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Abstract. Measuring aerosol-related impurities in ice cores
gives insight into Earth’s past climate conditions. In order
to resolve highly thinned layers and to investigate post-
depositional processes, such measurements require high-
resolution analysis, especially in deep ice. Micron-resolution
impurity data can be collected using laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS), but
this requires careful assessment to avoid misinterpretation.
Two-dimensional (2D) imaging with LA-ICP-MS has pro-
vided significant new insight, often showing an association
between soluble impurities and the ice crystal matrix, but in-
terpreting one-dimensional (1D) signals collected with LA-
ICP-MS remains challenging partially due to this impurity–
boundary association manifesting strongly in measured sig-
nals. In this work, a computational framework has been de-
veloped, integrating insights from 2D imaging to aid the in-
terpretation of 1D signals. The framework utilises a simu-
lated model of a macroscopic ice volume with a representa-
tive microstructure and soluble impurity localisation that sta-
tistically represents distributions seen in 2D maps, allowing
quantitative assessment of the imprint of the ice matrix on 1D
signals collected from the volume. Input data were collected
from four ice core samples from Greenland and Antarctica.
For the samples measured, quantifying the variability in 1D
signals due to the impurity–matrix imprint shows that mod-
elled continuous bulk signal intensity at the centimetre scale
varies below 2 % away from an idealised measurement that
captures all variability. In contrast, modelled single-profile
micron-resolution LA-ICP-MS signals can vary by an aver-

age of more than 100 %. Combining individual LA-ICP-MS
signals into smoothed and spatially averaged signals can re-
duce this variation to between 1.5 and 5.9 %. This approach
guides collecting layer-representative signals from LA-ICP-
MS line profiles and may help to bridge the scale gap be-
tween LA-ICP-MS data and data collected from meltwater
analysis.

1 Introduction

Ice cores collected from Earth’s polar regions contain invalu-
able information relating to its climate system, with contin-
uous records reaching back as far as 800 000 years (Louler-
gue et al., 2008; Brook and Buizert, 2018). Analysis of well-
preserved old ice, such as that targeted in the Beyond EPICA
drilling on the Antarctic Plateau, aims to extend this record
back to approximately 1.5 million years (Chung et al., 2023).
Ice sections originating from near the bottom of ice sheets,
including that targeted for the Beyond EPICA core, contain
very thinned layers, with many thousands of years of climate
information compressed into small vertical sections. Such ice
will have undergone significant post-depositional changes.

A subject of interest within these cores is the aerosol-
related impurities in the ice (e.g. Legrand and Mayewski,
1997), which can be used as a proxy to reconstruct past cli-
mate conditions over timescales ranging from seasonal to
millennial. A widely employed technique for collecting such
signals is continuous flow analysis (CFA), which outputs a
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one-dimensional (1D) impurity signal along the down-core
axis at centimetre-depth resolution (Kaufmann et al., 2008).
An example target impurity is sodium, for which potential
links to sea ice extent are discussed (Abram et al., 2013). As
there is likely more than 14 ka of ice per metre in the deep ice
of the Beyond EPICA core, high-resolution analysis is key to
deciphering climate signals in these highly thinned sections.
Such analysis will require resolutions beyond that delivered
by CFA and also careful assessment of the impact of post-
depositional changes in impurity localisation.

To measure impurity signals at micron resolution, laser ab-
lation inductively coupled plasma mass spectrometry (LA-
ICP-MS) has been applied to ice core analysis (Reinhardt
et al., 2001). Ablating ice in its solid form, LA-ICP-MS
preserves information on impurity location in the ice ma-
trix while analysing the surface of the sample (Müller et al.,
2011). Two-dimensional (2D) state-of-the-art imaging of im-
purities using LA-ICP-MS has shown that the location of
(mostly soluble) impurities, such as sodium and magnesium,
can significantly correlate with the location of boundaries be-
tween crystals in the ice matrix (Stoll et al., 2023; Bohleber
et al., 2020). This impurity–boundary association imprints
onto 1D line profile signals collected along the down-core
axis of samples, changing the resultant signal depending on
the lateral position on the ice the signal is collected from
(Bohleber et al., 2021). It is now clear that this imprint ob-
scures the interpretation of such profiles in the context of ex-
tracting a climate signal, but the extent to which this occurs
will depend on factors such as the degree of impurity locali-
sation, which can vary between elemental species, and grain
size.

The micron-resolution 2D data sampled from the sur-
face with LA-ICP-MS greatly differs in nature from the
centimetre-resolution 1D bulk impurity data obtained with
CFA, producing a scale and dimensional gap between their
outputs. It remains unclear how LA-ICP-MS signals col-
lected from ice core samples containing a stratigraphy that
encodes climate variability should be interpreted, partially
due to the impurity–boundary association showing up in
these micron-resolution measurements. Despite methodolog-
ical differences in LA-ICP-MS and CFA, a phenomenolog-
ical link has been made between 1D down-core signals col-
lected using LA-ICP-MS and CFA (Della Lunga et al., 2017;
Spaulding et al., 2017), after applying heavy smoothing to
LA-ICP-MS signals. A deeper explanation of this link be-
tween the two techniques must come from an improved un-
derstanding of the chemical signals in ice across different
length scales.

To allow exploration of how impurity localisation, and
therefore factors such as climate period and grain size, im-
pacts measured signals, a computational framework that al-
lows extensive analysis of LA-ICP-MS and CFA data has

been developed. This open-source framework1 developed in
Python is designed to guide experimental data collection, es-
pecially when attempting to capture layer signals with 1D
LA-ICP-MS profiles. Generating a computational model of a
macroscopic ice volume, comparable to the dimensions of a
sample melted during CFA, that is statistically representative
of grain and impurity properties revealed by 2D LA-ICP-MS
imaging allows us to contrast modelled and empirical LA-
ICP-MS data. This delivers insight into how the spatial distri-
bution of soluble impurities impacts signal collection, assists
in bridging the scale and dimension gap between LA-ICP-
MS and CFA measurements, and allows studies that are not
easily possible with empirical measurements. Presenting this
new conceptual approach, this paper aims to do the follow-
ing:

– Present 1D profiles and 2D intensity maps collected us-
ing LA-ICP-MS from sections of Antarctic and Green-
land ice cores. Focusing on the mostly soluble impuri-
ties, we take sodium as an archetypal species.

– Outline the theoretical foundation, computational im-
plementation, and validation of a framework based
on a three-dimensional (3D) model that captures the
localisation of soluble impurities in ice at the mi-
croscale while being statistically representative at the
macroscale.

