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Abstract. A physical–statistical framework to estimate snow
water equivalent (SWE) and snow depth from synthetic
aperture radar (SAR) measurements is presented and ap-
plied to four SnowSAR flight-line data sets collected dur-
ing the SnowEx’2017 field campaign in Grand Mesa, Col-
orado, USA. The physical (radar) model is used to describe
the relationship between snowpack conditions and volume
backscatter. The statistical model is a Bayesian inference
model that seeks to estimate the joint probability distribution
of volume backscatter measurements, snow density and snow
depth, and physical model parameters. Prior distributions are
derived from multilayer snow hydrology predictions driven
by downscaled numerical weather prediction (NWP) fore-
casts. To reduce the signal-to-noise ratio, SnowSAR mea-
surements at 1 m resolution were upscaled by simple aver-
aging to 30 and 90 m resolution. To reduce the number of
physical parameters, the multilayer snowpack is transformed
for Bayesian inference into an equivalent one- or two-layer
snowpack with the same snow mass and volume backscat-
ter. Successful retrievals meeting NASEM (2018) science re-
quirements are defined by absolute convergence backscatter
errors ≤ 1.2 dB and local SnowSAR incidence angles be-
tween 30 and 45◦ for X- and Ku-band VV-pol backscatter
measurements and were achieved for 75 % to 87 % of all
grassland pixels with SWE up to 0.7 m and snow depth up
to 2 m. SWE retrievals compare well with snow pit obser-
vations, showing strong skill in deep snow with average ab-
solute SWE residuals of 5 %–7 % (15 %–18 %) for the two-
layer (one-layer) retrieval algorithm. Furthermore, the spatial

distributions of snow depth retrievals vis-à-vis lidar estimates
have Bhattacharya coefficients above 94 % (90 %) for homo-
geneous grassland pixels at 30 m (90 m resolution), and val-
ues up to 76 % in mixed forest and grassland areas, indicat-
ing that the retrievals closely capture snowpack spatial vari-
ability. Because NWP forecasts are available everywhere, the
proposed approach could be applied to SWE and snow depth
retrievals from a dedicated global snow mission.

1 Introduction

The seasonal snowpack plays a critical role in climate and
weather variability due to its role in the surface energy budget
on account of its high albedo and in the surface water budget
as temporary storage of frozen precipitation in the cold sea-
son until it melts in the warm season and becomes available
as runoff. The water stored in the snowpack is measured by
the snow water equivalent (SWE), the depth of liquid water
per unit area that would be released if the snowpack were
to melt completely. It is the product of the specific gravity
of snow with respect to water (ρsnow/ρw) and the depth of
the snowpack (SD). To map SWE in the cold season is to
map snow water resources. To map onset of melt and snow
wetness is to map the timing and geography of snow water
resources availability. Climate variability and change with in-
creasing air temperature, shifts in atmospheric moisture con-
vergence patterns, and increases in the frequency of extreme
events are already causing significant changes in frequency,
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patterns, and timing of seasonal snow accumulation and melt
with severe implications for water and food security in addi-
tion to cascading economic and ecosystem impacts (Huang
and Swain, 2022; Musselman et al., 2021; Sturm et al., 2010).

The need to capture snowpack heterogeneity and dynam-
ics tied to weather, climate, land cover, and landform vari-
ability remains a chief challenge to developing a snow ob-
serving system at the spatial and temporal scales required
to answer water cycle science questions and for societal
decision-making. The potential for systematic snowpack
monitoring in remote regions has long been investigated, in-
cluding the integration of remote sensing measurements and
physical models (e.g., (Martinec, 1991; Mote et al., 2003;
Bateni et al., 2015; Li et al., 2017; Kim et al., 2019; Cao
and Barros, 2023a). Assimilation of radiance or backscatter
is most powerful with a time series of observations. Time
series observations are available presently from tower mea-
surements, albeit at the point scale of the tower footprint (see
summary by Tsang et al., 2022), and do not capture the large
joint spatial and temporal variability of snowpacks from local
to regional scales depending on weather and climate, land-
form, land use, and land cover. Frequent spatial observations
are required for this purpose. Airborne observations can be
used for mapping but typically occur once or twice during
a winter season and over limited areas. A dedicated satellite
mission is necessary to acquire time series of measurements
globally.

Presently, advances in radar technology and retrieval al-
gorithms (Tsang et al., 2022), and especially the demon-
strated capabilities of NewSpace satellite missions (Villano
et al., 2020), make high spatial resolution of synthetic aper-
ture radar (SAR; tens of meters) Earth observations from
space feasible in contrast to the challenges faced in the past
(Rott et al., 2012). During the SnowEx’17 field campaign
(Kim et al., 2017), a comprehensive data set consisting of air-
borne dual-frequency SAR (X- and Ku-band synthetic aper-
ture radar) backscatter measurements using the SnowSAR
instrument (Macedo et al., 2020), the Airborne Snow Ob-
servatory (ASO, Painter et al., 2018), and a plethora of high-
quality ground-validation measurements of snowpack prop-
erties and ancillary data (Table 1) offers an unprecedented
opportunity to investigate the full potential of SAR toward
developing the next generation of retrieval algorithms.

