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S1 PlanetScope radiometric adjustments 

We observed substantial variations in the dynamic range of PlanetScope 4-band surface reflectance images, even after the 

prior harmonization with Sentinel-2 imagery (Figure S1a). To improve the consistency and comparability of these images for 10 

classification purposes, we implemented adjustments to the surface reflectance values. Our approach involved aligning the 

mean band values of pixels in the top 20% of elevations of the glacier area with the characteristics of snow, while setting the 

lowest band values to 0.0. First, we constructed a polygon outlining the uppermost 20% of elevations within the glacier area 

using the respective glacier boundary and digital elevation model (DEM; Figure S1b–c). Next, for each image, we calculated 

the median surface reflectance value for all pixels contained within this polygon. The surface reflectances for all bands were 15 

then adjusted according to the following relationship, 

𝜌!"# = 𝜌 ∗ 𝑥 − 𝑦 

where 𝜌 is the surface reflectance of a given image pixel and 𝜌!"# is the adjusted surface reflectance value. The constant 𝑥 is 

the ratio between the range of the original surface reflectance values and the adjusted surface reflectance values: 

𝑥 =
𝜌!"#,%!&

𝜌%!& − 𝜌%'(
 20 

where 𝜌!"#,%!&  is the maximum surface reflectance of the adjusted image and 𝜌%!&  and 𝜌%'(  are the maximum and 

minimum values of the original image, respectively. The constant 𝑦 is the minimum surface reflectance of each band, such 

that subtracting 𝑦 results in minimum band values of 0.0. 𝜌!"#,%!& is equal to 0.94 for the blue band, 0.95 for the green band, 

0.94 for the red band, and 0.78 for the near infrared band, based on snow reflectance at each band’s center wavelength from 

Painter et al. (2009).  25 

Figure S1 depicts an original and adjusted PlanetScope 4-band surface reflectance image at Lemon Creek Glacier, Alaska, 

with the polygon outlining the top 20% of elevations within the glacier area shown. This image adjustment process produces 

not only a more consistent PlanetScope image collection, but also typically results in greater contrast between snow, ice, and 

firn within individual images, which we found to improve classification performance metrics.   
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Figure S1: (a) Distributions of Blue band (“B”) minimum and maximum surface reflectance values for all PlanetScope image 
mosaics collected at Lemon Creek Glacier for 2013–2022, demonstrating the relatively large variations in dynamic ranges between 
images. (b) Original image and (c) adjusted image captured 29 July 2020 at Lemon Creek Glacier. The glacier boundary and the 
polygon outlining the top 20% of elevations within the glacier area (or 80th percentile elevation, “𝒁𝑷𝟖𝟎 Polygon”) are shown in each 
image. Histograms of surface reflectance values for each band are shown for (d) the original image and (e) the adjusted image. 35 
Image © 2020 Planet Labs PBC.  

S2 Glacier boundaries and digital elevation models 

To increase the reliability of accumulation area ratio (AAR) and snow-covered elevation estimates amid changing glacier 

areas and surface elevations through time, glacier boundaries and DEMs were updated over the 2013–2023 study period 
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using all available data products from the USGS Benchmark glacier data release version 8 (U.S. Geological Survey 40 

Benchmark Glacier Program et al., 2022). For each summer melt season, we used the closest glacier boundary and DEM in 

time to construct time series of the SCA, transient AAR, and snowline. The timestamps corresponding to the glacier 

boundaries and DEMs used for each snow detection year are detailed in Table S1. This approach improves temporal 

consistency and accuracy in capturing the dynamic nature of glacier surface areas and elevations throughout the study 

period. 45 

 
Table S1: Timestamps of glacier boundaries and digital elevation models used for each snow detection year for each study site.  

Glacier name Snow detection year Glacier boundaries date DEM date 

Gulkana 

2013 
2014-10-07 2014-10-07 2014 

2015 
2016 

2016-08-30 2016-08-30 
2017 
2018 

2021-09-19 2021-09-19 

2019 
2020 
2021 
2022 
2023 

Wolverine 

2013 2012-08-22 2012-08-22 
2014 

2015-08-13 
2015-08-13 2015 

2016 
2016-09-01 

2017 
2018-09-12 

2018 2018-09-12 
2019 2019-08-19 

2020-05-02 
2020 

2020-10-19 
2021 

2020-10-19 2022 
2023 

Lemon Creek 

2013 2013-09-04 

2021-10-05 

2014 
2014-09-08 

2015 
2016 

2016-08-28 
2017 
2018 

2018-09-02 
2019 
2020 

2021-10-05 
2021 
2022 
2023 

Sperry 
2013 

2014-09-07 2014-09-07 2014 
2015 



  

5 
 

2016 
2017 
2018 
2019 
2020 
2021 
2022 
2023 

South Cascade 

2013 

2015-10-14 2015-10-14 

2014 
2015 
2016 
2017 
2018 
2019 

2021-08-13 2021-08-13 
2020 
2021 
2022 
2023 

S3 Machine learning model hyperparameters 

Table S2 below lists the hyperparameter settings for each of the tested machine learning models. Most hyperparameters were 

set to the default defined by Scikit-Learn. For information on each of the models and hyperparameters, refer to the Scikit-50 

Learn documentation (https://scikit-learn.org/stable/user_guide.html).  

 
Table S2: List of hyperparameter and settings used for each machine learning model.  

