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Abstract. Knowledge of the thickness, volume, and sub-
glacial topography of glaciers is crucial for a range of glacio-
logical, hydrological, and societal issues, including studies
on climate-warming-induced glacier retreat and associated
sea level rise. This is not in the least true for Svalbard,
one of the fastest-warming places in the world. Here, we
present new maps of the ice thickness and subglacial topog-
raphy for every glacier on Svalbard. Using remotely sensed
observations of surface height, ice velocity, rate of surface
elevation change, and glacier boundaries in combination
with a modelled mass balance product, we apply an inverse
method that leverages state-of-the-art ice flow models to ob-
tain the shape of the glacier bed. Specifically, we model large
glaciers with the Parallel Ice Sheet Model (PISM) at 500 m
resolution, while we resolve smaller mountain glaciers at
100 m resolution using the physics-informed deep-learning-
based Instructed Glacier Model (IGM). Actively surging
glaciers are modelled using a perfect-plasticity model. We
find a total glacier volume (excluding the island Kvitøya) of
6800± 238 km3, corresponding to 16.3± 0.6 mm sea level
equivalent. Validation against thickness observations shows
high statistical agreement, and the combination of the three
methods is found to reduce uncertainties. We discuss the
remaining sources of errors, differences from previous ice
thickness maps of the region, and future applications of our
results.

1 Introduction

Glaciers outside the Greenland and Antarctic ice sheets cur-
rently account for about half of the total land ice contribu-
tion to sea level rise (Hugonnet et al., 2021). About 7 %

of the total glacier contribution to sea level rise between
1961/62 and 2015/16 came from glaciers in Svalbard and
Jan Mayen, with an estimated 687 Gt of glacier mass loss
(IPCC, 2023). Svalbard is experiencing among the fastest
warming on the planet, as it experiences the direct impacts
of amplified warming (Arctic amplification) following the
ongoing retreat of sea ice and associated radiation feed-
backs (e.g. Serreze and Barry, 2011; Bintanja and Van der
Linden, 2013; Cao et al., 2017). In response to a strong
warming trend and a weak increase in precipitation, Sval-
bard glaciers have lost mass at a rate of 7± 4 Gt yr−1 dur-
ing 2000–2019 due to surface–atmosphere interactions, as
expressed by the climatic mass balance (CMB), in addition
to frontal ablation losses of 2± 7 Gt yr−1 (Schuler et al.,
2020). CMB predictions indicate an acceleration of mass loss
with average CMB values below −50 Gt yr−1 in 2060 for
the future emission scenarios RCP4.5 and RCP8.5 (Van Pelt
et al., 2021). Based on historical data, structure-from-motion
photogrammetry, and a space-for-time substitution, Geyman
et al. (2022) estimated a doubling of glacier mass loss from
1936–2010 to 2010–2100 with an average thinning of −0.67
to −0.92 m yr−1 in the latter period.

Knowledge of ice thickness and subglacial topography
is relevant for many applications. The mean ice thickness
and glacier volume provide estimates of fresh water stor-
age on land. Glacier volume trends directly affect sea level
rise (SLR) but also have an impact on future fresh water
availability and management. Knowing the ice-free topogra-
phy after glacier retreat gives insight into future landscapes
and coastlines, which is relevant for future marine, terres-
trial, hydrological, ecosystem, and climate modelling stud-
ies. A necessity for simulating long-term glacier evolution
is detailed knowledge of basal topography under the ice.
While a wealth of observational data of surface processes are
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available, the inaccessibility of the glacier bed complicates
direct observations of subglacial topography. The measure-
ment of distributed basal topography fields using ground-
penetrating radar (GPR) is a laborious and expensive task.
As a result, thickness observations exist for only 1 %–2 % of
all glaciers worldwide (Gärtner-Roer et al., 2014; GlaThiDa
Consortium, 2020).

Ice flow models simulate ice motion and changing ice
geometry and are the common tool to study glacier mass
and volume change in past, present, and future climates
(e.g. Goelzer et al., 2017; Rounce et al., 2023). A major
source of uncertainty in glacier modelling, contributing to
errors in sea level rise predictions, stems from difficulties in
setting initial conditions in the present day that are needed
as a starting point for forecasting runs. Knowledge of bed
topography and friction is essential for the accurate simula-
tion of ice motion and thickening/thinning, but direct obser-
vations are scarce (Morlighem, 2022). This has stimulated
the development of inverse methods to indirectly estimate
the ice thickness distribution from much more abundant sur-
face data, including surface height, mass balance, and/or ve-
locity. A range of inverse methods to produce ice thickness
maps have been compared in Farinotti et al. (2017, 2021).
Participating approaches ranged from point-based methods
(e.g. Linsbauer et al., 2009) to fully distributed methods
(e.g. Van Pelt et al., 2013), and they differed regarding the
required input datasets (such as mass balance, velocity, and
surface height change), as well as the ice flow physics used.

The inverse methods used in this study are based on the
iterative approach in Frank et al. (2023), which is inspired
by the method in Van Pelt et al. (2013) and performs short
forward simulations with an ice flow model around the time
of collection of observational datasets of distributed veloc-
ity, surface height and its change, and climatic mass bal-
ance. After every forward simulation (iteration) bed heights
are adjusted to reduce mismatches of surface height change.
On fast-flowing tidewater glaciers, basal friction is addition-
ally optimized to reduce mismatches with surface velocity
data. Using surface height and velocity errors to correct basal
conditions has proven to be a fast method to converge to
bed height and friction fields that, for the assumed ice flow
physics, generate a glacier dynamic state that is consistent
with observations (Frank et al., 2023). Uncertainties in ob-
servational datasets and model physics introduce errors in
the bed, and to prevent “over-fitting” regularization is re-
quired, e.g. by smoothing input datasets. The inverse method
itself does not introduce errors; in the hypothetical case of a
perfect ice flow model and noise-free input datasets, the re-
constructed basal conditions would approach reality. There
is however a physical limit to the spatial detail that can be
resolved, as small-scale bed features do not yield any sur-
face expression (Gudmundsson and Raymond, 2008). Ad-
vantages of the method in Frank et al. (2023) are that it can
be used with any ice flow model and that the final state at
the end of the inversion is a useful initial (spin-up) state for

prognostic simulations, as the geometry and dynamics are
consistent with surface observations.