Due to the highly nonlinear snow physics and the time-
varying stratigraphy of snowpacks, radiance or backscat-
ter measurements depend on the vertical structure of snow-
pack physical properties such as snow density, snow tem-
perature, and snow grain size in addition to SWE and snow
depth. Because the number of observations is smaller than
the number of parameters required to solve the inverse prob-
lem, retrieval of SWE and snow depth is an underdeter-
mined estimation problem. This challenge can be addressed
using a physical–statistical approach for retrieval. Physical–
statistical approaches combine physical process models with
a Bayesian statistical framework to inform how geophysi-

cal states and parameters relate to measurements by obeying
fundamental physical constraints (Berliner, 2003; Lowman
and Barros, 2014). In this paper, we propose and evaluate a
general physical–statistical framework to retrieve SWE from
SnowSAR measurements across a heterogeneous landscape
during SnowEx’17.

2 Previous work

2.1 Forward simulation – from SWE to backscatter

The advantage of SAR technology is the high spatial res-
olution of its measurements, which is necessary to capture
the spatial heterogeneity of snowpack physical processes
(e.g., Mendoza et al., 2020; Manickam and Barros, 2020) as
demonstrated in forward simulations. Cao and Barros (2020,
2023a; hereafter CB20 and CB23) demonstrated the utility
of a multilayer snow hydrology (MSHM) coupled with a ra-
diative transfer model (RTM) forced by high-resolution op-
erational numerical weather prediction (NWP) model fore-
casts to capture the seasonal hysteresis behavior of the sea-
sonal snowpack at Grand Mesa and Senator Beck in Col-
orado against Sentinel-1 C-band measurements.

The MSHM is a physically driven snow hydrology model
that simulates the evolution of snowpack physical proper-
ties including detailed stratigraphy (Kang and Barros, 2012a,
b; CB20). During snowfall events, fresh snow is added to
the top layer of the snowpack until a threshold accumula-
tion is met and a new layer forms. The RTM used here
is MEMLS3&a (Microwave Emission Model of Layered
Snowpacks) adapted to include backscattering by Proksch et
al. (2015). MEMLS is a physically driven radiative transfer
model that takes snowpack characteristics as inputs and sim-
ulates its microwave emission for a frequency band with four
polarizations – HH, VV, HV, and VH (originally proposed
by Wiesmann and Mätzler, 1999). To estimate total scatter-
ing, ground backscatter σbkg must be modeled as well, as de-
scribed below.

Figure 1 illustrates the various backscatter mechanisms
contributing to total backscatter (σtotal) in active microwave
measurements represented in MEMLS3&a (the RTM): vol-
ume backscatter (σvol) from the multiple interactions of
the incoming radar signal within the snowpack and the
backscatter at the snowpack–air interface (σsurf) and at the
snowpack–ground interface including interactions with sub-
merged vegetation and litter (σbkg). In forested areas, addi-
tional backscatter mechanisms are associated with the multi-
ple bounce pathways among tree canopies, intercepted snow,
tree trunks, and snowpack. Depending on viewing geom-
etry (flight path and incidence angle), σtotal measurements
from areas without trees in regions of mixed land cover
can include significant contributions from trees along the
grassland–forest transitions.
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Figure 1. Scattering mechanisms for grassland submerged by snow and snowpack over bare soil or rock: (1) volume backscatter σvol,
(2) surface backscatter σsurf, (3) background backscatter at the snow–ground interface σbkg, and (4) snowpack–ground–canopy–tree trunk
interactions at forested boundaries. Red arrows (1), (2), and (3) are resolved in the retrieval applications demonstrated here.

CB23 used the coupled MSHM-MEMLS in forward mode
to predict Sentinel-1 C-band volume backscatter σvol without
calibration or nudging of ground observations without bias
and within ±2.5 dB at 90 m resolution across terrain slopes
in the 10–52◦ range for barren land, alpine grass and shrubs,
and in forested areas with snow-free canopy at the begin-
ning of spring in the Senator Beck Basin in Colorado. They
estimated σbkg as the average of Sentinel-1 measurements
for snow-free conditions. Cao and Barros (2023b) modified
MEMLS3&a to include double-bounce effects among snow-
pack and vegetation (MEMLS-V) and retrieved σbkg from
total backscatter σtotal measurements in mixed land cover us-
ing simulated annealing. Their estimates are consistent with
CB23, suggesting the potential to simplify the inverse prob-
lem of estimating snowpack physical properties from to-
tal backscatter measurements in mixed land cover and fur-
ther simplify the physical–statistical retrieval framework pro-
posed here, although further evaluation is necessary.

