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Abstract. Ice mélange, a composite of sea ice and icebergs,
can have a major influence on sea-ice–ocean interactions.
However, ice mélange has not been represented in climate
models because numerically efficient realizations do not ex-
ist. This motivates the development of a prototype of a dy-
namic hybrid ice-mélange model that we present in this pa-
per. In our approach, icebergs are included as particles, while
sea ice is treated as a continuum. To derive a joint contin-
uum for ice mélange, we integrate particle properties into
the sea-ice continuum. Thus, icebergs are viewed as thick,
compact pieces of sea ice. The ice-mélange formulation is
based on the viscous–plastic sea-ice rheology, which is cur-
rently the most widely used material law for sea ice in cli-
mate models. Starting from the continuum mechanical for-
mulation, we modify the rheology such that icebergs are held
together by a modified tensile strength in the material law.
Due to the particle approach, we do not need highly resolved
spatial meshes to represent the typical size of icebergs in
ice mélange (< 300 m). Instead, icebergs can be tracked on
a subgrid level, while the typical resolution of the sea-ice
model can be maintained (≥ 10 km). This is an appealing
property for computational efficiency and for an inclusion
within large-scale models. In idealized test cases, we demon-
strate that the proposed changes in the material law allow
for a realistic representation of icebergs within the viscous–
plastic sea-ice rheology. Furthermore, we show that subgrid
dynamics, such as polynya formation due to grounded ice-
bergs, can be modelled with the hybrid approach. Overall,
this suggested extension of the viscous–plastic sea-ice model
is a promising path towards the integration of ice mélange
into climate models.

1 Introduction

Fjords with marine-terminating glaciers are commonly found
in the polar regions, e.g. around Greenland. These fjord sys-
tems can be filled with sea ice into which icebergs calve so
that a mixture of sea ice, bergy bits and icebergs is formed:
ice mélange. The ice mélange consists of many interacting
small icebergs (< 300 m) (Dowdeswell et al., 1992; Sulak
et al., 2017).

Observations based on field campaigns and remote sens-
ing data indicate that ice mélange affects the glacier–fjord
system either by releasing fresh water into the fjord (Ender-
lin et al., 2018; Moon et al., 2018; Mortensen et al., 2020)
or by creating a force at the glacier termini (Cassotto et al.,
2015; Bevan et al., 2019; Xie et al., 2019). This force might
have enough strength such that it prevents calving events
(e.g. Amundson et al., 2010; Krug et al., 2015; Bassis et al.,
2021), whereas the release of fresh water through icebergs
influences the fjord circulation and melting at the glacier ter-
mini (Davison et al., 2020).

Observing ice mélange is difficult, due to the sparsity of re-
mote sensing data and due to the challenges of taking in situ
measurements in dense ice conditions. To obtain insights into
the potential impact of ice mélange on glacier calving and
the underlying ocean circulation, numerical models are there-
fore necessary. The existing approaches used to include ice
mélange into models vary in their complexity. They range
from the full description of the ice-mélange dynamics (Ro-
bel, 2017; Burton et al., 2018) to the parameterization of spe-
cific interactions such as the load which the ice mélange cre-
ates at the glacier termini (Schlemm and Levermann, 2021).
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There are two distinct approaches in the scientific litera-
ture to model the dynamics of ice mélange. In particle meth-
ods the ice mélange is expressed using discrete interacting
particles, with single particles representing icebergs or sea-
ice floes (e.g. Robel, 2017; Burton et al., 2018). As discussed
by Vaňková and Holland (2017), implementing a full particle
approach into climate models would be extremely challeng-
ing due to the enormous numerical costs. In contrast, in the
continuum approach, the ice mélange is prescribed as a sin-
gle continuum (e.g. Pollard et al., 2018; Amundson et al.,
2024).

To provide a simple coupling between ice-mélange and
sea-ice modules used in climate models, Vaňková and Hol-
land (2017) introduced a continuum ice-mélange model,
where sea ice and icebergs build a joint continuum. Ice-
bergs are represented via thick compact pieces of sea ice,
which are tracked with a Lagrangian advection using mov-
ing meshes. In their model, the icebergs are held together via
a large tensile (and shear) strength, which is introduced by a
modification of the underlying cavitating fluid sea-ice rheol-
ogy (Flato and Hibler, 1992). The approach of Vaňková and
Holland (2017) requires a high spatial resolution to resolve
icebergs in the ice mélange. It is challenging to efficiently
solve the nonlinear momentum equation of the underlying
sea-ice model with existing solvers (Koldunov et al., 2019;
Mehlmann and Richter, 2017b). Currently, efficient solvers
for the ice-mélange model of Vaňková and Holland (2017)
are missing.

To overcome these difficulties, we introduce a hybrid ice-
mélange model. In this approach, the ice mélange is de-
scribed as a joint continuum consisting of sea ice (contin-
uum) and icebergs (particles). The use of particles in the hy-
brid approach allows us to track the icebergs on a subgrid
level. This has the advantage that icebergs do not need to be
explicitly resolved by the spatial mesh. Thus, the typical grid
size of several kilometres for a sea-ice model can be used to
simulate ice mélange. We derive the momentum equation of
the ice mélange by selectively modifying the tensile strength
of the sea-ice rheology. This concept is similar to the ap-
proach of Vaňková and Holland (2017), but instead of ap-
plying the cavitating fluid sea-ice rheology, we consider the
viscous–plastic (Hibler, 1979) material law, which has been
shown to be more realistic than the cavitating fluid model
(Kreyscher et al., 2000).