Model name Hyperparameter settings 

AdaBoost n_estimators=50, learning_rate=1.0, algorithm='SAMME.R' 

Decision Tree Classifier criterion='gini', splitter='best', max_depth=5, 

min_samples_split=2, min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, class_weight=None, ccp_alpha=0.0 

Logistic Regression penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, 

intercept_scaling=1, random_state=0, solver='lbfgs', 

max_iter=1000, warm_start=False 

Naïve Bayes priors=None, var_smoothing=1e-09 

Nearest Neighbors n_neighbors=3, weights='uniform', algorithm='auto', leaf_size=30, 

p=2, metric='minkowski' 

Neural Network alpha=1, max_iter=1000, hidden_layer_sizes=(100,), 

activation='relu', solver='adam’, learning_rate='constant', 

learning_rate_init=0.001, power_t=0.5, shuffle=True, tol=0.0001, 

https://scikit-learn.org/stable/user_guide.html
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warm_start=False, momentum=0.9, nesterovs_momentum=True, 

early_stopping=False, validation_fraction=0.1, beta_1=0.9, 

beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000 

Quadratic Discriminant Analysis reg_param=0.0, store_covariance=False, tol=0.0001 

Random Forest max_depth=5, n_estimators=10, max_features=1, criterion='gini', 

min_samples_split=2, min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, max_features='sqrt', 

min_impurity_decrease=0.0, bootstrap=True, oob_score=False, 

warm_start=False, ccp_alpha=0.0 

Support Vector Machine gamma=2, C=1, kernel='rbf', degree=3, coef0=0.0, shrinking=True, 

probability=False, tol=0.001, cache_size=200, max_iter=-1, 

decision_function_shape='ovr', break_ties=False 

S4 Performance assessment: all machine learning algorithms 

To assess the performance of the classification models reported in the main body of the paper, we calculated the overall 55 

accuracy and learning curves for all nine machine learning models tested. Table S3 shows the overall accuracy for all models 

tested. The optimal classification models that were used to construct timeseries of snow-covered area (SCA) include the 

Nearest Neighbors for Landsat 8/9 and PlanetScope imagery and the Support Vector Machine model for Sentinel-2 SR and 

TOA imagery (Table S3, highlighted in gray).  

 60 
Table S3: Mean overall accuracies for all tested machine learning models resulting from K-folds cross-validation. Bolded and 
highlighted values indicate the most accurate classifier for each satellite image product. Note that the optimal models may have 
comparable accuracies to other models, but had higher accuracies at greater precision than shown.  

Model name Landsat 8/9 SR PlanetScope  
4-band SR 

Sentinel-2  
SR 

Sentinel-2 
TOA 

AdaBoost 74 % 87 % 82 % 53 % 

Decision Tree 92 % 96 % 96 % 93 % 

Naïve Bayes 82 % 93 % 91 % 83 % 
Nearest Neighbors 94 % 97 % 93 % 92 % 
Neural Network 90 % 93 % 94 % 89 % 
Random Forest 92 % 96 % 95 % 93 % 
Support Vector Machine 93 % 97 % 98 % 93 % 
Quadratic Discriminant 
Analysis 

93 % 97 % 97 % 90 % 

Logistic Regression 21 % 95 % 96 % 93 % 
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To assess the robustness of the optimal models selection, we calculated learning curves to illustrate variations in accuracy 65 

scores for different training dataset sizes and subsets across all models (Viering and Loog, 2023). The training dataset sizes 

ranged from 100 and 6,500 points, tested at various increments. Figure S2 shows the learning curves for all models, focusing 

on training dataset sizes between 500 and 6,500 points in 1,000-point increments. For each training dataset size n, a random 

sample of n points was used for model training, and n*0.2 points were allocated for testing and accuracy score calculation. 

Notably, the cross-validated accuracy of the optimal models exhibited minimal variation (±5%) in response to changes in the 70 

training sample or size (Figure S2: Nearest Neighbors in dark orange, Support Vector Machine in dark purple). The accuracy 

scores for the optimal models are nearly constant for greater than or equal to 2,500 points for the Sentinel-2 TOA model and 

greater than or equal to 1,500 for all other image product models. This consistent performance instills confidence in the 

optimal models, indicating relative insensitivity to variations in the input training dataset size and subset.    

75 
Figure S2: Learning curves for each machine learning model tested for each image product. Accuracy scores are shown for the 
testing set.  
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S5 Potential impacts of slope on exposed firn 

The area of exposed firn on the surface is sensitive to a number of factors, including short-term climate perturbations and 

surface slope gradient. In a year with higher-than-average air temperatures, the decrease in accumulation area and increase in 80 

exposed firn area will typically be greater for glaciers with shallower surface slopes than those with steeper slopes (Geyman 

et al., 2022). For example, if the zero-degree isotherm is raised by 0.5 ℃ at two different glaciers with the same widths, the 

equilibrium line altitude (ELA) will increase by about 50 m, assuming a dry adiabatic lapse rate of 9.8 ℃/km (Lutgens and 

Tarbuck, 1998). As shown in Figure S3, the ELA increase can then lead to a greater decrease in accumulation area at the 

lower-sloped glacier, potentially exposing a greater area of firn on the surface.  85 

 

Figure S3: Schematics demonstrating the relative change in equilibrium line altitude (ELA) and its impact on accumulation area 
for two glaciers with comparatively (a) high slope and (b) low slope. ELA1 is set to the observed snowline and ELA2 is set to 51 m 
higher. When the ELA (i.e., the zero mass balance contour) increases by 51 m at both glaciers (ELA2), the accumulation area 
shrinks more at the low slope glacier. On glaciers that have extensive firn,  this ELA increase can also lead to more exposed firn on 90 
the surface. Schematics are based on imagery for Lemon Creek Glacier, Alaska, captured by Copernicus Sentinel-2 on 31 August 
2021 and projected onto the most recent digital elevation model from the USGS (U.S. Geological Survey Benchmark Glacier 
Program et al., 2022). Elevations have been scaled to demonstrate differing slope gradients.   

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. 

Government. 95 
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