– Establish an initial application of this framework,
analysing sodium as an archetypal soluble impurity
mainly distributed at grain boundaries, to investi-
gate how the spatial distribution of soluble impuri-
ties impacts the representativeness of high-resolution
centimetre-length 1D signals taken along the down-core
axis.

Data are measured and analysed from Holocene and Last
Glacial Period (LGP) sections of the Antarctic EPICA Dome
C (EDC) (Stauffer et al., 2004) and Greenland Renland Ice
Cap Project (RECAP) (Simonsen et al., 2019) ice cores. The
discussion of these data demonstrates the framework in rela-
tively shallow ice sections, targeting soluble impurities, from
which developments can be made to investigate deep ice sec-
tions and insoluble impurities.

2 Methods

2.1 Overview

The developed framework’s inputs, operation, and outputs
are visualised in Fig. 1. Optical and chemical data are col-
lected experimentally from ice samples using an LA-ICP-
MS system to form an empirical input for the framework.

1Code available at https://github.com/Piers-Larkman/Ice_
Impurities (last access: 19 March 2025)

The Cryosphere, 19, 1373–1390, 2025 https://doi.org/10.5194/tc-19-1373-2025

https://github.com/Piers-Larkman/Ice_Impurities
https://github.com/Piers-Larkman/Ice_Impurities


P. Larkman et al.: Ice core impurity variability at the microscale 1375

These data reveal the spatial distribution of soluble impu-
rities, which are referred to interchangeably with “impuri-
ties” throughout this study, i.e. their localisation at the grain
boundaries. The impurity distribution is combined with mean
grain size measurements to parameterise the generation of a
3D model representing a macroscopic volume of an ice sam-
ple.

This 3D model captures the structure and impurity distri-
bution of measured ice samples. The imprinted impurity dis-
tribution is unchanging with depth, which, if a climate signal
is considered to be present in an ice sample as a sequence of
discrete constant values, represents a simple manifestation
of a climate signal. The conditions under which this signal
can be reliably extracted are investigated, and the conclu-
sions are extended to guide and interpret empirical analysis.
More complex climate signals can be constructed within the
modelled ice, although the mode of this climate signal should
not alter the interpretation of the present discussion.

The framework utilises a 3D model to allow 1D signals
representing both LA-ICP-MS and bulk CFA measurements
to be simulated along the down-core axis of the modelled
volume by recording, combining, and processing the inten-
sity at each point in a vertical profile. Utilising the fact that
the climate signal present in the modelled volume is an un-
changing mean intensity, these signals are then analysed to
understand how well they capture this underlying signal.

2.2 Sample selection

Samples were selected to cover a broad range of conditions,
including both Greenland and Antarctica and glacial and in-
terglacial periods. Four ice samples were analysed and mod-
elled: two from the EDC ice core (Stauffer et al., 2004)
and two from the RECAP ice core (Simonsen et al., 2019)
(Table 1). Ages for EDC samples are from the AICC2023
timescale for the EDC ice core (Bouchet et al., 2023), ages
for RECAP samples are from the RECAP timescale (Simon-
sen et al., 2019), and show samples originate from either the
Holocene or the LGP. Grain radius data are taken from pub-
lished values (EPICA community members, 2004; Weikusat
et al., 2024).

2.3 Experimental data collection

The LA-ICP-MS setup at the University of Venice was used,
adhering to current best practice for analysis on ice (Bohle-
ber et al., 2024a). The setup utilises an Analyte Excite ArF
excimer 193 nm laser with a HelEx II two-volume ablation
chamber (Teledyne CETAC Photon Machines) connected
to an iCAP-RQ ICP-MS (Thermo Scientific) using a rapid
aerosol transfer line. Samples were prepared with a thick-
ness of approximately 1 cm, a width of 2 cm, and lengths re-
ported in Table 1. During analysis, samples were held at a
stable temperature of approximately−23 ◦C. An optical mo-
saic of the surface of each sample was taken using an inte-

grated optical camera. Impurity data, including sodium, were
recorded as 1D lines and 2D maps using the laser with spot
size 40 µm, firing rate 300 Hz, and a fluence of 3.5 J cm−2.
After collection, uncalibrated intensity data from the ICP-
MS were corrected for background effects and drift using the
software HDIP (Teledyne CETAC Photon Machines), which
was also used to create impurity maps.

2.4 Computational framework

The computational framework does not aim to replicate the
physical processes involved in grain growth and impurity
localisation but to create a statistically representative mi-
crostructure and associated soluble impurity distribution. Its
construction breaks down into the following steps.

2.4.1 LA-ICP-MS data processing

The grain boundary network was identified manually in the
impurity maps through comparison with optical images. Pix-
els of high intensity in the chemical map which were located
at visible grain boundaries in the optical image were regarded
as grain boundary pixels. High-intensity pixels away from
boundaries were considered to be impurities localised at dust
particles and are treated as grain interior pixels. This ap-
proach results in a binary mask which was applied to chemi-
cal maps to separate grain boundary and grain interior pixels.
The intensities of these pixel classes were then recorded and
turned into a probability distribution, capturing the probabil-
ity that a given pixel has a certain intensity.

2.4.2 Ice structure generation

A 3D Poisson–Voronoi tessellation (Zheng et al., 1996) is
used to create the structure of modelled ice volumes. Voronoi
tessellations are produced by seeding region centres in a
space, at random locations in the case of Poisson–Voronoi
tessellations, and allowing the regions to grow until they in-
tersect with a neighbouring region. At this intersection, a
boundary between the regions is formed. The region shapes
are governed by how distance is measured in the space.
The generalised distance formula in three dimensions al-
lows calculation of the distance, D, between two points,
x= (x1,x2,x3) and y= (y1,y2,y3):

D(x,y)=

(
3∑
i=1
|xi − yi |

p

) 1
p

. (1)

When p = 2, the resulting distance is the Euclidean distance.
Changing p produces differently shaped grains. This process
produces notional spaces with regions classified either as re-
gion (grain) interiors or region (grain) boundaries.

To match the average grain radii of a target ice sample, a
suitable number of grains are seeded to create regions with
the same 3D grain number density as the physical sample;
that is, the same number of grains per unit volume. This
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Figure 1. Flow chart detailing the framework operation. The mean grain size data for EDC and RECAP are from EPICA community members
(2004) and Weikusat et al. (2024), respectively.

Table 1. Information on all analysed samples. Sample depth is the top of the sample; all relative depths discussed in the paper are reported
with reference to this top depth. Grain radius is the mean effective spherical grain radius at the reported depth. The lateral separation of
profiles is their separation measured perpendicular to the down-core axis and is illustrated in Fig. 6c.

