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Abstract. Tracking the extent of seasonal snow on glaciers
over time is critical for assessing glacier vulnerability and
the response of glacierized watersheds to climate change.
Existing snow cover products do not reliably distinguish
seasonal snow from glacier ice and firn, preventing their
use for glacier snow cover detection. Despite previous ef-
forts to classify glacier surface facies using machine learn-
ing on local scales, currently there is no published compari-
son of machine learning models for classifying glacier snow
cover across different satellite image products. We present an
automated snow detection workflow for mountain glaciers
using supervised machine-learning-based image classifiers
and Landsat 8 and 9, Sentinel-2, and PlanetScope satellite
imagery. We develop the image classifiers by testing nu-
merous machine learning algorithms with training and val-
idation data from the U.S. Geological Survey Benchmark
Glacier Project glaciers. The workflow produces daily to
twice monthly time series of several glacier mass balance
and snowmelt indicators (snow-covered area, accumulation
area ratio, and seasonal snow line) from 2013 to present.
Workflow performance is assessed by comparing automati-
cally classified images and snow lines to manual interpreta-
tions at each glacier site. The image classifiers exhibit over-
all accuracies of 92 %–98 %, κ scores of 84 %–96 %, and F
scores of 93 %–98 % for all image products. The median dif-
ference between automatically and manually delineated me-
dian snow line altitudes is −31 m (IQR of−73 to 0 m) across
all image products. The Sentinel-2 classifier (support vector
machine) produces the most accurate glacier mass balance

and snowmelt indicators and distinguishes snow from ice and
firn the most reliably. Although they are less accurate, the
Landsat- and PlanetScope-derived estimates greatly enhance
the temporal coverage of observations. The transient accu-
mulation area ratio produces the least noisy time series, mak-
ing it the most reliable indicator for characterizing seasonal
snow trends. The temporally detailed accumulation area ra-
tio time series reveal that the timing of minimum snow cover
conditions varies by up to a month between Arctic (63° N)
and midlatitude (48° N) sites, underscoring the potential for
bias when estimating glacier minimum snow cover condi-
tions from a single late-summer image. Widespread applica-
tion of our automated snow detection workflow has the po-
tential to improve regional assessments of glacier mass bal-
ance, land ice representations within Earth system models,
water resources, and the impacts of climate change on snow
cover across broad spatial scales.

1 Introduction

Glaciers in Alaska and the western United States and Canada
lost 267± 6 Gt of mass between 2000 and 2019, more than
25 % of the global mass lost from glaciers outside the ice
sheets (Hugonnet et al., 2021). The recent acceleration of
glacier mass loss in western North America is coincident
with a steep decline in North American snow water re-
sources (Musselman et al., 2021) and is well correlated with
changes in regional precipitation and summer air temperature
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(Hugonnet et al., 2021; O’Neel et al., 2019), indicating that
decreased snow accumulation was likely an important driver.
Model projections of decreases in annual snow water equiv-
alent across the western contiguous United States (Siirila-
Woodburn et al., 2021) and Alaska (Littell et al., 2018) sug-
gest that glacier mass loss due to snow accumulation change
will likely persist throughout the 21st century.

The decline in snow water resources directly impacts
glacier surface mass balance, the balance between snow ac-
cumulation and ablation. Time series of snow-covered area
(SCA) on glaciers can be used as a first-order indicator of
glacier mass balance (Cuffey and Paterson, 2010). Several
SCA-derived metrics are commonly used to assess glacier
health, including the accumulation area ratio (AAR; the frac-
tion of the total glacier area that is covered by snow at the end
of the summer melt season) and the altitude of the seasonal
snow line at the end of the annual melt season, often used
to estimate the equilibrium line altitude (ELA). However,
observations of snow cover distribution for glaciers across
western North America remain sparse (Huss et al., 2014; Mc-
Grath et al., 2017), underscoring the need for an automated
remote sensing approach to address this gap.

Mapping changes in SCA on mountain glaciers over time
remains a challenge in part due to the relatively small size of
glaciers; the similar spectral characteristics of snow, ice, and
firn (i.e., snow that has persisted through at least one melt
season and is typically visibly darker than seasonal snow);
and the fact that the SCA can change rapidly near the end
of the summer melt season, when SCA observations pro-
vide critical constraints on glacier surface mass balance. A
substantial portion of glaciers in the western United States
and Canada, 11 % by area and 82 % by number according
to the Randolph Glacier Inventory (RGI Consortium, 2017),
have an area of less than 1 km2, hindering the use of satel-
lite image products with spatial resolutions of 1 km or more
for mapping SCA on these glaciers. Several recent studies
have worked to overcome gaps in spatial and temporal cover-
age of SCA estimates associated with image repeat intervals,
cloud cover, and spatial resolution. Techniques such as data
fusion and spatial downscaling (Berman et al., 2018; Rittger
et al., 2021; Vincent, 2021; Walters et al., 2014), leveraging
multiple satellite image products (e.g., Gascoin et al., 2019),
and the use of PlanetScope imagery with a 3–5 m resolu-
tion and approximately daily revisit interval (Cannistra et al.,
2021; John et al., 2022) have helped to overcome these gaps.
Yet these techniques have not been broadly applied for map-
ping SCA on glaciers. Figure 1 illustrates the overlapping re-
flectance signatures for snow, ice, and firn in Sentinel-2 im-
agery collected throughout the 2019–2023 melt seasons at
Wolverine Glacier, AK, demonstrating the unique challenges
in snow cover mapping on glaciers.

The SCA has previously been mapped using a number
of thresholding and machine learning techniques. The Nor-
malized Difference Snow Index (NDSI) leverages the dis-
tinct contrast in visible and shortwave infrared (SWIR) re-

flectance between snow, ice, and firn compared to other mate-
rials (Hall and Riggs, 2007). A simple thresholding approach
– NDSI>∼ 0.4 is snow – has been used to map the SCA on
non-glacier surfaces using various satellite images, such as
MODIS (Salomonson and Appel, 2004), Landsat (Riggs et
al., 1994), and Sentinel-2 (Gascoin et al., 2019). However,
the NDSI thresholding method cannot be used over glaciers
due to the overlapping NDSI ranges for snow, ice, and firn
(Fig. 1b). Otsu thresholding (Otsu, 1979), which is an au-
tomated threshold selection approach for gray-level images,
has also been used to map glacier snow lines but has only
been tested with Landsat 8 imagery (Prieur et al., 2022; Rast-
ner et al., 2019). Several sensor-specific machine learning
techniques have also been tested: neural networks with Plan-
etScope imagery (Cannistra et al., 2021; John et al., 2022),
random forest with Sentinel-2 imagery (Zeller et al., 2025),
and support vector machine with C-band synthetic aperture
radar imagery (Callegari et al., 2016; Huang et al., 2013).
Despite these advancements, there remains a need for cross-
sensor SCA-mapping techniques, particularly on glacier sur-
faces.

