
Supplement of The Cryosphere, 18, 775–790, 2024
https://doi.org/10.5194/tc-18-775-2024-supplement
© Author(s) 2024. CC BY 4.0 License.

Supplement of

Globally consistent estimates of high-resolution Antarctic ice mass
balance and spatially resolved glacial isostatic adjustment
Matthias O. Willen et al.

Correspondence to: Matthias O. Willen (matthias.willen@tu-dresden.de)

The copyright of individual parts of the supplement might differ from the article licence.



Contents

S1 Parametrization updates with respect to Willen et al. (2022) 1

S2 Variance Component Estimation (VCE) 3

S3 Tikhonov regularization 3

S4 Supplemental figures 9

References 16

S1 Parametrization updates with respect to Willen et al. (2022)

We extended the parametrization of AIS IMC, implemented by the design matrices XGRAV
AIS-IMC and XAIS-ALT

AIS-IMC , to

the peripheral glaciers on surrounding islands, e.g. Berkner Island, Alexander Island, Thurston Island, Siple

Island. We use the polygon data set from Mouginot et al. (2017) to define the boundaries of grounded ice.

Likewise, we extended the parametrization of FAC, implemented by XAIS-ALT
AIS-FAC and XAIS-FAC

AIS-FAC , to the peripheral

glaciers.

Furthermore, we slightly modified the GIA parametrization in Antarctica, implemented by XGRAV
GIA and XAIS-ALT

GIA .

We utilize a tailored GIA forward model output on the Antarctic Peninsula (Graham Land) as discussed in

Sect. 2.1. Figure S1 illustrates the modified GIA parametrization with the Antarctic Peninsula GIA pattern in

the spatial domain.

Even by implementing the hydrology parametrization, we still found significant trends in the residuals that

we interpret as hydrological signal, in addition to some other less significant signals, e.g. from tectonics. We

explain these trends by the limitations of the hydrology parametrization we apply. However, so far there is

no sophisticated global hydrology parametrization available and the detection of hydrological signals from

GRACE/GRACE-FO is a research topic with a major focus under investigation (Chen et al., 2022). Since

our focus here are mass changes in Antarctica, we implement a pragmatic solution to prevent possible bias

towards Antarctic mass estimates due to far-field effects by residual hydrological signals. We removed a hy-

drological residual fingerprint from the GRACE/GRACE-FO data. This fingerprint is generated from residuals

from an initial inversion run. First, we apply a de-stripe filter and Gaussian filter (halfresponse: 250 km) to

GRACE/GRACE-FO residuals. Second, we cut out the residual signal over the continents excluding Greenland

and Antarctica. Third, we assume this residual signal as a purely hydrological signal on the continents and

calculate its sea level fingerprint by solving the sea level equation (Clarke et al., 2005). Lastly, this hydrological

residual fingerprint (Fig. S2) is introduced as an additional parameter.
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Figure S1: The adapted Antarctic GIA parametrization: Antarctic GIA parameters are global patterns from local deglacia-
tion impulses according to Willen et al. (2022). Blue dots: centres of deglaciation impulses. Due to altimetry quality limi-
tations on the Antarctic Peninsula (Graham Land), GIA is not co-estimated in this particular region. Instead we accounted
for the GIA effect here by implementing a GIA fingerprint from a tailored ice history modelled with SELEN4 (Spada
and Melini, 2019). The spatial pattern of the GIA-related surface density change of this Antarctic Peninsula fingerprint is
illustrated over the Antarctic continent.
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Figure S2: The hydrological residual fingerprint implemented as an additional hydrological parameter to prevent bias
on mass changes in Antarctica due to hydrological far field effects which are not accounted for by the used hydrology
parameters. The fingerprint is derived from initial inversion results.
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S2 Variance Component Estimation (VCE)

Initially, we have solved the generalized least squares adjustment (cf. Eq. (12) in Willen et al. (2022)):