Ice core EDC EDC RECAP RECAP
Climate period Holocene LGP Holocene LGP

Top depth (m) 282.23 1096.45 495.18 536.70
Age (yr b1950) 9000 75 000 5800 35 000
Sample length (mm) 80 79 80 59
Mean grain radius (mm) 1.3 2.3 4.2 1.7
Number of LA-ICP-MS profiles measured 10 10 4 6
Profile lateral separation (µm) 80 to 6000 80 to 12 000 1000 to 5000 1000 to 5000

yr b1950: years before 1950 CE.

process results in a space containing grains with a grain
volume distribution that conforms to a gamma distribution
(Ferenc and Néda, 2007), which is parameterised in the Sup-
plement to this paper, with a mean grain radius the same as
the target ice sample.

To create a spatial link to the pixels of the impurity maps,
the Poisson–Voronoi tessellation is built in a volume com-
prising voxels, the extension of pixels to three dimensions.
The modelled volume is completely populated by voxels as-
signed to grain interior or boundary regions as illustrated in
Fig. 2. The model treats voxels as having an edge length cor-
responding to the pixel edge length and, therefore, to the laser
spot size of the LA-ICP-MS map which it represents: 40 µm
in the case of the maps collected as described in Sect. 2.3.
This allows the dimensions of the notional volume to be tied
to the dimensions of physical ice samples. Each voxel has a
coordinate (x,y,z), with the x, y, z coordinate system illus-
trated in Fig. 2. The modelled space is taken to have the z
axis aligned with the down-core axis of modelled samples.

2.4.3 Impurity distribution imprint

Each voxel in the generated space is assigned a numerical
value representing its impurity intensity. This value is as-
signed by taking the two probability distributions from em-
pirical LA-ICP-MS mapping described in Sect. 2.4.1, one for
grain boundaries and another for grain interiors, and drawing
a random value from these distributions for each voxel, de-

pending on its classification as grain or boundary. The result-
ing intensity distribution resembles the intensity representa-
tion shown in Fig. 2.

2.4.4 Simulating and combining signals

Simulated LA-ICP-MS signals are obtained by recording the
voxel intensity at each z position of a profile of voxels, re-
sulting in a 1D signal at 40 µm resolution which runs the en-
tire z axis of the modelled volume. Figure 2 illustrates the
paths of two such parallel profiles as blue arrows. Intensity
signals from directly adjacent profiles can be summed to cre-
ate a signal simulating LA-ICP-MS data collection carried
out with a larger spot size. Spatially averaged signals can be
produced by taking the average of two or more adjacent or
non-adjacent single-profile signals. For spot sizes larger than
40 µm, all simulated LA-ICP-MS signals are smoothed using
a 1D Gaussian kernel with a standard deviation, σ , set to the
laser spot size, following the procedure described in Bohle-
ber et al. (2021). Additional subsequent Gaussian smoothing
can then be applied as a post-processing step. Simulation of
a CFA-like signal is only possible in a 3D model and is cal-
culated by summing the impurity values of all the voxels in
each z plane and applying Gaussian smoothing with a 1 cm
wide kernel. This approximates the collection of a smoothed
bulk signal resulting from experimental CFA (Erhardt et al.,
2023), without considering effects such as dispersion (Breton
et al., 2012).
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Figure 2. Visual representation of a 3D Poisson–Voronoi tessellation used to represent a polycrystalline material. Each voxel, represented
by a coloured cube, in the space is considered to have an edge length corresponding to the laser spot size used to measure modelled samples.
The representation on the left shows the grain boundary voxels in transparent grey and each grain as a different colour. The representation
on the right shows the intensity distribution imprinted on the same volume. Volumes generated for analysis are much larger than this small
illustrative example, which, given a 40 µm voxel size, represents a 0.60 by 0.44 by 1.8 mm volume.

2.5 Modelled data analysis

These modelled signals were then analysed to give insight
into how the underlying impurity distribution creates vari-
ability in measurement. It is assumed that centimetre-scale
bulk volumes of ice have an invariant intensity distribution
in the x and y directions. This bulk invariance also holds in
the z direction of modelled ice. This z invariance can be in-
terpreted as an ice sample with an unchanging climate signal
despite micro-scale variability in the spatial distribution of
sodium arising from the impurity–boundary association. The
bulk-invariant impurity distribution in all directions means
that the mean average intensity in the space, I , serves as a
reference value: the intensity value that would be recorded
if the entire volume were melted and measured. If some sub-
volume of the modelled space is representative of the volume
as a whole, it will have a mean intensity of I . Therefore, if a
single-profile laser signal, a spatially averaged signal result-
ing from the combination of several profiles, or the simulated
CFA signal has an average intensity approaching I at each z
value, the signal can be considered representative at every

depth. A metric that can be used to quantify how much the
spatial distribution of impurities affects some signal, I (zi), or
the signal representativeness, is its mean absolute deviation
(MAD) from I . For a signal of length l, the MAD measured
in intensity units, MADI , is calculated as

MADI =
1
l

l∑
i=1
|I (zi)− I |. (2)

To allow easy comparison of variation between ice sam-
ples, MAD values calculated using Eq. (2) are reported as
percentages normalised to I :

MAD=
MADI
I
× 100. (3)

A MAD of 0 %, as calculated using Eq. (3), represents a
signal that fully captures the underlying intensity distribution
at every depth interval.
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3 Results

3.1 Experimental LA-ICP-MS

All measured samples’ optical and intensity maps are shown
in Fig. 3, alongside the grain boundary segmentation used to
isolate the grain interior and boundary intensities. A compar-
ison of the optical images and intensity maps in Fig. 3 shows
sodium is concentrated preferentially at the grain boundaries
compared with grain interiors for all measured samples. This
bimodal distribution is evident in Fig. 4, which shows the re-
sulting frequency-normalised impurity distributions acquired
from overlaying the boundary segmentation mask onto the
intensity maps for each measured sample. All samples have
higher average intensities at grain boundaries than in grain
interiors. Pixels below the detection limit of the ICP-MS have
their intensities recorded as zero after drift and background
correction. Note that different intensity plots are not directly
comparable, as no calibration was performed.