Our goals in this work are two-fold: (1) develop an au-
tomated snow detection workflow calibrated to glacier sur-
faces by evaluating several machine learning algorithms
and (2) compare the results from individual image prod-
ucts and snow cover metrics to assess the potential for cap-
turing spatiotemporal trends in glacier snow cover. Below,
we describe the approach to address these goals, includ-
ing the study sites used to construct the training, testing,
and validation datasets (Sect. 2); the model training, test-
ing, and validation dataset construction (Sect. 3.1); image
pre-processing steps (Sect. 3.2); the classification model de-
velopment and application (Sect. 3.3); snow line detection
from the classified images (Sect. 3.4); and performance as-
sessment of the image classifiers and snow line detection
method (Sect. 3.5). We then present results for the perfor-
mance assessment (Sect. 4.1) and evaluate spatiotemporal
patterns of the snow cover time series at the U.S. Geological
Survey (USGS) Benchmark Glacier Project glaciers (here-
after referred to as USGS Benchmark glaciers; Sect. 4.2). In
the Discussion, we outline remaining challenges for glacier
snow detection (Sect. 5.1), assess which image product and
snow cover metric derived from the workflow produces the
most robust glacier snow cover time series (Sect. 5.2–5.3),
and, finally, outline the broader implications of the work-
flow (Sect. 5.4).

2 Study sites

Five of the mountain glaciers in this study are part of the
U.S. Geological Survey (USGS) Benchmark Glacier Project,
which began in 1957 (Meier, 1958) as part of a long-term
initiative to document and understand connections between
glaciers and climate (O’Neel et al., 2019). The project in-
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Figure 1. (a) Copernicus Sentinel-2 surface reflectance image at Wolverine Glacier, AK, captured on 17 August 2020 and snow, ice and firn
sample point coordinates. (b) Boxplots of band reflectance values and the Normalized Difference Snow Index (NDSI) at each of the sample
points shown in panel (a) for 45 selected Sentinel-2 SR images spanning late June to early October 2019–2023. Reflectance values were
extracted from each fixed point but only in images where these points could be confidently identified as covering their respective surface
material. For example, ice reflectance values were sampled from images where the ice coordinate in panel (a) was clearly covering ice. Boxes
indicate the 25th and 75th percentiles, whiskers indicate the minimum and maximum values, and white lines indicate the median. (c) Satellite
image band ranges with stars indicating the bands used to calculate the NDSI. For Sentinel-2 and Landsat 8 and 9, the NDSI is calculated
using the green and SWIR bands. Because PlanetScope does not have a SWIR band, the NDSI is instead calculated using the green and NIR
bands.

cludes seasonal field and remote sensing data collection of
glacier mass balance at five glacier sites located across the
western contiguous United States and Alaska. These glaciers
have diverse characteristics, such as aspect, latitude, con-
tinentality, and elevation (Fig. 2), all of which influence
local climate regime and glacier mass balance. Gulkana
Glacier is located in the Alaska Range, with an elevation
range of 1235–2445 m; Wolverine Glacier is located in the
Kenai Mountains of Alaska (472–1673 m); Lemon Creek
Glacier is located at the southernmost tip of the Juneau Ice-
field in Alaska (663–1500 m); Sperry Glacier is located in
Glacier National Park in Montana (2274–2791 m); and South
Cascade Glacier is located in the northern Cascade Range
in Washington state (1635–2204 m). Multitemporal bound-
aries and digital elevation models (DEMs), constructed using
Maxar stereo satellite imagery and the Ames Stereo Pipeline
(Shean et al., 2016), are available at each site from the USGS
(U.S. Geological Survey Benchmark Glacier Program et al.,
2022). Despite the diverse climatic and terrain conditions
of the USGS Benchmark glaciers, these sites do not repre-
sent the full suite of complexity in glacier surface types, due
to limited debris cover and elevation range. To ensure that

the classification workflow can be applied to glacier char-
acteristics that are more challenging for image classifica-
tion than the Benchmark glaciers, we also included Emmons
Glacier in Washington state in the performance assessment
(Fig. 2f). Emmons spans a larger elevation range and has
more frequent topographic shading, extensive debris cover,
and patchy snow and other surface types particularly late in
the melt season.

3 Methods

We developed an automated snow detection workflow by
testing nine supervised machine learning (ML) models
(listed in Sect. 3.3) applied to Landsat 8 and 9, PlanetScope,
and Sentinel-2 satellite image products. The model training
and testing data used to select the optimal ML classifier for
each image product were constructed for four glaciers in
North America that sample midlatitudes and high latitudes
and maritime and continental climate regimes (Fig. 2a–b,
d–e). To assess the performance of each ML image classi-
fier, we compared automated SCA maps and snow lines to
a separate validation dataset comprised of manually gener-
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Figure 2. Maps of the study sites in order of decreasing latitude. Upper left: locator map of study sites with all identified glaciers in the region
shaded in blue (Randolph Glacier Inventory regions 1 and 2; RGI Consortium, 2017) and country outlines shown in gray. (a)–(f) Shaded
relief maps with glacier boundaries outlined in black for the USGS Benchmark glaciers and Emmons Glacier in Washington state. For the
Benchmark glaciers, digital elevation models (DEMs) and glacier boundaries are from the USGS data release version 8 (U.S. Geological
Survey Benchmark Glacier Program et al., 2022) for the most recent date. For Emmons Glacier, the DEM is from the NASADEM (NASA
JPL, 2020), and glacier boundaries are from the Randolph Glacier inventory version 6 (RGI Consortium, 2017).

ated snow cover observations at two additional glacier sites
(Fig. 2c, f). The image classifiers were then used to construct
SCA maps at each site for 2013–2023. From the SCA maps,
we extracted time series of the transient accumulation area
ratio (AAR), the snow line, and the median snow line alti-
tude. The transient AAR offers a normalized representation
of glacier SCA with respect to its total area over time. At the
end of the melt season, the AAR provides insights into the
fraction of the glacier area with positive surface mass bal-
ance. The study sites selected for workflow development and
ML model testing and validation, as well as detailed descrip-
tions of the workflow steps, are described in the subsections
below.

3.1 Training, testing, and validation dataset
construction

To construct the model training, testing, and validation
datasets, we manually classified more than 8000 points for
each image product (∼ 32 000 points total) as snow, shad-
owed snow, ice–firn, rock, or water in several images at the
USGS Benchmark glaciers and Emmons Glacier. We also

explored the inclusion of a dedicated firn class that was
distinct from the ice–firn class. To develop this dedicated
firn class, we used manually classified points at Wolverine
Glacier, where firn is visible on the surface late in the melt
season most years (Fig. 1a). However, we found that in-
cluding the dedicated firn class increased misclassifications
and that the performance of the supervised ML snow detec-
tion workflow was superior using the ice–firn class. Classi-
fied points from Gulkana, Wolverine, South Cascade, and
Sperry glaciers were combined to construct the training–
testing dataset and points from Lemon Creek and Emmons
glaciers were set aside for validation. We consider Lemon
Creek Glacier a relatively ideal site for classification given
its simple geometry, limited topographic shading, and typi-
cally continuous snow cover on the surface without exposed
debris or surface water, for example (Fig. 2c). On the other
hand, Emmons Glacier is a more challenging site for classi-
fication of snow because of its abundant debris cover, topo-
graphic shading, and patchy snow near the end of the melt
season (Fig. 2f).