2.2 Physical–statistical retrieval

For retrieval in a Bayesian framework, the probability of the
retrieved geophysical variable x (the inferred posterior distri-
bution) is conditional on the a priori knowledge of the vari-
able x (the prior distribution), indirect measurements D, and
a physical model M(η) (e.g., the snow radiative transfer al-
gorithm in this case), with physical parameters η (including
x) and statistical error parameters ζ . The joint probability
distribution of M , D, η, and ζ can be written as follows:

P (M,D,η,ζ )= P (D|M,η,ζ )×P (M|η,ζ )×P (η,ζ ) . (1)

The first term to the right-hand side of Eq. (1) is the backscat-
ter data model, the second term is the prior of the backscatter,
and the third term is the prior of the snowpack physical pa-
rameters (including snow depth and snow density, etc.) with
statistical error parameters. Assuming that the measurements

do not depend on the physical parameters, the model does
not depend on the statistical error parameters, and the physi-
cal parameters and the statistical parameters are independent,
Eq. (1) can be revised to read

P (M,D,η,ζ )= P (D|M,η)×P (M|η)×P (η) ×P(ζ ) . (2)

Finally, in the context of specific measurements y with
known uncertainty described by P(y)

P (M,η,ζ |y)= P (y|M,η)×P (M|η)×
P (η) ×P(ζ )

P (y)
. (3)

The physical modelM and P(y) are invariant, and assuming
that we have a good understanding of the statistical errors,
then Eq. (3) can be further simplified as follows:

P (η|y)∝ P (y|η)×P (η) . (4)

In the context of Bayesian inference the goal is to maximize
P(η|y), the posterior probability of physical parameters con-
ditional on measurements informed by the a priori parame-
ter probabilities P(η). This implies maximizing the second
term in Eq. (4), the posterior of the backscatter conditional
on physical parameters η, minimizing the difference between
measurements y with a known error covariance matrix 6y
and model predictions M(η). For multiple concurrent mea-
surements, P (y|η) can be described by a multivariate normal
distribution,

P(y|η)= (2π)
(
−
N
2

)
|6y |

−
1
2

· exp
[
−

1
2
(y−M(η))T6−1

y (y−M(η))

]
, (5)

where N is the number of measurements at a given location
and time (e.g., backscatter at different frequencies as in Du-
rand and Liu (2012).
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Pan et al. (2023, hereafter P23) adapted a Bayesian re-
trieval algorithm previously developed to estimate SWE from
passive microwave measurements (Pan et al., 2017, here-
after P17) to active microwave, hereafter referred to as Base-
AM. The snow radiative transfer algorithm in Base-AM is
MEMLS, and the semi-empirical Dobson model is used to
estimate the soil dielectric constant as a function of soil mois-
ture and soil texture (Dobson et al., 1985; Hallikainen et
al., 1985). A Monte Carlo Markov Chain (MCMC) iterative
algorithm (Metropolis et al., 1953) is used to sample from
P(η|y) starting from initial values and using the likelihood
ratio criteria to achieve convergence. In this work, realistic
snowpack predictions from MSHM-MEMLS are used to de-
fine the prior distributions of parameters and constrain the
Bayesian retrievals: y represents the SnowSAR backscatter
measurements, and η represents all model parameters and
geophysical variables including SWE, SD, and snow density.

3 Study area and data

3.1 Study area and ancillary data

The study region is Grand Mesa, Colorado, a plateau that is
2000 m above adjacent low-lying areas and is surrounded by
ridges up to 500 m in elevation (as depicted in Fig. 2). Grand
Mesa has an alpine climate, experiencing snowfall through-
out the year except during the months of July and August.
Land cover is heterogeneous with grasslands in the west and
a mix of evergreen and deciduous forest to the east. Numer-
ous wetlands are widespread across the Mesa, especially in
the transition from grassland to forest. The land cover data
were obtained from the National Land Data Assimilation
System (NLDAS). The data sets were upscaled to 90 m using
nearest-neighbor interpolation to support retrievals at 90 m
resolution (see Sect. 4). NLDAS is used to determine land
cover type in the snow hydrology model. North American
Land Change Monitoring System (NALCMS) is used to up-
scale the evaluation data. Hourly albedo is derived from NL-
DAS at 12.5 km resolution. A summary of all the data sets
used in this study is available in Table 1.

3.2 Atmospheric forcing

Numerical Weather Prediction (NWP) outputs are used as
the atmospheric forcing for the snow hydrology model and
to set up boundary conditions. Previously, CB20 and CB23
relied on HRRR (high-resolution rapid refresh) hourly fore-
casts at 3 km and downscaled it to 90 m in Grand Mesa. Here,
the same data set was independently downscaled to 30 m as
well. The HRRR data set is produced by National Ocean
and Atmospheric Agency (NOAA) by hourly assimilation of
observations at 13 km resolution (Benjamin et al., 2016; Ta-
ble 1). Hourly atmospheric forcing was linearly interpolated
to 30 min temporal resolution used in the snow hydrology
model.

