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Abstract. Surface roughness is an important factor to con-
sider when modelling mass changes at the Greenland Ice
Sheet (GrIS) surface (i.e., surface mass balance, SMB). This
is because it can have important implications for both sen-
sible and latent heat fluxes between the atmosphere and the
ice sheet and near-surface ventilation. While surface rough-
ness can be quantified from ground-based, airborne, and
spaceborne observations, satellite radar datasets provide the
unique combination of long-term, repeat observations across
the entire GrIS and insensitivity to illumination conditions
and cloud cover. In this study, we investigate the reliability
and interpretation of a new type of surface roughness es-
timate derived from the analysis of Ku- and Ka-band air-
borne and spaceborne radar altimetry surface echo powers
by comparing them to contemporaneous laser altimetry mea-
surements. Airborne data are those acquired during the 2017
and 2019 CryoVEx (CryoSat Validation Experiment) cam-
paigns, while the satellite data (ESA CryoSat-2, CNES–
ISRO SARAL, and NASA ICESat-2) are those acquired in
November 2018. Our results show GrIS surface roughness
is typically scale-dependent. A revised empirical mapping
between quantified radar backscattering and surface rough-
ness gives a better match to the coincident laser altimetry
observations than an analytical model that assumes scale-
independent roughness. Surface roughness derived from the
radar surface echo powers is best interpreted not as the
wavelength-scale RMS deviation representative of individual
features but as the continued projection of scale-dependent
roughness behaviour observed at baselines hundreds of me-
tres long down to the radar wavelength. This implies that the
relevance of these roughness estimates to current SMB mod-

elling efforts is limited, as surface roughness is treated as a
homogenous and scale-independent parameter.

1 Introduction

The satellite mass balance history of the Greenland Ice Sheet
(GrIS) is a record of the balance between loss of snow, firn,
and ice due to runoff, evaporation, sublimation, erosion, and
calving and gain in the way of new precipitation (Otosaka et
al., 2023; The IMBIE Team, 2020). It is the primary means of
understanding Greenland’s recent (e.g., 1990s–present) con-
tribution to global sea-level rise and forms the basis for un-
derstanding ice sheet evolution in the future (Bamber et al.,
2019; Edwards et al., 2021; Goelzer et al., 2020). There are
three geodetic ice sheet mass balance observations: gravime-
try, input–output, and altimetry (Otosaka et al., 2023). Gravi-
metric mass balance is based on monitoring changes in the
gravity field across the ice sheet as mass lost through melt-
ing and/or discharge and the addition of new snow results in
minute but detectable gravity fluctuations. The input–output
method compares the quantity of material added to or lost
from an ice sheet’s surface (surface mass balance, SMB) to
the amount of ice flowing through peripheral fluxgates. Fi-
nally, the altimetric mass balance approach is based on con-
verting changes in ice sheet surface elevation (i.e., volume
changes) to changes in mass. Critically, both the input–output
and altimetry-based mass balance approaches require model-
based estimates of the ice sheet SMB, which in the for-
mer defines the net mass change across the ice sheet surface
and in the latter the non-mass-change component of the ob-
served surface elevation change (i.e., due to firn compaction).
Regardless, to quantify GrIS mass balance using either the
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input–output or altimetry approaches, insight into pan-ice-
sheet SMB is paramount and is typically derived using nu-
merical regional climate models (RCMs) (Alexander et al.,
2019; Boberg et al., 2022; Bougamont et al., 2005; Ettema et
al., 2009; Medley et al., 2022; Vernon et al., 2013).

Numerical estimates of GrIS SMB are based on coupled
climate–subsurface models (van den Broeke et al., 2023). In
this framework, a critical parameter to constrain is the rough-
ness of the ice sheet surface as it modulates the energy bal-
ance between the atmosphere and the subsurface via sensi-
ble and latent heat fluxes along with near-surface ventilation
(i.e., interstitial airflow through snow/firn) (Albert and Haw-
ley, 2002; Amory et al., 2016; Braithwaite, 1995; Jakobs et
al., 2019; Smeets and van den Broeke, 2008; van Tiggelen
et al., 2021, 2023; van der Veen et al., 2009). Outside of af-
fecting atmosphere–ice-sheet heat fluxes, surface roughness
can also denote different morphogenetic areas of the ice sheet
(Nolin et al., 2002; van der Veen et al., 2009), steer incipient
supraglacial meltwater flow in the ablation zone (Cathles et
al., 2011), and affect conventional laser and radar altimetry
measurements of surface elevation change (Herzfeld et al.,
2000; van der Veen et al., 2009; Yi et al., 2005).

Compared to other SMB-relevant parameters (e.g., tem-
perature, precipitation, short- and longwave radiation, wind
speed) surface roughness is unique because (1) it can be de-
pendent on the scale over which it is quantified and (2) there
are a variety of different metrics that have been used (Shep-
ard et al., 2001). The most direct means of measuring GrIS
surface roughness is with extremely local (i.e., metre-long)
comb gauges and snow blades that produce centimetre-scale,
one-dimensional replicas of the snow surface (Albert and
Hawley, 2002; Jezek, 2007). Relevant statistical descriptions
for surface roughness (e.g., peak-to-peak amplitude, rough-
ness wavelengths) can then be quantified from these repli-
cas. To extend the metre-scale local comb gauge/snow blade
measurements, Herzfeld et al. (2000) developed a towed sen-
sor capable of measuring surface elevations at fine spatial
scales along profiles hundreds of metres in length. Fixed,
ground-based laser-scanning measurements have also been
used to characterize the two-dimensional distribution and
growth of metre-scale snow bedforms (e.g., dunes, sastrugi)
(Filhol and Sturm, 2015; Picard et al., 2019; Zuhr et al.,
2021). While ground-based surface roughness measurements
yield the finest spatial sampling, their large-scale applicabil-
ity is limited as they are very time-consuming and subject to
site accessibility (e.g., remoteness, weather) issues.

Furthermore, acquiring data on regional or pan-GrIS
scales is extremely relevant for SMB flux calculations (van
den Broeke et al., 2023). For this, remote sensing via airborne
or satellite methods is the sole viable option. Photogramme-
try and laser scanning from the air (i.e., drones, helicopters,
planes) have each been used in regional surface roughness
studies (Nolin et al., 2002; van Tiggelen et al., 2021; van
der Veen et al., 2009). Still, similar to the in situ methods,
accessibility throughout the year remains a challenge due to

weather and illumination conditions. Satellite remote sens-
ing can acquire data across the GrIS throughout the year, and,
while optical and laser methods are still sensitive to illumina-
tion conditions (e.g., during the polar night) and cloud cover,
respectively, radar techniques can operate year-round. GrIS
surface roughness has been derived from various datasets
collected by different satellites, including US Navy Geosat
(Davis and Zwally, 1993), NASA ICESat (Yi et al., 2005),
NASA ICESat-2 (van Tiggelen et al., 2021), and NASA Terra
(Nolin et al., 2002). It is important to consider though that,
while satellite remote sensing datasets can be used to char-
acterize surface roughness over large areas, the horizontal
sampling of the roughness is typically much coarser than
ground-based methods. For example, the horizontal scales
over which roughness is measured can vary from 1 m (van
Tiggelen et al., 2021) to 10 km (Yi et al., 2005).

Recently, Scanlan et al. (2023a) presented a new approach
for characterizing the monthly variability in surface rough-
ness across the GrIS via the strength of radar altimetry sur-
face echoes. Their approach is based on the Radar Statistical
Reconnaissance (RSR) method (Grima et al., 2012, 2014b,
2022). As the name implies, RSR is a statistical approach
that allows for the observed strength of radar echoes to be
decomposed into their coherent and incoherent components
and, when combined with a backscattering model, be used
to derive the relative dielectric permittivity and RMS height
of the surface. Initially developed to study Mars (Grima et
al., 2012, 2022), the RSR method has also been applied to
airborne VHF measurements of polar ice masses (Chan et
al., 2023; Grima et al., 2014b, a, 2016, 2019; Rutishauser et
al., 2016) and Ku-band radar altimetry measurements of the
surface of Titan (Grima et al., 2017). Where Scanlan et al.
(2023a) outline how the RSR method has been implemented
for the analysis of Ku- and Ka-band radar altimetry measure-
ments and perform a preliminary qualitative interpretation,
this study focuses more intensely on the GrIS surface rough-
ness results, with the specific goal of validating their deriva-
tion and interpretation. Only once the foundation of the sur-
face roughness results has been solidified can their applica-
bility with respect to SMB modelling be explored.