Individual, spatially averaged, and smoothed signals col-
lected from the EDC Holocene sample are shown in Fig. 5.
Equivalent figures for all other measured ice samples are
shown in the Supplement. Similarly to what was noted in
previous studies (Bohleber et al., 2020; Della Lunga et al.,
2017), experimentally collected signals vary significantly
when collected at different lateral positions on the ice sur-
face due in part to the association of impurities with grain
boundaries. The two signals plotted in Fig. 5a for the EDC
Holocene sample are laterally separated by 160 µm. Even
at this short distance, the signals have different numbers of
peaks at varying positions and intensities. The spatially aver-
aged signal in Fig. 5b averages these differences somewhat,
lowering overall intensity variations (note the different y-axis
scale). This averaging and smoothing is further evident in
Fig. 5c, a smoothed version of the data in panel (b).

3.2 Computational

Parameterised by the grain radii reported in Table 1 and im-
purity distributions in Fig. 4, modelled representations of ice
microstructure and impurity distribution were produced for
all the analysed ice sections. All samples are modelled to
have a cross-sectional area of 1 by 2± 0.2 cm, with lengths
corresponding to the sample lengths from Table 1. This was
computationally more efficient than generating a full 3.5
by 3.5 cm cross-section typically used in CFA, although no
principal limitation prevents simulation of a volume with
this cross-section. Both EDC and the RECAP LGP samples
were generated in approximately 0.5 d using a laptop com-
puter. The RECAP Holocene sample required more RAM
to manage larger grain sizes and took 4 d to generate on
a high-performance computing system. To illustrate the ex-
tremes in grain sizes, one face from each of the 3D-modelled
EDC Holocene and RECAP Holocene samples is shown in
Fig. 6. The simulated LA-ICP-MS signals plotted for EDC

Holocene in Fig. 7 originate from profiles taken along the
face shown in Fig. 6a. Equivalent figures for all other mod-
elled ice volumes are contained in the Supplement.

Figure 7 shows signals collected under different simu-
lated conditions, with intensity values normalised such that
I has an intensity of 1. Figure 7a shows two modelled sig-
nals, collected using a 40 µm laser spot, that are separated
by 160 µm, representing the modelled equivalent of the two
profiles in Fig. 5a. The modelled LA-ICP-MS signals show
the same general features as experimentally measured LA-
ICP-MS signals, with large spikes in intensity where pro-
files intersect grain boundaries. Figure 7b shows the result
of simulating two profiles, centred at the same point as those
in panel (a), with a spot size of 120 µm, comparable to the
100 µm spot size used in previous studies (Spaulding et al.,
2017; Sneed et al., 2015), which show less variation around
I . The spatially averaged signal resulting from combining all
40 µm profiles along the illustrated modelled face, shown in
Fig. 6a, is plotted in Fig. 7c, and its CFA-resolution smoothed
equivalent is plotted in panel (d). These signals represent the
largest number of data which can be collected if limited to
measuring the surface of only one face of ice samples during
LA-ICP-MS, which is a common restriction for such anal-
ysis. The simulated CFA signal is plotted in panel (e) and
shows the least variation around the mean of all simulated
signals. The large smoothing applied to the signals plotted in
panels (d) and (e) reduces the variation around I to the order
of 2 % or less. In the illustrated case, both signals are sim-
ilar in the sense that they show very little variation around
I , although, at the narrow range of intensity values in this
plotted data, the signals show roughly opposite trends. Data
for the other modelled samples contained in the Supplement
show both similar and dissimilar trends, highlighting this as
a product of the narrow y scale used for these plots.

MAD values are visualised for data collected from mod-
elled EDC Holocene and RECAP Holocene ice in Fig. 8,
with key values for all ice samples reported in Table 2. Fig-
ure 8 shows how the MAD for different signals changes
based on how many profiles are combined to construct a
spatially averaged signal and how much smoothing is ap-
plied. Data for the EDC Holocene sample are shown in pan-
els (a) and (b), and data for the RECAP Holocene sample
are shown in panels (c) and (d). Panels (a) and (c) show
data for 40 µm spot size signals, and panels (b) and (d) show
data for 280 µm spot size signals. The general trends are that
(1) MAD decreases asymptotically as more profiles are aver-
aged; (2) smoothing reduces signal MAD by some constant,
regardless of the number of profiles a spatially averaged sig-
nal comprises; and (3) larger spot sizes produce signals with
smaller MADs. These general trends hold for all measured
ice intervals. For the EDC Holocene ice, single-profile sig-
nals taken at 40 µm have MADs of over 100 %, meaning that
signal intensities can vary by over 100 % of the mean inten-
sity in the space. By comparison, the simulated CFA signal,
which gives the most representative signals of those simu-

The Cryosphere, 19, 1373–1390, 2025 https://doi.org/10.5194/tc-19-1373-2025



P. Larkman et al.: Ice core impurity variability at the microscale 1379

Figure 3. Columns show the optical image (left), grain boundary segmentation (middle), and sodium intensity map (right) for all of the
analysed samples, with one sample in each row. The dark grid visible in the optical mosaics is an imaging artefact. Grain boundaries are
visible as dark lines in the optical image, and bubbles are visible as dark rounded regions. Each intensity map has its own intensity scale.
The spatial scale bar relates to all images for each sample. The areas shown in this image are small snapshots, with the full data shared in the
repository associated with this work.

lated, has a deviation of 0.7 %. Spatially averaged signals
constructed from 10 profiles, such as the signal experimen-
tally measured and plotted in Fig. 5b, show variations on av-
erage of 62 % for EDC Holocene, suggesting these signals
are still affected to a high degree by impurity localisation.
Ice with larger grain sizes returns signals (collected under
the same experimental conditions) with larger MADs, with
the RECAP Holocene ice showing larger MAD values for all
signals.

The asymptotic behaviour of the MAD plots motivates cal-
culating the number of profiles required to improve the MAD
by some factor. Table 2 contains the additional number of
profiles required to achieve a relative decrease in MAD by
a factor of 2. These values show that large relative improve-
ment in MADs can be made by measuring a small number of
extra profiles. Where an absolute MAD is targeted, thresh-

olds such as the red line in each panel of Fig. 8, which illus-
trates reaching an arbitrary limit of 20 %, can be considered.
The number of profiles required to reach this threshold is also
recorded in Table 2.

4 Discussion

4.1 Measured impurity distribution

The empirically measured single-line profiles in Fig. 5a and
their modelled equivalent in Fig. 7a show large intensity
spikes with clear differences between profiles separated by
even short distances on the ice’s surface. This is the same
behaviour shown by data collected during previous LA-ICP-
MS studies (e.g. Bohleber et al., 2021) and is interpreted as
an effect of the localisation of impurities at grain boundaries,
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1380 P. Larkman et al.: Ice core impurity variability at the microscale

Figure 4. Sodium intensity probability distributions for all measured samples. These distributions result from the normalisation of distribu-
tions acquired from the application of binary masks which separate grain boundaries from grain interiors to the intensity maps, both shown
in Fig. 3. The zero-intensity cross represents pixels with intensities below the detection limit of the ICP-MS. The legend applies to all plots.

as illustrated in Fig. 3. In this context, sodium provides a
suitable archetypal soluble impurity with distribution mainly
at grain boundaries, simplifying considerations of impurities
located in grain interiors. Combining experimentally mea-
sured profiles to make spatially averaged signals resulting in
output such as that plotted in Fig. 5b and subsequent smooth-
ing, shown in panel (c), results in signals with less variability.