3.3 SnowSAR backscatter

During SnowEx’17, airborne microwave backscatter mea-
surements were made in Grand Mesa on 21 February 2017 at
1 m resolution (Table 1). The SnowSAR instrument is a dual-
frequency (X and Ku band) radar. A total of six flight lines
were completed, two short ones on sloped densely forested
terrain and four long lines on the plateau. Here, only the four
flight lines on the plateau are used for analysis (Figs. 2 and
3). The flights are between 18:00 and 21:00 GMT (12:00–
15:00 MST). SnowSAR data quality control measures in-
cluded filtering based on aircraft attitude (there were line seg-
ments with turbulence), beam incidence angle or antenna pat-
tern, and signal-to-noise ratio of the backscatter coefficients.
Processing of the original airborne SAR measurements and
quality control indicate that only the co-pol X-band HH- and
VV-pol and Ku-band VV-pol measurements are adequate for
retrieval. Geolocation was verified against corner reflector
targets and geographic features and found to be very robust.
The SnowSAR data were upscaled to 30 and 90 m resolution
by simple averaging of all SnowSAR measurements within
each pixel.

3.4 Validation data

Lidar snow depth. The Airborne Snow Observatory (ASO)
lidar measurements of snow depth at 3 m resolution across
Grand Mesa are available for SnowEx’17 on 25 February,
thus 4 d after the SnowSAR flights (Painter et al., 2018; Ta-
ble 1). There were no significant snow storms or strong winds
in that period, except for about 3 mm of rainfall for less than
1 h on 24 February. These data are used to examine the dis-
tribution of retrieved snow depths, that is indicative of the
spatial heterogeneity of the snowpack, and the relative abso-
lute differences between lidar measurements and retrieval of
snow depth, that are indicative of local retrieval errors. The
lidar data were upscaled to 30 and 90 m using simple averag-
ing (e.g., Fig. 4a). There can be large snow depth underesti-
mation errors associated with upscaled lidar retrievals along
the edges of forests where the snow depth is underestimated
consistent with previous work (e.g., Deems et al., 2013; Ja-
cobs et al., 2021). Given the expect measurement uncertainty
on the order of 10–20 cm in Grand Mesa, which is amplified
by microtopography, lidar pixels with snow depth shallower
than 20 cm are not considered for evaluation.

Snow pit SWE. Multiple snow pits were excavated during
the SnowEx’17 field campaign across Grand Mesa (Table 1).
Due to the small number of snow pit measurements along
the SnowSAR flight lines on 21 February, snow pit measure-
ments on 20–24 February were considered for evaluation as-
suming that in the absence of snowstorms or other weather
events the snowpack does not change significantly during the
4 d period. Differences are expected at local places but the
overall spatial trends should be maintained such as the west–
east gradient in snow depth. The values of snow pit SWE
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Table 1. Summary list of data sets used in the study.

Data Source Spatial Temporal Date range Relevant
resolution resolution link

Initial Final Initial Final

Rainfall HRRR 3 km 30, 90 m 1 h 30 min 1 Sep 2016–
25 Feb 2017

https://rapidrefresh.noaa.gov/hrrr/ (last
access: 5 September 2023)Temperature

Air pressure
Incoming shortwave radiation
Incoming longwave radiation
Wind speed
Humidity

Albedo NLDAS 12.5 km 30 m 1 h 30 min 1 Sep 2016–
25 Feb 2017

https://ldas.gsfc.nasa.gov/ (last access:
5 September 2023)

Backscatter SnowSAR–SnowEx’17 1 m 30, 90 m – – 21 Feb 2017 https://nsidc.org/data/snex17_snowsar/
versions/1 (last access: 5 Septem-
ber 2023)

Land cover NLCD, NALCMS 30 m 30, 90 m – – – https://www.usgs.gov/centers/eros/
science/national-land-cover-database
(last access: 5 September 2023)
http://www.cec.org/north-american-
land-change-monitoring-system/ (last
access: 5 September 2023)

Snow depth Lidar–SnowEx’17 3 m 30, 90 m – – 25 Feb 2017 https://nsidc.org/data/aso_3m_sd/
versions/1 (last access: 5 Septem-
ber 2023)

SWE Snow pit–SnowEx’17 – – – – 20–
24 Feb 2017

https://nsidc.org/data/snex17_snowpits/
versions/1 (last access: 5 Septem-
ber 2023)

are estimated using an average of the snow density measure-
ments at different depths applied to the entire snow depth.
Only pits in the non-forested areas were selected for evalua-
tion (Fig. 4b).

4 Retrieval algorithm

Simplicity and computational efficiency are desirable at-
tributes for an operational algorithm that produces success-
ful retrievals, here understood as meeting science uncer-
tainty requirements and latency adequate to meet application
needs defined by NASEM (2018). The retrieval methodology
builds on existing and well-evaluated snow hydrology, radia-
tive transfer, and physical–statistical models (CB20,CB23,
P17, P23) previously reviewed in Sect. 2. A list of forc-
ings and coupling variables and parameters among MSHM,
MEMLS, and Base-AM is provided in Table 2.