In this study, the reliability of the Ku- and Ka-band surface
roughness estimates derived from the RSR analysis of radar
altimetry surface echoes is assessed by comparing them to
RMS deviations (Shepard et al., 2001) derived from laser
altimetry measurements. This comparison is performed at
both (1) locations of simultaneous airborne radar and laser
altimetry collected as part of the 2017 and 2019 ESA Cry-
oVEx (CryoSat Validation Experiment) campaigns in central
Greenland and (2) a set of locations spanning the Greenland
Ice Sheet using satellite (i.e., ESA CryoSat-2, CNES–ISRO
SARAL, and NASA ICESat-2) datasets acquired in Novem-
ber 2018. The satellite comparison focuses on November
2018 as the RSR results are generated monthly (Scanlan
et al., 2023a) and November 2018 is one of the first full
months when ICESat-2 was completely operational follow-
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ing its launch 2 months earlier. We perform the comparison
of radar and laser-altimetry-derived surface roughness for
both the airborne and spaceborne cases for two reasons: first
because the spatial resolution of the airborne datasets is much
finer than the spaceborne datasets and second because the
spatial coverage of the satellite data is much broader than that
of the airborne datasets. Therefore, considering both yields a
more complete understanding of the radar-altimetry-derived
surface roughness results.

2 Datasets

2.1 CryoVEx altimetry

The series of CryoVEx (CryoSat Validation Experiment)
campaigns operated by ESA focus on (1) validating satel-
lite altimetry measurements over ice sheets and sea ice by
way of repeated satellite ground track under flights and
(2) supporting the design of future satellite altimetry mis-
sions (e.g., ESA CRISTAL, Sentinel-3 Next Generation To-
pography (S3NG-T)). To this end, through its history, the
CryoVEx nadir-pointing airborne altimetry sensor package
has included versions of different altimeters, but the most im-
portant for this study (Table 1) are ESA’s Ku-band (13.5 GHz
centre frequency, 0.1098 m range resolution) ASIRAS (Air-
borne SAR/Interferometric Radar Altimeter System) radar,
the MetaSensing Ka-band (34.525 GHz centre frequency,
0.165 m vertical resolution) KAREN radar, and the Riegl
LMS Q-240i-60 airborne laser scanner (ALS; 904 nm wave-
length). All altimetry measurements are supported by pre-
cise aircraft positioning by combined GPS and INS (iner-
tial navigation system) navigation solutions. In addition to
the airborne platform, CryoVEx campaigns also include a
substantial ground component tasked with installing corner
reflectors on the surface and taking in situ measurements
(e.g., density) in the shallow subsurface along the aircraft and
satellite ground track.

This study uses March and April 2017 (Skourup et al.,
2019) and April 2019 (Skourup et al., 2021) CryoVEx data
(ESA, 2022a, b) collected along the EGIG (Expéditions
Glaciologiques Internationales au Groenland) line in central
Greenland. Specifically, it focuses on ASIRAS, KAREN, and
ALS measurements surrounding positions of the in situ mea-
surements performed at the T5, T9, T12, T19, T30, and T41
locations in 2017 as well as T9, T12, T21, and T35 locations
in 2019. All CryoVEx datasets are available, having already
undergone thorough data processing (Skourup et al., 2019,
2021). Both the ASIRAS and KAREN data have been sub-
ject to post-acquisition SAR (synthetic aperture radar) pro-
cessing to minimize the size of their respective footprints in
the along-track (3 and 5 m, respectively) and across-track (10
and 12 m, respectively) directions. The ALS data have been
calibrated, had outliers removed, and been organized into
200–300 m wide swaths following the aircraft ground track.

Individual ALS ground height measurements are spaced at
1 m by 1 m intervals and have a vertical accuracy of ∼ 10 cm
(Skourup et al., 2019, 2021).

2.2 Satellite altimetry

For decades, satellite radar and laser altimetry have been the
method of choice for acquiring the ice sheet surface eleva-
tion change (SEC) measurements that feed long-term mass
balance monitoring efforts (Abdalati et al., 2010; Markus et
al., 2017; Otosaka et al., 2023; Schröder et al., 2019; Schutz
et al., 2005; The International Altimetry Team, 2021). Of par-
ticular interest in this study (Table 1) are the Ku-band radar
altimetry datasets from the SIRAL instrument (13.575 GHz
centre frequency, 320 MHz bandwidth) on board the ESA
CryoSat-2 spacecraft (Phalippou et al., 2001; Rey et al.,
2001; Wingham et al., 2006) as well as the Ka-band mea-
surements from the AltiKa instrument (35.75 GHz centre
frequency, 500 MHz bandwidth) on board the CNES–ISRO
SARAL spacecraft (Steunou et al., 2015; Verron et al., 2015).
Laser altimetry measurements come from the ATLAS in-
strument (532 nm wavelength) on board the NASA ICESat-2
spacecraft (Abdalati et al., 2010; Markus et al., 2017).

Leveraging the results of Scanlan et al. (2023a), because
CryoSat-2 operates in two different acquisition modes over
Greenland, this study makes use of both Low-Resolution
Mode (LRM) Level 1B (L1B) and SAR Interferometric
(SARIn) Full-Bit Rate (FBR) CryoSat-2 Baseline-D data
products. The LRM data products cover the GrIS interior,
where CryoSat-2 waveforms are stacked from an individual
1.97 kHz pulse repetition frequency (PRF) to a constant data
rate of 20 Hz. Across the GrIS margins, the CryoSat-2 SARIn
data products contain reflected waveforms from 18.181 kHz
PRF, 64-pulse bursts (burst repetition frequency of 21 Hz)
acquired by both of CryoSat-2’s receive antennas. The FBR
data are preferred to higher-level SARIn data products (e.g.,
Level 1) as they have not yet been subject to any SAR focus-
ing. The SARAL Sensor Geophysical Data Record (SGDR)
data products are similar to CryoSat-2 LRM products in that
initially 3.8 kHz PRF waveforms are averaged along-track in
25 ms (40 Hz) intervals. Finally, this study makes use of re-
lease 005 ATL06 ICESat-2 data products providing geolo-
cated surface heights across the GrIS in 20 m increments.
The quality summary variable included with each of the six
beams in the ATL06 data products is used to reject lower-
certainty surface height measurements.

3 Methods

3.1 Quantification of surface roughness from laser
altimetry

As alluded to previously, quantifying surface roughness is
not straightforward as it can be scale-dependent or scale-
independent and multiple metrics have been put forward
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Table 1. Summary of the airborne and satellite radar and laser altimetry datasets used to derive surface roughness as part of this study.

Instrument Altimeter Radar centre Wavelength Derivation of Maximum RSR
type frequency surface roughness search radius

Airborne CryoVEx ASIRAS Radar 13.5 GHz 2.22 cm RSR n/a
CryoVEx KAREN Radar 34.525 GHz 0.86 cm RSR n/a
CryoVEx ALS Laser n/a 904 nm Surface heights n/a

Satellite ESA CryoSat-2 SIRAL Radar 13.575 GHz 2.21 cm RSR LRM: 50 km
SARIn: 25 km

CNES–ISRO SARAL AltiKa Radar 35.75 GHz 0.84 cm RSR 40 km
NASA ICESat-2 ATLAS Laser n/a 532 nm Surface heights n/a

in the literature. Shepard et al. (2001) provide a thorough
overview of various surface roughness metrics and how they
can relate to one another. With the horizontal scale depen-
dence of surface roughness a distinct possibility, this study
adopts the strategy of Steinbrügge et al. (2020) and quanti-
fies surface roughness by way of the RMS deviation.