Points in each image were chosen using stratified random
sampling (Cochran, 1977) such that the number of points
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chosen for each class was roughly proportionate to the areal
coverage of the class (Fig. 3). Images were selected to span
different months of the melt season in an effort to capture a
wider distribution of reflectance values for each class (i.e.,
surface type). This sampling method led to the most snow-
covered points due to the larger relative area of snow early in
the melt season. We tested several configurations of the train-
ing dataset (e.g., stratified proportional sampling) and found
little to no impact on the classification accuracies and results.
We avoided points close to the snow–firn or snow–ice bound-
ary where the class distinction was unclear to minimize bias
associated with user interpretation. Only a small fraction of
the points classified as ice were most likely firn based on pre-
vious field observations, given the difficulty in interpretation
in most cases. At each classified point, all visible, infrared,
and thermal band values were sampled from the respec-
tive pre-processed satellite image (image pre-processing de-
scribed in Sect. 3.2). Next, we calculated the NDSI for each
point as the normalized difference between the green and
shortwave infrared (SWIR) bands for Landsat and Sentinel-
2. Because PlanetScope does not include a SWIR band, the
NDSI for each PlanetScope pixel was instead calculated us-
ing the green and near-infrared (NIR) bands. The normal-
ized difference of the green and NIR bands theoretically cap-
tures the distinct signatures of snow, ice, and firn compared to
other materials, similar to that of the green and SWIR bands
in other image products (Fig. 1c).

3.2 Image pre-processing

To optimize temporal coverage of glacier SCA time series,
we developed the snow detection workflow using Landsat 8
and 9, PlanetScope, and Sentinel-2 imagery. The character-
istics of each satellite image product are listed in Table 1.
We preferentially selected surface reflectance (SR) products
rather than top-of-atmosphere (TOA) reflectance products,
because the atmospheric corrections on SR products gen-
erally allow for better change detection on the Earth’s sur-
face (Masek et al., 2006). However, because Sentinel-2 SR
imagery has only been available since 2018, we also in-
cluded all Sentinel-2 TOA products available since 2015 to
increase temporal coverage. Additionally, even though the
PlanetScope images used in this analysis were harmonized
with Sentinel-2 as the target sensor (Planet Labs PBC, 2023),
we still found a wide distribution of dynamic ranges between
images. For example, the maximum SR values for two im-
ages at the same site captured under similar conditions are
0.8 and 1.5. To better unify the imagery, we developed an
additional pre-processing step for PlanetScope imagery de-
scribed in the Supplement (Sect. S1). Briefly, the median SR
values in the highest elevation portions of each glacier were
assumed to consist primarily of snow such that the SR dy-
namic range was adjusted to vary from zero (for the darkest
pixels) to 0.94 for the blue band, 0.95 for the green band, 0.9
for the red band, and 0.78 for the near-infrared band, based

on SR of fresh snow from Painter et al. (2009). Although this
adjustment relies on the potentially biased assumption that
the upper elevations contain fresh snow, we found that this
step improved the overall accuracy of PlanetScope snow de-
tection.

To capture the evolution of glacier snow cover through-
out the ablation season, we accessed all images from each
product from 1 May to 1 November (Fig. 5, step 1), which
encompasses all 21st century minimum mass balance dates
recorded for the USGS Benchmark glaciers (U.S. Geologi-
cal Survey Benchmark Glacier Program et al., 2022). We ac-
cessed Landsat and Sentinel-2 images through the Google
Earth Engine data repository and Sentinel-2-harmonized
PlanetScope four-band surface reflectance scenes through
the Planet Labs PBC Python API. The time series spans
2013, when Landsat 8 was launched, to 2023 (Table 1). Im-
ages were clipped to the closest glacier boundary in time
(RGI Consortium, 2017; U.S. Geological Survey Benchmark
Glacier Program et al., 2022) and masked for clouds, heavy
haze, and cloud shadows using the “geedim” Python pack-
age for Landsat and Sentinel-2 images and the Usable Data
Mask associated with each PlanetScope image (Planet Labs
PBC, 2023). A data table showing the timestamps of each
glacier boundary and DEM for each snow detection year is
provided in the Supplement (Sect. S2, Table S1). While the
cloud masks are subject to occasional errors, particularly for
PlanetScope, we found that large clouded areas were typi-
cally identified by the cloud masks, and using them to mask
images improved the time series of classified images over-
all. To maximize spatial coverage, all images captured within
the same hour by the same satellite, typically consisting of
images with distinct but overlapping footprints, were used
to construct an image mosaic (Fig. 5, step 1). Through the
process of mosaicking, the images were spatially aligned,
and the median of the overlapping pixels was used to elimi-
nate abrupt mosaic edges. All image mosaics with less than
70 % coverage of the glacier area were then removed from
the analysis. After testing a number of thresholds, we found
that the 70 % threshold sufficiently filtered very cloudy and
hazy images while preserving the highest number of clear,
usable images for our study sites. Nonetheless, we suggest
testing different thresholds when applying the workflow to
other sites.

3.3 Classification models development and application

In recent decades, ML models have been increasingly used
for land cover classification (Thanh Noi and Kappas, 2018).
ML models exhibit exceptional proficiency in handling mul-
tidimensional data (such as many image bands) and complex
class characteristics (Maxwell et al., 2018), potentially mak-
ing them an ideal tool for distinguishing snow from other
surface types in glacierized environments. Supervised ML
models, which require user-constructed training data, tend to
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Figure 3. Example of manually classified points used to construct the training–testing dataset at Gulkana Glacier, Alaska. Points are shown
for two Sentinel-2 surface reflectance images captured: (a) 15 June 2021 and (b) 6 August 2021. Coordinates are with respect to UTM zone
6N. Images ©2021 Planet Labs PBC.

Table 1. Data products used in the automated snow detection workflow.