Averaging is necessary to reduce the signal-to-noise ratio
(SNR) in SnowSAR measurements at their native resolution
(Sect. 3.3). Because the highest spatial resolution of avail-
able ancillary data sets is 30 m, the SnowSAR measurements
were upscaled to 30 m to eliminate the need for interpolation
and/or downscaling that would introduce further uncertainty.
Following results by Manickam and Barros (2020), the algo-
rithm was also applied at 90 m resolution consistent with the
first scaling break identified in Sentinel-1 SAR backscatter.

The implication of linear scaling behavior is that successful
retrievals at 90 m resolution can subsequently be statistically
downscaled with confidence, which has significant computa-
tional advantages. Further upscaling was not conducted be-
cause the number of pixels becomes very small given the
available coverage of SnowSAR flights.

Figure 5 illustrates the retrieval workflow consisting of
four main steps. Step 1 entrails snow hydrology simulation
using MSHM to produce a layered snowpack and volume
backscatter simulation using MEMLS (σ sim

vol ). Step 2 consists
of Bayesian estimation of ground parameter priors that gov-
ern background backscatter σbkg using MEMLS assuming a
very thin film of snow on the ground (1 mm SD) at the begin-
ning of the accumulation season and estimation of the σbkg
by subtraction of σ sim

vol from SnowSAR total backscatter mea-
surements σ tot

SAR. Step 3 is the determination of snowpack
priors for Bayesian SWE retrieval using results step 1 and
step 2. Step 4 is the Bayesian optimization of simulated σ tot

SAR
to derive posterior distributions of SD and ρsnow for the one-
and two-layer (1|2) equivalent snowpack and subsequent cal-
culation of retrieved SWE posterior distributions.

4.1 Layered snowpack simulations (step 1)

Following the methodology presented in Sect. 2.1, MSHM
was run for a full-year starting from snow-free conditions
on 1 September 2016 using downscaled HRRR data as at-
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Figure 2. Study area in Grand Mesa, Colorado. (a) Location of Grand Mesa in Colorado, with historical 1 April SWE average as base map.
(b) Paths of four SnowSAR SnowEx’17 flights on 21 February 2017, with true-color image obtained from Landsat on 11 March 2017 as the
base map. (c) Land cover of the study region. Forest-1 indicates needleleaf forests. Forest-2 indicates broadleaf forests. (d) Digital elevation
map of the study region.

mospheric forcing (Sect. 3.2) and a time step of 30 min.
On the day of the SnowSAR flights, the snowpack physi-
cal properties predicted at times corresponding to each of
the four flights are used to derive the 1|2 Layer equiva-
lent snowpack properties used in the retrieval. The simu-
lated volume backscatter (σ sim

vol ) was estimated by specifying
the cross-polarization fraction parameter Q= 0.2 following
CB20. This is an empirical coefficient that distributes the dif-
fuse scattering into cross- and like-polarization components
in MEMLS (Proksch et al., 2015).

In realistic layered snowpacks, stratigraphy (i.e., vertical
heterogeneity) is a dominant feature of the density, temper-
ature, microstructure, and dielectric properties (e.g., emis-
sivity and reflectivity). The vertical structure of snow mi-
crostructure in MSHM is described using a parameteriza-
tion of snow correlation length (lex) consistent with MEMLS
formulation. Depending on the number of layers, this poses
an undetermined problem as the number of measurements is
equal to the number of frequencies and the number of polar-
izations available (typically two or three). For example, there
are only four observations for a dual-frequency measurement
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Figure 3. Maps of incidence angles along SnowSAR flight paths on 21 February 2017 during SnowEx’17.

Figure 4. (a) Flight footprint of the lidar instrument used to measure the snow depth during SnowEx’17. (b) Location of snow pits used to
measure SWE 20–24 February 2017. The legend identifies SnowEx’17 pit IDs.

with dual polarization. In contrast, the set of independent pa-
rameters per layer includes snow density, layer thickness, liq-
uid water content, snow grain size or correlation length, tem-
perature, reflectivity, and transmissivity.

While converting the multilayer snowpack to a single-
layer model is the simpler path to address the undetermined
inverse problem, fresh snowfall accumulation and snowpack
crusting artifacts due to melt–refreeze cycles, as well as hard-
ening by wind action, introduce strong density and grain size
differences at the top of the snowpack. To capture this be-
havior, we implement and evaluate the retrieval algorithm for
both one- and two-layer equivalent snowpacks derived from
the layered snowpack simulated by MSHM. The equivalent
one- or two-layered snowpack parameters for each pixel are
obtained by matching SWE, snow depth (SD), and volume
backscatter (σ sim

vol ) of the simulated multilayer snowpack.