So far, most climate models have treated sea ice as
a viscous–plastic material using the viscous–plastic (Hi-
bler, 1979) or elastic–viscous–plastic (Hunke and Dukowicz,
1997) sea-ice rheology. These rheologies are used in 30 out
of the 33 global climate models of the Climate Model Inter-
comparison Project 5 (CMIP5) (Stroeve et al., 2014). Fur-
thermore, the study of Amundson and Burton (2018) indi-
cates that ice mélange exhibits viscous–plastic deformations.
Thus, an inclusion of ice mélange into climate models via a
modification of the viscous–plastic material law is a promis-
ing approach.

The paper is structured as follows. Sect. 2 presents the ice-
mélange model, and Sect. 3 outlines the used numerical dis-
cretization. The model is numerically evaluated in Sect. 4.
We discuss our results in Sect. 5 and summarize our conclu-
sions in Sect. 6.

2 Viscous–plastic ice-mélange model

Based on the representation of the sea-ice dynamics with
a viscous–plastic rheology, we develop a model for ice
mélange. As in the underlying sea-ice model (Hibler, 1979),
the ice-mélange model consists of three prognostic variables:
the ice-mélange’s thickness H , its concentration A within a
specific grid cell and horizontal velocity v. Ice mélange is
considered a joint continuum of sea ice and an iceberg dis-
tribution, integrated from a set of iceberg particles {p}. On
the continuum level, the icebergs are interpreted as thick and
compact pieces of sea ice. Every iceberg is represented by
a disc-shaped particle p, which is described by a radius rp
and a height hp, which can vary between the icebergs. We
assume that icebergs are represented by a finite number of
small, disc-shaped particles. Thus, the continuum thickness
and concentration of ice mélange are described as

H(x,y, t)=

{
Hsea ice(x,y, t) if p(x,y, t) 6∈ (x,y) ∈�,

hp if p(x,y, t) ∈ (x,y) ∈�.
(1)

A(x,y, t)=

{
Asea ice(x,y, t) if p(x,y, t) 6∈ (x,y) ∈�,

1 if p(x,y, t) ∈ (x,y) ∈�.
(2)

Here, � is the two-dimensional domain of interest, x and
y are the horizontal spatial coordinates, and t is the time.
In order to model the ice-mélange velocity, we formulate an
expansion of the viscous–plastic rheology that accounts for
icebergs. To keep icebergs (thick and concentrated pieces of
ice) in the ice-mélange formulation together, we modify the
tensile strength of the viscous–plastic law.

In the following, we first generally review the formulation
of the governing equations (Sect. 2.1) and the viscous–plastic
rheology (Sect. 2.2) before we modify its strength parameter-
ization (Sect. 2.3) to represent icebergs. The iceberg particle
interaction and the coupling to the continuum ice-mélange
formulation are outlined in Sect. 2.4.

2.1 Momentum and conservation equation

The drift of the ice mélange is described by the two-
dimensional momentum equation:

ρH∂tv =∇ · σ +Fb, (3)

where ρ = 900 kgm−3 is the ice density, and ∇ · σ describes
the divergence of the two-dimensional symmetric stress ten-
sor. The internal stresses are given by the material law de-
scribed in Sect. 2.3. The remaining terms collected in Fb,

Fb =−ρHf k× v− ρHg∇Hd + τatm− τocean(v), (4)
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model the body forces acting on the ice mélange: the Coriolis
parameter f with upward-pointing unit vector k, the grav-
ity constant g, the surface height Hd , and the atmospheric
and oceanic stresses given by τatm and τocean. These two drag
terms (Coon, 1980) are expressed as

τatm = Catmρatm‖vatm‖2 (vatm) , (5)
τocean(v)= Coceanρocean‖v− vocean‖2 (v− vocean) , (6)

where vatm describes the wind velocity and vocean the ocean
current. The corresponding densities are given by ρatm =

1.3 kgm−3 and ρocean = 1026 kgm−3. The drag coefficients
are Catm = 1.2× 10−3 and Cocean = 5.5× 10−3. Note that
‖·‖2 represents the Euclidean norm. The advection of the
sea-ice thickness Hsea ice and the concentration Asea ice are
calculated as

∂tHsea ice+ div(Hsea icev)= 0,
∂tAsea ice+ div(Asea icev)= 0, (7)

with Hsea ice ∈ [0,∞) and Asea ice ∈ [0,1] . The icebergs are
advected based on the continuum ice-mélange velocity v:

xp(t +1t)= xp(t)+

t+1t∫
t

v(xp(t̃), t̃)dt̃ , (8)

where xp = (xp,yp) is the position of the centre of particle
p.