Spatial Temporal Temporal Spectral Orbit
Dataset (sponsoring organization) resolution (m) resolution coverage range (µm) altitude (km)

Landsat 8–9 surface reflectance
OLI/TIRS (NASA, USGS)1

30/100 Twice monthly 2013–present 0.43–12.51 705

PlanetScope four-band surface
reflectance (Planet Labs PBC)2

3–5 ∼Daily 2016–present 0.47–0.89 450–525

Sentinel-2 top-of-atmosphere
reflectance (ESA)3

10–60 Weekly 2015–present 0.49–13.75 786

Sentinel-2 surface reflectance
(ESA)3

10–60 Weekly 2018–present 0.49–13.75 786

Site-specific data: glacier bound-
aries and digital elevation models4,5

∼ 2 m, ∼2 m Annual 1950–2021,
varying by site

Not applicable Not applicable

1 U.S. Geological Survey (2015). 2 Planet Labs PBC (2023). 3 European Space Agency (2015). 4 U.S. Geological Survey Benchmark Glacier Program et al. (2022). 5

RGI Consortium (2017).

outperform unsupervised models in land cover classification
applications (Bahadur K. C., 2009; Boori et al., 2018).

For each image product, we trained and tested nine su-
pervised ML models: linear (logistic regression, nearest
neighbors), quadratic (quadratic discriminant analysis), non-
parametric (decision trees), kernel-based (support vector ma-
chine), ensemble (AdaBoost, random forest), naïve Bayes,
and neural network models (Fig. 4). Due to the unique band
characteristics of each image product (Fig. 1c), a separate
ML model was required for each product. While the sup-
port vector machine, random forest, nearest neighbors, and
neural network models are generally reported to be foremost
models for land cover classification (Thanh Noi and Kap-
pas, 2018; Wang et al., 2021), we tested several others be-
cause our classes are unique from typical land cover classi-
fication applications. ML models were accessed through the

Python-based scikit-learn toolbox (Pedregosa et al., 2011).
Hyperparameters for each ML model are shown in the Sup-
plement (Sect. S3; Table S2). For more information on
the mathematical basis and implementation of each ma-
chine learning model, refer to the scikit-learn documenta-
tion (https://scikit-learn.org/stable/user_guide.html, last ac-
cess: 10 April 2025).

The optimal model for each image product was deter-
mined using K-fold cross-validation (Hastie et al., 2009)
with K = 10, wherein the training–testing dataset was split
into 10 equally sized subsets, or “folds”. The model was
trained using nine folds and then tested on the remaining
fold, iterating this process until all folds were set aside and
used to calculate the overall accuracy (Fig. 4). The model
with the highest mean overall accuracy was determined to be
the optimal model for each image product and retrained us-
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Figure 4. Schematic of the machine learning model training, test-
ing, and validation process conducted for each satellite image prod-
uct separately.

ing the full training dataset. To investigate the robustness of
our model selections, we also calculated learning curves for
each ML model, which provide insight into the dependence
of a model’s performance on the training dataset size (Vier-
ing and Loog, 2023), detailed in the Supplement (Sect. S4;
Fig. S2).

The optimal classification models were then applied to
their respective pre-processed image collections at the USGS
Benchmark glaciers, resulting in classified image collections
at each site (Fig. 5, step 2). The SCA for each image was
calculated as the total number of snow-covered pixels (both
“snow” and “shadowed snow” classes) within the glacier
boundary, discarding masked pixels, and multiplied by the
appropriate pixel resolution. The AAR was calculated using
the ratio of the SCA to the total glacier area.

3.4 Snow line detection

Seasonal snow lines were automatically identified by adjust-
ing and analyzing the classified images (Fig. 5, step 3). Our
general approach for snow line detection was to identify the
longest boundaries between snow and other classes in each
classified image. To prevent the snow line from being de-
tected within the SCA, such as in areas of exposed bedrock
or crevasses or in small patches of snow, classified images
were adjusted using the distribution of snow-covered pixels
and the boundaries between snow and no snow (“edges”).
Assuming that elevation is a primary driver of snow cover
distribution and glacier mass balance (e.g., Anderson et al.,
2014; Cuffey and Paterson, 2010; McGrath et al., 2018), we
first filled holes in the SCA maps using glacier hypsome-
try. For each glacier, we generated a reference elevation his-
togram for the entire glacier area using the closest high-
resolution (∼ 2 m; Table 1) DEM in time. Next, we gener-
ated histograms of snow-covered elevations for each SCA
map with 10 m increment bins spanning the glacier elevation
range. We constructed a normalized histogram representing
the percentage of each elevation bin covered in snow by di-
viding the snow-covered elevation histogram by the glacier

elevation histogram. After testing a number of thresholds,
all elevation bins with at least 75 % snow coverage were set
to 100 %, and the classified image pixels, including cloud-
masked pixels in the glacier area, were adjusted accordingly.
Next, we created binary snow masks (“snow” or “non-snow”)
and identified the edges between snow and no snow using
an edge detection function from the scikit-image package
(Walt et al., 2014) built on the marching squares algorithm
(Lorensen and Cline, 1987). The no-data mask associated
with the binary snow image includes all pixels outside the
glacier area and cloud-masked pixels not filled in the previ-
ous histogram-based filling step. The no-data mask for each
image was then buffered by 30 m (the coarsest image spatial
resolution) to remove edges identified at data boundaries. To
minimize detection of isolated low-elevation snow patches,
edges with gaps spanning more than 100 m were split into
separate edge segments, and edge segments with total lengths
less than 100 m were removed, resulting in the final snow
line(s). Elevations were then extracted from the DEM for
each snow line vertex coordinate, which were used to track
the distribution of snow-covered altitudes and the median
snow line altitude over time. The final snow lines consist of
coordinates at the spatial resolution of the input image.

In summary, the workflow produces classified image col-
lections at the spatial resolution of each input image and
data tables containing statistics for each classified image and
snow line. Statistics include the SCA, transient AAR, snow
line coordinates, surface elevations at each snow line coordi-
nate, and the median snow line altitude.

3.5 Performance assessment

To assess the performance of each machine learning
algorithm, we evaluated the snow cover classification
(Sect. 3.5.1) and snow line detection (Sect. 3.5.2) results
against manually classified points and manually delineated
snow lines. These assessments serve to validate both the
raster (classified images) and vector (snow line) products
from the workflow.

3.5.1 Snow cover classification

To evaluate the performance of the ML models, we applied
the classification algorithm to two glaciers that were ex-
cluded from the model training process: Lemon Creek and
Emmons glaciers (Fig. 4). The classified maps for Lemon
Creek and Emmons glaciers were compared to the valida-
tion set of approximately 5000 manually classified points.
To focus on the accurate mapping of SCA on the glaciers,
the validation points were classified as either “snow” (snow
and shadowed snow classes) or “non-snow” (including ice,
firn, water, and rock/debris).