Figure 1 presents a simplified overview of how to calculate
the RMS deviation at various baselines from a set of mea-
sured surface elevations along a profile following Shepard
et al. (2001). First, a constant background plane is removed
from the measured surface elevations, yielding a profile of
surface deviations (z(xi) in Fig. 1a). Then the differences in
height deviation are calculated for the n possible combina-
tions of points along the profile that are spaced some defined
horizontal distance (i.e., baseline) apart (e.g., 1x1, 1x2, and
1x3 in Fig. 1). The RMS deviation for that specific baseline
is then the RMS of all those height deviation differences fol-
lowing

v(1x)=

{
1
n

∑n

i=1
[z(xi)− z(xi +1x)]

2
}1/2

. (1)

Finally, the RMS deviation profile (Fig. 1b) presents how the
RMS deviations vary as a function of the range of horizontal
baselines considered (i.e., the horizontal scale dependency
in surface roughness). While Fig. 1 presents the derivation
of the RMS profile from a one-dimensional profile of sur-
face elevations, the procedure can also be expanded to two-
dimensional surface elevation datasets. In such an applica-
tion, it is possible to derive both isotropic (i.e., baselines in
all directions considered equally) and anisotropic (i.e., base-
lines restricted to only certain azimuth/cardinal directions)
RMS deviation profiles. When presented in log–log space, it
is common for the RMS deviation profiles (Fig. 1b) to exhibit
a piecewise linear behaviour (Steinbrügge et al., 2020).

3.2 Radar statistical reconnaissance (RSR)
implementation and calibration

As RSR is based on the statistical distribution of measured
surface echo powers, the first step in implementation is to
extract those surface echo powers from the measured wave-

forms. The same surface detection and extraction approach
is applied to the CryoVEx (ASIRAS and KAREN) and satel-
lite (CryoSat-2 and SARAL) datasets and follows Scanlan et
al. (2023a). The leading edge is defined as the point of max-
imum integrated rate of change in the waveform amplitude
when derived over different proportions of the receive win-
dow. For the airborne data, individual rates of change in the
receive waveform amplitude are calculated over 2 % and 4 %
of the receive window length, while for the satellite data, am-
plitude derivatives over 3 %, 6 %, and 9 % of the waveform
receive windows are used. The extracted surface echo power
is then the maximum power observed within 5 % of the range
window following the re-tracked leading edge position. One
feature relevant to the analysis of the airborne ASIRAS data
is that the amplitudes provided in the CryoVEx data products
have been normalized. Representative waveform amplitudes
(Arep) are generated from the normalized amplitudes (Anorm)
following

Arep = Anorm× 10−9
×FACA× 2FACB , (2)

where FACA and FACB are the linear scale factor A and
power-of-2 scale factor variables reported in the ASIRAS
data products. Once extracted, ASIRAS and KAREN sur-
face power amplitudes are omitted from further analysis if
the measured roll is greater than 1.5°. This threshold is de-
termined empirically and used to limit the potential effects a
rolling aircraft and off-nadir instrument pointing have on the
strength of the surface echoes. For the satellite data, CryoSat-
2 SARIn echo powers are removed if there is a marked CAL4
flag, while for SARAL, the altimetric range (> 1000 km), a
trailing edge variation flag, and a large average waveform
off-nadir angle (> 0.10 degrees squared) are all used to re-
move possibly erroneous surface echo powers. Finally, the
satellite surface echo powers are also corrected for the nadir
surface slope (Scanlan et al., 2023a) using the 500 m Arc-
ticDEM (Porter et al., 2018), while the more local CryoVEx
data are not.

Fundamentally, how the RSR method is implemented is
the same for all the radar altimetry datasets. The set of radar
surface echo amplitudes closest to some defined location is
used to construct a histogram, and the statistical descriptors
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Figure 1. Simplified diagram demonstrating how to derive an RMS deviation (v(1x)) profile that quantifies surface roughness as a function
of horizontal baseline (1x) for an artificial roughness dataset. The profile comprises the RMS of height deviations (i.e., elevations minus a
background plane; z(xi)) considering all combinations of points with a similar horizontal baseline. The RMS deviation profile (b) can be
derived from profile data (i.e., as demonstrated here) as well as two-dimensional surface elevation datasets.

of the homodyned K-distribution fit (i.e., metrics quantify-
ing the mean and spread) define the coherent (Pc) and inco-
herent (Pn) powers (Grima et al., 2014b). For the CryoVEx
case, the locations are defined as the positions of in situ den-
sity measurements along the EGIG line (Skourup et al., 2019,
2021). The choice to focus exclusively on the immediate area
surrounding in situ measurements allows for the rapid check
of the reliability of the RSR approach when applied to Cry-
oVEx data by way of reproducing in situ density estimates.
For both ASIRAS and KAREN, RSR histograms are con-
structed from the 1000 closest surface echo powers to each
in situ position (measured in EPSG:3413). For the satellite
datasets, the CryoSat-2 LRM and SARAL results are taken
directly from Scanlan et al. (2023a) (i.e., 5 km× 5 km grid,
1000 surface echo powers closest to each grid node). For the
CryoSat-2 SARIn data, the same five-by-five grid is used, but
instead of 1000 surface echo powers, the 12 000 closest sam-
ples are used to overcome the apparent statistical dependence
of adjacent CryoSat-2 SARIn surface echo powers noted in
Scanlan et al. (2023a).

Two metrics are used to quality control the RSR results:
first the distance to the furthest surface echo power measure-
ment considered and second the correlation coefficient be-
tween the observed surface echo power histogram and the
statistical fit. The former is irrelevant for the CryoVEx data
as we mandate using the closest 1000 data points surround-
ing the in situ locations regardless of how far they may be.
For the satellite results, search radii of 50, 25, and 40 km
are used for the CryoSat-2 LRM, CryoSat-2 SARIn, and
SARAL results, respectively (Table 1). The CryoSat-2 LRM
and SARAL maximum search radii are the same as those
used in Scanlan et al. (2023a), while the CryoSat-2 SARIn
radius is extended as more data points are being considered.
A minimum correlation coefficient of 0.96 is required for all
RSR results (Grima et al., 2012, 2014a, b; Scanlan et al.,
2023a). This threshold is used to select only locations where
the envelope of observed surface echo powers can be well
described by the homodyned K distribution, which includes
implicit assumptions for how radar energy is scattered from

the surface (Grima et al., 2014b). As such, locations that do
not meet this correlation coefficient threshold are not nec-
essarily of poorer quality but require a different interpreta-
tion of the observed echo powers. This study however fo-
cuses solely on locations described well by the homodyned
K-distribution statistics.