2.2 Viscous–plastic rheology

Let σ̃ be the principal components of the stress tensor σ ,
given by

σ̃ 1 =
σ 11+ σ 22

2
+

√(
σ 11− σ 22

2

)2

+ σ 2
12,

σ̃ 2 =
σ 11+ σ 22

2
−

√(
σ 11− σ 22

2

)2

+ σ 2
12.

(9)

In the viscous–plastic model (Hibler, 1979), the states of the
stress, σ , are described by an elliptic yield curve of the form

F (σ̃ 1, σ̃ 2)=

(
σ̃ 1+ σ̃ 2+P

P

)2
+

(
σ̃ 1− σ̃ 2
P

e

)2
− 1= 0, (10)

where e = 2 is the minor axis of the ellipse, and P is the ice
strength modelled as

P = P ?H exp(−C(1−A)), (11)

with strength parameter P ? = 27.5×103 Nm−2, andC = 20.
The yield curve is expressed in terms of the principal com-
ponents of the stress tensor σ :

σ̃ 1 =
σ 11+ σ 22

2
+

√(
σ 11− σ 22

2

)2

+ σ 2
12,

σ̃ 2 =
σ 11+ σ 22

2
−

√(
σ 11− σ 22

2

)2

+ σ 2
12.

(12)

A visualization of the yield curve is given in Fig. 1 (blue
line). As there are no stress states on the yield curve with
(σ̃ 1, σ̃ 2) > 0, sea ice has no tensile strength (no resistance to
divergence) (Leppäranta, 2011). The stress states are related
to the strain rates,

ε̇ij =
1
2

{
∂xj vi + ∂xivj

}
, (13)

by the constitutive law (Hibler, 1979):

σ ij = 2ηε̇ij + (ζ − η)(ε̇11+ ε̇22)δij −
P

2
δij , (14)

where δij is the Kronecker symbol. The nonlinear shear ζ
and bulk viscosity η are chosen as

η = e−2ζ, ζ =
P

21(ε̇)
. (15)

To guarantee a smooth transition between the viscous and the
plastic regime, we follow Kreyscher et al. (2000) and choose

1(ε̇)=

√
1P (ε̇)2+1

2
min. (16)

In the case of the plastic regime, 1P (ε̇) is defined as

1P (ε̇)=

√(
ε̇2

11+ ε̇
2
22
)(

1+ e−2
)
+ 4e−2ε̇2

12+ 2ε̇11ε̇22
(
1− e−2

)
. (17)

The viscous regime is given as

1min(ε̇)= 2× 10−9. (18)

2.3 Strength parameterization

The absence of tensile strength in the original model is appar-
ent from the fact that the yield curve of the viscous–plastic
rheology does not contain combinations of (σ̃ 1, σ̃ 2) > 0 (see
the blue curve in Fig. 1). A tensile strength has been intro-
duced into this model, e.g. by König and Holland (2010)
to model landfast sea ice. Similar to Vaňková and Holland
(2017), which added a tensile strength into a cavitating fluid
model in order to prescribe ice mélange, we introduce a ten-
sile strength into the standard viscous–plastic sea-ice rheol-
ogy to model icebergs. This tensile strength leads to a resis-
tance to divergence in the presence of icebergs.

By including the tensile strength, the elliptic yield curve
is shifted into the first quadrant (red curve in Fig. 1). The
new centre of the ellipse is given by

(
−
P−T

2 ,−P−T2

)
, with

the maximum tensile strength T . Both P and T are positive
numbers. Thus, the modified elliptic yield curve is given by

F (σ̃ 1, σ̃ 2)=

(
σ̃ 1+ σ̃ 2+P − T

P + T

)2

+

(
σ̃ 1− σ̃ 2

P + T
e

)2

− 1= 0, (19)

with the elliptic ratio e. For T = 0 (no tensile strength), the
elliptic yield curve is equivalent to the ellipse of the viscous–
plastic sea-ice rheology (see Eq. 10). It is assumed that ∂F
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Figure 1. Two-dimensional yield curve in principal stress space
without (blue) and with (red) tensile strength. Pure divergence d is
at the origin of the graph; pure convergence is obtained at c. σ̃ 1 and
σ̃ 2 are the principal components of the stress tensor σ (see Eq. 14).

and the strain rates are perpendicular to the surface of the
yield curve (Leppäranta, 2011). Thus, the relation between
the stress tensor and the strain rates for the shifted yield curve
is derived by a normal flow rule:

ε̇ij = γ
∂F (σ 11,σ 22,σ 12,σ 21)

∂σ ij
, (20)

with γ > 0. This leads to the modified rheology

σ ij = 2ηε̇ij + (ζ − η)(ε̇11+ ε̇22)δij −
P − T

2
δij , (21)

with the bulk and shear viscosities as

ζ =
P + T

21
, η =

ζ

e2 =
P + T

21e2 . (22)

Following König and Holland (2010), we define the tensile
strength T relative to the compressive strength:

T = P ?H8. (23)

The indicator function 8 is given as

8(x,y)=

{
1 if (x− xp)2+ (y− yp)2 < r2,

0 if (x− xp)2+ (y− yp)2 ≥ r2.
(24)