Each image classifier’s performance was assessed using
the overall accuracy, Cohen’s κ score, recall, precision, and
F score (or F1 score) metrics. To calculate these metrics, we
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Figure 5. Schematic of the image processing workflow. Images on the right show example results for a PlanetScope surface reflectance
image captured at South Cascade Glacier, Washington state, on 24 September 2021, where dashed black arrows point to the corresponding
processing step. Image ©2021 Planet Labs PBC.

sampled the SCA maps generated by the ML models at each
manually classified point, assuming the manually classified
points to be ground truth. The overall accuracy is the portion
of correctly classified pixels (Campbell and Wynne, 2011):

overall accuracy=
true positives + truenegatives

number of samples
. (1)

Cohen’s κ score accounts for potential random agreement be-
tween the classified image and the validation points:

K =
observed− expected

1− expected
, (2)

where “observed” is the overall accuracy, and “expected” is
the correct classification due to chance (Cohen, 1960). The
κ score ranges from −1 to +1, with positive values indi-
cating that the trained model performs better than a random
model. For example, a random classification model with two
classes (e.g., “snow” and “non-snow”) would have an “ex-
pected” overall accuracy of 0.5 (50 %). If the accuracy of the
trained model, or “observed” accuracy, were 0.85 (85 %), this
would result in a κ score of 0.7.

Recall generally indicates the classifier’s ability to identify
all positive (“snow”) samples:

recall=
true positives− true negatives
true positives+ true negatives

. (3)

Precision represents the classifier’s ability to not label a neg-
ative sample as positive (i.e., not to label “non-snow” as
“snow”):

precision=
true positives

true positives+ false positives
. (4)

For example, consider a binary classification problem where
30 pixels are snow and 70 pixels are non-snow. If the model
classified 20 pixels as snow, out of which 15 are actually
snow (true positives) and 5 are non-snow (false positives),
and the remaining 10 pixels snow are incorrectly classified
as non-snow (false negatives), this would result in a recall of
0.6 (60 %) and a precision of 0.75 (75 %). These metrics in-
dicate that the model identified 60 % of all snow pixels in the
dataset, and when the model classified snow pixels, it was
correct 75 % of the time.

Finally, F score reflects both false positives and false neg-
atives of the classifier using the harmonic mean of precision
and recall:

F score= 2 ·
precision · recall

precision+ recall
. (5)

The F score ranges from 0 to 1, with higher values indicating
both high precision and high recall, giving equal weight to
precision and recall. Given a recall of 0.6 and a precision of
0.75 as above, the F score would be 0.67.
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3.5.2 Snow line detection

To assess the performance of the automated snow line de-
tection method, we used cloud-free PlanetScope imagery to
manually delineate snow lines at each USGS Benchmark
Glacier for approximately five dates per year spanning the
summer melt season for 2016–2022. The manually delin-
eated snow lines were then interpolated to ensure equal spac-
ing with a ground resolution of 30 m, the coarsest satel-
lite image resolution. Automatic snow lines for Landsat and
Sentinel-2 imagery were only compared when the image cap-
ture date was within 1 week of the respective PlanetScope
image. For each pair of manually and automatically delin-
eated snow lines, we calculated the distance between each
coordinate of the manually delineated snow line and the near-
est corresponding point on the automatically detected snow
line (i.e., ground distance) and the difference in median snow
line altitude.

Field-based annual ELA estimates that are independent of
imagery and the supervised ML approach are available for
the USGS Benchmark glaciers. However, direct comparison
with our snow line altitudes is hindered by methodological
differences. Specifically, the USGS calculates ELAs as the
elevation where surface mass balance is equal to zero ac-
cording to a piecewise linear regression fit to in situ point
measurements of mass balance. In situ measurements are col-
lected on field campaigns that target favorable weather win-
dows near the annual mass minimum, typically in August
or September of each year (O’Neel et al., 2019). However,
the USGS method lacks control for ELA estimates that ex-
tend beyond the glacier’s elevation range. For example, this
can occur in a strong negative balance year, when the fitted
gradient approach extrapolates the equilibrium balance alti-
tude above the glacier, resulting in ELA estimates that sur-
pass the actual elevation limits of the glacier even for years
where a small accumulation zone on the glacier surface per-
sists. Consequently, such estimates fall outside the bounds of
our snow line delineation method, presenting a methodolog-
ical artifact that may or may not be a robust representation
of the real-world conditions. Therefore, we focused our as-
sessment on comparing the automatically and manually de-
tected snow lines. Nonetheless, our image-based snow cover
estimates may be used to help constrain ground-based ELA
estimates by the USGS and other communities.

4 Results

4.1 Performance assessment

4.1.1 Snow cover classification

Here, we outline the performance assessment of the opti-
mal ML models for snow classification. Assessments of all
other tested machine learning (ML) models (n= 9) are pre-
sented in the Supplement (Sect. S4, Table S3). Results for

the snow cover classification and snow line detection per-
formance with respect to manual, image-based observations
using the optimal ML models are shown in Table 2.

Each ML model exceeded 83 % values across all perfor-
mance metrics. The optimal models are the nearest neigh-
bors model for the Landsat and PlanetScope SR image prod-
ucts and the support vector machine model for the Sentinel-
2 SR and TOA image products. All classification models
have an estimated overall accuracy of at least 92 %, a Co-
hen’s κ score greater than 83 %, and an F score of at least
93 %. The Sentinel-2 SR support vector machine classifier
performs best according to the performance metrics, with an
overall accuracy of 98 %, a κ score of 96 %, and an F score
of 98 %. The Landsat classifier is the least accurate of all op-
timal image product classifiers, yet it still yields an overall
accuracy of 92 %.

The learning curve analysis revealed that varying the train-
ing dataset between 500 and 6500 sample points did not
meaningfully change which model was the most accurate and
led to minimal fluctuations (±5 %) in cross-validated accu-
racy scores for the optimal models. This consistent perfor-
mance instills confidence that the optimal models are not
prone to overfitting and are robust for all training dataset
sizes greater than ∼ 1500 points. The learning curves for all
models are shown in the Supplement (Sect. S4, Fig. S2).

4.1.2 Snow line detection

Automatically detected snow lines differ from manually de-
lineated snow lines by a median of 156 m (interquartile range
(IQR) of 60 to 332 m) in ground distance and by a median of
−31 m (IQR of −73 to 0 m) in median elevation. Thus, the
automatically detected snow lines tend to be slightly lower
in elevation than the manually delineated snow lines (Fig. 6).
Sentinel-2 SR and TOA automatically derived snow lines
are the closest to the manually delineated snow lines, with
median differences in elevation of −16 m (IQR of −46 to
0 m) and −20 m (IQR of −66 to 4 m), respectively. In terms
of image pixels, Sentinel-2 SR automatically derived snow
lines are within a median of 3 pixels of manually delineated
snow lines. While Landsat yielded the highest disagreement
in terms of ground distance, it yielded a median distance of
14 (IQR of 6 to 20) pixels from manually delineated snow
lines, slightly better than PlanetScope, which had a median
pixel distance of 20 (IQR of 5 to 66) pixels. Potential ex-
planations for the varying agreement between manually and
automatically detected snow lines for each image product are
discussed in Sect. 5.1.