Once coherent (Pc) and incoherent (Pn) powers are deter-
mined, deriving surface roughness requires adopting a repre-
sentative backscattering model. The simplest implementation
of the RSR technique (Grima et al., 2012, 2014a, b; Scan-
lan et al., 2023a) assumes incoherent backscattering from the
surface follows the small perturbation model (SPM) (Ulaby
et al., 1982). In this case, surface RMS height can be derived
following

σh =
λePn/2Pc

4π
√
Pc/Pn

, (3)

where λ is the signal wavelength [m]. In contrast to RMS
deviation (Eq. 1), RMS height is simply the standard devi-
ation of the surface heights (after removing the mean) with
no consideration of horizontal scale (Shepard et al., 2001).
The validity bounds of the SPM are kσh < 0.3 and kl < 3
where k is the radar wavenumber [m−1] and l is the surface
roughness correlation length [m]. The analytical relationship
for deriving RMS height from the RSR results in Eq. (3) is
based on the assumption that the surface roughness correla-
tion length (i.e., the length scale over which the roughness
occurs) is large relative to the radar footprint and can be ne-
glected (Grima et al., 2012, 2014b). A subtle feature of this
approach for both the CryoSat-2 LRM and SARAL results is
that the along-track stacking inherent in the L1B and SGDR
datasets (see Sect. 2.2) makes the RSR results more sensitive
to the surface roughness correlation length in the along-track
direction (Grima et al., 2014b). Stacking preferentially en-
hances reflections from tilted roughness elements fore and aft
of the stacking midpoint, increasing their contribution to the
total received power and accentuating the along-track corre-
lation length. However, any impact due to CryoSat-2 LRM
and SARAL stacking is assumed to be minimal.
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In contrast to when deriving surface dielectric permittiv-
ities from the RSR results, the absolute calibration of the
RSR coherent powers is not directly required to produce a
roughness estimate (Grima et al., 2012, 2014b, a; Scanlan
et al., 2023a). However, as an additional check on the over-
all applicability of the RSR approach, CryoVEx RSR results
have been calibrated using the contemporaneous in situ mea-
surements. The CryoVEx Pc and associated calibration den-
sity values vary between 2017 (189.5 dB and 0.438 gcm−3

for ASIRAS; 324.6 dB and 0.353 gcm−3 for KAREN) and
2019 (183.7 dB and 0.57 gcm−3 for ASIRAS; 317.25 dB
and 0.5 gcm−3 for KAREN) and are based on the same as-
sumed Ku- and Ka-band density depth sensitivity as used in
Scanlan et al. (2023a). Once calibrated, the coherent pow-
ers returned from the RSR analysis are related to the Fres-
nel reflection coefficient for an air–snow/firn interface (r =
(1−
√
εr)/(1+

√
εr), where εr is the relative dielectric per-

mittivity of the snow/firn) following

Pc,cal = r
2e−(2kσh)

2
. (4)

Multiple empirical functions exist for then converting rela-
tive dielectric permittivity to snow density (Ambach and De-
noth, 1980; Kovacs et al., 1995; Pomerleau et al., 2020; Tiuri
et al., 1984).

4 Comparisons of radar and laser altimetry surface
roughness estimates

4.1 Airborne CryoVEx datasets

The results of the CryoVEx RSR analysis are presented in
Fig. 2. All EGIG sites visited in 2017 and 2019 have been
analysed. However, it should be noted that in the case of
T35 (grey circle in Fig. 2a), which was visited in 2019, the
ASIRAS and KAREN RSR results both failed the quality
control assessment and no data from this location are pre-
sented. The comparison of the measured in situ average den-
sities (top 2 m for KAREN and top 4 m for ASIRAS; Scan-
lan et al., 2023a) with those derived from the RSR analysis
demonstrates that we can reasonably recover the in situ den-
sities from the remote sensing measurements after calibration
(Fig. 2b). Comparisons of the 2017 and 2019 surface rough-
ness results from the ASIRAS, KAREN, and ALS altimetry
datasets are presented in Fig. 2c and d, respectively. It is as-
sumed that the ASIRAS (triangles) and KAREN (squares)
RMS heights derived from Eq. (3) are equivalent to the ALS
RMS deviations at a horizontal baseline equal to the respec-
tive radar wavelength (Table 1).

The ALS-derived RMS deviation profiles presented in
Fig. 2c and d exhibit surface roughness behaviour that
does not immediately align with the RSR results. At short
(< 100 m) baselines, the ALS RMS deviation profiles are rel-
atively flat and therefore not strongly dependent on the hori-
zontal scale over which roughness is measured. The situation

changes though at long baselines (> 100 m) where there is a
stronger scale dependency as progressively larger RMS de-
viations are measured for longer baselines. The fundamental
pattern is then one of two piecewise linear components: a
flatter, less scale-dependent behaviour at small baselines and
more scale dependency at longer baselines. It is then clear
that the continuation of the piecewise linear trends in RMS
deviation from baselines less than 50 m to the radar wave-
lengths would overestimate the RSR results by roughly 2
orders of magnitude. However, projecting the linear, scale-
dependent behaviour at longer baselines (e.g., between 200
and 700 m) yields the dashed lines in Fig. 2c and d, which
closely intersect with the initial values derived from ASIRAS
and KAREN. This suggests that surface roughness derived
through the RSR analysis of CryoVEx radar altimetry surface
echo powers is not a scale-independent RMS height but the
wavelength-scale projection of surface roughness behaviour
observed at long baselines. It should be noted, however, that
this interpretation assumes that there are no further inflexion
points at baselines smaller than those that can be accessed
via the ALS data.

Amongst the ALS results, the 2017 T30 and T41 RMS de-
viation profiles (Fig. 2c) are unique in that they do not exhibit
the increased scale-dependent roughness behaviour at longer
baselines. Instead, their RMS deviation profiles are flatter
and monotonic (i.e., not piecewise linear). The reason for this
change in surface roughness behaviour is due to the ALS data
surrounding T30 and T41 preferentially covering extremely
smooth local areas of the GrIS. Figure 3 presents the local
surface elevations (Fig. 3a and b) along with the height devi-
ations (elevations minus the constant location-specific back-
ground plane; Fig. 3c and d) surrounding the T30 and T41
ALS datasets. Elevations are taken from the 10 m Arctic-
DEM mosaic (Porter et al., 2018), and the background plane
is defined using all 10 m ArcticDEM data within 20 km of
the CryoVEx in situ measurement location. Dataset-specific
(i.e., ALS, ICESat-2, ArcticDEM) background planes are
used to ensure all calculated height deviations have a mean
of zero (Shepard et al., 2001) and accurately reflect the local
conditions over which the data are acquired (needed when
comparing to the RSR results). It is clear that the topographic
variability is very small at T30 and essentially non-existent at
T41. It is then not surprising that the corresponding RMS de-
viation profiles (Fig. 2c) do not exhibit the increase in RMS
deviation at large horizontal baselines that is observed at the
other CryoVEx locations. To further emphasize the smooth-
ness of the GrIS near T30 and T41, Fig. 4 compares the ALS
RMS deviation profiles with those derived from all ICESat-2
surface elevations within 25 and 35 km of T30 and T41, re-
spectively. We must use ICESat-2 data that are further away
from the T30 and T41 sites because these locations are be-
tween ICESat-2 orbital ground tracks. When considering sur-
face topography over a broader regional area (i.e., ICESat-2),
the stronger scale dependency in surface roughness is once
again observed. Less scale dependency exists in the ALS

The Cryosphere, 19, 1221–1239, 2025 https://doi.org/10.5194/tc-19-1221-2025



K. M. Scanlan et al.: Greenland Ice Sheet surface roughness from radar 1227

Figure 2. Results from the analysis of 2017 and 2019 airborne CryoVEx data. The locations of the in situ measurements along the EGIG line
are presented in panel (a). Panel (b) presents the agreement (R of 0.45) between the RSR-derived densities from ASIRAS (triangles) and
KAREN (square) surface echo powers with those measured in situ. The comparisons of RMS heights from the radar altimetry (assumed to
be equivalent to the RMS deviation at the wavelength baseline) and the ALS (circles) RMS deviations as a function of baseline are presented
in panels (c) (CryoVEx 2017) and (d) (CryoVEx 2019). Inserts in panels (c) and (d) present zoomed-in views of the RSR results. The
RSR-based roughness estimates align well with the projection of the piecewise linear portion of the ALS RMS deviations profiles between
200–700 m (i.e., the grey region) to the radar wavelength baseline.

RMS deviation profiles between 100 m and 1 km because
T30 and T41 are situated in a locally very smooth portion
of the GrIS (Fig. 3).