Notably, as experimentation between ice samples was car-
ried out on different days without calibration, intensity sig-
nals are not directly comparable between plots. Here, re-
cently developed techniques for calibrating high-resolution
LA-ICP-MS data (Bohleber et al., 2024a) would allow more
straightforward comparisons to be made between data taken
from different core sections over different time periods.

4.2 Model suitability to represent ice samples

With comparatively small maps (a few mm2) as input and
knowledge of the local average grain size, this new frame-
work can generate a 3D ice volume representing the ice
sample’s structure and impurity distribution. By design, the
model’s representativity of physical ice samples holds in a
statistical sense, justifying the transferability of model find-
ings back to physical ice samples. Although a one-to-one
physical representation was not the target, some noteworthy
analogies exist: Voronoi tessellations are frequently used to
create modelled structures representing polycrystalline ma-

terials such as metals (Zheng et al., 1996). There is a phe-
nomenological link between grains in metallic systems and
glacier ice, with both material classes growing over time ac-
cording to a similar growth law (Alley et al., 1986), that moti-
vates the use of Poisson–Voronoi tessellations to form the mi-
crostructure of modelled ice samples. Poisson–Voronoi tes-
sellations, glacier ice, and metals have similar grain volume
distributions and grain shapes. In ice, grain shapes are typ-
ically considered isometric (Cuffey and Patterson, 2010). It
was found that a distance metric with p = 3 in Eq. (1) pro-
duces the most appropriate grain shapes for modelling ice.
Changing to Euclidean distance (p = 2) produces solely pla-
nar grain boundaries, and increasing p above 3 increases
computational time with little difference in grain shapes.

With grain shapes determined by the chosen growth
model, the grain volume remains the only free parameter.
The mean grain volume determines the appropriate number
density of seed points in the Voronoi diagram required to pro-
duce target modelled grain volumes. Therefore, estimating a
representative mean grain volume or radius for the ice sam-
ple plays an important role in generating an adequate repre-
sentation in the model. For the space dimensions and grain
radii reported in Table 1, the modelled spaces have grains
only partially contained in the modelled volume with no full
grains modelled, meaning the grain volumes cannot be di-
rectly estimated. This clearly adds further complexity. A de-
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Figure 5. Measured LA-ICP-MS signals resulting from line profiles taken across the surface of the EDC Holocene sample. All profiles run
down the central core axis. Panel (a) shows two signals resulting from two parallel laser tracks. Panel (b) shows the spatially averaged signal
resulting from combining all measured parallel profiles, including the two signals in panel (a), with a range of separations between adjacent
profiles. Panel (c) shows this spatially averaged signal after smoothing to a 1 cm resolution and has a linear y axis, as the variations at this
level of smoothing are relatively small.

tailed discussion on the grain size distribution of modelled
volumes is contained in the Supplement. This material shows
that grain volumes vary around the mean grain volume, con-
forming well to a gamma distribution. Notably, this grain vol-
ume distribution closely matches the empirically observed
log-normal grain volume distribution from the EDC ice core
for grains at depths above 2812 m (Durand et al., 2009). Nor-
mal grain growth dominates grain evolution over recrystalli-
sation processes at these depths at the EDC drill site. Since
there is no similar study available for the RECAP ice core,
we assume this grain size distribution also suitably applies to
these samples. Comparing the modelled EDC Holocene face,
panels (a) and (b) in Fig. 6, with the RECAP Holocene face,
panels (c) and (d), illustrates how the model captures differ-
ent grain sizes and impurity imprints modelled for different
samples.

4.3 Framework application

LA-ICP-MS ice core analysis is seeing growing interest,
with several experimental setups being operated by differ-
ent groups, all differing in experimental settings and spatial
resolution. In this context, the framework presented here can
allow improved comparison between the outputs of differ-
ent experimental setups and can form a conceptual founda-

tion for inter-technique comparisons, first and foremost with
CFA, that can be further built upon.

The goal of many LA-ICP-MS analyses is to collect an
underlying climate signal with 1D line profiles, the interpre-
tation of which should be invariant of the method used to
collect the signal and the lateral position from which data
are collected. As recognised early on, it remains doubtful
whether this goal has already been achieved (Della Lunga
et al., 2017), and imaging fully revealed the origin of this
problem lying in the grain boundary imprint (Bohleber et al.,
2020). To contribute further to this discussion, the modelled
ice volumes produced in this work can be analysed for a va-
riety of different ice and impurity conditions and without the
constraints placed on experimental analyses. While routine
experimental LA-ICP-MS currently facilitates the collection
of square-millimetre-sized maps and tens of profiles from the
surface of ice samples, modelled volumes can be used to con-
struct square-centimetre-sized maps and all possible profiles
throughout a 3D volume. While discussion confined to a 2D
matrix would add value in itself, the 3D nature of the model
allows the simulation of a CFA signal and therefore a di-
rect comparison of modelled LA-ICP-MS and CFA signals,
which should be verified against experimental data in the fu-
ture, which is only possible as this is a 3D model. A consid-
eration for experimental verification is that a direct compari-
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Figure 6. The intensity, (a) and (c), and structural, (b) and (d), representations of one modelled face of the EDC Holocene and RECAP
Holocene samples. The structural representation shows grains as different shades (which do not hold any special significance), separated by
grain boundaries represented in red. The colour scale for the intensity representations has been adjusted for readability and holds the general
trend of brighter colours showing greater intensities, as used in Fig. 2. Each of the rows in the intensity representation can be taken as a
separate laser profile. The green and magenta lines in panels (a) and (b) show the track of the profiles plotted in Fig. 7 for the EDC Holocene
sample, separated by the lateral separation reported in Table 1. This separation is illustrated in panel (c).

son between signals generated by experimental LA-ICP-MS
and CFA is currently not possible due to spatial offsets intro-
duced between techniques during measurement. This offset
arises as LA-ICP-MS measurements are carried out on the
outer portion of ice that would be sent to waste as a decon-
tamination procedure during CFA (Dallmayr et al., 2016).