4.2 Snow cover time series

Figure 7 shows the full time series of SCA for the
USGS Benchmark glaciers using Landsat, PlanetScope, and
Sentinel-2 imagery, and Fig. 8 shows the weekly me-
dian trend and interquartile range in the normalized SCA
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Figure 6. Manually vs. automatically detected median snow line
altitudes with marker types and colors distinguishing each satellite
image product. For a direct comparison across sites, snow line alti-
tudes are reported relative to each glacier’s minimum elevation.

(i.e., the transient AAR) and median snow line elevation
from the Sentinel-2- and Landsat-derived observations for
the full 2013–2023 time series. We focus on Sentinel-2-
and Landsat-derived snow cover time series because the
PlanetScope-derived observations were much noisier, as ev-
ident in Fig. 7 (green circles), leading to less interpretable
median trends in each snow cover metric.

The full SCA time series (Fig. 7) broadly demonstrate the
density of observations in time and increasing coverage upon
the launch of additional satellites from Sentinel-2 and Plan-
etScope starting in ∼ 2016. Notably, there is apparent inter-
annual variability in the minimum annual SCA at some sites.
For example, at Wolverine Glacier (Fig. 7b), the minimum
SCA ranges from about 5 km2 in 2018 and 2019 to 8–10 km2

in 2021–2023. Similarly, the minimum SCA at Lemon Creek
Glacier (Fig. 7c) ranges from < 1 km2 in 2018 to ∼ 5 km2

in 2021, highlighting the potential for assessing interannual
changes in snow cover.

In general, the transient AAR time series suggest that the
largest, most northerly sites, Gulkana and Wolverine glaciers
(Fig. 8b, e), have higher annual AARs compared to other
sites (Fig. 8h, k, n). Transient AARs for both Wolverine
and Gulkana glaciers vary from nearly the entire glacier ex-
tent (∼ 1) in May and October to a seasonal minimum of
about 0.6± 0.3 in August. In comparison, the average AARs
are lower at Lemon Creek (∼ 0.1–0.4), Sperry (∼ 0.5), and
South Cascade (0.2–0.4) glaciers. The minimum transient
AAR consistently occurs in August or early September at
Lemon Creek Glacier and in late September or October at
Sperry and South Cascade glaciers.
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Figure 7. Time series of the snow-covered area for the USGS Benchmark glaciers with marker types and colors distinguishing each image
product. Gray shaded regions indicate dates outside the observation period (1 November–30 April).

On average, the onset of seasonal snow accumulation (i.e.,
rapid increase in the SCA) varies between sites. The decline
and recovery of snow cover typically happen earliest in the
year at Gulkana Glacier compared to the other sites (Fig. 8a–
b). Here, the transient AAR typically declines in June, re-
flecting the exposure of bare ice and decline in snow cover,
and reaches a minimum of about 0.5 in August. The tran-
sient AAR then increases between August and October, sig-
naling the onset of snowfall. At Wolverine Glacier, the tran-
sient AAR both declines and recovers 1–2 weeks later than
at Gulkana on average (Fig. 8c). The transient AAR time se-
ries for Lemon Creek Glacier (Fig. 8e) indicates that bare-ice
exposure likely also begins in May at this site but that mini-

mum snow cover (transient AAR of 0.5± 0.4) is reached in
either August or September. In contrast, for both South Cas-
cade and Sperry glaciers (Fig. 8g, i), which are both located
at lower latitudes and higher average elevations than the other
sites, bare ice is not exposed until June or July, with a faster
decline and lower end state AAR of ∼ 0.3–0.5 in September.
While these trends in SCA decline and recovery broadly cor-
relate with site latitude, they are likely also related to other
factors such as climate and elevation, as discussed further in
Sect. 5.4.
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Figure 8. Weekly median trends in snow cover metrics. The left
column shows transient accumulation area ratio (AAR; blue), the
middle column shows median snow line altitude (pink) at each site
for the full 2013–2022 time series excluding PlanetScope observa-
tions to reduce noise, and the right column shows histograms of
glacier surface elevations (gray) using the most recent digital eleva-
tion model and glacier boundaries (U.S. Geological Survey Bench-
mark Glacier Program et al., 2022). Solid lines indicate the weekly
median value, and shaded regions indicate the weekly interquartile
range. Dashed gray lines in the middle column indicate the mini-
mum and maximum glacier elevations.

5 Discussion

Leveraging multiple satellite image products and supervised
machine learning algorithms, we produce detailed time series
of seasonal changes in glacier snow cover. Below, we discuss
challenges of the workflow associated primarily with topo-
graphic shading, cloud cover, and firn exposed on the surface.
Moreover, we outline how the Sentinel-2 SR-derived obser-
vations and the transient AAR effectively overcome these
limitations more consistently than other image products and
metrics derived from the workflow. Finally, we analyze the
SCA time series at the USGS Benchmark glaciers, highlight-

ing variations in the timing of the snow ablation season and
snow distribution patterns between sites and their implica-
tions for glacier mass balance studies.

5.1 Snow detection challenges

Complex topography, such as steep ridges along the glacier
margin, can lead to less accurate SCA results due to the
misclassification of shadowed snow. Sperry Glacier, for ex-
ample, is particularly challenging due to its frequent topo-
graphic shading that covers a large portion of the glacier.
When shade is cast by the glacier’s southeastern ridge, the
shaded region within the SCA is more likely to be misclas-
sified as ice or rock. The shadowed snow class mitigates this
instance of misclassification in some images (Fig. 9e–f) but
not others (Fig. 9a–b). Additionally, non-continuous snow
lines, characterized by large patches of bare ice within the
SCA, are common at Sperry Glacier later in the melt season,
which can lead to varied detection of the snow line. In these
cases, the snow line may be detected within the SCA rather
than at the lowest-altitude boundary separating snow and ice.
Alternatively, the snow line may be divided into small seg-
ments less than 100 m in length that are filtered out before
the final snow line selection. Similarly, Gulkana Glacier has
multiple tributaries that flow into the main trunk. When the
snow line rises above the convergence of these tributaries,
the snow line may be detected in one branch but not the oth-
ers, depending on the image quality and length of each snow
line segment (Fig. 9c–d, g–h). In the case of multiple glacier
tributaries and consistently patchy snow cover distribution,
using the SCA and AAR time series to assess snow cover
trends may be especially beneficial.

Certain geographic regions, particularly coastal maritime
sites, will have more frequent cloud cover throughout the
melt season. More frequent cloud cover will result in sparser
SCA time series due to either an abundance of cloudy im-
ages that are automatically filtered from the image collection
or masking clouds detected in large portions of a given im-
age. Because clouds, haze, and cloud shadows are masked in
each image, the SCA and/or snow line may be fully or par-
tially masked. The location of the site with respect to satel-
lite ground tracks can also impact SCA accuracy. Particularly
for sites that sit between satellite path boundaries with min-
imal overlap, the site area may exceed the coverage of im-
ages captured within the same hour, leading to consistently
incomplete SCA estimates.