In addition to the return of scale-dependent roughness
when considering the broader regions surrounding T30 and
T41, the ICESat-2 results in Fig. 4 also demonstrate three
other notable points. The first is that when the ICESat-2 base-
line is pushed to its shortest limit (i.e., considering closely
spaced surface elevations at orbit crossovers), the RMS devi-
ation profile appears to flatten. While there are only a small
handful of surface elevation measurements at these short
baselines (e.g., tens of points separated by 10 m compared to
tens of thousands of points separated by 20 m), the ICESat-
2 results do seem to exhibit the same less scale-dependent
roughness pattern as has been observed in the ALS results
(Fig. 2c and d). Again, as with the ALS data, the transi-
tion in the RMS deviation profile occurs in the 100 m range.
The second notable point is that the piecewise linear, scale-
dependent behaviour in the RMS deviation observed in the
ALS data between 200 and 700 m baselines (Fig. 2c and d)
appears to continue well beyond that range – to upwards of
roughly 3 km in the ICESat-2 results. Recall that only ALS

data within 1 km of the in situ measurement location under-
lie the RMS deviation profiles in Fig. 2, limiting the abil-
ity to constrain roughness over large baselines with the ALS
data. The 200 to 700 m interval used in the projection of
the RMS deviation profiles to the radar wavelengths is used
solely because it is an interval common to both the ALS
and ICESat-2 results. The scale-dependent behaviour in the
surface roughness appears to extend to much longer base-
lines. Lastly, while the ICESat-2 RMS deviation profiles suf-
fer data availability issues, there does appear to be another
marked transition to less scale-dependent roughness at the
longer (i.e., > 4 km) baselines.

4.2 Spaceborne datasets

Turning to the spaceborne altimetry datasets (i.e., ESA
CryoSat-2, CNES–ISRO SARAL, and NASA ICESat-2), the
first step is to derive RMS deviation profiles from the laser
altimetry surface elevations (similar to Fig. 4). To maintain
equivalence in the spatial representativeness of the radar and
laser altimetry surface roughness metrics for a specific loca-
tion in the 5 km× 5 km grid, ICESat-2 RMS deviation pro-
files are derived from all November 2018 surface elevations
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Figure 3. Surface elevations (a, b) and height deviations (c, d) surrounding the T30 (a, c) and T41 (b, d) CryoVEx locations. The ALS data
considered in deriving the corresponding RMS deviation profiles in Fig. 2c come from within the black polygons. It is clear that T30 and
T41 are sited in locally smooth regions of the GrIS. Note the change in colour bar and associated limits between (c) and (d).

Figure 4. The comparison of March and April 2017 ALS (blues) and November 2018 ICESat-2 (greens) RMS deviation profiles centred on
locations T30 (light) and T41 (dark) along the EGIG line. There is a substantial discrepancy between the two sets of RMS deviation profiles
in the overlapping baseline range (100 m to 1 km) further confirming that the local regions surrounding T30 and T41 are markedly smoother
than those further afield. The anomalous behaviour in the ICESat-2 RMS deviation profiles at both short (i.e.,< 80 m) and long (i.e.,> 4 km)
baselines is related to the quick drop-off in the number of comparable surface elevations.

within the three different RSR surface echo power search
radii for that location (maximum search radii are presented
in Table 1). The number of ICESat-2 measurements within
the location-specific CryoSat-2 LRM, CryoSat-2 SARIn, and
SARAL search radii for November 2018 are presented in

Fig. 5. As expected, because the spatial density of surface
echo power measurements along an individual orbit (and
therefore across a month) is greatest for CryoSat-2 when op-
erating in its SARIn mode, the associated smaller search radii
contain the fewest ICESat-2 measurements (Fig. 5b). In con-
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trast, the lower spatial resolution (i.e., less frequent along-
track sampling) inherent in the CryoSat-2 LRM (Fig. 5a)
and SARAL (Fig. 5c) data requires a greater RSR search
radius that, in turn, encompasses more ICESat-2 measure-
ments. The cross-cutting striped patterns in Fig. 5 relate to
the specific distribution of satellite ground tracks across the
GrIS in November 2018. As three different sets of ICESat-2
data are used to derive three RMS deviation profiles for each
location, three different background planes are also defined
based on the local ATL06 surface elevations.

In lieu of presenting hundreds of individual ICESat-2
RMS deviation profiles together with the CryoSat-2 and
SARAL RMS heights from Scanlan et al. (2023a) (i.e., akin
to Fig. 2c and d) and following on from what has been
learned from the CryoVEx results, Fig. 6 presents the com-
parison of those initial RSR RMS height estimates from
Eq. (3) and the wavelength-scale RMS deviations projected
from a linear fit to the RMS deviation profiles for baselines
between 200 and 700 m for 328 locations across the GrIS.
As presented in relation to Fig. 4, the 200–700 m interval is
selected due to its general representativeness of the piece-
wise linear, scale-dependent roughness behaviour observed
in both the ALS and ICESat-2 data. It should not be con-
sidered a uniquely fixed interval. These 328 locations have
been pseudo-randomly selected based solely on considera-
tions for the computational load when performing the point-
to-point surface deviation comparison as part of the RMS de-
viation profile calculation (i.e.,≤ 55000 ICESat-2 surface el-
evations). To ease the comparison, all surface roughness es-
timates (i.e., CryoSat-2 and SARAL RSR RMS heights or
ICESat-2 RMS deviations projected to the CryoSat-2 and
SARAL wavelength scale) have been normalized by the
radar signal wavelength. While there may be the suggestion
of a possible linear relationship between the radar- and laser-
derived surface roughness estimates, it is clearly not a 1 : 1
agreement. This appears to be in part due to a floor in the
RSR results, as they consistently fail to recover the smallest
ICESat-2 RMS deviations. The mean absolute error between
the two sets of surface roughness estimates is 0.0308λ for
CryoSat-2 and 0.0346λ for SARAL.

5 Revising the derivation of surface roughness

5.1 An empirical roughness relationship

The clear absence of a good agreement in Fig. 6 between
the CryoSat-2 (LRM and SARIn) and SARAL RSR results
and – what are taken to be – equivalent results derived from
ICESat-2 necessitates a deeper investigation into the ratio-
nale for why. As such, building off the general relationship
established by Eq. (3), Fig. 7 presents a two-dimensional his-
togram directly comparing the CryoSat-2 and SARAL co-
herent to incoherent power ratios (in linear units plotted on a
logarithmic axis) with the radar-wavelength-scale RMS de-

viation projected from the ICESat-2 RMS deviation profile
between the 200 and 700 m baselines. Following Fig. 6, the
projected ICESat-2 RMS deviations in Fig. 7 have been nor-
malized by the radar signal wavelength to facilitate the joint
analysis of the Ku- and Ka-band results. The solid line in
Fig. 7 represents the analytical solution for relating the Pc/Pn
ratio to surface roughness via the SPM (i.e., Eq. 3) (Grima et
al., 2014b). It is immediately clear that the analytical solution
does not fit the observed relationship and leads to the surface
roughness being almost universally overestimated. However,
Fig. 7 does suggest a general association between the RSR
Pc/Pn ratio and the wavelength-baseline-projected ICESat-
2 RMS deviations. Because this association is linear (when
plotted in log–log space), we use it to define the following
empirical mapping:

v(λ)ICESat-2 = λ×

(
Pc

Pn

)−0.892

× 10−1.706 . (5)

The overestimation of surface roughness based on the RSR
Pc/Pn ratio when using the SPM may seem somewhat dis-
concerting, knowing its range of validity covers the smallest
RMS heights (kσh < 0.3). However, the SPM assumes scale-
independent surface roughness, while, outside of very local
areas (e.g., Fig. 3), surface roughness across the GrIS appears
strongly scale-dependent (Figs. 1 and 4). As such, the SPM
was likely ill-suited to the task of deriving surface roughness
from the RSR results from the beginning.