The variability in experimentally acquired signals results
from a superposition of different signals originating from the
grain structure, ice layering, experimental settings, and more.
On the other hand, intentionally in its present configuration,
any variation in modelled signals is due to impurity localisa-

tion, allowing this effect to be investigated in isolation. This
variation is illustrated in Fig. 7, with all signals displaying
some deviation from I . The model allows quantification of
the magnitude of this imprint across scales and makes quanti-
tative predictions on the experimental design (e.g. how many
line profiles to collect) required to manage this imprint. No-
tably, this application is independent of whether calibrated
signals or intensities are analysed.
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Figure 7. Line profile signals for the modelled EDC Holocene ice normalised by dividing by the volume average intensity, I . Panel (a) shows
signals acquired from 40 µm spot size profiles taken from the tracks indicated in Fig. 6 and is the modelled equivalent of the plot in Fig. 5a.
Signals resulting from simulating a 120 µm spot size along these profiles are shown in panel (b). The resulting signal from combining all
possible profiles from the face in Fig. 6 is shown unsmoothed in panel (c) and smoothed to CFA resolution in panel (d). The simulated CFA
signal is plotted in panel (e). Note the different y-axis scales for each panel, particularly the small range used in panels (d) and (e) to capture
the small variation shown in these signals.

4.3.1 Capturing a representative signal

To date, criteria guiding the collection of layer-representative
signals using LA-ICP-MS have been suggested based on the
coherence of line profiles (Bohleber et al., 2021) and coher-
ence with CFA signals (Spaulding et al., 2017; Della Lunga
et al., 2017). In the modelled space employed here, a sig-
nal that fully captures the underlying layer would have the
value I at all positions. Therefore, signals which are coher-
ent are likely also representative. From top to bottom, (panels
a through e), the panels in Fig. 7 show convergence to I . This
convergence can be explained by each subsequent signal re-
sulting from profiles that sample more volume per unit depth
or have increasing smoothing between depths. Clearly, sig-
nals that sample more material per unit depth, such as CFA,
are less influenced by variations due to the spatial distribution
of impurities. Accordingly, it is not surprising that Table 2
shows that simulated CFA signals have the lowest MADs.
Grain size is not the only factor affecting signal MADs, with
the specific impurity distribution, influenced by the impurity
species and climate period, and the localisation process itself
forming important considerations.

Quantification of signal representativeness can be used to
guide experimental design. Reported CFA MAD values are
specific to a hypothetical melthead with a 1 by 2 cm cross-
section and would further reduce if a larger cross-sectional
area (and therefore more volume per unit depth) were melted.
Comparing MADs for different samples reveals a possible

motivation for requiring CFA analysis with higher repre-
sentativeness. It is evident that a significant contribution to
higher signal MADs is increasing grain size. This suggests
that quantifying signal representativeness may become rel-
evant for discrete and continuous bulk analysis on samples
with very large grain volumes, e.g. in deep ice, as even
centimetre-sized samples may only contain small numbers
of grains and their boundaries.

4.3.2 LA-ICP-MS experimental design

In the case of LA-ICP-MS, experimental design is also
driven by resolution and representativeness requirements.
The MAD of LA-ICP-MS signals is significantly reduced
when smoothed to the same resolution as CFA, therefore in-
creasing representativeness. This vertical-resolution reduc-
tion can be achieved through a combination of measur-
ing with larger spot sizes, using an analytical system with
large vertical signal mixing, or applying smoothing in post-
processing. Collecting the most representative LA-ICP-MS
signals requires combining and smoothing all signals on the
analysed face to give a MAD of 1.5 % for the EDC Holocene
sample, approaching that of CFA. In cases where high verti-
cal resolution is critical, signals with even lower MAD val-
ues can be collected by analysing a larger surface area, simi-
larly to increasing the cross-sectional area of ice analysed us-
ing CFA. This could be achieved by measuring samples with
larger surface areas or by collecting profiles from a fresh, i.e.
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Figure 8. Plots of calculated MAD values against the number of LA-ICP-MS profiles used to construct a spatially averaged signal for the
modelled EDC Holocene and RECAP Holocene faces shown in Fig. 6. As there are multiple ways to choose profiles for combination into a
spatially averaged signal, the solid line of each colour shows the mean result and the shaded region shows the range of MADs acquired for
different possible combined profiles. Panels (a) and (c) show results from simulating a 40 µm laser spot, and panels (b) and (d) show results
from simulating a 280 µm laser spot. Differently coloured regions show MAD values resulting from smoothing with different width Gaussian
kernels. An arbitrary threshold of 20 % is also shown (red line).

deeper in the x or y plane, ice surface. However, this comes
at the expense of increased measurement time.

The requirement that many profiles must be aver-
aged to produce high-resolution LA-ICP-MS signals with
high representativeness corroborates the assertion made by
Della Lunga et al. (2017) that “the averaging of the LA[-
ICP-MS] signal between two or more parallel tracks spaced
by a few millimetres is not only desirable, but necessary”.
The asymptotic behaviour of the MADs, shown in Fig. 8,

shows that increasing the number of profiles combined into
a spatially averaged signal initially returns a large reduction
in MADs and therefore an increase in signal representative-
ness. Table 2 shows that a relative increase in the represen-
tativeness by a factor of 2 can be achieved by measuring an
extra 11 profiles at 40 µm spot size for the EDC Holocene
samples and that even fewer are required to achieve the same
gain with larger spot sizes and more signal smoothing.
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Table 2. Information on modelled sample signal representativeness. MAD values are a tabulation of key results calculated using Eq. (3)
and are reported as the average MAD for the conditions indicated. MAD values for spatially averaged signals representing experimental
conditions are calculated based on the number of profiles reported in Table 1. The best-case LA-ICP-MS MAD values apply to the specific
sample geometry reported and assume the entire width of the 2 cm face is measured.

Ice core EDC EDC RECAP RECAP

Climate period Holocene LGP Holocene LGP

MAD values (%) for experimental LA-ICP-MS conditions reported in Table 1

Single profiles, 40 µm, unsmoothed 117 135 146 130
All profiles spatially averaged, 40 µm, unsmoothed 62 78 112 85
All profiles spatially averaged, 40 µm, σ = 10000 µm 6 9 15 11

CFA MAD value (%)

Smoothed with σ = 10000 µm kernel 0.7 0.7 1.6 1.5

MAD values (%) for all face profiles spatially averaged LA-ICP-MS

40 µm, unsmoothed 19 26 33 24
40 µm, σ = 10000 µm 1.6 4.7 5.6 1.9
280 µm, unsmoothed 15 19 26 18
280 µm, σ = 10000 µm 1.5 4.7 5.9 1.9

Approximate increase in number of LA-ICP-MS profiles required to reduce MAD by a factor of 2

40 µm, unsmoothed 11 13 20 13
40 µm, σ = 10000 µm 4 5 6 5
280 µm, unsmoothed 5 5 8 5
280 µm, σ = 10000 µm 4 5 5 5

Total number of spatially averaged LA-ICP-MS profiles required for less than 20 % MAD

40 µm, unsmoothed 456 1– – –
40 µm, σ = 10000 µm 1 2 3 2
280 µm, unsmoothed 15 31 – 35
280 µm, σ = 10000 µm 1 1 2 2

1 – indicates the value is unreachable.