N = XTPX (S1)

n = XTPd (S2)

β̂ = N−1n and C(β̂) = σ2N−1. (S3)

To optimize the estimation of the parameters, β̂, we introduce a relative weighting of the uncertainty informa-

tion of each observational group. To do so, we apply a variance component estimation (VCE) and iteratively

determine variance components for the gravimetry, altimetry, and FAC input data sets. The theoretical back-

ground of VCE is extensively documented elsewhere, e.g. Koch (1999). To simplify the notation, the weight

matrix, P , incorporates the error-covariance information, e.g. derived from uncertainty propagation or stochas-

tic error characterization (Willen et al., 2022), and the relative weights of the uncertainty information of the

three observational groups determined by VCE.

The VCE leads to relative downweighting of altimetry observations and input FAC changes with respect to

gravimetry observations. The estimated variance factors, (σ̂GRAV
0 )2, (σ̂AIS-ALT

0 )2, and (σ̂AIS-FAC
0 )2, are 3, 35, and

19, respectively.

S3 Tikhonov regularization

The simulation experiments by Willen et al. (2022) demonstrated the benefit from including the full error-

covariance information in the parameter estimation, if correlated errors are present. In particular, ignoring

correlated errors leads to a low signal-to-noise ratio of the Antarctic GIA result. However, the experiments

according to Willen et al. (2022) assumed to have full knowledge of the error-covariance information, which is

an important idealization of the true problem.

Preliminary results, however, indicated artificial and unphysical GIA-induced effects unsupported by GNSS

measurements and GIA models. Notable is a large GIA-induced uplift in the Transantarctic Mountains where

there is no evidence from independent data. After extensive testing, we conclude that the assumed information

on spatial error correlations from Willen et al. (2022), implemented in P , are insufficient to account for the true

error correlations and may even lead to unphysical results during the parameter estimation. This holds for each

observational group individually. Figure S6d–f provides spatial maps of these preliminary results. We provide

in Sect. 4 further discussion on error covariances

Nevertheless, the simulation experiments from Willen et al. (2022) demonstrated that spatially correlated errors

need to be accounted for. We approach the limited error covariance information by implementing a Tikhonov

regularization (Tikhonov et al., 1995) by adding a regularization matrix, Ψ, to the normal equation matrix, N

(Eq. 3, S1). Ψ is designed to regularize, i.e. to damp, the Antarctic GIA parameters, βGIA,ANT, only. Ψ is a

square matrix with the two dimensions equal to the total amount of parameters. The non-zero elements are

ψij = εδij , i, j = 1, ..., NGIA. (S4)

NGIA is the number of Antarctic GIA parameters, ε is the regularization parameter, and δij is the Kronecker

delta.
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Figure S3: Antarctic GIA integral results of simulation experiments adapting Experiment 2 in Willen et al. (2022). This
experiment includes regularization of Antarctic GIA parameters (Eq. 3) while neglecting for correlated errors in the input
data. The deviation of the estimated GIA from the original GIA is shown in terms of RMS error (x,blue) and in terms
of integrated GIA mass effect (+,red) for regularization parameters, ε, ranging from 0 to 10. For ε = 4.17 the integrated
difference is close to zero. Note that this optimum only holds for the simulation experiment and cannot be applied to the
real data case. The reader is referred to Willen et al. (2022) for further details on the simulation set up.

S3.1 Simulation experiments justifying the regularization

To test whether we get meaningful results using this regularization—when we neglect for spatially correlated

errors within the parameter estimation—we have performed simulation experiments analogous to Willen et al.