Applying this empirical relationship to deriving surface
roughness estimates from the RSR outputs yields the com-
parison against the projected ICESat-2 RMS deviations pre-
sented in Fig. 8. Comparing Fig. 6b and Fig. 8, surface rough-
ness produced using the empirical mapping relation (Eq. 5)
clearly produces a better match than the analytical model
(Eq. 3). Quantitatively, the mean absolute errors between
the ICESat-2 and RSR-based wavelength-normalized rough-
ness estimates are reduced from 0.0308λ (CryoSat-2) and
0.0346λ (SARAL) for the analytical model to 0.0119λ and
0.0174λ using the empirical model, the substantial reduc-
tion indicating a much better agreement between the radar
and laser roughness estimates. Furthermore, the difference
between ICESat-2 and RSR-based empirical surface rough-
ness clusters around zero for both CryoSat-2 (Fig. 8b) and
SARAL (Fig. 8c), whereas the analytical approach led to
consistently greater RSR surface roughness. A similar study
but only with a smaller number of locations in December
2018 also observed an improvement in mean absolute error
using the revised empirical RSR roughness model (Eq. 5).
Expanding more broadly, the form of Eq. (5) and the pro-
cedure for developing it could be adapted to other RSR im-
plementations on Earth as well as beyond, but care will have
to be taken to ensure the coefficients are appropriate as they
may vary in different contexts/applications.

An interesting feature present in the radar and laser sur-
face roughness comparison of Fig. 8 is that substantial dis-
agreements (i.e., > 2σ outliers) between the radar and laser
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Figure 5. Maps showing the number of November 2018 ICESat-2 ATL06 measurements within the contemporaneous (a) CryoSat-2 LRM,
(b) CryoSat-2 SARIn, and (c) SARAL RSR search radii. The quantity of ICESat-2 ATL06 surface elevations used to derive the RMS
deviation profile for a specific location is inversely related to the along-track data rates of the different radar altimeters.

Figure 6. Panel (a) presents the locations of 328 pseudo-randomly chosen locations across the GrIS where in panel (b) Scanlan et al.
(2023a) RSR surface roughness results (CryoSat-2 as squares and SARAL as triangles) are compared to wavelength-baseline-projected RMS
deviations from ICESat-2. While there is a general positive association between the two sets of roughness estimates, the RSR results do not
reliably recover the smallest ICESat-2 roughness levels. The mean absolute errors between the ICESat-2 and the CryoSat-2 and SARAL
RSR-based wavelength-normalized roughness estimates are 0.0308λ and 0.0346λ, respectively.

altimetry surface roughness estimates are not symmetric and
mainly occur above the dashed 1 : 1 line (i.e., an ICESat-2
surface roughness greater than that of either CryoSat-2 or
SARAL). When looking at where all of these outliers occur
spatially across the GrIS (Fig. 9a and b), there is a clear clus-
tering of locations in southeast Greenland. That some outly-
ing surface roughness results can be found around the GrIS
periphery or at the boundary of the different CryoSat-2 ac-
quisition modes is not unexpected, as this is where the RSR
technique is known to struggle with more spatially hetero-

geneous surfaces and where there are fewer data envelop-
ing a specific location (Scanlan et al., 2023a). That being
said, the cluster in southeast Greenland is surprising as it
occurs across a high elevation and inland portion of the ice
sheet. Interestingly, the southeast Greenland cluster of rough-
ness mismatches corresponds to a location where monthly
(2013–2018) RSR results meeting the quality control crite-
ria (Sect. 3.2) are amongst the rarest. This suggests that the
GrIS surface in this area may be unique in some way that
continuously affects the RSR results. Based on the ICESat-2
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Figure 7. Direct comparison of the combined CryoSat-2 and SARAL coherent to incoherent (Pc/Pn) power ratios on which RSR estimates
of surface roughness are based and the projection of the ICESat-2 RMS deviation profile between 200 and 700 m baselines to the wavelength
scale. As the conventional analytical model (solid line, Eq. 3) leads to overestimating surface roughness, a new linear empirical mapping
(dashed line, Eq. 5) is suggested as being more appropriate.

Figure 8. Direct comparison of the empirical and analytical RSR and ICESat-2 surface roughness results (a) and histograms of the differences
in the logarithms of ICESat-2 and RSR surface roughness values for (b) CryoSat-2 and (c) SARAL. Using the empirical mapping between
the RSR outputs and surface roughness, the mean absolute error is reduced to 0.0119λ and 0.0174λ for CryoSat-2 and SARAL, respectively.
The analytical results are the same as those presented in Fig. 6b. The dashed line in (a) represents a 1 : 1 agreement between the radar and
laser surface roughness results, while the dotted lines are used to identify the> 2σ outliers in the radar and laser surface roughness estimates.

results from Fig. 8, one possible explanation could be that
this area is substantially rougher than the inland GrIS as a
whole and yields distributions of radar altimetry surface echo
powers that cannot be cleanly fit by a single homodyned
K-distribution probability density function. Other alterna-

tive explanations that could incite changes in the distribution
of surface echo powers include a local variation in volume
scattering affecting the amount of diffuse scattering and firn
crusts/thin layering affecting the specular component. How-
ever, as this study focuses on understanding the RSR rough-
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ness results, a deeper assessment of the root cause for why
the RSR technique seems to experience issues in this area is
left to future work.

5.2 Spatiotemporal patterns in surface roughness

Armed with an improved understanding of surface rough-
ness derived from analysing Ku- and Ka-band satellite radar
altimetry surface echoes, we can now take a closer look at
the resulting spatiotemporal patterns. To this end, Fig. 10
presents the 2013–2018 SARAL mean surface roughness
(Fig. 10a) as well as time series along two GrIS-bisecting
transects: an east–west transect in Fig. 10b and a north–south
transect in Fig. 10c. Blank points in the time series (Fig. 10b
and c) correspond to instances where the corresponding RSR
results have been removed during the quality control step
(Sect. 3.2), and these missing data have been neglected in
the calculation of the 2013–2018 mean. Note that the south-
eastern portion of the GrIS, where the RSR method seems to
struggle and yields results that do not meet the quality control
requirements (Fig. 9), can also be observed along the east–
west transect as a horizontal line of missing RSR results at
roughly 38° west longitude.

The spatial patterns in surface roughness are similar to
those presented in Scanlan et al. (2023a) and highlight the
expected pattern of a smooth ice sheet interior that becomes
progressively rougher towards the margin and in the south.
Elevated surface roughness in the vicinity of the fast-flowing
Northeast Greenland Ice Stream (NEGIS) is also clearly dis-
cernible. The region of elevated surface roughness further
inland from the margin at latitudes slightly less than 70°
overlaps with the catchment of Sermeq Kujalleq (Jakobshavn
Isbræ). What has changed in these new surface roughness
results from those previously published is the more reli-
able recovery of smaller roughness values that were previ-
ously not being captured (Fig. 8). Temporally, surface rough-
ness along these transects exhibits no strong seasonal signal.
There are some isolated, small variations in surface rough-
ness (e.g., a minor increase in roughness near 69°N in mid-
2015), but overall, surface roughness is strongly consistent
through time. This is not surprising when considering the
context for interpreting the RSR-derived surface roughness
results that was established based on the CryoVEx analysis
in Sect. 4.1. It is difficult to envision inducing rapidly re-
peating (e.g., annual) changes in the roughness of the GrIS
surface over horizontal baselines that are hundreds of metres
long (i.e., those the RSR results seem to be projections of).
Changes in roughness over these horizontal scales likely take
place over longer timescales.

