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S1 Expansion to empirical and modelled results
Intensity values are not directly comparable between LA-ICP-MS measurements as data is un-calibrated. Drops to zero inten-
sity represent regions where impurity content was below limits of detection.

Plots for EDC LGP

Figure S1. Measured LA-ICP-MS signals from line profiles taken across the surface of the EDC LGP sample. All profiles run down the
central core axis. Panel (a) shows two signals resulting from two parallel laser tracks. Panel (b) shows the spatially averaged signal resulting
from combining all measured parallel profiles, including the two signals in (a), with a range of lateral separations between adjacent profiles.
Panel (c) shows this spatially averaged signal after smoothing to a CFA-like resolution of 1 cm.
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Figure S2. The intensity, (a), and structural, (b), representations of one modelled face of the EDC LGP sample. The structural representation
shows grains as different colours, separated by grain boundaries represented in black. Each of the rows in the intensity representation can be
taken as a separate laser profile. The green and magenta lines in both panels show the track of the profiles plotted in Fig. S3.

Figure S3. Line profile signals for the modelled EDC Holocene ice with intensity normalised by dividing the signal by the volume average
intensity. Panel (a) shows signals acquired from 40 µm spot size profiles taken from the tracks indicated in Fig. S2. Signals resulting from
simulating a 120 µm spot size along these profiles are shown in (b). The resulting signal from combining all possible profiles from the face
in Fig. S2 is shown unsmoothed in (c) and smoothed to CFA resolution in (d). The simulated CFA signal is plotted in (e). Note the different
y-axis scales for each panel.
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Figure S4. Plots of calculated MAD values against the number of LA-ICP-MS profiles used to construct a spatially averaged signal for the
modelled EDC LGP face shown in Fig. S2. As there are multiple ways to choose profiles for combination into a spatially averaged signal,
the solid line of each colour shows the mean result and the shaded region shows the range of MADs acquired for different possible profile
combinations. Panel (a) shows results from simulating a 40 µm laser spot and (b) a 280 µm laser spot. Different coloured regions show MAD
values resulting from smoothing signals with different width Gaussian kernels. An arbitrary threshold of 20 % is also shown (red line).
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Plots for RECAP Holocene

Figure S5. Plots equivalent to Fig. S1 showing the experimentally measured profiles from the RECAP Holocene sample.

Figure S6. Plots equivalent to Fig. S3 for the modelled RECAP Holocene sample.
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Plots for RECAP LGP

Figure S7. Plots equivalent to Fig. S1 showing the modelled data for the RECAP LGP sample.
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Figure S8. Plots equivalent to Fig. S2 showing the modelled data for the RECAP LGP sample.
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Figure S9. Plots equivalent to Fig. S3 showing the two profiles plotted in Fig. S8 for modelled the RECAP LGP sample.

Figure S10. Plots equivalent to Fig. S4 for the modelled RECAP LGM sample.
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S2 Modelled grain volumes
The three-dimensional Poisson Voronoi tessellations used for this analysis are parameterised by the grain number density that
matches the ice samples they represent. This number density, n, is calculated in a specific ice sample as

n=
1

4
3πr̄

3
(S1)

for a sample with grains of mean radius r̄, assuming spherical grain volume. The grain number density from equation S1 can
be multiplied by the total volume of a modelled space, V ,

N = V n (S2)

to get the total number of seed points, N, required to produce grains with mean size matching the target ice samples. Generating
a Poisson Voronoi tessellation with a number of seeds set by equation S2 results in a modelled space that contains grains of
varying volumes, vi, with a mean grain volume v̄,

v̄ =
1

N

N∑
i=1

vi. (S3)

From this mean grain volume, a normalised grain volume y can be defined as

y =
v

v̄
. (S4)

Grains vary in size conforming to a gamma distribution (Ferenc and Néda, 2007)

f(y) =
3125

24
(y)4 exp(−5y) (S5)

which is plotted in figures S11, S13, and S14 alongside observed modelled grain size distributions.