In this study, different ice flow models are used to invert
the bed topography of small land-terminating glaciers and
to invert bed topography and basal friction on large land-
terminating and fast-flowing marine-terminating glaciers.
For modelling large land-terminating glaciers and tidewa-
ter glaciers on a 500 m resolution grid, a similar method as
in Frank et al. (2023) is used, which employs the ice flow
model Parallel Ice Sheet Model (PISM; https://www.pism.io,
last access: 2 August 2022; Bueler and Brown, 2009) that
combines the shallow ice approximation (SIA) and shallow
shelf approximation (SSA) to simulate internal deformation
and sliding motion respectively. For modelling small land-
terminating glaciers, we adopt the same approach as in a re-
cent study by Frank and Van Pelt (2024), where the inverse
method was applied to all glaciers in Norway and Sweden
using the machine-learning-based Instructed Glacier Model
(IGM; Jouvet and Cordonnier, 2023; Cook et al., 2023) as an
ice flow model. The advantages of IGM over using traditional
(shallow) ice flow models are (1) the ability to use a higher-
order physics, which is particularly relevant for mountain
glaciers, and (2) the severely reduced numerical cost which
enables simulations with high spatial resolution. In this study,
IGM is used to model small land-terminating glaciers in
Svalbard at a 100 m spatial resolution.

Svalbard is home to 1567 glaciers (1544 glaciers exclud-
ing Kvitøya) with a total area of 33 775 km2 in∼ 2010 (Nuth
et al., 2013). Of these glaciers, 186 (12 %) are classified as
tidewater glaciers, covering an area of 23 986 km2, equiva-
lent to 71 % of the total glacier area (Randolph Glacier In-
ventory (RGI) version 6; RGI Consortium, 2017). A total of
103 glaciers in Svalbard have been reported to surge, and an-
other 103 and 37 are respectively possibly or probably surge
type (Sevestre and Benn, 2015). Several studies have pre-
viously quantified Svalbard’s glacier volume and thickness
using a wide range of methods. Volume–area scaling meth-
ods, often applied in global studies, have given volume esti-
mates ranging from 4000 km3 (Ohmura, 2004) to 10 260 km3

(Radić and Hock, 2010), as well as various estimates between
these extremes (e.g. Hagen, 1993; Grinsted, 2013; Radić and
Hock, 2013; Martín-Español et al., 2015). More recently, in-
verse methods have been used to reconstruct distributed ice
thickness in global assessments (Farinotti et al., 2019; Mil-
lan et al., 2022) as well as in a dedicated regional study on
Svalbard (Fürst et al., 2018b). While Farinotti et al. (2019)
presented a weighted average thickness distribution based on
a set of thickness products produced using different meth-
ods, Millan et al. (2022) instead estimated thickness distri-
bution using global high-resolution velocity data and assum-
ing SIA-based ice flow physics and a Weertman sliding law.
Millan et al. (2022) estimated Svalbard’s glacier volume at
6855 km3 (excluding Kvitøya). Fürst et al. (2018b) used a
two-step mass conservation method (Fürst et al., 2017) that
locally calibrates ice viscosity using thickness observations
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in the Glacier Thickness Database (GlaThiDa; GlaThiDa
Consortium, 2020). The method by Fürst et al. (2018b) thus
locally assimilates the thickness data, and errors were shown
to increase with distance to observation locations. Fürst et al.
(2018b) found a volume estimate of 6199 km3 and a likely
range of 5200–7300 km3. The thickness results for Svalbard
in Farinotti et al. (2019) are a copy of the results in Fürst
et al. (2018b), which is version 1.0 of the Svalbard ice-free
topography (SVIFT; Fürst et al., 2018a). The newer version
1.1 of SVIFT is available in Fürst et al. (2018a), which shows
a ∼ 20 % higher volume (7370 km3) than version 1.0.

We present a new thickness and bed height dataset for all
glaciers in Svalbard using a combination of inverse model re-
sults using IGM on small land-terminating glaciers (at 100 m
resolution) and PISM on large land-terminating and tidewa-
ter glaciers (at 500 m resolution). Surging glaciers were mod-
elled separately with a perfect-plasticity method instead, as
time-stamp mismatches of the input datasets (e.g. DEM from
2009–2012 and velocity map from 2017–2018) did not allow
for accurate inversion using the Frank et al. (2023) method
for glaciers with strong short-term changes in geometry and
flow dynamics. In the following sections, we describe the in-
put data (Sect. 2), introduce the inverse method (Sect. 3),
present the bed and thickness maps, compare them against
existing products, discuss uncertainties (Sect. 4), and present
conclusions (Sect. 5).

2 Data

Various remote sensing and model-based datasets of surface
conditions are used as “input” in the inverse method, in-
cluding distributed maps of surface elevation, climatic mass
balance, surface height change, glacier outlines, surface ve-
locity, and glacier-average frontal ablation. In addition, ice
thickness observations are used for calibration and valida-
tion. The data are summarized in Table 1. Distributed maps
of surface elevation, surface height change, velocity, cli-
matic mass balance, thickness observations, and glacier out-
lines are shown in Fig. 1. For more details about the input
datasets, the reader is referred to the data sources in Ta-
ble 1. The main criteria for the selection of input datasets
were (1) performance in previous comparisons (when avail-
able); (2) the time stamp, since data from a similar period
were preferred; and (3) smoothness/spatial noise and miss-
ing data. To support the selection of datasets of velocity and
surface height change, we additionally performed tests forc-
ing the inverse method with different products, i.e. Millan
et al. (2022), Friedl et al. (2021), and NASA MEaSUREs
ITS_LIVE (Gardner et al., 2023) for velocity and Morris
et al. (2020) and Hugonnet et al. (2021) for surface height
change. This revealed the best performance against thickness
data when using Millan et al. (2022) and Hugonnet et al.
(2021) (not shown). For surface heights, we chose to use
the S0 Terrengmodell by the Norwegian Polar Institute (NPI,

2014), which is a 20 m resolution digital elevation model
(DEM), based on aerial photos between 2009–2012 and de-
rived from subset models (5 m resolution) for regions in Sval-
bard. For glacier outlines, we used version 6.0 of the RGI
outlines (instead of the newer version 7.0) based on the com-
patibility of the outline dataset with frontal ablation estimates
in Kochtitzky et al. (2022). Differences between RGI ver-
sions 6.0 and 7.0 are in the delineation of individual glaciers,
and the combined area and the total outline are the same
in both versions (see http://www.glims.org/rgi_user_guide/
regions/rgi07.html, last access: 18 December 2024).