While relative improvements are useful benchmarks, ex-
perimental design should also consider the absolute target
representativeness required to capture a climate signal, the
criteria for which will depend on the depth, age, and esti-
mated layer thickness of the target ice. To showcase a con-
crete example of how the model can be used to set an exper-
imental design according to a predefined limit for tolerable
signal MADs, we consider an arbitrarily selected MAD of
20 % acceptable. However, this is not a set value and should
be adapted according to the specific objectives of a set of
measurements. For EDC Holocene, Table 2 shows this can
be achieved through collecting signals in the following ways:

– At a resolution of 40 µm with no signal smoothing, at
least 465 profiles must be collected;

– At a resolution of 280 µm with no signal smoothing, at
least 9 profiles must be collected;

– At a resolution of 280 µm with signal smoothing to CFA
resolution, at least 1 profile must be collected.

As the spatial distribution of impurities varies between ele-
mental species and climate period, these values will vary for
different ice core samples and impurity types. Notably, the
collection of an unsmoothed spatially averaged profile with a
MAD of less than 20 % is not possible for the modelled RE-
CAP Holocene sample, but it illustrates the need for either
many profiles or low vertical resolution to achieve represen-
tativeness. Therefore, through determining a target MAD and
depth resolution, the nature of the analysis, e.g. LA-ICP-MS
or CFA, can be set to best extract a layer-representative signal
at the required resolution.

Under the right conditions, LA-ICP-MS analysis can re-
turn signals with higher resolutions and similar representa-
tiveness to those produced using CFA. This positions LA-
ICP-MS well as a tool to extract high-resolution climate
signals, with the important added value of LA-ICP-MS be-
ing a micro-destructive technique, allowing revisiting of ice
archives and performance of round-robin experiments among
different laboratories with their own analytical strengths.
Given the requirement for many profiles to be measured,
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there is a clear benefit to increasing the spatial extent over
which information is collected by LA-ICP-MS. To achieve
such measurements, experimental and analytical develop-
ments are required. Large sample chambers have merits
(Sneed et al., 2015; Stoll et al., 2023), and this should be
considered during the cutting and processing of target ice
samples. However, imaging areas larger than a few square
millimetres currently requires prohibitively long measure-
ments. This restriction can be somewhat mitigated by high-
repetition-rate LA systems which may allow chemical data
to be collected over very large surface areas of ice samples.
The model developed here may significantly aid the design
of such experiments, by a priori determining the desired spot
size and resolution. This will allow representative, lateral
position-invariant signals to be collected at high resolution
using LA-ICP-MS. However, especially for deep ice, we will
require a better understanding of how a climate signal mani-
fests at the microscale. This involves a better understanding
of the processes driving the localisation of soluble impurities
at grain boundaries, possibly occurring during the transition
from snow to firn and subsequently ice (Stoll et al., 2023).
Related effects comprise impurity diffusion (Barnes et al.,
2003; Ng, 2021), the study of which could utilise modelled
ice structures created by 3D Poisson–Voronoi tessellations.

4.3.3 Calibrated signals

Using calibrated LA-ICP-MS data as an input to this frame-
work can strengthen its use cases and the links between LA-
ICP-MS and CFA. Given the challenges involved in collect-
ing calibrated LA-ICP-MS data (Miliszkiewicz et al., 2015;
Mervič et al., 2024) a dataset comprising both calibrated 2D
and centimetre-length 1D LA-ICP-MS data on ice core sam-
ples is not currently available. However, a recent publication
by Bohleber et al. (2024a) presents approaches to calibrat-
ing high-resolution LA-ICP-MS data collected from ice core
samples. One method involves pipetting 0.5 µL volumes of
standard solutions, with known concentrations covering the
range typically expected from ice core samples, onto a slide.
The droplets are subsequently rapidly frozen and then mea-
sured using LA-ICP-MS. The resulting data allow a calibra-
tion curve, linking the concentration of each drop to an in-
strumental intensity, to be produced. The study applies this
calibration curve to 2D data collected from ice samples origi-
nating close in depth to the EDC data discussed in this study,
providing an example of calibrated data collected from ice
cores using LA-ICP-MS.

To extend the modelling discussion to incorporate the lim-
ited available calibrated LA-ICP-MS ice core data, models
were generated based on data collected from the EDC core
at depths of 281.8 m (Holocene) and 1096.5 m (LGP) (Bohle-
ber et al., 2024b). Given the proximity of these samples to
those reported in Table 1, the grain radii reported in this table
are considered suitably representative. The experimental and
modelled data the following discussion is based on, with data

Table 3. Compilation of measured and modelled concentrations of
samples reported in Bohleber et al. (2024a) originating from the
EDC core at depths of 281.8 m (Holocene) and 1096.5 m (LGP).
Two-dimensional map values are the average of all pixels in the
LA-ICP-MS maps and bulk values returned from measuring dis-
crete melted ice volumes using ICP time-of-flight MS, both reported
by Bohleber et al. (2024a). The modelled prediction is the mean in-
tensity of all voxels in the 3D volume discussed in Sect. S3 of the
Supplement. Note that the Holocene LA-ICP-MS and bulk mea-
surements come from samples vertically separated by 50 cm. These
values provide a snapshot of concentrations at the measured depths.

Climate period Holocene LGP

Concentrations (ppb)
2D LA-ICP-MS map 15 54
Bulk measurement 30 35
Modelled prediction 15 30

equivalent to Figs. 4, 6, 7, and 8, can be found in Sect. S3 of
the Supplement, with the notable omission of experimental
LA-ICP-MS profiles which were not measured.