(2022). We can find a regularization factor such that the error of the integrated GIA mass effect in Antarctica

is close to zero (Fig. S3). The simulation results where this regularization factor is applied (Fig. S3 and S4)

demonstrate that we can reproduce Antarctic GIA with only a slightly higher RMS error than if we would

have full knowledge of the error covariance information (3.3 kg m2a−1 vs. 2.8 kg m2a−1). In general the RMS

errors are higher compared to utilizing the full error covariance information, in particular in case of IMC

(7.3 kg m2a−1 vs. 2.3 kg m2a−1). We conclude from the simulation experiments that the regularization prevents

overfitting and reduces the sensitivity of the GIA result against spatially correlated errors of the data sets. But

the regularization is less capable to suppress correlated errors than the full knowledge of the error-covariance

information.
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Figure S4: Antarctic maps of results from simulation experiments according to Willen et al. (2022). With the simulation
experiments we test the ability of the inversion framework to resolve the glacial isostatic adjustment (GIA) signal (a),
the ice mass change (IMC) signal (b), and the firn air content (FAC) change signal (c). The errors of the estimates are
shown in (d–l) from three different experiments. In Experiment 3A (E3A) we assumed full knowledge of error covariance
information and account for it in the estimation (d–f). The RMS differences from the original signals are 2.8 kg m2a−1,
2.3 kg m2a−1, and 10.8 mm a−1 in case of GIA, IMC, and FAC, respectively. The integrated differences are 7.6 Gt a−1,
−8.9 Gt a−1, and 6.9 km3a−1, respectively. In Experiment 2A (E2A) we completely neglect for correlated errors within the
inversion while they are present in the simulated observations (g–i). The RMS differences are 7.4 kg m2a−1, 8.6 kg m2a−1,
and 12.3 mm a−1; integrated differences are −16.7 Gt a−1, 22.5 Gt a−1, and −15.3 km3a−1. Experiment 2A with regular-
ization (E2Areg) equals E2A but we applied a regularization using a regularization factor of ε = 4.17 (j–l) (cf. Figure S3).
The RMS differences are 3.3 kg m2a−1, 7.3 kg m2a−1, and 12.1 mm a−1; integrated differences are 0.0 Gt a−1, 2.2 Gt a−1,
and −9.2 km3a−1.
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S3.2 Choice of the regularization parameter
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Figure S5: (a) The L-curve illustrates the trade-off between the norm of residuals and the norm of estimated Antarctic
GIA parameters depending on the regularization factor ε. (b) The WRMSD values (Eq. 4) depending on the regularization
parameter. The WRMSD is a measure of the difference between the Antarctic GIA inversion result and the independent
GNSS data.

For the real-data application, we first determine a weight matrix P̃ , which solely accounts for uncorrelated

errors (Sect. 2.2), i.e. the diagonal elements of P . Note that we also ignore spatially correlated errors when

determining the variance components of the observation groups. Second, we chose the regularization factor

according to a trade-off between minimizing the norm of the uncertainty-weighted residuals, ∥ẽ∥2 =
√
eTP̃ e,

and minimizing the norm of the parameters, ∥βGIA,ANT∥2. This trade-off between a best-fit solution and a short

solution vector, i.e. a simple solution in terms of Occam’s razor, is determined using the L-curve criterion

(Hansen, 2001).

Figure S5 illustrates the relation between the norm of residuals and the norm of parameters in dependence on

the regularization parameter. Based on the L-curve test (Figure S5a), a regularization parameter of ε = 0.3

or 0.4 may be used to choose a preferred inversion solution. In general the impact on the norm of residuals

by regularizing Antarctic GIA is rather small, as Antarctic GIA is only one part of global mass changes. To

further substantiate the choice of the regularization parameter, we compare the Antarctic GIA results of each

regularization parameter to the independent GNSS data (Sect. 2.3). In agreement with the L-curve, we found

a minimum WRMSD between the GNSS-derived bedrock motion and the GIA inversion result using ε = 0.3

(Figure S5b). We choose the inversion result based on ε = 0.3 as the preferred inversion solution.