2.4 Iceberg interaction

An interaction of two distinct particles pi and pj is modelled
by a hard disc model (Herman, 2011) if the particles overlap:

||xpi (t)− xpj (t)|| ≤ ri + rj , (25)

where ri and rj are the radii, and xpi (t)= (xpi ,ypi ) and
xpj (t)= (xpj ,ypj ) are the positions of the interacting par-
ticles pi and pj , respectively. The position of the overlap-
ping particles is corrected by assuming an inelastic collision

(Herman, 2011). For this, we use the last particle position at
which the particles had not collided and update the location
of the particles based on the ice-mélange velocity corrected
for the collision. The latter is calculated as follows:

ṽi = vi −
αij

mi
, ṽj = vj +

αij

mj
, (26)

where vi = v(xpi ,ypi , t) and vj = v(xpj ,ypj , t) are the cur-
rent velocities of the ice mélange, and mi and mj are the
masses of particle pi and pj , respectively. The coefficient
αij is given by

αij =
mimj

mi +mj
(1+ ε) · nij (vi − vj )nij , (27)

with the relative unit position nij =
xpi−xpj
‖xpi−xpj ‖

. The coeffi-

cient of restitution ε is set to 0.9, as this value has been used
in the past for sea ice (Shen et al., 1987). Since we assume
that icebergs are thick pieces of sea ice, this choice is appro-
priate.

3 Numerical discretization

The ice-mélange model is implemented in the open-source
academic software library Gascoigne (Braack et al., 2021),
which uses quadrilateral grids. On the mesh, the velocity un-
knowns are placed at the vertices, whereas the tracers are
staggered at the cell centres. This placement corresponds to
an A-grid- and a B-grid-type staggering for the velocity and
tracers, respectively. The velocity is approximated in space
with piecewise linear finite elements, whereas the tracers are
discretized as a piecewise constant per cell.

For the time discretization of the ice-mélange model, we
split the coupled system of equations in time. First, we ap-
proximate the solution of the momentum equation (Eq. 3).
Then, the solution of the transport (Eqs. 7 and 8) with the up-
dated velocity is computed. This choice of the implicit Euler
method is motivated by the fact that an explicit discretization
of the viscous–plastic sea-ice model requires a time step of
1s on a grid with a size of 100 km× 100 km (Ip et al., 1991).
We expect similar constraints for the ice-mélange model, be-
cause its rheology is based on the viscous–plastic sea-ice
model.

For our choice of an implicit temporal discretization, a
nonlinear system of differential equations needs to be solved
in every time step. We use a modified Newton method for
this solution as it shows improved convergence compared to
a standard Newton method and Picard solver (Mehlmann and
Richter, 2017a).

3.1 Coupling between particle and continuum method

In order to derive the continuum thickness and concentra-
tion of the ice mélange, the icebergs in the form of particles
need to be numerically coupled into the continuum sea-ice
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formulation. We realize this by calculating a continuum ice-
berg thickness and iceberg concentration in each cell K:

Aiceberg|K =
∑
p∈K

ap

|K|
, (28)

Hiceberg|K =
∑
p∈K

hpap

|K|
, (29)

with particle area ap = πr2
|K and area of a grid cell |K|.

We use the iceberg concentration to determine the tensile
strength in the presence of icebergs. Thus, the discretized
version of the tensile strength is given by

T =

{
0 if Aiceberg|K <

π(0.5
√
|K|)2

|K|
,

P ?HctensileAsea ice else.
(30)

In the discretized version, we account for the sea-ice con-
centration weighted by a constant ctensile. For the sake of
simplicity, we choose ctensile = 1. The inclusion of the sea-
ice concentration allows us, for example, to model no tensile
strength between icebergs if there is no sea ice present.

The threshold is selected such that the tensile strength be-
comes active as soon as an area of the grid cell is filled
with icebergs that cover an area at least as large as a disc-
shaped iceberg with radius of

√
|K|
2 . This choice is discussed

in Sect. 5.
The ice-mélange concentration and thickness in each grid

cell are given by

A|K =min(Aiceberg|K +Asea ice|K ,1), (31)
H |K =Hiceberg|K +Hsea ice|K . (32)

In the presence of icebergs, sea ice is more compressed
and thicker compared to areas without icebergs. The effec-
tive sea-ice thickness and sea-ice concentration are given
by Ãsea ice :=min

(
Asea ice/(1−Aiceberg),1

)
and H̃sea ice :=

Hsea ice/(1−Aiceberg), respectively. In the context of this ice-
mélange formulation, we assume that icebergs are repre-
sented by a finite number of small particles with rp ≤

√
K
2 .

We summarize the time discretization of the ice-mélange
dynamics in Algorithm 1. The time loop starts with the cal-
culation of the iceberg distribution (Eq. 28) and the compu-
tation of the ice-mélange tracers (Eqs. 31, 32), which corre-
sponds to step 1 and step 2 of Algorithm 1. Then, the updated
ice-mélange tracers are coupled to the momentum equation
to solve for the ice-mélange velocity (step 3 of Algorithm 1).
To calculate the advection of ice mélange in Eqs. (7) and (8),
we separately transport the continuum sea-ice tracers and the
iceberg particles (step 4 and step 5 of Algorithm 1, respec-
tively). Sea ice in Eq. (7) is advected via an upwind scheme,
while the particles are transported according to Eq. (8) in a
substepping procedure. With this approach, each particle is
advected with the corresponding ice-mélange velocity. The

latter is given by evaluating the piecewise linear finite ele-
ment interpolation at the particle location. During the sub-
stepping procedure, the icebergs are checked for collisions
with other icebergs or with the boundary of the domain and
then replaced accordingly to Eq. (26).