3 Methods

Three different approaches are used to generate thickness
and bed maps for all glaciers in Svalbard. We split Sval-
bard’s glaciers into three classes (see also Fig. 1c): (1) all
glaciers that are smaller than 100 km2 and not tidewater or
surge-type glaciers (Sevestre and Benn, 2015), (2) all glaciers
that are larger than 100 km2 and those smaller than 100 km2

that are tidewater or surge-type glaciers but not surging dur-
ing 2015–2018 (Koch et al., 2023), and (3) all glaciers that
were reported to surge during 2015–2018. Glaciers in class 1
are modelled using the Instructed Glacier Model (IGM; Jou-
vet and Cordonnier, 2023) as in Frank and Van Pelt (2024)
(Sect. 3.2). Glaciers in class 2 are modelled using the Par-
allel Ice Sheet Model (PISM; Bueler and Brown, 2009) as
in Frank et al. (2023) (Sect. 3.1). Finally, ice thickness for
glaciers in class 3 is estimated using the perfect-plasticity as-
sumption (Nye, 1952). The rationale behind the grouping is
that glaciers in class 1 can be modelled with higher resolu-
tion, higher-order physics, and low computational cost using
the machine learning model IGM. Large tidewater glaciers
and ice caps, combining slow internally deforming sections
with fast-flowing areas, are effectively modelled with PISM
(Bueler and Brown, 2009). A simpler perfect-plasticity ap-
proach is needed for the surging glaciers in class 3, as mis-
matches in time frames of input datasets (most prominently
DEM, surface velocity, and surface height change) would
induce major errors when applying iterative inverse meth-
ods. One nuance to the three classes above is that all (small)
glaciers in class 1 that are part of/connected to larger ice caps
are modelled with PISM. This is to avoid thickness jumps at
the ice divides. Furthermore, to avoid thickness jumps within
ice caps between PISM-modelled and surging glaciers, ex-
periments with PISM also include the surging glaciers as
static entities with thicknesses based on the perfect-plasticity
assumption. The three methods are described in more detail
below.

3.1 Inversion using PISM

In preparation for the inversion, input datasets of the digital
elevation model (DEM), surface height change, surface mass
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Table 1. Overview of the datasets used in the inverse method.

Variable Method/database Orig. resolution Time frame Source

Digital elevation model Aerial photos 20 m 2009–2012 NPI (2014)
Surface height change ASTER and ArcticDEM 100 m 2010–2019 Hugonnet et al. (2021)
Ice velocity Landsat 8, Sentinel-2, and Sentinel-1 50 m 2017–2018 Millan et al. (2022)
Climatic mass balance Energy balance – firn model (EBFM) 1000 m 2010–2019 Van Pelt et al. (2019)
Ice thickness Glacier Thickness Database 966 408 data points 1983–2016 GlaThiDa Consortium (2020)

(GlaThiDa) v 3.1.0
Frontal ablation GlaThiDa and ITS_LIVE Estimate per glacier 2010–2020 Kochtitzky et al. (2022)
Glacier outlines Randolph Glacier Inventory 6.0 – 2000–2010 RGI Consortium (2017)

Figure 1. Overview maps of the input datasets used in the inverse modelling. Data sources and information are given in Table 1. The regions
northwest (NW), northeast (NE), and southern Svalbard (S) are marked in (c).
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balance, and velocity were averaged/interpolated from their
original grid (20–1000 m resolution; Table 1) to the 500 m
grid used by the ice flow model. Similarly, glacier outlines
from the RGI were down-sampled onto the 500 m model grid
to generate a mask separating glacier and glacier-free terrain.

The ice flow model PISM is used to perform iterative short
(0.001 years) forward simulations of ice flow and geomet-
ric change for all glaciers in class 2, i.e. large (> 100 km2)
glaciers and small quiescent surge-type glaciers. As in Frank
et al. (2023), PISM uses the combined shallow-ice, shallow-
shelf approximation (Bueler and Brown, 2009) to model both
ice flow by internal deformation and sliding, the latter be-
ing described by a linear sliding law with spatially varying
sliding coefficient C. A flow enhancement factor for the SIA
(SIAe) is used, set here to 3 as in previous applications of
PISM in Antarctica (Martin et al., 2011), Greenland (Bochow
et al., 2023), and Iceland (Robinson, 2018). Ice temperature
and with that ice softness (3.1689× 10−24 Pa−3 s−1) are as-
sumed to be constant; i.e. thermodynamics are not modelled.
After every 0.001-year model run, modelled and observed
surface height changes ( dhmod

dt and dhobs
dt ) are compared to cal-

culate a misfit that is used to locally adjust the bed height b
before the next model run:

bnew = bold−β

(
dhmod

dt
−

dhobs

dt

)
, (1)

where β is a coefficient, set here to 0.25. Following Frank
et al. (2023) we apply a simultaneous correction of the sur-
face height, yet of opposite sign and with a magnitude that is
θ times the bed height misfit. The surface adjustments were
previously found to stabilize the inversion in places where the
ice flow model is not able to simulate observed flow patterns
well, e.g. because of simplifying assumptions in the stress
balance equations (Frank et al., 2023). To avoid major sur-
face height anomalies relative to the DEM, e.g. when starting
from a strongly biased initial bed, we apply a one-time cor-
rection to the surface height map after 400 iterations. During
this correction, a map of surface height deviations relative to
the DEM is computed and smoothed with a Gaussian filter
(using 4 standard deviations for the Gaussian kernel); the re-
sulting map is subtracted from the surface height map. Sim-
ilar to Frank et al. (2023) we update basal friction (by mod-
ifying the sliding coefficient C). The initial friction field is
derived from the linear sliding law C =

∣∣∣ τduthres
uobs

∣∣∣, where τd is

the driving stress, uthres is a threshold velocity (1 m s−1), and
uobs is the observed ice velocity (Bueler and Brown, 2009).
Based on test runs, we found the best performance (lowest
thickness errors) when updating C only once after 400 model
iterations. The inverse experiment uses a total of 800 itera-
tions (bed height corrections). The initial bed at the start of
the first model iteration binit is set to a bed that is estimated
using the perfect-plasticity assumption (Nye, 1952; Li et al.,

2012):

binit = h−
τ

ρg sinα
, (2)

where h is the surface height, τ is a yield constant, ρ is
the ice density (900 kg m−3), g is the gravitational acceler-
ation (9.8 m s−2), and α is the absolute surface slope. For
surface slopes smaller than αmin, α = αmin, which is needed
to avoid excessively large thickness values. Parameter values
for αmin and τ were estimated based on calibration against
thickness observations on surging glaciers, as described fur-
ther in Sect. 3.3 below.

As in Frank et al. (2023), climatic mass balance per glacier
is re-projected using a regression-based linear function of cli-
matic mass balance with elevation. Similarly, we re-project
surface height change using linear fitting against elevation.
The linear regressions were previously found to increase the
accuracy of reconstructed ice thicknesses, as erroneous lo-
cal spatial variations in the surface height change and ve-
locity datasets no longer affect the thickness reconstruction
(Frank and Van Pelt, 2024). The differencing of the climatic
mass balance and surface height change results in the appar-
ent mass balance (Farinotti et al., 2009), which is forced to
sum to zero for every land-terminating glacier by applying
spatially constant bias corrections per glacier. For tidewater
glaciers, instead the glacier-summed apparent mass balance
minus frontal ablation (Table 1; Kochtitzky et al., 2022) is
enforced to equal zero. The above corrections assure mass
conservation for every glacier, although compensating errors
may occur, e.g. in the case of erroneous frontal ablation es-
timates resulting in a bias of the apparent mass balance. De-
spite the above measures to conserve mass, modelled glaciers
often tend to become too thin at their fronts due to mass “es-
caping” through the lateral boundaries set by the RGI out-
lines (Frank and Van Pelt, 2024). To compensate for this
mass loss, we apply a fixed correction for all glaciers equal
to Mcorr. The positive apparent mass balance for tidewater
glaciers together with a positive Mcorr commonly assures a
positive mass flux (i.e. calving and/or frontal ablation) at the
calving front. Hence, calving fronts do not retreat. They do
not advance either since all mass that flows out of the outlines
defined by the RGI dataset is instantly removed.