4.2 Ground and snowpack parameter priors (steps 2
and 3)

A first estimate of the σbkg is obtained by subtracting σ sim
vol

from SnowSAR X-band HH-pol σ tot
SAR measurements follow-

ing Baghdadi et al. (2011), who found better performance
among backscattering models for HH-pol against TerraSAR-
X measurements. In Base-AM, σbkg depends on the effective
soil moisture and soil surface roughness. To optimize these
parameters, σbkg is used as an “observed” value. To simu-
late snow-free conditions, the snow depth is constrained to
a maximum value of 1 mm in step 2. The cross-polarization
fractionQ initially specified asQ= 0.2 is optimized first and
separately from other ground parameters in the third step of
the retrieval algorithm (Fig. 5). The posterior distributions of
the ground parameters in step 2 are used along with the 1|2
layer prior distributions and the SnowSAR measurements to
estimate the posterior distributions of snow depth and snow
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Table 2. Input and output parameters from the three models in the SWE physical–statistical retrieval framework.

Model Input Output Reference

MSHM Rainfall Cao and Barros (2020)
Temperature Snow temperature profile
Air pressure Soil temperature profile
Incoming shortwave radiation Snow density profile
Incoming longwave radiation Snow depth layering profile
Wind speed Liquid water content profile
Humidity Snow correlation length profile
Albedo

MEMLS Snow temperature profile Proksch et al. (2015)
Soil temperature profile
Snow density profile Diffused reflectivity profile
Snow depth layering profile Specular reflectivity profile
Snow correlation length profile Total backscatter coefficient
Cross polarization fraction
Ground rms height

Base-AM Equivalent snow temperature prior Optimized–snow layer depth snow density Pan et al. (2023)
Equivalent soil temperature prior
Equivalent snow density prior
Equivalent snow depth prior
Correlation length
Cross polarization fraction
Ground rms height
Total backscatter coefficient prior

Figure 5. Workflow of the SWE physical–statistical retrieval framework. NWP atmospheric forcings drive MSHM to determine priors for
the Bayesian radiative transfer model (Base-AM) and synthetic backscatter for ground parameters. SnowSAR backscatter measurements are
assimilated to determine the posterior distribution of the snowpack parameters.
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density using the Base-AM framework (Fig. 5) and both X-
and Ku-band VV-pol. SWE is subsequently derived from
snow depth and snow density.

One-layer snowpack. The total snow depth and the aver-
ages of multilayered snowpack parameters are specified as
the mean of the prior distribution for retrieval. Table 3 shows
the range and standard deviation of the parameters.

Two-layer snowpack. The average values of the snowpack
physical properties for each layer are derived from the multi-
layer snowpack simulated by MSHM. The key requirement is
to determine the depth of each one of the layers that best cap-
tures the snowpack vertical structure. Figure 6 shows MSHM
simulated snowpack density profiles for each of the four
SnowSAR flights. The shape of the profiles reflects the in-
terplay between thermodynamic processes that change snow
microstructure and dominate in the upper snowpack and me-
chanical consolidation processes that are dominant in the
middle and lower layers. The snow depth point correspond-
ing to the maximum change in snow density between adja-
cent layers in the multilayer snowpack is used here to divide
the snowpack into two layers. Subsequently, the layer-depth-
weighted average density, snow temperature, and correlation
length of the MSHM multilayer snowpack is calculated for
the corresponding depths of the two-layer equivalent snow-
pack (Table 3).

4.3 Bayesian optimization (Step 4)

Realistic snowpack predictions from MSHM driven by
weather forecasts (Step 1) are used to define the prior dis-
tributions of snowpack parameters and constrain Base-AM
(Steps 2 and 3) to infer the posterior distribution of snow-
pack parameters given the SnowSAR backscatter measure-
ments (Step 4) as discussed in Sect. 2.2.

The local mean of the posterior distribution for each pa-
rameter is hereafter referred to as the retrieval result for
each pixel. SD retrievals are evaluated against lidar snow
depth including spatial patterns and gradients and overall sta-
tistical structure using histograms. SWE retrievals derived
from the posterior distributions of snow density and snow
depth are evaluated against SWE measurements at snow pits
(Sect. 3.4). Original lidar measurements were reprojected
and coregistered with the SnowSAR retrievals. A compara-
tive analysis was conducted to examine the dependence of re-
trievals on incidence angle, and the subgrid-scale variability
was quantified in terms of the standard deviation of original
lidar measurements within the upscaled pixel. The amplitude
error metrics are the mean, standard deviation, and mean ab-
solute relative error (MARE):

MARE=

n∑
i=1
|1−Ri/Oi |

N
, (6)

where O are observations and R are retrievals. The Bhat-
tacharya coefficient (BC) is used to compare the spatial dis-

tributions of snow depth and backscatter. BC measures the
similarity between two probability distributions p1 and p2 as
follows (Bhattacharya, 1946):

BC=
N∑
i=1

√
p1 (i)p2 (i). (7)

Finally, among the 39 snow pits available for evaluation on
21 February, only 15 pits in open areas (i.e., grasslands) were
retained for evaluation, and snow pits without SnowSAR
measurements within a radius of 100 m were discarded.