6 Relevance and implications of RSR-derived surface
roughness

6.1 Implications for SMB and heat flux modelling

As introduced previously, surface roughness is considered an
important component in SMB and heat flux modelling stud-
ies. It is typically used as an input in the calculation of either
the aerodynamic roughness length or the similar drag coef-
ficient metric. Even though it is termed a “roughness”, the
aerodynamic roughness length is conceptually different from
how roughness is considered in the context of this study (i.e.,
a statistical description of the undulations in surface heights)
as it quantifies the height above the ground surface at which
the horizontal wind-speed profile is zero. The use of the aero-
dynamic roughness length and drag coefficient metric varies
in practice: Jakobs et al. (2019) employ the aerodynamic
roughness length as a free model tuning parameter. Amory
et al. (2016) provide no direct quantifiable link between the
drag coefficient and a description of surface roughness, only
implying that the drag coefficient is impacted by the small-
scale distribution of sastrugi. In contrast, Smeets and van den
Broeke (2008) and van Tiggelen et al. (2023) incorporate the
assumed average hummock height in their derivation of the
aerodynamic roughness length across the GrIS ablation zone.
In a more quantitative study based on airborne photogram-
metry and spaceborne ICESat-2 laser altimetry, van Tigge-
len et al. (2021) uses the standard deviation of a low-pass-
filtered (< 35 m wavelength), high-resolution (1 m horizontal
sampling) elevation profile to derive the aerodynamic rough-
ness lengths over the K transect. The overarching implica-
tion from all these studies is that it is the highly localized,
individual surface roughness features that exert the dominat-
ing influence on the energy flux at the ice sheet surface. It
is therefore the statistical descriptions of the undulations of
these individual features (i.e., average height, standard devi-
ation of heights) that then feed into GrIS SMB models.

Our validation of RSR-derived SARAL and CryoSat-2
surface roughness against CryoVEx and ICESat-2 laser al-
timetry shows that the assumption of scale-invariant surface
roughness from Scanlan et al. (2023a) is ill-suited for broad
regions of the GrIS. Furthermore, the RSR-derived surface
roughness appears to lie below the continued projection of
the RMS deviation profiles to the SARAL and CryoSat-2
radar wavelength scale (Fig. 2), a fact that would not have
been recognized had the CryoVEx ALS data not been used
to reliably recover RMS deviations at baselines shorter (e.g.,
< 40 m) than are typically recoverable from ICESat-2 ATL06
surface heights outside of orbit crossovers (Fig. 4). Had this
analysis relied solely on ICESat-2 heights, the RSR surface
roughness results would have been mistakenly interpreted as
the true wavelength-scale RMS deviations (Fig. 8). Instead,
for the Ku- and Ka-band airborne and satellite radar altime-
try data, RSR surface roughness is best interpreted not as the
true wavelength-scale RMS deviation but as the projection of
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Figure 9. Locations of all > 2σ outliers between the wavelength-scale RMS deviations projected from ICESat-2 and (a) CryoSat-2 and
(b) SARAL surface roughness estimates. The locations are plotted on top of maps showing the number of months with valid (i.e., quality-
controlled) RSR observations for the period 2013–2018 (72 months). While some outlying roughness mismatches occur closer to the bound-
aries of the various datasets, there is a cluster in southeast Greenland at ∼ 3000 m elevation in the vicinity of the ice divide that corresponds
to a zone of RSR results that do not meet the quality control criteria. The impact of CryoSat-2 and SARAL orbital designs can be seen in the
spatial patterns (CryoSat-2 SARIn latitudinal stripping and SARAL hatching) in the southern portions of the ice sheet.

Figure 10. The 2013–2018 SARAL surface roughness mean (a) and time series (b, c) along east–west and north–south transects cross-cutting
the GrIS. While there is strong spatial variability in RSR-derived surface roughness across the 6-year period (i.e., margins are rougher than
the interior), the temporal variability in surface roughness is minor.

the scale-dependent behaviour observed at baselines between
hundreds of metres and a few kilometres to the wavelength
scale. The implication is then that the SARAL and CryoSat-
2 RSR surface roughness results only have physical meaning
far beyond the individual roughness feature scales currently
considered critical in heat flux and SMB studies. As such,
they have no direct role to play in the improvement of current

GrIS SMB modelling. The relevance only at long baselines is
likely also the reason why the surface roughness time series
presented in Fig. 10 do not exhibit the strong seasonal vari-
ability that has been reported in derivations of aerodynamic
roughness lengths (Smeets and van den Broeke, 2008; van
Tiggelen et al., 2021, 2023).
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Taking a broader view of all the airborne and satellite al-
timetry (i.e., radar and laser) datasets analysed in this study,
they all point to GrIS surface roughness being, at least for
some baselines (e.g., 200 m to 3 km), scale-dependent. While
there are isolated local areas where roughness is not strongly
dependent on the horizontal distance over which it is mea-
sured (e.g., immediately surrounding T30 and T41 in Figs. 2–
4), when considering the broader regional conditions, scale-
dependent roughness appears commonplace (as implied by
Figs. 7 and 8). This challenges current SMB models that in-
corporate surface roughness via a single spatially homoge-
neous value (e.g., the aerodynamic roughness length). An
avenue for future research is then to integrate the effects
of scale-dependent roughness into numerical SMB and heat
flux models and assess their predictions of ice sheet evolu-
tion against reality. At this point, the roughness results de-
rived from the RSR analysis of CryoSat-2 and SARAL sur-
face echo powers will likely have more direct applicabil-
ity. It should be noted that quantifying surface roughness at
the scale of individual features (e.g., sastrugi, hummocks)
will be challenging for standard satellite measurements (e.g.,
ICESat-2 ATL06 land heights; Fig. 4) and that integra-
tion with more specialized analyses or alternative datasets
(e.g., lidar, UAV photogrammetry) is likely to be required
(van Tiggelen et al., 2021).

Even though the RSR surface roughness results do not ap-
pear to be relevant as direct inputs for current SMB mod-
elling, this does not mean they are without future intrinsic
value by themselves. First, there may be a role for directly
using the radar-derived surface roughness estimates to re-
fine the retracking of the radar waveforms and improving
surface height determinations. Second, there are clear spatial
heterogeneities in the RSR results (Figs. 8 and 9) that war-
rant further investigation and may shed light on the nature
of GrIS surface conditions. Third, they represent a baseline
for interpreting the RSR results in the context of other radar
backscattering models (Fung and Chen, 2004; Ulaby et al.,
1982) and revisiting some of the underlying decisions (e.g.,
correcting echo powers for nadir slopes prior to RSR pro-
cessing). Lastly, the ever-increasing confidence in our ability
to reliably observe GrIS surface properties from CryoSat-2
and SARAL surface echo powers provides a foundation to
continue applying and adapting these techniques to earlier
satellite remote sensing datasets (e.g., ERS-1, ERS-2, EN-
VISAT), thereby extending our observational time series.

6.2 RSR-derived dielectric permittivity

Just as important as the surface roughness results them-
selves, revising the approach for calculating surface rough-
ness from the coherent–incoherent power ratios will likely
have a knock-on effect on the dielectric permittivities (and
surface densities) also derived from the RSR results. This is
because the impact of surface roughness is included in an
adjustment term [e−(2kσ

2
h )] applied to the specular scattering

equation (Eq. 4) that relates coherent power to the Fresnel re-
flection coefficient of the surface (Grima et al., 2012, 2014b;
Scanlan et al., 2023a). To that end, Fig. 11 presents two-
dimensional histograms comparing November 2018 analyt-
ical and empirical relative dielectric permittivity estimates
from across the GrIS for each radar altimetry dataset (i.e.,
CryoSat-2 LRM, CryoSat-2 SARIn, and SARAL). As each
analytical–empirical comparison result falls just below the
dotted 1 : 1 line, Fig. 11 highlights a slight decrease in di-
electric permittivity due to the revised empirical derivation
of surface roughness for each radar dataset. However, there
is still a very consistent overall agreement between the two
sets of permittivity estimates indicative more of a systematic
adjustment in the results than a broader re-organization of
spatial patterns. Individually, the variability in the analytical–
empirical comparisons in Fig. 11 increases from CryoSat-
2 LRM (Fig. 11a), to SARAL (Fig. 11c), and to CryoSat-2
SARIn (Fig. 11b), following the degree to which the under-
lying datasets cover the rougher GrIS margin.