Frank et al. (2023) applied post-processing of thicknesses
when modelled velocities in zones dominated by slow in-
ternal deformation flow were higher than observed even for
C→∞. A different approach is applied here based on the
logic that in zones where flow is controlled by internal de-
formation, the yield stress is an irrelevant parameter. We
therefore introduced an observed velocity threshold uthres =

25 m yr−1 to identify regions where slow flow prevailed and
no friction updates were applied.

Frank and Van Pelt (2024) previously found that ice thick-
ness estimates improved by applying surface updates and
mass balance corrections. With this in mind, we calibrated θ
and Mcorr, by searching for a minimum mean absolute error
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between modelled and observed (GlaThiDa) ice thicknesses
for all observed locations in Svalbard. Optimum values of
θ = 0.4 and Mcorr = 0.4 m w.e. yr−1 were found, yielding a
mean absolute error (MAE) of 58.1 m. More statistics on the
comparison with observations are given in Sect. 4.2. These
statistics are after the post-processing of thicknesses using
a moving-average smoothing filter with a window size of
three cells. This was found to give a reduction in the MAE
(−2.2 m) and an increase in Pearson correlation (+0.014),
relative to non-post-processed thicknesses. Bed heights are
calculated by subtracting thicknesses from the DEM.

Sensitivity tests were performed with a perturbed ini-
tial bed (zero ice thickness), magnitude of surface updates
(θ = 0.2 and θ = 0.8), and mass balance correction (Mcorr =

0.2 m w.e. yr−1 and Mcorr = 0.6 m w.e. yr−1). Results are vi-
sualized in Fig. 2 and show differences relative to the ref-
erence run with a perfect-plasticity-based bed, θ = 0.4 and
Mcorr = 0.4 m w.e. yr−1. Figure 2 shows that the Mcorr per-
turbation mostly affects lower-elevation areas, whereas θ ad-
justments mainly impact slow-flowing high-elevation areas;
this supports the choice of these two parameters for cal-
ibration. Impacts of perturbing Mcorr are increases in the
MAE relative to the thickness observations of 1.3 m (Mcorr =

0.2 m w.e. yr−1) and 0.3 m (Mcorr = 0.6 m w.e. yr−1); per-
turbing θ yielded increases in the MAE of 2.5 m (θ = 0.2)
and 0.2 m (θ = 0.8). Furthermore, perturbing Mcorr and θ
introduces biases of the mean thickness of −10.6 (Mcorr =

0.2 m w.e. yr−1), 7.3 (Mcorr = 0.6 m w.e. yr−1), 5.1 (θ = 0.2),
and −10.8 m (θ = 0.8). The extreme case starting with no
ice results in a weaker performance (e.g. 12.0 m increase in
MAE), highlighting the importance of starting with a reason-
able first guess of the bed topography. It is noteworthy that
all perturbation experiments give a final bed at the end of the
inversion that has a lower MAE than the initial (unperturbed)
perfect-plasticity bed, which has an MAE equal to 77.5 m
(compared with 58.1 m for our best run).

3.2 Inversion using IGM

The inversion for glaciers from class 1 follows a largely con-
gruent workflow to the one above in that the principle is
based on Frank et al. (2023), where bed updates (Eq. 1) and
surface updates are executed iteratively. The main differences
are the ice flow model (IGM v2.0.4 instead of PISM) and a
few parameter and processing choices. The method is closely
aligned with Frank and Van Pelt (2024). Note, therefore,
that while we use IGM as a forward model, we do not use
the IGM’s built-in inversion as described by Jouvet (2022)
which, in contrast to our method, assimilates thickness ob-
servations and relies on cost function minimization.

The spatial resolution is 100 m, which the DEM and
glacier outlines are down-sampled to. The DEM is further-
more smoothed in the ablation area with a 2σ Gaussian fil-
ter; this strategy was found to be superior to not smooth-
ing or to smoothing over the entire glacier area. The cli-

matic mass balance for each glacier is downscaled from the
original 1000 m resolution to 100 m by fitting an elevation-
dependent piece-wise linear function with two segments and
a breakpoint at the equilibrium line altitude (ELA) to the
mass balance product by Van Pelt et al. (2019) of a given
glacier and glaciers within a buffer of 10 km. Taking neigh-
bouring glaciers into consideration is done to avoid poorly
constrained fits for small glaciers as a result of the coarse res-
olution of the original product. The apparent mass balance is
calculated as above and is based on this new climatic mass
balance and dh/dt .

IGM (Jouvet and Cordonnier, 2023) is a physics-informed
deep learning model that emulates higher-order ice flow
while being computationally efficient. The underlying archi-
tecture is a convolutional neural network (CNN) which is re-
trained as the model runs. This is achieved by comparing
the solution of the CNN to that of an actual higher-order
solver and updating the CNN weights based on that mis-
match every 10th model iteration, ensuring a close align-
ment between the CNN and process model solutions. IGM
includes a Weertman-type sliding law with a sliding coeffi-
cient c, and it allows the ice viscosity parameter ν to be set.
Calibration is done by finding one global value for ν and c
which minimizes the mean error to ice thickness observa-
tions. By not allowing ν to exceed νmax = 78 MPa−3 yr−1

(the value corresponding to an ice temperature of 0 °C) and
enforcing c = cmin = 100 m MPa−3 yr−1 if ν < νmax (follow-
ing a simplifying assumption that no basal sliding occurs
for cold ice, as in Jouvet, 2022, and Frank and Van Pelt,
2024), the calibration procedure yields the optimal parame-
ters ν = 78 MPa−3 yr−1 and c = 8000 m MPa−3 yr−1. These
values are applied uniformly to all glaciers in class 1.