5 Results and discussion

5.1 Successful retrievals

SnowSAR measurements are strongly affected by aircraft op-
erations, viewing geometry that varies systematically along
the flight path, resulting in amplitude artifacts amplified by
landform and land cover heterogeneity. Even after separating
homogeneous grassland pixels, there is contamination from
multiple bounce artifacts at grassland–forest transitions and
adjacent wetlands that cannot be resolved at 30 or 90 m res-
olution. Other errors embedded in the retrieval are associ-
ated with downscaling of HRRR forcings that produce biased
snow priors, snow hydrology model structure, and errors tied
to the background backscatter estimation. Combined, these
errors compounded can lead to a weak convergence of the
Bayesian optimization algorithm, resulting in large backscat-
ter residuals. To account for these errors and meet NASEM
(2018) science requirements, SnowSAR pixels for which the
relative residual backscatter (RRB) between Base-AM sim-
ulated σ tot

sim and SnowSAR measurements σ tot
SAR was greater

than 30 % were identified as unsuccessful. In an operational
context, these pixels would be flagged and identified as failed
or highly uncertain retrievals. The successful retrieval frac-
tion after restricting the range of incidence angles and im-
posing the RRB < 30 % criterion is summarized in Table 4
for the four flights and for both 1|2 layer snowpack retrievals
at 30 and 90 m resolution. Except for the later flight path
over the predominantly forested areas in the eastern sector of
Grand Mesa (Fig. 1), the fraction of successful retrievals by
restricting the incidence angle and RRB varies between 75 %
and 87 % across the four SnowSAR flights with a maximum
absolute bias of 1.2 dB. Only figures with retrieval results at
30 m resolution are shown in the main text; retrieval results
at 90 m resolution, as well as other supporting analysis, can
be found in Appendix A.

5.2 Retrieval skill

Figure 7 compares lidar snow depth (Fig. 7a) against colo-
cated SnowSAR retrievals at 30 m for the SnowSAR flight at
18:11:38 GMT (GMT=MST+6). The SnowSAR retrievals
for high incidence angles underestimate the lidar snow depth
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Table 3. Base-AM model input variance and range for the parameters prepared using MSHM multilayer snowpack parameters. The alphanu-
merical subscript in two-layer snowpack retrievals denotes layer number: 1 is the bottom layer, 2 is the top layer, avg represents the average
of all MSHM multilayer parameter values in the corresponding one or two-layer snowpack. DZ is the MSHM snow depth.

Snow parameters One-layer snowpack Two-layer snowpack

Variance, σ 2 Range Variance, σ 2 Range for each layer

Min Max Bottom Top Min Max

Snow temp., Ts [◦C] 0.3× Tsavg 1.3× Tsmin 0.7× Tsmax 0.3× Ts1,avg 0.3× Ts2,avg 1.3× Tsmin 0.7× Tsmax

Snow density, ρ [Kg m−3] 0.3× ρavg 0.8× ρmin 1.2× ρmax 0.3× ρ1,avg 0.3× ρ2,avg 0.8× ρmin 1.2× ρmax
Snow depth, DZ [m] 0.3×DZ 0.5×DZ 1.5×DZ 0.1×DZ1 0.2×DZ2 0.2×DZ 0.9×DZ
Correlation length, lex 0.3× lex,avg lex,min lex,max 0.2× lex,1,avg 0.2× lex,2,avg lex,min lex,max
Soil temp., Tsoil [◦C] 0.3 1.3 0.3 1.3

Figure 6. Density profiles simulated by MSHM for all grassland pixels at 30 m resolution from the four SnowSAR flight paths. The density
profile of the central pixel for each of the flights is marked in red. The snowpack layers are numbered from bottom to top tracking the
evolution of simulated snowpack stratigraphy during the accumulation season. Note the significant difference between the top two to three
layers and the deeper snowpack supporting the two-layer snowpack conceptual retrieval model.

(orange and red points). Lemmetyinen et al. (2022) suggested
a nominal incidence angle of 35–45◦ for retrievals, ensuring
proper focusing and calibration of SnowSAR swaths. CB23
showed good skill in forward backscatter simulations for in-
cidence angles as low as 30◦. Overall, the retrievals here also
show very good performance for incidence angles between
30 and 45◦. Note, however, the large residuals for SnowSAR
retrievals with high incidence angles (red and orange points
in Fig. 7b) corresponding to lidar pixels with shallow snow
depth (below the 1 : 1 line) and large subgrid-scale variabil-
ity (orange and red points, Fig. 7c). Analysis for all flights
at both 30 and 90 m resolution can be found in Appendix A
(please see Figs. A1 and A2, similar to Fig. 7b, and Figs. A3
and A4, similar to Fig. 7c). Figure 7d, e, and f show the
land cover, spatial distribution of subgrid standard deviation
(SSTD), and absolute residual (retrieved–lidar) snow depth
for the same flight. Along the edges of forest, the SSTD in
the upscaled pixels is large due to high heterogeneity that
cannot be resolved by the lidar fusion algorithm for snow
depth retrieval (Painter et al., 2016). The red box identifies
an area with complex grassland–forest boundaries (Fig. 7d)
and high subgrid-scale variability (Fig. 7e), resulting in poor
lidar estimates. The edge of wetlands also has comparatively

higher residuals than completely homogeneous grasslands.
This corresponds to the lidar pixels with SSTD> 0.3 m (yel-
low, orange and red in Fig. 7c). Therefore, only lidar pixels
with SSTD ≤ 0.3 m are used for assessment of retrievals.