The distinction between the ice–firn and firn–snow bound-
aries poses challenges for glacier mass balance studies, in-
cluding the automated snow detection workflow developed
in this study. We explored the inclusion of a firn class in
the classifiers using manually classified points at Wolver-
ine Glacier, where firn is known to exist on the surface late
in the melt season for most years. However, the addition of
the firn class resulted in a decrease in classifier performance
across all metrics due to an increase in misclassifications. We
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Figure 9. Sentinel-2 RGB and classified images demonstrating potential limitations of the snow detection workflow under different chal-
lenging scenarios. (a)–(b) and (e)–(f) At Sperry Glacier, topographic shading and patchy snow cover can lead to shadowed snow being
misclassified as rock, with no snow line detected in some instances, indicated by the white arrows in each image. (c)–(d) and (g)–(h) At
Gulkana Glacier, multiple glacier tributaries can complicate snow line detection, with varying degrees of success in different tributaries,
indicated by the white arrows. Images are Copernicus Sentinel-2 data 2019: (a) top-of-atmosphere reflectance image captured 20 August
2019, (c) surface reflectance (SR) image captured 8 August 2019, (e) SR image captured 31 July 2019, and (g) SR image captured 6 July
2019.

observed that the dedicated firn class was particularly sen-
sitive to image illumination. For example, a relatively dark
image would lead to most seasonal snow being incorrectly
classified as firn. Given the similarity in spectral signatures
among firn, snow, and ice – especially during the late melt
season when seasonal snow has a lower albedo and dust
and debris are more prevalent – there is substantial overlap
in the spectral signatures of the training data when firn is
added as a distinct class (Fig. 1b). Consequently, our clas-
sified images and snow line estimates in the absence of the
firn class occasionally detect the firn–snow boundary or the
ice–firn boundary, depending on factors such as ground con-
ditions, image illumination, and the presence of clouds or
haze. Rather than introduce a firn class, we suggest preferen-
tially selecting or heavily weighting Sentinel-2 SR-derived
observations when combined with those from other image
products at sites where firn is known to be exposed on the sur-
face because Sentinel-2 SR-derived classified images tend to
distinguish firn from snow better than other image products.
Figure 10 shows an example pair of images where the firn
is problematically classified as snow in Sentinel-2 TOA im-
agery (Fig. 10a–b), and the firn is correctly classified as ice
(not snow) in Sentinel-2 SR imagery (Fig. 10c–d) captured
on the same date.

The potential impact of misclassification of firn as snow on
SCA analyses will vary with the abundance of firn exposed
during particularly high melt or low snow years, which de-

pends on glacier geometry and firn extent. For instance, sur-
face slope can substantially impact how much firn may be
exposed during a relatively high melt year. Consider a 20 m
rise in the snow line altitude for two glaciers of equal width:
one with a constant slope of 10° and another with a constant
slope of 20°. The shallower, 10° slope glacier will have a
greater area of exposed bare ice and/or firn on the surface (see
Sect. S5, Fig. S3, for a more detailed example and diagram).
In this case, particularly for the shallower-sloped glacier and
its higher sensitivity to firn misclassification, we suggest
Sentinel-2 SR-derived observations be weighted more heav-
ily when combined with observations from other image prod-
ucts for more consistent firn classification. Thus, the choice
of image products to use when applying the workflow may
depend on the specific glacier surface characteristics.

5.2 Optimizing temporal density and spatial coverage
for surface mass balance assessment

High temporal resolution and coverage of SCA estimates,
particularly near the end of the melt season, are critical for
accurate constraints on glacier surface mass balance. While
Sentinel-2 stands out as the preferred choice for generating
SCA time series due to its relatively smooth time series,
optimal tradeoffs between spatial and temporal resolution,
and consistent snow and ice–firn discrimination, other image
products contribute valuable observations.
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Figure 10. Example snow detection results at Wolverine Glacier demonstrating how the Copernicus Sentinel-2 surface reflectance (SR)-
derived snow maps more reliably capture the snow–firn boundary than that of other image products. RGB and classified images captured
22 August 2020 from (a)–(b) Sentinel-2 top-of-atmosphere reflectance and (c)–(d) Sentinel-2 SR. White arrows point to firn exposed on the
surface.

PlanetScope has dense temporal coverage and produces
classified images with overall accuracies comparable to
Sentinel-2 and Landsat. However, SCA time series produced
with PlanetScope imagery are noisy, meaning there is con-
siderable scatter between observation dates relative to the
Sentinel-2 and Landsat time series (Fig. 7), due to the lower
image quality (i.e., differences in reflectance between images
for the same earth material), cloud masking product limita-
tions, and a narrower spectral range of PlanetScope images.
The lower orbit altitude (Table 1) and lower-quality cameras
compared to the governmental satellite constellations con-
tribute to occasional saturation and less reliable cloud masks,
introducing uncertainties in SCA estimates of an unknown
amount. Despite efforts to normalize reflectance values be-
tween images (Sect. S1, Fig. S1), the limited spectral range
of PlanetScope imagery, particularly at wavelengths beyond
the near-infrared, and its frequently saturated image bands
limit its ability to distinguish snow from other surface types
(see Fig. 1c).

Landsat, despite its sparse twice monthly revisit time, pro-
vides valuable observations before 2016. However, the true
minimum snow cover conditions may not be captured with
Landsat observations alone. The longer revisit time relative
to Sentinel-2 and PlanetScope, combined with frequent late
summer cloud cover particularly in maritime regions, some-
times results in entire melt seasons without usable images.
Challenges in time series interpretation due to the lower
temporal resolution of Landsat images are pronounced for
smaller glaciers like Sperry Glacier (Fig. 7d), where the like-
lihood of completely masked images due to cloud cover is
higher.

Sentinel-2 excels in overall performance, yet observations
from PlanetScope and Landsat substantially extend and add

detail to the SCA time series. The unique strengths and
weaknesses of each image product highlight the need for a
thoughtful integration strategy to provide comprehensive in-
sights into glacier snow cover dynamics. By combining these
satellite image products, we create a robust dataset essential
for comprehensive glacier mass balance studies.

5.3 Snow cover metrics comparison

While cloud cover can introduce noise into the SCA time
series, the transient AAR is less impacted by cloud masking
and produces the least noisy time series overall. Using the
ratio of SCA to the total glacier area, the calculation of the
AAR effectively counteracts the impact of heavily masked
images. The automated snow line delineations can be biased
by small, isolated patches or “edges” of disconnected snow
that can skew the median snow line altitude. In contrast, the
AAR captures snow cover at the scale of the glacier area and
is therefore less sensitive to small patches of snow. In Fig. 8,
the transient AAR has the lowest variability in weekly values
compared to the other metrics in the early melt season, when
rapid changes in snow cover are unexpected.