Algorithm 1 Partitioned time-stepping loop.

Let I = [0,T ] be the time span of interest, and let
v(t0), {xp(t0)},Asea ice(t0) and Hsea ice(t0) be the initial solu-
tions of the ice-mélange velocity, the initial position of each
particle, the sea-ice concentration and sea-ice thickness at time
t0 = 0, respectively. The time period is discretized into equidis-
tant steps: 0= t0 < t1, . . .,< tN = T . The following time itera-
tion is performed for n= 1,2, . . .,N .

1. Derive an average iceberg concentration Aiceberg(tn) and ice-
berg thickness Hiceberg(tn) (Eq. 28) based on the set of corre-
sponding particle positions {xp(tn− 1)}.

2. Calculate the ice-mélange concentration A(tn) (Eq. 31) and
ice-mélange thicknessH(tn) (Eq. 32) based on the concentra-
tion and thickness of the continuum sea-ice and iceberg dis-
tribution, Asea ice(tn−1),Hsea ice(tn−1),Aiceberg(tn−1) and
Hiceberg(tn−1), respectively.

3. Solve the momentum equation (Eq. 3) based on A(tn) and
H(tn):

v(tn−1)→ v(tn).

4. Solve the advection Eq. (7) based on the velocity v (tn ):

Asea ice(tn−1)→ Asea ice(tn).

5. Based on a partitioning into equidistant substeps tn−1 =
tm−1 < .. . < tm = tn, calculate for m= 1,2, . . .,M the par-
ticle position (Eq. 8) based on v(tn) and account for particle
interaction in the case of collision between particles (Eq. 26):

xp(tm−1)→ xp(tm).

4 Numerical validation

The proposed hybrid ice-mélange model is tested in six ideal-
ized test cases. The first three test cases (Sect. 4.1) highlight
the need for introducing a tensile strength for icebergs into
the viscous–plastic sea-ice rheology. Based on the verifica-
tion of the modified tensile strength, we numerically analyse
the combination of particle and continuum methods to repre-
sent ice mélange in the last three test cases (Sect. 4.2).

4.1 Tensile strength

The first three test cases are designed such that the behaviour
of the ice mélange is tested under compressive (Sect. 4.1.1),
tensile (Sect. 4.1.2) and shear (Sect. 4.1.3) forces. For the
sake of simplicity, we use vocean = 0 ms−1. In order to re-
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duce the complexity of the analysis of the modified tensile
strength, we neglect the particle coupling in these first three
test cases. Instead of simulating the iceberg motion via par-
ticles and integrating it into the sea-ice continuum, we track
the icebergs (thick and compact pieces of sea ice) in the sea
ice via an indicator function φ that is transported in time:

∂tφ+ div(φv)= 0, φ(x,y,0)= δxy, (33)

where δxy is the Kronecker symbol that equals 1 in the pres-
ence of icebergs. According to the volume-in-fluid method
(Hirt and Nichols, 1982), the indicator function8 of Eq. (23)
is modified to

8=

{
0 if φ ≤ c for sea ice,

1 if φ > c for icebergs.
(34)

We have chosen c = 0.3 by experimental tuning.

4.1.1 Iceberg pushed against a wall

The first test case is similar to the one used by Vaňková and
Holland (2017). The domain is given by an area of the size
5 km× 5 km; see left plot in Fig. 2. All boundaries except
the exit to the ocean (right boundary) use Dirichlet boundary
conditions (v = 0). The upper and lower boundaries repre-
sent coastlines, while the boundary on the left represents the
glacier terminus. We place a 1 km× 2 km large iceberg in
front of the glacier wall. A grid cell size of 110 m is used.
The iceberg is a 10 m thick compact block of sea ice with a
concentration of 1. The left half (< 2.5 km) of the domain is
filled with 0.1 m thick sea ice with a concentration of 0.1. The
iceberg is pushed against the glacier terminus by a constant
wind vatm = 20 ms−1.

The simulation is run for 3 h. When comparing the stan-
dard viscous–plastic rheology and the modified material law
(Fig. 2), we find that for the standard viscous–plastic rheol-
ogy the thick and compact piece of sea ice, which models the
iceberg, deforms towards the glacier and accumulates in front
of the glacier terminus. This is visible by the thick red line
shown in Fig. 2a, which visualizes the iceberg’s contour. The
sea ice along the glacier terminus (outside the contour line)
piles up. With the proposed modification, the iceberg is able
to keep its rectangular shape throughout the simulation (see
Fig. 2b). This test case shows that in our modified viscous–
plastic rheology, the iceberg can withstand the compression,
initiated by the wind forcing.