Note that using the error covariance information from Willen et al. (2022) and applying a regularization leads

to unphysical results (Fig. S6g–i). This is also the case if the error-covariance information of each individual

observation group is incorporated separately in the parameter estimation.
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Figure S6: (a–c) The results from the preferred inversion solution as shown in Fig. 3, i.e. correlated errors are not ac-
counted for in the parameter estimation and Antarctic GIA parameters are regularized. (d–f) The results from an inversion
solution where the error-covariance information is used within the parameter estimation and no regularization is applied.
(g–i) The results from an inversion solution where the error-covariance information is used within the parameter estima-
tion and the same regularization is applied as in preferred inversion solution as described in Sect. S3.
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Figure S7: Integrated values for estimated ice mass change (IMC, X, blue), glacial isostatic adjustment (GIA) mass
effect (+, red), and volume change of firn air content (FAC, ⋄, cyan), depending on the chosen regularization parameter.
Modelled FAC volume change (Y, purple) and observed mass changes from GRACE/GRACE-FO (., black) are shown for
comparison.
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S4 Supplemental figures
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Figure S8: Antarctic GIA bedrock motion result from the preferred inversion solution. The location of GNSS sites are
indicated with yellow circles where bedrock motion data for comparison is available.
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Figure S9: Antarctic maps of alternative input data sets used in the sensitivity tests (a–c) and their difference to the data
sets used for the preferred inversion solution (d–f). a) The surface density rate from CSR RL06.1 GRACE/GRACE-FO
products (Pie et al., 2021) and d) its difference to the ITSG-Grace2018 product (Mayer-Gürr et al., 2018). A decorrelation
filter (Swenson and Wahr, 2006) is applied to suppress error stripe patterns. b) Surface elevation trend from Nilsson et al.
(2022) and e) its difference to the CryoSat-2-derived rate updated according to Helm et al. (2014). c) FAC based on the
cumulated SMB anomaly trend derived from MARv3.11 SMB (Kittel et al., 2021) and IMAU-FDM and f) its difference
to FAC based on RACMO2.3p2 SMB (Wessem et al., 2018) and IMAU-FDM.
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Figure S10: Global maps of observations and residuals of GRACE/GRACE-FO surface density rate in the spatial
domain. a) GRACE/GRACE-FO-derived mean rate, i.e. the inversion input data illustrated in the spatial domain, b)
GRACE/GRACE-FO data where noise patterns are reduced using a decorrelation filter (Swenson and Wahr, 2006) and
250 km Gaussian smoothing, c) the GRACE/GRACE-FO residuals of the preferred inversion solution illustrated in the
spatial domain. d) the GRACE/GRACE-FO residuals with the same filter applied as in (b). The smoothing filter is applied
for visualization purposes only and not part of the parameter estimation.
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Figure S11: Antarctic maps of observations (a–c) and residuals of the preferred inversion solution (d–f). a)
GRACE/GRACE-FO surface density rate and d) residual rate similar to Fig. S10a+c). b) CryoSat-2 derived surface
elevation rate and e) the residual surface elevation rate. c) FAC rate and f) FAC residual rate.
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Figure S12: Maps illustrate the variances (a–c) and covariances (d–l) of the input data sets, column by column indi-
cated by the headline for satellite gravimetry (GRACE/GRACE-FO), altimetry, and firn air content (FAC). Covariances
are shown for a grid cell highlighted with a green circle in Wilkes Land (d–f), Amundsen Sea Embayment (g–i), and
Transantarctic Mountains (j–l). The co-/variance information (Eq. 2) is propagated to the Antarctic grid for illustration
purposes only.
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Figure S13: Similar to Fig. S12, maps illustrate the variances (a–c) and covariances (d–l) of the estimated parameters
(Eq. 3), column by column for each parameter type indicated by the headline: GIA, Antarctic ice mass change (IMC),
change of firn air content (FAC). The example points are the same as shown in Fig. S12.
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Figure S14: Maps illustrate the covariance for the example points in Fig. S12 and S13 between the parameter types
column by column indicated in the headline: GIA, Antarctic ice mass change (IMC) and change of firn air content (FAC).
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