The initial thickness field is obtained using a perfect-
plasticity approach (Eq. 2) with τ = 100 kPA and αmin =

0.04. These perfect-plasticity parameter values were selected
based on sensitivity tests with IGM and hence deviate from
the ones used to generate the initial bed for glaciers in class
2 and the final bed for glaciers in class 3. Then, using IGM,
5000 model years are simulated during which bed (with β =
1) and surface updates (with θ = 0.25) are applied. While β
affects the magnitude of bed corrections and number of it-
erations needed, it hardly (if at all) influences the final bed;
a value that is too high may however cause instabilities, and
values in PISM and IGM have been chosen accordingly. As
in PISM, the value for θ in IGM has been optimized by min-
imizing discrepancies in thickness observations. In contrast
to the PISM approach, basal friction is not updated but kept
fixed. This follows from the assumption that there are smaller
spatial variations in the basal friction fields of small moun-
tain glaciers compared to large (tidewater) glaciers, mean-
ing that one initial calibration of the spatially uniform c is
sufficient. To account for mass escaping through the lateral
glacier boundaries a different strategy than in the PISM ap-
proach is pursued, as in Frank and Van Pelt (2024). Specif-
ically, after 3000 model years and for each glacier individ-
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Figure 2. Sensitivity of PISM-modelled ice thickness for perturbedMcorr, θ , and initial bed. Thickness differences are calculated by subtract-
ing the thickness of the reference run (Mcorr = 0.2 m w.e. yr−1,Mcorr = 0.6 m w.e. yr−1, and perfect-plasticity-based bed) from the thickness
of the perturbation experiment.

ually, the integrated apparent mass balance of those areas
within the glacier mask that are ice-free (which is equal to
the mass leakage rate) divided by the total glacier area is
added to the specific apparent mass balance. In doing so, the
mass leaking out on the lateral glacier boundaries is fed back
to the glacier via a correction of the apparent mass balance.
The final thickness field is obtained by interpolating gaps in
the modelled thicknesses which may remain in the case of
persistent mass leaking and applying a thickness-dependent
Gaussian filter as in Frank and Van Pelt (2024).

3.3 Surging glaciers

Thickness estimation using iterative inverse methods as in
Sect. 3.1 and 3.2 ideally uses input datasets of surface height,
surface height change, velocity, mass balance, and frontal ab-
lation that represent the same point in time. In practice, ac-
cessible datasets will have different time stamps, introducing
a source of error for inverse estimated thicknesses. Such er-
rors are small for glaciers that are near steady state or under-
going gradual change. Conversely, errors become consider-
able for glaciers that are undergoing rapid dynamic changes,
e.g. in the event of surge initiation. In the latter case, a sim-
pler method depending on fewer input datasets is desirable.
Here, we apply the perfect-plasticity assumption to estimate

thicknesses for 13 glaciers, including Basin-3, Negribreen,
and Tunabreen, that actively surged during 2015–2018, as
identified by Koch et al. (2023). In the perfect-plasticity as-
sumption, ice thickness is controlled primarily by the surface
height (Eq. 2). Since the DEM (2009–2012) was collected
prior to the initiation of the surge for the selected glaciers,
the thickness estimation is effectively based on the pre-surge
glacier geometry. We regard this as an advantage as ice flow
models in general are not able to describe the strongly tran-
sient stress state of actively surging glaciers well. The ap-
plication of the perfect-plasticity assumption is the same as
when generating the initial bed in the PISM-based inversion
(Sect. 3.1). To find optimum values of minimum slope αmin
and yield constant τ , all combinations with αmin = 0.010 :
0.001 : 0.040 and τ = 0 : 2 : 100 kPa were tested to find an
optimum combination (lowest RMSE for all available thick-
ness data on the 13 actively surging glaciers). This resulted
in αmin = 0.014 and τ = 52 kPa.

3.4 Combining the thickness datasets

The three inverse approaches (Sect. 3.1–3.3) generate dis-
tributed thickness and bed height datasets at different spa-
tial resolutions: 100 m for the IGM-modelled glaciers and
500 m for both the PISM-modelled and the surging glaciers.
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To create a uniform combined map of ice thickness (and
basal topography), results for the PISM-modelled and surg-
ing glaciers on the 500 m resolution grid have been re-
projected to the finer 100 m resolution grid used by IGM us-
ing nearest-neighbour interpolation. Finally, to improve spa-
tial detail of the outlines of the PISM-modelled and surging
glaciers, glacier extent has been clipped to a 100 m resolu-
tion glacier mask extracted from the RGI dataset (RGI Con-
sortium, 2017).

3.5 Estimating volume uncertainty

Given model complexity, the analytical error propagation of
modelling errors is not feasible to estimate the uncertainty of
the calculated ice volume for all glaciers. We instead adopt
an alternative statistical method. The total volume V of all
glaciers is

V =HA, (3)

where H is the mean ice thickness and A is the area. Stan-
dard error propagation then implies that the standard error
σV results from errors in H and A as follows:

σV = V

√(σA
A

)2
+

(
σH

H

)2

. (4)

The term σA
A

is the relative area error resulting from the un-
certainty of outlines. Nuth et al. (2013) previously estimated
this uncertainty to be 0.01–0.02 (1 %–2 %) for glaciers in
Svalbard; we therefore assume an uncertainty of σA

A
= 0.015

applies here. The term σH
H

is the relative mean thickness er-
ror. Through the calibration of our inverse method, we effec-
tively removed the bias between the average modelled and
observed thickness, implying a negligible mean thickness er-
ror for the observed glaciers. This does not mean that average
modelled thicknesses are bias-free at the Svalbard-wide scale
because of the smaller sample size of the observed glaciers
relative to the total number of glaciers. In other words, a vol-
ume error may result from the fact that we calibrate against
a finite sample of thickness data and use the same model
setup also for glaciers without observations. To calculate σH
we first calculate individual biases for all of the 169 glaciers
in Svalbard with thickness observations in at least 10 model
grid cells (on the 100×100 m grid), which gives values rang-
ing from −154 to 163 m and a distribution of biases that is
normally distributed according to a Lilliefors test. In the next
step, we calculate the standard deviation of the 169 biases,
giving 45.6 m, implying that if we calibrated against data
from only one glacier, the mean modelled thickness would
be off by between −45.6 and +45.6 m with a likelihood of
68 %. The range of biases narrows if we select more than
one glacier for calibrating the model, and, following the same
logic as is used to calculate a standard error of a mean, it has
been found that dividing by the square root of the number of

samples is required to calculate the remaining standard devi-
ation for larger sets of glaciers used for calibration. Here, 169
glaciers were used for calibration, implying that the mean
thickness error for all observed glaciers σH is found by di-
viding by the square root of the number of observed glaciers
(
√

169), giving σH = 3.5 m. With a mean observed thickness
H = 257.2 m, the relative thickness error σH

H
then becomes

0.014 (or 1.4 %). As a result, we find a (relative) standard
error in volume σV

V
of 2.1 % from uncertainties in the area

(outlines) and mean thickness; the 90 % confidence interval
(±1.65σV

V
) is hence ±3.5 %. Please note that the relative er-

ror in the volume and mean thickness is much smaller than
the local (point) uncertainty of modelled thicknesses (the lat-
ter is quantified in Sect. 4.2).