Based on Figs. 7 and 8, it is not unsurprising that the ana-
lytical permittivities are larger than empirical results. For the
same coherent power (Pc) output from the RSR analysis, a
stronger Fresnel reflection coefficient (i.e., greater permittiv-
ity contrast) is required to overcome the quantitatively larger
reduction in coherent power associated with overestimated
analytical roughness values (Fig. 8). As the empirical map-
ping (Eq. 5) more reliably recovers smaller roughness val-
ues, the roughness adjustment applied to the RSR Pc output
is smaller, and the corresponding permittivity contrast is re-
duced. That the shift in permittivity between the analytical
and empirical results is small speaks directly to the domi-
nantly specular nature of the GrIS in terms of backscattering
normal-incidence Ku- and Ka-band radar signals. Now that
the surface roughness results are more reliably being derived,
a deeper investigation into the revised dielectric permittivi-
ties and their relevance to improving our understanding of
GrIS surface density evolution will be the central focus of a
follow-on study.

6.3 Revisiting laser altimetry as an objective dataset

Throughout this study, the ALS and ICESat-2 laser altimetry
data and derived surface roughness results are considered the
objective standard against which the radar altimetry RSR-
based results are assessed. However, it is also worthwhile
to revisit this assumption, as the nuances in the underlying
datasets may affect their relative sensitivity to surface rough-
ness conditions.

First consider the scale of the footprints relative to the
RMS deviation baselines. For the airborne CryoVEx data,
the footprints of individual altimetry measurements are on
the order of 0.7 m in diameter (ALS), 3 m along-track by
10 m across-track (ASIRAS), and 5 m along-track by 12 m
across-track (KAREN) (Skourup et al., 2019, 2021). The
satellite data, on the other hand, as expected have larger
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Figure 11. Two-dimensional histograms demonstrating the impact of using the revised empirical model for calculating surface roughness
from the RSR results on (a) CryoSat-2 LRM, (b) CryoSat-2 SARIn, and (c) SARAL permittivities. Permittivities are slightly reduced in the
empirical results due to the improved recovery of smaller surface roughness values.

footprint diameters ranging between 17.5 m for ICESat-2,
1.65 km for CryoSat-2 (pulse-limited footprint; 720 km alti-
tude, 320 MHz bandwidth), and 1.4 km for SARAL (pulse-
limited footprint; 800 km altitude, 500 MHz bandwidth)
(Markus et al., 2017; Steunou et al., 2015; Wingham et al.,
2006). As the ALS and ICESat-2 footprints are generally
smaller than the posting interval for their individual datasets
(i.e., 1 m by 1 m for ALS, 20 m along-track for ICESat-2
ATL06), their RMS deviation profiles are assumed to be un-
biased over the baselines considered (i.e., smallest roughness
baseline is greater than an individual footprint). The sole ex-
ception to this though is at crossovers where the laser (ALS
or ICESat-2) has sampled the same location multiple times.
Examples for the ALS are T12 and T30 in 2017 and T21 in
2019. Laser data are analysed spatially as opposed to by indi-
vidual CryoVEx segment or ICESat-2 orbit number, so over-
laying multiple measurements on top of one another can lead
to surface elevation measurements spaced less than one foot-
print apart. Note though that this will only affect the smallest
RMS deviations such as those for a 0.5 m baseline reported
in Fig. 2 and < 20 m ICESat-2 baselines in Fig. 4. At larger
baselines, the individual laser surface heights will continue
to be more than one footprint apart and the subsequent RMS
deviation profiles should not be biased by any unaccounted
for large spatial sensitivities.

Expanding beyond individual footprints to consider cov-
erage, only for the CryoVEx case do the 100 m wide ALS
swaths cover the ASIRAS and KAREN radar footprints com-
pletely. In this case, it is then possible to be relatively certain
that both datasets are responding to the same surface condi-
tions. The same cannot be said for the satellite datasets. In
general, the ICESat-2 surface elevations are predominantly
sensitive to along-track conditions. While there are ideally
surface elevations from all six of the across-track beams
(subject to ICESat-2 data quality control; see Sect. 2.2), the
spatial sampling of surface roughness will always be denser
in the along-track direction. The RSR results, on the other
hand, represent the collected response of all scatterers within
the broader illuminated radar footprint (Grima et al., 2012,

2014b, 2022). Even though attempts have been made to en-
sure that the satellite laser and radar data being compared
come from the same region (e.g., Fig. 5), the sampling of
the surface within those regions is not necessarily equivalent.
ICESat-2 RMS deviations will be more strongly affected
by any anisotropic surface conditions, whereas the CryoSat-
2 and SARAL RSR results are based on a more complete
two-dimensional view of the surface. Considering data on a
monthly time interval further negates possible impacts of the
different orbital designs and repeat cycles (91, 369, and 35 d
for ICESat-2, CryoSat-2 and SARAL, respectively).

In summary, while biases stemming from non-negligible
laser footprints are considered minimal and care is taken to
ensure overlapping measurements for each comparison, the
different spatial footprints and sensitivities to anisotropy may
still influence surface roughness derived from laser datasets
and its comparison to the radar results.

7 Conclusions

Surface roughness is an important parameter to quantify
when evaluating how the Greenland Ice Sheet responds to
a changing climate as it affects the efficiency of heat trans-
fer from the atmosphere, steers meltwater, and impacts con-
ventional measurements of ice sheet volume change. In this
study, we perform a detailed investigation into a new type
of surface roughness estimate derived from the Radar Sta-
tistical Reconnaissance (RSR) analysis of Ku- and Ka-band
airborne (2017 and 2019 CryoVEx campaigns) and satellite
(November 2018 CryoSat-2 and SARAL measurements) sur-
face echo powers by comparing them to contemporaneous li-
dar (airborne) and ICESat-2 (spaceborne) laser surface eleva-
tions. Our results demonstrate that, outside of some specific
local areas, Greenland Ice Sheet surface roughness is scale-
dependent, with surface roughness increasing when quan-
tified over larger baselines (i.e., horizontal distances) in a
piecewise pattern. It is therefore important to consider sur-
face roughness quantified over multiple scales. Against this
backdrop, surface roughness values derived from CryoVEx
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radar altimetry surface echo powers do not align with a con-
tinuation of the lidar RMS deviation profiles to the wave-
length scale. In fact, they appear to align much better with
the extrapolation of the consistent piecewise linear portion
of the RMS deviation profiles for baselines between hun-
dreds of metres and a few kilometres. Building on the Cry-
oVEx results, the direct comparison between extrapolated
ICESat-2 surface roughness RMS deviations (from the piece-
wise linear portion between 200 and 700 m) and previously
published CryoSat-2 and SARAL radar surface echo powers
derived using an analytical backscattering model reveals that
the radar-based results tend to overestimate surface rough-
ness. In response, a new empirical approach is defined to map
the RSR analysis outputs (the coherent-to-incoherent power
ratio) to surface roughness. The result is both a marked im-
provement in the agreement between radar and laser rough-
ness values as well as a greater dynamic range in surface
roughness across the Greenland Ice Sheet, further empha-
sizing the transition from a smooth ice sheet interior to a
rougher margin.

The observed sensitivity of the spaceborne RSR results to
surface roughness that is, at its smallest, hundreds of me-
tres in scale suggests they are not well-suited to being incor-
porated in current surface mass balance (SMB) modelling
as these models rely on the roughness of individual metre-
scale features such as hummocks or sastrugi. However, the
glaciological relevance of the RSR-derived surface rough-
ness results is only just beginning to be understood. Future
work will focus on investigating if these results can be inte-
grated into waveform retracking and ice sheet height estima-
tions, detecting and mapping regional changes in ice sheet
surface behaviour, and applications for earlier remote sens-
ing datasets to expand the current time series. Just as impor-
tant, the revised empirical approach for estimating surface
roughness from radar altimetry surface echo powers yields
a decrease in the simultaneously derived surface permittiv-
ities – a critical piece of information for follow-on studies
targeted at understanding the observational trends in Green-
land Ice Sheet surface density. Altogether, this study provides
key, fundamental insight into the derivation of Greenland Ice
Sheet surface properties from radar altimetry surface echoes
as well as the specific context for how the roughness values
should be interpreted.
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