4.1.2 Iceberg under a divergent wind field

We consider a 5 km× 5 km large domain with a divergent
wind field:

vatm =

{
15ms−1 x > 2.5km,

−15ms−1 x < 2.5km.
(35)

The 10 m thick iceberg with a concentration of 1 is placed in
the middle of the domain. The whole domain is filled with

sea ice whose concentration is 0.1 and whose thickness is
0.1 m. Using the standard viscous–plastic rheology, the ice-
berg is torn apart after 3 h (see Fig. 3a). With additional ten-
sile strength, the iceberg keeps its form (see Fig. 3b). The
surrounding sea ice is still transported in the wind direction.
This test case shows, in particular, that the iceberg maintains
its shape under diverging wind conditions at the location of
the iceberg.

4.1.3 Iceberg under shear

In the third test case, the same initial setup as in Sect. 4.1.2
is used. But instead of using a divergent wind field, we apply
a shearing wind field:

vatm =

{
15ms−1 y > 2.5km,

−15ms−1 y < 2.5km.
(36)

The domain of size 5 km× 5 km is filled with 0.1 m thick sea
ice with a concentration of 0.1.

In both cases, the iceberg rotates clockwise (see Fig. 4) as
expected. Using the standard viscous–plastic rheology, the
iceberg deforms. Fig. 4a shows that the iceberg contour is
slightly S-shaped, and parts from the iceberg already detach.
This is in contrast to the behaviour of the iceberg using the
additional tensile strength (see Fig. 4b). Here, the iceberg
contour stays rectangular, and the iceberg rotates as one sea-
ice block.

4.2 A hybrid ice-mélange representation

The advantage of using a particle method on the joint con-
tinuum of sea ice and icebergs is given by the fact that the
icebergs and their interactions can be modelled on a subgrid-
scale. We consider a domain of size 512 km× 512 km cov-
ered with a quadrilateral mesh of size 16 km. In this setup,
icebergs are represented by particles with a radius of 125 m.
Using this configuration, we study an iceberg–iceberg inter-
action under shear forcing (Sect. 4.2.1), iceberg separation
under divergent forcing (Sect. 4.2.2) and the formation of a
polynya due to subgrid iceberg grounding (Sect. 4.2.3). All
test cases use a time step size of 2000 s.

4.2.1 Iceberg–iceberg interaction

An explicit iceberg–iceberg collision is forced in order to test
the behaviour of icebergs under contact. Two icebergs with a
height of 20 m are placed into a 2 m thick sea-ice field with
a concentration of 0.7. The icebergs approach each other due
to the following wind field:

vatm =

{
10ms−1 y < 256km,

−10ms−1 y > 256km.
(37)

The velocity field of the ice mélange after the first time step
is shown in Fig. 5a. At first, the icebergs approach each other
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Figure 2. Visualization of the ice-mélange thickness for a test case in which an iceberg (thick red contour line) is pushed against the glacier
terminus (left boundary) by a constant wind (vatm = 20 ms−1). The panels denote the results for (a) the standard viscous–plastic (VP)
rheology and (b) for the viscous–plastic rheology with tensile strength. Both snapshots show the simulation result after 3 h.

Figure 3. The iceberg (thick red contour line) is placed under a divergent wind field. The panels denote the results for (a) the standard
viscous–plastic (VP) rheology and (b) for the viscous–plastic rheology with tensile strength. Both snapshots show the ice-mélange thickness
after 3 h.

until they collide (Fig. 5b). Due to collision, iceberg 1 moves
further up and iceberg 2 further down. After the collision
event, both icebergs drift past each other and separate again;
see Fig. 5c.

4.2.2 Iceberg field under diverging winds

We analyse the response of an iceberg field to diverging
winds and consider the following wind field:

vatm =

{
−20ms−1 x < 256km,

20ms−1 x > 256km.
(38)

The icebergs used in the setup are 20 m thick. The sea ice,
if present, has a concentration of 0.7 and a thickness of 2 m.
To highlight the influence of the tensile strength (Eq. 30) on
the motion of the iceberg field, we compare different setups
in Fig. 6.

In Fig. 6a and b, sea ice is presented between and around
the iceberg field. In contrast to Fig. 6b, the tensile strength
parameterization is not active in Fig. 6a. Thus, the surround-
ing sea ice and the icebergs disperse in Fig. 6a. We use the
same setup in Fig. 6b but with activated tensile strength. The
surrounding sea ice moves apart, according to the wind field,
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Figure 4. The iceberg is placed under a shearing wind field (vatm =±15 ms−1). Panel (a) visualizes the result for the standard viscous–
plastic (VP) rheology and (b) for the viscous–plastic rheology with tensile strength. Both snapshots show the ice-mélange thickness after 3 h.
The thick red line indicates the iceberg contour.