4 Results and discussion

4.1 Bed height, ice thickness, and volume

Maps of ice thickness and bed topography, combining results
from the three methods (Sect. 3), are shown in Fig. 3. The
mean thickness of all glaciers and ice caps in Svalbard, ex-
cluding Kvitøya, is estimated at 205 m. Ice volume equals
6800 km3, of which an estimated 315 km3 (4.6 %) lies below
sea level. Total volume uncertainty, with a 90 % confidence
interval, is estimated at ±238 km3 (±3.5 %; Sect. 3.5). As-
suming an ice density of 917 kg m−3, a seawater density of
1027 kg m−3, and a global ocean area of 3.618× 108 km2 im-
plies that the Svalbardian glaciers would raise global mean
sea level by 16.3± 0.6 mm if they melted completely. The
largest ice thicknesses are found on Austfonna (Nordaust-
landet), Holtedahlfonna (northwest Spitsbergen), and Hin-
lopenbreen (eastern Spitsbergen). Ice thickness for a selec-
tion of four regions (Fig. 4) shows how thickness estimates
from IGM and PISM are combined; thickness maps for small
land-terminating glaciers contain more spatial detail (100 m
resolution) than other glaciers (500 m resolution).

A glacier-averaged thickness comparison for tidewater
(TW) and land-terminating (LT) glaciers is shown in Fig. 5.
The glacier-average median thickness is about 4 times larger
for tidewater glaciers (162 m) than for land-terminating
glaciers (42 m). These median values are much lower than
the Svalbard-wide mean ice thickness (205 m), which results
from a skewed size distribution with a predominantly small
and thin glaciers in both glacier categories (LT and TW).
Both land-terminating and tidewater glaciers are on average
thickest in northeast Svalbard (LT: 55 m; TW: 183 m) and
least thick in northwestern Svalbard (LT: 33 m; TW: 114 m).
There are 7.5 times more land-terminating glaciers (1363)
than tidewater glaciers (181); however, land-terminating
glaciers only comprise 20 % (1348 km3) of the total glacier
volume. Basin-3 on Austfonna is Svalbard’s largest glacier,
both in terms of area (1226 km2) and volume (421 km3).
Etonbreen, Austfonna, is the glacier with the largest average
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Figure 3. Ice thickness (a) and basal topography (b) for all glaciers in Svalbard (excluding Kvitøya).

Figure 4. Ice thickness in selected regions in northwest (a), central (b, d), and southern Svalbard (c).
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Figure 5. Boxplot showing glacier-averaged thickness for land-terminating (LT) and tidewater (TW) glaciers for all glaciers and split into
southern, northwestern, and northeastern glaciers. The box plots for LT and TW glaciers are based on mean thickness values for every glacier.
In each category, n is the number of glaciers and V is total glacier volume (in km3). Region boundaries for south, northwest, and northeast
Svalbard are shown in Fig. 1c.

thickness (393 m). Primarily due to the small glacier size, no
thicknesses could be estimated for a glacier area of 29 km2,
equivalent to 0.09 % of the total glacier area and, given their
below-average thickness, an even smaller fraction of the total
glacier volume.

The area and volume distributions with elevation for
glaciers in southern, northwestern, and northeastern Sval-
bard (Fig. 6; regions defined in Fig. 1c) show that the vol-
ume and area both peak at surface elevations equivalent to
(southern Svalbard) or slightly above the equilibrium line
altitude (ELA; northwest and northeast Svalbard) in 1957–
2018 (Van Pelt et al., 2019). With an expected rise in the
ELA (Van Pelt et al., 2021), strongest in southern Svalbard,
the relative size of the accumulation zones to the total glacier
area (accumulation area ratio) will drop from 43 % to 6 % in
southern Svalbard, 58 % to 27 % in northwestern Svalbard,
and 71 % to 41 % in northeastern Svalbard from 1957–2018
to 2019–2060. Similarly, the ice volume with a correspond-
ing surface elevation above the ELA will drop from 35 %
to 4 % in southern Svalbard, 58 % to 24 % in northwestern
Svalbard, and 77 % to 45 % in northeastern Svalbard. The
marked drop in southern Svalbard can in part be ascribed to a
pronounced narrow peak in hypsometry at low elevations, as
previously discussed in Noël et al. (2020) and Van Pelt et al.
(2021). Furthermore, it can be argued that the glacier state, in
terms of accumulation area ratio, in northeastern Svalbard in

2019–2060 is comparable to the state in southern Svalbard in
1957–2018; i.e. changes in northeastern Svalbard are trailing
changes in southern Svalbard by around 6 decades. Finally,
it is noteworthy that the above analysis of area and volume
responses to ELA changes disregards the amplifying effects
of an associated drop in the surface height as glaciers thin.
Hence, the presented reductions in accumulation area ratio
and volume above the ELA should be regarded as conserva-
tive estimates.

4.2 Comparison with thickness data and other studies

Since the GlaThiDa thickness data were only used to op-
timize spatially independent, i.e. global, model parameters,
the thickness observation dataset is useful to validate spatial
thickness variability. A point-by-point comparison of mod-
elled and observed thickness values is shown in Fig. 7. It
should be noted that estimated thicknesses are available at
two different resolutions (100 m for glaciers in class 1 and
500 m for glaciers in class 2 and 3). It therefore is not fea-
sible to perform a direct comparison for all data at once, as
it would involve rescaling (downscaling or averaging) one of
the two datasets to create a dataset with constant spatial reso-
lution; the rescaling itself would affect performance metrics
of the rescaled data. Based on the above, we instead perform
a comparison of estimated and observed thicknesses at two
different resolutions, i.e. at 500 m (glaciers in classes 2 and 3)
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Figure 6. Glacier area (red) and volume (blue) in 50 m elevation bins in south (a), northwest (b), and northeast Svalbard (c). ELA values
for 1957–2018 and 2019–2060 are taken from Van Pelt et al. (2019) and Van Pelt et al. (2021). Region boundaries for south, northwest, and
northeast Svalbard are shown in Fig. 1c.

Figure 7. Comparison of modelled and observed ice thickness for output from our study (a–b) and Millan et al. (2022) (c–d) and split into
data for glaciers in classes 2 and 3 (a and c) and class 1 (b and d). Thickness observations are from the GlaThiDa database (GlaThiDa
Consortium, 2020). The comparisons in (a) and (c) are based on 500 m resolution output, whereas the comparisons in (b) and (d) are based
on 100 m resolution output. The dot colour represents the density of data points, ranging from dark blue (lowest density) to bright yellow
(highest density).
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Table 2. Comparison of thickness products against point measurements in GlaThiDa.

Thickness dataset R MAE (m) RMSE (m) Bias (m)

This study (classes 2 and 3; 500 m) 0.81 57.2 75.5 0.2
This study (class 1; 100 m) 0.78 37.6 49.2 0.6
Millan et al. (2022) (classes 2 and 3; 500 m) 0.71 81.1 107.2 23.1
Millan et al. (2022) (class 1; 100 m) 0.76 38.0 49.1 −11.4

and 100 m (glaciers in class 1). Observed thicknesses for the
100 and 500 m grids were estimated by averaging all point
observation data falling within every 100 or 500 m grid cell
respectively.