The main effect of the calibration is to reduce the mag-
nitude of variability between the grain interior and bound-
ary distributions, shown uncalibrated in Fig. 4, along the x
axis. The impact of the change from uncalibrated to cali-
brated data on signal representativeness can be investigated
in isolation of grain size variability by comparing the pairs of
uncalibrated and calibrated Holocene and LGP data. Reduc-
ing variability between the grain boundary and interior re-
gions reduces the variability in measured signals and, there-
fore, reduces signal MADs for all cases. Whether models,
and therefore conclusions on representativeness, should be
explored based on calibrated or uncalibrated data should be
carefully considered. The range of intensities output by an
ICP-MS instrument is large to allow high sensitivity and the
shift to calibrated data transformation of this measured inten-
sity. Calibrated signals should be measured experimentally,
using both LA-ICP-MS and CFA, and the model’s predic-
tions validated empirically.

These calibrated data, and the 3D nature of the model, also
allow comparison of the framework against further existing
empirical data. The study by Bohleber et al. (2024a) dis-
cusses calibrated LA-ICP-MS maps in relation to calibrated
bulk measurements collected using ICP time-of-flight MS.
While these measurements, providing a snapshot at specific
depths, return average concentrations similar in their order
of magnitude, there are discrepancies between 2D maps and
bulk data. Concentrations reported by Bohleber et al. (2024a)
for 2D LA-ICP-MS analysis and bulk measurements are re-
ported alongside new modelling results in Table 3.

The modelled bulk concentrations agree to 1 order of mag-
nitude with measured results. The variability in these val-
ues could be due to several factors, including 2D maps not
fully representing bulk impurity content, spatial offsets in
measurements, and grain size variability within a sample.
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This small-scale variability can now be investigated through
a modelled sensitivity analysis, where modelled volumes
with variability in grain sizes and impurity distribution have
their bulk concentrations compared. This allows quantita-
tive exploration of the small variability between modelled
and measured bulk concentrations and LA-ICP-MS map av-
erages. These observations again motivate the collection of
further calibrated datasets, including LA-ICP-MS and asso-
ciated CFA data, to extend this discussion from a bulk to a
depth-wise comparison.

4.4 Potential extensions

The framework presented can be adapted to a broad range
of ice samples. In particular for deep ice, and at sites where
ice is deformed under high temperatures and stresses, such
as at the site of the EGRIP core (Stoll et al., 2024), imple-
menting additional constraints will be crucial. The structure
and impurity distribution of ice must be suitably captured at
the grain scale, which is much larger in deep ice. This entails
simulation of signals over a large enough volume, which re-
quires careful management of computational resources. The
current process limiting computational performance is the
speed of structure generation, which rapidly increases with
increasing grain size in the current implementation. This ex-
plains the large increase in model generation time for the RE-
CAP Holocene sample in comparison with the other samples.
To overcome this limitation, a more efficient structure gener-
ation could be implemented which exploits parallel process-
ing. Then, the following applications appear as worthwhile
additions to improve the model representation of various ice
conditions.

The modelled ice generated in this study represents the ba-
sic structure of ice well but does not include features typical
of glacier ice beyond grains and their boundaries. Ice samples
contain other prominent features in their microstructure, such
as bubbles and insoluble impurities. Work that characterises
such features can be used to amend this framework to include
their effects on impurity distribution (Bohleber et al., 2023;
Stoll et al., 2021; Bendel et al., 2013). Considering insoluble
inclusions will allow this framework to be extended to chem-
ical species mostly present in dust. Profiles collected measur-
ing the insoluble impurity component are not treated in the
present study and likely show different representativeness be-
haviours. The probability distributions describing the local-
isation of these elements will likely be unique for each el-
ement; therefore, dimensionality reduction techniques could
be useful to allow analysis to be carried out to bring gener-
alised insight into multiple impurities in one model.

To capture ice microstructure representative of that seen in
deeper ice, grain shapes representing ice that has undergone
recrystallisation effects beyond normal grain growth will
have to be generated. Ice subject to deformation undergoes
dynamic recrystallisation processes that change the grain
fabric (Cuffey and Patterson, 2010). The resulting structures

are different to those generated by a Poisson–Voronoi tessel-
lation. A potential approach to creating such grain fabrics is
to start with a microstructure, such as a 3D Poisson–Voronoi
tessellation, and model vertical ice deformation in uniax-
ial compression, such as that seen in ice domes. Modelling
the microstructure evolution would yield a simplified com-
bination of normal grain growth and recrystallisation pro-
cesses. There is extensive literature discussing the compu-
tational modelling of microstructure recrystallisation (Hall-
berg, 2011). The redistribution of impurities under these re-
crystallisation processes and their impacts on the recrystalli-
sation processes themselves can also be incorporated into
such a model. Ice with more complex microstructures can
also be modelled, for example, by implementing more so-
phisticated Voronoi tessellations to precisely capture grain
volumes (Simone et al., 2017), capture grain size transitions
(Bourne et al., 2020), and implement preferred growth direc-
tions (van Nuland et al., 2021).

5 Conclusions

Attempts to extract palaeoclimate signals with single-line
profiles measured by LA-ICP-MS have suffered from severe
ambiguities in the past. Combining many individual signals
to produce a spatially averaged signal has been suspected as
a potential remedy, but only the framework developed here
adds a quantitative dimension to this problem. To do so, we
employ a physical-based model of the soluble microscopic
ice chemistry constructed using empirical data collected with
LA-ICP-MS and a 3D model of the ice matrix represented by
a Poisson–Voronoi structure. The framework is designed to
quantitatively assess the imprint of the ice matrix, the grain
boundary network, in 1D signals collected with LA-ICP-MS
for various ice conditions. These conditions are captured in
samples analysed from both Greenland and Antarctica from
both the Holocene and the Last Glacial Period. Results show
that a spatially averaged signal resulting from the combina-
tion of all profiles on a modelled ice sample’s face varies on
average by between 19 % to 33 % in the presented cases, with
increasing deviation for samples with larger average grain
sizes. This variation can be further reduced to between 1.5 %
and 5.9 % by smoothing these signals with a Gaussian kernel
to CFA resolution. The 3D nature of this model allows com-
parison between the surface LA-ICP-MS technique and bulk
meltwater analyses. Further additions to this framework are
foreseen to extend the representation also to include insol-
uble impurities and a broader range of ice conditions. This
framework provides a tool for quantitative guidance in set-
ting experimental parameters in LA-ICP-MS, which are im-
portant for both ice–impurity interactions and the layering
commonly associated with climatic signals. Considering the
evident merits of LA-ICP-MS delivering high-resolution im-
purity signals in a micro-destructive fashion, developments
to this approach may become particularly crucial for the sys-
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tematic planning of the collection of data from deep ice sam-
ples. This especially concerns ice collected from the ongo-
ing efforts to retrieve the oldest continuous ice record from
Antarctica and its interpretation.
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