Fig. S11 shows that modelled systems’ grain volumes match the theoretical gamma distribution, with a shift to slightly smaller
grain volumes than targetted, and a large number of grains with very small volumes. This change in distribution can be ex-
plained by considering that, for all ice samples presented in this study, the ratio of the mean grain radius to the modelled volume
size results in grains that only exist partially within the modelled space. Typically, grain size analysis will be carried out only
considering the Voronoi cells (grains) that are wholly contained in the modelled volume (Quey et al., 2011). Therefore, to truly
extract the grain volume distribution, a sufficient number of grains must exist wholly within the simulated volume, which is
not the case for samples modelled in this study.
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Figure S11. Grain volume distribution for all modelled samples. Bin widths differ due to the different total numbers of grains.

To explore the statistics of grain volumes generated by the Voronoi tessellation used in this study, a model which has a large
number of grains wholly within its volume was produced. This modelled volume, shown partially in Fig. S12, has a relatively
large cubic volume, with voxel dimension 40 µm, volume side length 12000 µm, and a relatively small target grain radius
of 400 µm. This modelled volume does not represent any specific physical ice sample. Figure S13 shows the grain volume
distribution for all grains in this space, calculated by counting the number of voxels in each grain. Figure S14 shows the subset
of grains, only 15% of the total, in this volume that are wholly contained. The grains contained wholly in the volume have an
average grain radius of 410 µm and conform well to the expected grain volume distribution reported in equation S5.
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Figure S12. Two-dimensional representation of a face of a cube, dimension 12000 µm, with grains resulting from a Poisson Voronoi tessel-
lation shown in different colours and the boundaries between these grains shown in grey.
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Figure S13. Grain volume distribution for all grains generated in Fig. S12.

11



Figure S14. Grain volume distribution for the subset of grains fully contained within the same space as data plotted in Fig. S13.

Verification that modelled ice samples have a suitable grain volume distribution therefore can come from comparison with fig-
ures S13 and S14. To further verify these distributions, techniques such as that used for analysing high-resolution microstructure
data (Binder et al., 2013) could also be applied to estimate grain volumes.
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S3 Calibrated data results

EDC Holocene

Figures for data modelled from calibrated LA-ICP-MS images taken from a section of EDC ice at a depth of 281.8 m, published
by Bohleber et al. (2024).

Figure S15. Measured laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data with both calibrated and uncalibrated
scales (a) and segmentation mask (b) showing the input data used to model calibrated EDC Holocene ice.

Figure S16. The probability distributions for the likelihood of a model voxel being assigned a certain concentration for boundary and interior
voxels, according to the data shown in Fig. S20.
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Figure S17. Plots equivalent to Fig. S2 showing the modelled data for the calibrated EDC Holocene dataset.

Figure S18. Plots equivalent to Fig. S3 showing the two profiles plotted in Fig. S22 for modelled calibrated EDC Holocene data.
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Figure S19. Plots equivalent to Fig. S4 for modelled calibrated EDC Holocene data.

EDC LGP

Figures for data modelled from calibrated LA-ICP-MS images taken from a section of EDC ice at a depth of 1,096.5 m,
published by Bohleber et al. (2024).

Figure S20. Measured LA-ICP-MS data with both calibrated and uncalibrated scales (a) and segmentation mask (b) showing the input data
used to model calibrated EDC LGP ice.
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Figure S21. The probability distributions for the likelihood of a model voxel being assigned a certain concentration for boundary and interior
voxels, according to the data shown in Fig. S20.

Figure S22. Plots equivalent to Fig. S2 showing the modelled data for the calibrated EDC LGP dataset.
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Figure S23. Plots equivalent to Fig. S3 showing the two profiles plotted in Fig. S22 for modelled calibrated EDC LGP data.
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Figure S24. Plots equivalent to Fig. S4 for modelled calibrated EDC LGP data.
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