For all glaciers in classes 2 and 3, we find a MAE of
57.2 m, RMSE of 75.5 m, and R correlation of 0.81. This
can be compared with a higher RMSE of 107.2 m and lower
R = 0.71 from Millan et al. (2022) for the same glaciers. For
all glaciers in class 1 (at 100 m resolution), we find that Mil-
lan et al. (2022) produce a similar match to the observations
with an MAE of 38.0 m (versus 37.6 m in this study), RMSE
of 49.1 m (versus 49.2 m in this study), and R = 0.76 (versus
R = 0.78 in this study). Millan et al. (2022) do experience a
considerable negative bias of −11.4 m (versus 0.6 m in this
study) for glaciers in class 1 and conversely a strong posi-
tive bias of 23.1 m (0.2 m in this study) for glaciers in classes
2 and 3, suggesting an overestimation of thickness for large
glaciers and an underestimation for small glaciers. The scat-
ter plots in Fig. 7a–b reveal that the clouds of points are dis-
tributed well around the 1 : 1 line, suggesting no apparent
biases for small or large thicknesses. This is an indication
that the degree of smoothness and detail in the bed (height
of bed peaks and depth of subglacial troughs) is modelled
well, e.g. a bed that is too smooth would have resulted in
an underestimation of large thicknesses and overestimation
of small thicknesses. Similar scatter plots comparing thick-
nesses by Millan et al. (2022) with observations (Fig. 7c–
d) show that the larger errors for glaciers in classes 2 and 3
(Table 2) are a result of a general larger spread in the Mil-
lan et al. (2022) dataset, primarily for large thicknesses. For
small glaciers (class 1) Millan et al. (2022) show an underes-
timation of large thicknesses and an overestimation of small
thicknesses, indicating that the Millan et al. (2022) thickness
product is smoother than reality.

It should be noted that if PISM was used for the glaciers
currently modelled with IGM (class 1), MAE would increase
to 42.7 m (IGM: 38.0 m) and RMSE to 54.1 m (IGM: 50.1 m)
and R would drop to 0.71 (IGM: 0.77). For this comparison,
PISM results on the 500 m resolution grid were re-projected
to the 100 m resolution IGM grid using nearest-neighbour
interpolation (running PISM at 100 m resolution is too com-
putationally costly and results in the violation of the shallow-
ness assumptions). The above confirms that the use of IGM
for small glaciers leads to better agreement with thickness
measurements. One reason may be the higher-order physics

behind IGM, which help to resolve small-scale ice flow and
bed features better than with a model like PISM, which is
based on shallowness assumptions (i.e. small depth-to-width
ratios are less likely to apply to glaciers in class 1). The supe-
rior performance of IGM for small land-terminating glaciers
was the main reason to use two different ice flow models
for glacier classes 1 and 2. IGM is under constant develop-
ment, and to date no extensive tests have been performed yet
on grounded tidewater glaciers. Using IGM and the same in-
put datasets and model assumptions as with PISM, we per-
formed first tests on a selection of large (tidewater) glaciers
in Svalbard showing slightly worse performance (more de-
tails in the response to Reviewer 1 in the interactive dis-
cussion that accompanies this paper; Van Pelt, 2024). This
may lie in the machine learning character of IGM, which can
only approximate the results of conventional ice flow mod-
els that directly solve the stress equations. It is also worth
noting that IGM experiences a loss of accuracy with increas-
ing domain size (Jouvet and Cordonnier, 2023), further un-
derscoring that IGM does not generate a replica of regular
higher-order model results.

A spatial comparison of our thickness map with previ-
ous maps presented in Millan et al. (2022) and Fürst et al.
(2018b) is shown in Fig. 8. Millan et al. (2022) found a
similar volume (6855 km3) and average thickness (207 m),
while Fürst et al. (2018b) (version 1.1) found higher vol-
ume (7213 km3) and mean thickness (220 m) estimates. It
should be noted that, in contrast to Millan et al. (2022) and
this study, Fürst et al. (2018b) locally calibrated their method
against point thickness observations, implying that thickness
observations are imprinted in the thickness product. Based
on this, we excluded Fürst et al. (2018b) from the thickness
comparison in Table 2. In general, our study shows more
similarities in terms of spatial distribution with Fürst et al.
(2018b) than with Millan et al. (2022), as shown by the lower
overall deviations from our thickness map (Fig. 8c and d).
The better agreement of our study with Fürst et al. (2018b)
than with Millan et al. (2022) may in part reflect the better
agreement of our product with the thickness data (which are
integrated in the Fürst et al., 2018b, thickness map). For the
large Austfonna ice cap, our study and Fürst et al. (2018b) are
in better agreement than our study and Millan et al. (2022);
most notably our study and Fürst et al. (2018b) experience
less-pronounced jumps near ice divides.
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Figure 8. Previous ice thickness maps by Millan et al. (2022) (a) and Fürst et al. (2018a) (version 1.1) (b), as well as the corresponding
differences from our results (c–d).

The inverse method in Millan et al. (2022) relies on ice
velocities and inversion of the SIA, with a parameterized
description of sliding, to estimate thickness. The overesti-
mation of ice thickness for large glaciers in Millan et al.
(2022) (Table 2) and most prominently for surging glaciers,
e.g. Basin-3, Tunabreen, Negribreen, and Storebreen (Fig. 8),
could result from inappropriate physics in describing the
highly dynamic and complex flow. The same argument, in
addition to mismatches in the time stamps of input datasets,
has led us to use the simpler perfect-plasticity method for
surging glaciers in this study. Regarding the comparison with
Fürst et al. (2018b) we note that Fig. 8 compares our product
against version 1.1 of the Fürst et al. (2018b) dataset, which
differs considerably (e.g. 20 % higher volume) from the ver-
sion (1.0) that was described and presented in the paper. It is

noteworthy though that the Fürst et al. (2018b) products can
be seen as an “interpolation method”, as the observations are
imprinted in the map and mass conservation and viscosity
tuning are applied to generated thickness in between obser-
vations. Our study is less informed by the observations (only
to constrain global parameters), which we argue leads to a
map that may be more consistent in space (in terms of spa-
tial detail/roughness and uncertainty) and has the advantage
that it can be used as a numerically stable spin-up state for
prognostic modelling. However, this currently only applies to
glaciers in classes 1 and 2, for which iterative inverse meth-
ods were used. In the case that glaciers in class 3 are also
to be included in a prognostic run, we would suggest to in-
stead use PISM for these glaciers as well to allow for spin-up
and transient forward modelling (as for glaciers in class 2).
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This does inevitably introduce larger uncertainty in the basal
topography and initial ice thickness.