Figure 5. Visualization of the first component, vx , of the ice-mélange velocity for a test case in which two icebergs are transported towards
each other by a constant wind (vatm =±10 ms−1). Panel (a) shows the whole domain with the initial velocity field. The last two panels
show a closeup of the iceberg interaction after (b) 100 time steps and after (c) 200 time steps with a time step size of 2000 s.

but the iceberg particles stay in their initial grid cell. Without
sea ice between and around the icebergs, the tensile strength
in Eq. (30) equals zero. Therefore, the icebergs disperse in
Fig. 6c. The setup shows that the modified rheology allows
for icebergs to disperse if no sea ice is present. At the same
time, we see that the tensile strength is necessary to prevent
the field from moving in the case of an iceberg field with sea
ice in between. The amount of active tensile strength can be
controlled by the parameter ctensile (Eq. 30), and this is fur-
ther discussed in Sect. 5.

4.2.3 Iceberg grounding

Icebergs can impact sea ice in different ways, e.g. mechani-
cally by colliding and breaking up the sea-ice cover, by cre-
ating openings, and by altering the structure of the sea-ice
cover. To simulate such an interaction, we simulate iceberg
grounding in the final test case. Those grounding events oc-
cur in shallow waters and have profound implications for
sea-ice dynamics. As icebergs come into contact with the
seafloor, they become immobilized, transforming into ob-
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Figure 6. Iceberg field under a diverging wind field. The icebergs have a height of 20 m. In panels (a) and (b), sea ice is 2 m thick with a
concentration of 0.7, while in panel (c) the icebergs have no surrounding sea ice. All three panels show the simulation after 300 time steps.

stacles that influence the surrounding sea ice. This affects
the natural flow and movement of sea ice and thereby the
local circulation patterns and the distribution of sea ice.
In this test case, we simulate iceberg grounding and analyse
the resulting dynamics of the ice mélange with respect to the
formation of a polynya. The domain consists of a 2 m thick
sea-ice layer with a concentration of 0.7. Three grid cells,
each of the size of 16 km× 16 km, are filled with 4096 ice-
bergs per cell (see Fig. 7). Each iceberg has a radius of 125 m
and is 20 m thick. We use such a large number of icebergs to
show that we can work with many icebergs per cell that are
much smaller than the cell size. These icebergs represent the
effects of multiple grounded icebergs in the area with differ-
ent sizes.

The icebergs in the two lower grid cells closer to the
boundary are marked as grounded (viceberg = 0 ms−1). As
forcing, we use an ocean current of vocean = 0.2 ms−1 and
neglect any atmospheric forcing (vatm = 0 ms−1).

Figure 9a shows the grounding event using the standard
viscous–plastic rheology. The ungrounded icebergs in the up-
per of the three cells are transported as one block of icebergs
towards the right boundary. The square shape is slightly de-
formed and rotated. The surrounding sea ice accumulates in
the domain’s right half and builds a straight ice edge. This is
a nonphysical behaviour as grounded icebergs should cause a
pile-up of sea ice in front of the icebergs. Due to the missing
tensile strength in this configuration, the ice-mélange veloc-
ity is not zero in the dense iceberg field; see Fig. 8a. Thus,
the sea ice flows through the icebergs.

This is in contrast to the results conducted with the mod-
ified rheology (see Fig. 9b). Here, the additional tensile
strength leads to nearly zero velocity in the dense iceberg
field (Fig. 8b) and prevents the sea ice from passing through
the icebergs. Therefore, sea ice accumulates in front of the

icebergs. Compared to the setup with the standard viscous–
plastic rheology, the icebergs move only slightly to the right
in the configuration with the modified tensile strength. This
is visible in the closeup shown in Fig. 9c. The active tensile
strength in the upper of the three cells leads to a reduction in
the ice-mélange velocity, which results in a smaller displace-
ment of the iceberg particles.

5 Discussion

The results from Sect. 4 show that the combined approach of
subgrid iceberg particle dynamics and a continuum formula-
tion is able to simulate ice-mélange dynamics with respect to
different wind and ocean forcings. The usage of particle ice-
bergs in the setup allows for a representation of ice mélange
on coarse-resolution horizontal meshes, which have the same
resolution as the meshes applied for simulating large-scale
sea-ice dynamics in climate models.

In line with prior findings, the test cases presented in
Sect. 4 demonstrate that a modification of the original sea-
ice rheology is crucial to represent icebergs in the viscous–
plastic model. In areas with high iceberg coverage, the ice
mélange behaves almost like a rigid body due to the modifi-
cation of the strength parameter.

The ice-mélange model is developed from the sea-ice per-
spective with the aim to include the dynamical effect of small
icebergs on the evolution of the sea-ice dynamics. Therefore,
the prescription of the iceberg dynamics in the absence of
sea ice is very limited. Icebergs move either due to collision
or with an averaged ice-mélange velocity calculated from the
ice-mélange momentum equation. One perspective to allow
for a more complex motion of icebergs, especially in the ab-
sence of sea ice, is to use a particle model with higher fidelity
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Figure 7. Panel (a) shows the initial ice-mélange concentration of the grounded iceberg setup (the two lower grid cells). Panel (b) presents a
closeup of the upper grid cell so that individual iceberg particles are visible.

Figure 8. Closeup of the ice-mélange velocity after five time steps of the grounded iceberg setup. The area of low velocity in the centre of
the domain indicates the presence of the icebergs. The ice mélange is forced by a constant ocean current (vocean = 0.2 ms−1).

to represent the iceberg motion, e.g. the approach used in Ro-
bel (2017).