Additionally, the AAR does not assume that a single eleva-
tion contour on the glacier represents the zero-mass balance
line, unlike the median snow line altitude or ELA. The use of
a mass balance indicator with minimal assumptions is partic-
ularly important for sites where shading or other topographic
effects exert a stronger influence on snow cover distribution
than elevation alone. At South Cascade Glacier, for example,
the steep headwalls along the southwestern boundary serve
as avalanche source regions in the winter and also provide
topographic shading throughout the ablation season (O’Neel
et al., 2019; Fig. 11a). As a result, the automatically detected
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Figure 11. (a) Copernicus Sentinel-2 surface reflectance image at South Cascade Glacier captured 2 October 2023, with the automatically
detected snow line and the median snow line altitude contour. (b) Histograms of all elevations in the glacier area (gray) and snow-covered
elevations (blue). The pink line indicates the automatically detected median snow line altitude, and the black lines show the full elevation
range (1785–2098 m) of all snow line coordinates.

snow line in the late melt season crosses a wide range of el-
evations (1785–2098 m; Fig. 11b). Therefore, using the me-
dian snow line altitude as an indicator of snow cover decline
and recovery rather than the transient AAR or distribution of
snow-covered elevations could miss important topographic
or other climate controls on snow distribution over time.

Notably, the AAR accuracy depends on a time-evolving
glacier boundary (Florentine et al., 2023). Outdated bound-
aries can lead to misleading results in cases where the glacier
area has changed in response to climate or internal dynam-
ics. For instance, a few years of lower-than-average snow-
fall or higher-than-average melt can lead to glacier thinning
and terminus retreat over several years (Cuffey and Paterson,
2010). If glacier boundaries are not updated over time as in
this study (Table S2), the AAR will be underestimated. Thus,
glacier boundaries should be updated as needed when apply-
ing the workflow.

5.4 Broader implications

The automated snow detection workflow offers substantial
time savings compared to manual snow line delineation. Im-
plementing the full workflow with pre-trained image clas-
sifiers for all satellite image products from 2013–present at
one site, including PlanetScope image downloads and pre-
processing, typically requires an hour or less from the user
and anywhere from about 2–50 h of computation time, de-
pending on the computing resources, size of the site, and
number of images found. In comparison, manual delineation
of glacier snow lines can take approximately 1–5 min per
image, with additional time needed for PlanetScope image
downloads. Considering that our automated method identi-
fied an average of ∼ 750 usable images per site since 2013,
manually delineating all snow lines for a single site would

require more than ∼ 20 h of work by the user. Adopting our
automated method could save hundreds of hours for the user,
particularly when applying it to multiple sites, making it an
efficient approach for tracking changes in glacier snow cover
on broad spatial scales.

Despite potential limitations related to shading, cloud
masking, and firn misclassification affecting snow detection
at individual sites, the extensive time series of image-based
snow cover observations generated by this workflow holds
promise for various applications. These observations can im-
prove our understanding of current glacier AARs and ELAs,
supporting glacier–climate sensitivity tests. For example, the
dense time series of snow cover observations can help to
constrain the timing of minimum snow cover conditions.
Notably, for the Benchmark glaciers, snow-off conditions
tend to occur later (June–July) at South Cascade and Sperry
glaciers. Sperry and South Cascade glaciers are the lowest
in latitude, with Sperry Glacier located at the highest eleva-
tions and South Cascade Glacier located in a mid-elevation,
maritime climate. Snow-on conditions tend to occur earlier
(September–October) at the Alaskan glaciers, which span
maritime and continental climates and low elevations to mid-
elevations. These findings demonstrate the valuable insights
gained into the spatiotemporal variability of snow cover min-
imum conditions across latitudinal, climatic, and elevational
ranges spanned by the Benchmark glaciers through the ap-
plication of the automated snow detection workflow. Addi-
tionally, these snow cover observations can serve as inputs
or observational constraints for climate modeling, offering
valuable validation data for snowmelt and atmospheric mod-
eling applications, thereby advancing our understanding of
diverse Earth system interactions.
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6 Conclusions

In this study, we present an automated snow detection work-
flow calibrated to mountain glaciers, offering several advan-
tages over existing methods for snow classification. Our ap-
proach leverages multiple spaceborne imagery datasets, re-
sulting in hundreds of snow cover observations spanning
over a decade. Temporal resolutions range from approxi-
mately twice monthly to daily throughout the summer melt
season, depending on local cloud cover conditions and gener-
ally increasing over time with the launch of additional satel-
lites. In future work, we will apply the automated snow de-
tection workflow more broadly to glaciers throughout North
America. Additionally, the workflow may be tested in other
climatic settings, such as tropical or polar glacierized envi-
ronments. This would enable us to evaluate the transferabil-
ity of the classification models, particularly in light of poten-
tially distinct spectral responses of snow, ice, surface melt-
water, and debris in these regions.

Using a training dataset constructed at the USGS Bench-
mark glaciers and supervised machine learning models,
the image classification models exhibit high performance,
achieving overall accuracies of at least 92 %. κ scores, which
account for potential correct classification due to chance,
range from 84 %–96 % for all classification models. The
workflow performance and temporal coverage are impacted
by a number of factors, primarily the presence and frequency
of widespread shading and cloud cover at individual sites.

Among the image classification models, the Sentinel-2
surface reflectance (SR) classification model (support vector
machine) produces the most accurate and smoothest snow-
covered area time series (overall accuracy > 95 %), with the
best agreement with manually delineated snow lines (median
altitudes differ by a median of −16 m with an interquartile
range of −46 to 0 m). Sentinel-2 SR-classified images also
distinguish snow from ice and firn the most consistently at
our study sites. Therefore, we suggest weighting Sentinel-2
SR-derived observations more heavily than those from other
image products, particularly at sites where extensive firn is
known to be exposed on the surface. Nonetheless, Landsat-
and PlanetScope-derived observations greatly increase both
the temporal coverage and frequency of observations, which
are critical near the end of the melt season when snow cover
changes rapidly.

Furthermore, our results reveal variation in the timing of
bare-ice exposure and snowfall onset across the Arctic and
midlatitude USGS Benchmark glaciers, which span 48 to
63° N. The observed spatial variations in minimum SCA for
this subset of glaciers emphasize that estimating the equi-
librium line altitude (ELA) based on a fixed date, such as
late September, can lead to biased results depending on
the glacier site. Additionally, non-elevation-dependent snow
lines at South Cascade Glacier, in particular, challenge the
assumption of a single ELA as an accurate approximation of

the accumulation and ablation zone boundary on mountain
glaciers.

The automated snow detection workflow has the potential
to benefit numerous scientific disciplines and applications.
By improving our understanding of glacier snow dynamics,
such as snow distribution, accumulation, and ablation pat-
terns, we not only enhance glacier monitoring but also pro-
vide a validation dataset for atmospheric, hydrological, and
glacier modeling. The insights gained from our approach
therefore have the potential to improve the accuracy of cli-
mate model predictions, guide water resource management,
and refine our understanding of evolving snowmelt seasons.
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