4.3 Uncertainties

By applying dedicated inverse methods and model physics
for different glacier types, using state-of-the-art remote sens-
ing and model input datasets, and calibrating against thick-
ness observations, we limit uncertainties in the final thick-
ness and bed maps. Arguably, using different ice flow mod-
els, spatial resolutions, and individual parameter calibrations
per glacier class causes some consistency between the meth-
ods to be lost. However, advantageously we achieve a lower
misfit with thickness observations by treating glacier types
separately. More specifically, the superior performance of
IGM for glaciers in class 1 and the improved results with
PISM for glaciers in class 2 were the main reasons to use two
different ice flow models for these classes. Regarding the use
of different spatial resolutions, we emphasize that there is a
limit to the degree of detail in the bed that can be recovered
from inversion, which scales with the ice thickness (Gud-
mundsson and Raymond, 2008). Hence, smaller-scale bed
details can theoretically be recovered for smaller (thinner)
glaciers than for larger (thicker) glaciers. This supports the
use of different spatial resolutions for different glacier sizes.
In summary, our modelling choices led to more-detailed bed
and thickness maps that are in closer agreement with obser-
vations, yet at the expense of some coherency.

In the hypothetical case of perfectly accurate ice flow
physics, as well as flawless and synchronous input datasets
(climatic mass balance, surface height, surface height
change, and surface velocity), an error-free bed map (except
for fine-scale topography) can be generated with iterative
updates of basal boundary conditions (bed height and fric-
tion) in an ice flow model. Although this is fictitious, it does
give directions for the future improvement of the inverse es-
timation of basal conditions, which among others demands
a better description of ice flow physics and higher-quality
and synchronous input and validation datasets. For a more
extensive discussion on thickness error sources, e.g. from in-
accurate model physics, inverse model parameters, and noisy
input datasets, we refer to Frank et al. (2023) and Frank and
Van Pelt (2024).

The validation of local ice thicknesses against available
observations (Sect. 4.2) gives a direct estimate of the un-
certainty of bed heights and thicknesses for these loca-
tions. Instead, the total volume uncertainty cannot be di-
rectly quantified and is here based on the assumption that it
is the sum of errors resulting from uncertainty in glacier ex-
tent (extracted from the RGI database) and modelled mean
thickness. The large and well-distributed thickness obser-
vation dataset available for Svalbard used for model cali-
bration, including data from 169 glaciers, helped to reduce
the Svalbard-wide volume uncertainty (estimated at 3.5 %).
While the RMSE of Svalbard mean glacier thickness is

only 3.5 m as a result of averaging and calibration, the lo-
cal (point) thickness error is considerably larger (49.2 m for
class 1 and 75.5 m for classes 2 and 3; Table 2). The volume
uncertainty may be underestimated when the uncertainty of
glacier extent in the RGI outlines for Svalbard is larger than
the 1 %–2 % that Nuth et al. (2013) estimated. Furthermore,
systematic biases in thickness observations (e.g. instrumental
or data processing errors such as radar travel time to thick-
ness conversions) may create additional volume uncertainty,
although there are no indications for this.

Given the different (average) timings of input datasets, it
is hard to set a date for the thickness map. A rough best esti-
mate would be 2010–2015, which is the median for key input
datasets of surface height, surface height change, ice veloc-
ity, climatic mass balance, and glacier outlines. Ice thick-
ness observations in GlaThiDa have been collected from
1983 to 2016 and represent a mean date (∼ year 2009–2010)
that is 3 years earlier than the representative date of the
model output. With previously estimated thinning in Sval-
bard of∼−0.35 m yr−1 in 1936–2010 (Geyman et al., 2022),
i.e. 0.17 % relative volume loss per year, the real volume
in 2010–2015 may have been ∼ 35 km3 smaller than we
modelled. Similarly, a retreat of glaciers of −39 km2 yr−1

(1936–2010; Geyman et al., 2022) or a relative area loss of
0.12 % yr−1 implies an additional potential volume loss of
−39 km3 between the mean collection date of glacier out-
lines (2007–2008) and the reference time for our thickness
map. These volume bias estimates should be regarded as
rough estimates, as the actual rates of area and thickness
change, for example, may have differed from the 1936–2010
averages used. The different timing of input datasets compli-
cates the inversion of thickness for glaciers that experience
rapid geometric and dynamic changes. This particularly ap-
plies to surging glaciers, where the application of iterative in-
verse methods could introduce excessive errors primarily due
to timing mismatches between surface height, surface height
change, and velocity datasets. In the case that such timing
mismatches can be reduced, we would recommend the use
of iterative inverse methods also for surging glaciers in fu-
ture experiments.

5 Conclusions

We present a new bed height and thickness map for all
glaciers in Svalbard, generated using a combination of three
inverse methods. Combining the methods allows us to sim-
ulate small land-terminating glaciers with high spatial reso-
lution (100 m) using the deep-learning model IGM, whereas
thickness inversion for large tidewater and land-terminating
glaciers benefits from a SIA plus SSA approach in PISM to
describe sliding motion. Input data uncertainty for actively
surging glaciers led us to use a simple perfect-plasticity-
based method for those glaciers. A comparison of thick-
nesses with observations reveals good agreement with point
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observations for glaciers of different types. Particularly, for
large and tidewater glaciers we find improved estimates of
ice thickness compared to a previous study by Millan et al.
(2022). We find that Svalbard’s glaciers, excluding Kvitøya,
have a volume of 6800± 238 km3 (16.3± 0.6 mm sea level
equivalent) and a mean thickness of 205± 7 m, which is
in between recent estimates of 5963 km3 or 182 m (Fürst
et al., 2018b), 7213 km3 or 220 m (Fürst et al., 2018a), and
6855 km3 or 207 m (Millan et al., 2022), generated using en-
tirely independent methodologies.

The bed and thickness datasets have been made available
in open-access databases and may find further applications
within glaciology and other fields (e.g. in studies of runoff
and impacts on fjord processes). A benefit of thickness maps
produced with iterative inverse methods, i.e. for all glaciers
not actively surging, is that they simultaneously provide ini-
tial conditions for the future simulation of the same set of
glaciers. However, this does require the use of the same
ice flow model, setup, and temporal consistency of input
datasets.

Code and data availability. The bed and thickness datasets, pre-
sented in Fig. 3, together with the mask shown in Fig. 1c, have
been uploaded as GeoTIFF files to the following repository: https:
//doi.org/10.5281/zenodo.11239460 (Van Pelt and Frank, 2024).
The source code of the Parallel Ice Sheet Model can be accessed
at https://www.pism.io/ (last access: 2 August 2022; Bueler and
Brown, 2009). The Instructed Glacier Model is available at https:
//github.com/jouvetg/igm (last access: 9 February 2024; Jouvet et
al., 2022).
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