In order to ensure numerical efficiency, we have repre-
sented icebergs on the particle level as round discs. This sim-
plification of the icebergs’ geometry effects the simulated
iceberg interactions. The use of geometric objects with other
shapes can lead to a motion with different directions after the
collision. But calculating the collision of more complex geo-
metric objects such as polygons is numerically more expen-
sive compared to the usage of disc-shaped particles (Dams-
gaard et al., 2021). In addition, the representation via discs
requires a uniform iceberg thickness, which may lead to a
coarse approximation of the forces in the ice mélange. Since
we model the iceberg interaction on a subgrid scale and in-
tegrate the icebergs into the large-scale sea-ice model, the
impact of these simplifications is of secondary importance.

In the test cases in which we consider iceberg particles,
the relative speed between ice mélange and iceberg parti-
cles is almost zero. For the sake of simplicity, we neglected
the feedback from the modified iceberg velocity to the ice-
mélange velocity. We plan to adjust the ice-mélange velocity
to account for this feedback. One possibility is to derive an
average velocity of the icebergs per cell and include a drag
term in the ice-mélange momentum equation that accounts
for the difference in the iceberg and the ice-mélange veloc-
ity.

Concerning the response of the ice mélange to subgrid ice-
berg grounding, we note that polynyas, which can be sim-
ulated in the ice mélange, cannot be smaller than the size
of a grid cell, as in any standard sea-ice model. Further-
more, the presence of tensile strength in a grid cell depends
on a certain coverage of a grid cell with icebergs and the
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Figure 9. Three grid cells are each filled with 4096 icebergs. The lower two grid cells consist of only grounded icebergs. The snapshots in
(a) and (b) show the ice-mélange concentration after 600 time steps with an ocean forcing of vocean = 0.2 ms−1. Panel (c) shows a closeup
of the ungrounded icebergs in (b).

present sea-ice concentration in this cell. The used threshold
Aicebergs < π

(0.5
√
|K|)2

|K|
is motivated by the grounded iceberg

test case and should be evaluated in more realistic setups.
This also holds true for the linear dependency of the tensile
strength on the sea-ice concentration. The functional relation
as well as the choice of the parameter ctensile needs to be fur-
ther investigated in the context of observations.

Another assumption that could be relaxed in our ice-
mélange model is the usage of uniform drag coefficients for
ocean and air. Instead, different values for sea ice and ice-
bergs could be applied. So far, the applied particle realiza-
tion has not represented mechanical breakup of an iceberg
or mechanical bonding of two icebergs. Implementing these
processes is subject to future work.

The ice-mélange model is able to represent the formation
of a polynya and the pile-up of sea ice in front of iceberg
particles which are grounded on a subgrid scale. This mech-
anism is central for the formation of landfast sea ice in the
Southern Ocean (Fraser et al., 2023). So far, the Antarctic
landfast sea ice has only been poorly represented in current
coupled climate models as the “fastening” mechanism due to
grounded icebergs is not been taken into account. Therefore,
the proposed integration of small iceberg particles into the
continuum sea-ice formulation used in climate models is a
promising perspective for a more realistic representation of
landfast sea ice in the Southern Ocean.

6 Conclusions

We present a prototype of a dynamic hybrid ice-mélange
model, which can be straightforwardly coupled to existing
sea-ice components in climate models. The ice mélange is
described as a joint continuum of sea ice and icebergs. While
sea ice is represented as a continuum, the icebergs are mod-

elled by particles. In order to derive a joint continuum for the
ice-mélange’s thickness and concentration, we integrate the
particles into the sea-ice thickness and sea-ice concentration.
By doing so, icebergs in the ice mélange are considered thick
and compact pieces of sea ice.

Due to the use of particles in the joint continuum, we
do not need to use meshes that resolve icebergs which are
normally several hundred metres in size. Instead, the ice-
mélange model can be simulated on the mesh resolution used
for sea-ice components in climate models. This is an appeal-
ing feature with respect to the numerical efficiency.

In the context of the hybrid ice-mélange model, sea ice is
modelled based on a modification of the continuum viscous–
plastic sea-ice rheology, which is currently the most used ma-
terial law for sea ice in climate models. Icebergs are intro-
duced into the viscous–plastic rheology by a strength param-
eterization, which is used in order to prevent icebergs from
diffusing.

The hybrid model is validated through a series of ideal-
ized setups that represent situations observed in nature. The
setups demonstrate that the integrated icebergs, represented
as thick and compact pieces of sea ice, maintain their shape
under high pressure or difficult wind conditions due to the
strength modification. Furthermore, we show that the hybrid
ice-mélange model is capable of simulating a polynya due
to subgrid iceberg grounding. These examples highlight sit-
uations where this modelling framework is beneficial. These
are setups where the sea-ice cover is dense and the geometry
of the fjord is complex such that sea-ice–iceberg interactions
are important.

In conclusion, the use of particles and the simple exten-
sion of the viscous–plastic sea-ice material law make the
hybrid model a promising approach to efficiently integrate
ice mélange into climate models.
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