of shoreline
change over the last decade and that current spatial patterns

of retreat differ from long-term trends, particularly in Region
3. Planet imagery and ICESat-2 altimetry provided comple-
mentary shoreline measurements, with the two datasets pro-
ducing similar estimates of shoreline position change. Multi-
spectral imagery can provide regular scene-wide estimates
of shoreline change that can contextualize ICESat-2 topo-
graphic transects with the surrounding shoreline. Altimetry
data from ICESat-2 provide cross-shore estimates of topo-
graphic change that allow us to simultaneously track changes
in shoreline position and morphology; this vertical dimen-
sion critically provides additional insight into the geomor-
phic processes driving shoreline change. Small features that
are visible in the ATL03 photon data can also aid in the inter-
pretation of short-term processes. By integrating satellite al-
timetry and multispectral imagery, we can study mechanisms
of coastal change that have previously been challenging to
identify with satellite remote sensing. Additional datasets
such as aerial photography and shoreline classifications from
databases such as ShoreZone can also aid in the interpreta-
tion of both satellite altimetry and satellite imagery. Retreat
rates derived from altimetry and satellite imagery can also be
used for cross-validation, and the ability to estimate both the
upper- and lower-shoreline boundary from altimetry allows
us to better interpret our shoreline estimates that are derived
from multispectral imagery.

The regular revisits and dense track sampling of ICESat-
2 provide estimates of retreat rates and geometric proper-
ties such as elevation and slope over large areas and multi-
ple years. However, bulk analysis of these changes requires a
method for systematic processing of ATL03 data to generate
simplified elevation profiles and extract relevant parameters.
The processing workflow presented here generates elevation
profiles that show good agreement with ATL03 but could be
improved upon to better capture abrupt elevation changes and
small-scale features. Future work should also develop tech-
niques to estimate contributions from snow and topographic
offset.
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Appendix A

Table A1. The dates of all images used for the cluster uncertainty analysis described in Sect. 2.2, along with the standard deviation of the
residuals derived from each cluster. The total number of images from each date is listed in parenthesis.

Cluster Dates Standard deviation of residuals (m)

1 26 June 2020 (1), 27 June 2020 (1), 29 June 2020 (2) 1.8
2 4 July 2020 (1), 7 July 2020 (4), 07 10 2020 (1) 2.3
3 25 July 2020 (3) 2.8
4 16 June 2021 (2), 19 June 2021 (1) 1.9
5 2 July 2021 (1), 4 July 2021 (2) 2.4
6 13 July 2021 (1), 14 July 2021 (3) 1.9

Table A2. Cross-shore change in the upper and lower boundaries estimated from ICESat-2 and the land–water boundaries estimated from
Planet at each sampled ICESat-2 location.

Track Boundary 2019 2020 2021

Ground track 3r Upper boundary −16.9 m (± 4.9 m) −20.3m (± 5.9 m) −6.6 m (± 4.9 m)
(Region 1) Lower boundary −28.4 m (± 4.9 m) −18.4 m (± 5.9 m) 20.3 m (± 4.9 m)

Land−water boundary (Planet) −13.7 m (± 3.1 m) −12.2 m (± 3.1 m) −3.6 m (± 3.1 m)

Ground track 2r Upper boundary −45.3 m (± 4.3 m) −2.5 m (± 4.0 m) −62.1 m (± 4.3 m)
(Region 2) Lower boundary −67.2 m (± 4.3 m) −12.5 m (± 4.0) −20.3 (± 4.3 m)

Land−water boundary (Planet) −36.9 m (± 3.1 m) −10.8 m (± 3.1 m) −27.0 m (± 3.1 m)

Ground track 1r Upper boundary 10.2 m (± 5.6 m) 1.9 m (± 4.0 m) 1.7 m (± 5.6 m)
(Region 3) Lower boundary −7.7 m (± 5.6 m) −10.0 m (± 4.0 m) 15.6 m (± 5.6 m)

Land−water boundary (Planet) 13.8 m (± 3.1 m) −1.6 m (± 3.1 m) 3.8 m (± 3.1 m)

Figure A1. Normalized distribution of scene-wide NDWI values for Planet images collected on (a) 25 June 2019, (b) 25 July 2020, (c) 2
July 2021, and (d) 1 July 2022. The threshold used for identifying the land–water boundary estimated using Otsu’s method is shown as a
dashed vertical line.
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Figure A2. Illustration of the boundaries and elevation estimates described in Sect. 2.4.

Figure A3. RMS error between our SlideRule-derived elevations and the source ATL03 photon information for ground track 3r on (a)
7 April 2019, (b) 4 January 2020, (c) 2 July 2021, and (d) 31 December 2021.
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Figure A4. RMS error between our SlideRule-derived elevations and the source ATL03 photon information for ground track 2r on (a)
7 April 2019, (b) 4 January 2020, (c) 2 July 2021, and (d) 31 December 2021.

Figure A5. RMS error between our SlideRule-derived elevations and the source ATL03 photon information for ground track 1r on (a) 7
April 2019, (b) 4 January 2020, (c) 2 July 2021, and (d) 31 December 2021.
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Figure A6. Aerial photography from NOAA ShoreZone in 2007 (Harper and Morris, 2014) captured near the sites of our ICESat-2 ground
tracks. (a) A coastal bluff near the sampling site of ground track 3r in Region 1. (b) The small lake sampled by ground track 2r in Region 2
before it drained. (c) The western edge of the large breached thermokarst lake in Region 3 that is crossed by ground track 1r.

Figure A7. Long- and short-term regional shoreline change rates along the Alaskan Beaufort Sea coast near Drew Point from previous work,
along with the 3-year and year-to-year regional rates derived in this work.

https://doi.org/10.5194/tc-19-1825-2025 The Cryosphere, 19, 1825–1847, 2025



1844 M. B. Bryant et al.: Multiple modes of shoreline change

Code and data availability. The ICESat-2 ATL03 geolocated pho-
ton product is available at the National Snow and Ice Data Center
(NSIDC): https://doi.org/10.5067/ATLAS/ATL03.006 (Neumann et
al., 2023). ERA5 data are available at the Copernicus Data Store:
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023).
Aerial photography and shoreline classifications are available from
ShoreZone: https://www.shorezone.org/ (Alaska ShoreZone, 2023).
Multispectral imagery was provided by Planet Labs under the
NASA Commercial Smallsat Data Acquisition Program (CSDA).
Derived datasets, including shoreline positions and elevation
profiles, are available at https://doi.org/10.5281/zenodo.11095271
(Bryant et al., 2025). The scripts used to generate all results and
figures are available at https://doi.org/10.5281/zenodo.14777816
(Bryant, 2025).
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