Figure 8 shows heatmaps (density maps) to compare suc-
cessful retrievals against observed X- and Ku-band VV-pol
total backscatter at 30 m resolution. There is good agree-
ment between the two values for both the bands, especially
in the −15 to −10 dB range, without significant differences
between one- and two-layer snowpack retrievals. Note the
positive bias in the case of X-band simulations compared to
observations, whereas Ku-band simulations have a negative
bias as quantified in Table 4. Overall, the retrievals at 90 m
resolution show better agreement than those at 30 m resolu-
tion due to averaging (Fig. A5).

Maps of successful SWE retrievals for the four SnowSAR
flight paths are shown in Figs. 9 and A6 at 30 and 90 m
resolution, respectively. The retrievals capture the west–east
gradient in SWE well and show realistic spatial variabil-
ity across Grand Mesa. The very low SWE and shallower
snow depths at the easternmost boundary of the flight lines
are underestimates introduced by upscaling of the SnowSAR
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Table 4. Spatial bias between SnowSAR backscatter and converged backscatter from Base-AM for successful retrievals for grassland pixels
at 30 and 90 m spatial resolution over each flight. Successful retrievals are for pixels with local incidence angles in the 30–45◦ range and
relative residual backscatter (RRB) of less than 30 % for each of the four flights.

Flight time Successful retrieval fraction Bias (observed–converged) [dB]

One Layer Two Layer One Layer Two Layer

30 m 90 m 30 m 90 m 30 m 90 m 30 m 90 m

X Ku X Ku X Ku X Ku

18:11:38 0.86 0.87 0.85 0.86 0.92 −0.45 0.96 −0.48 0.94 −0.46 0.97 −0.50
18:43:20 0.75 0.75 0.75 0.75 1.08 −0.54 0.98 −0.36 1.07 −0.46 0.98 −0.37
18:59:02 0.78 0.81 0.81 0.81 1.20 −0.78 1.21 −0.79 1.15 −0.73 1.22 −0.83
20:23:38 0.66 0.69 0.57 0.69 0.51 −0.58 0.70 −0.43 0.62 −0.85 0.72 −0.45

backscatter values where there are significant changes in to-
pography at the edge of the plateau (see Fig. 2).

Heatmaps of total snow depth priors (MSHM-predicted
snow depth) against lidar snow depth are shown in Figs. 10
and A7 at 30 and 90 m resolution and can be contrasted with
heatmaps of total snow depth posteriors) against lidar snow
depth in Figs. 11 and A8 using both one- and two-layer re-
trievals. Note the narrow range of the prior snow depths con-
centrated around 1.5 m and the positive bias relative to li-
dar. The posteriors show much wider range of variability and
deeper snow consistent with the lidar data for both one- and
two-layer retrievals, albeit with better agreement for the latter
with high counts overlaying the 1 : 1 line at both spatial reso-
lutions. This behavior is further confirmed by examining the
snow depth histograms in Figs. A9 and A10. The retrievals
capture the range of the lidar snow depths well for all flights,
and there is a substantial improvement in the shape of the
distributions as revealed by the heatmaps.

Quantitative assessment metrics are presented in Tables 5
and A1 for the comparison between various snow depth data
sets at 30 and 90 m resolutions, respectively. The snow depth
MARE is higher for the retrievals compared to the priors
(MSHM) due to the fact that MARE is an effective metric
capturing distance from the mean. CB20 showed that the
MSHM simulated average snow mass accumulation at the
Grand Mesa scale is within 10 % of observations at a monthly
timescale in February 2017. The BC coefficients The BC co-
efficients of 0.95 and above at 30 m resolution indicate sig-
nificant agreement between the shapes of the distributions
at 0.95 or above at 30 m resolution using the two-layer re-
trievals for the west–east flights and 0.76 for the fourth flight
at 20:23:38 GMT over the forested area. There is significant
improvement relative to MSHM priors in the statistical simi-
larity of the snow depth retrievals vis-à-vis the lidar data for
all cases, and more so for the fourth flight over the forest.
For snow depth, 30 m resolution and two-layer retrievals out-
perform the 90 m resolution and one-layer retrievals for all
flights. This is explained in part by land cover classification
errors that are smaller at 30 m. Figure A11 shows that the

number of pixels where retrievals produce large mean abso-
lute residuals is very small, and they are characterized by low
confidence in the lidar estimates.

Tables 6 and A2 summarize the average absolute relative
errors between snow pits and SWE retrievals from all flights
within 100 m of the snow pits. The results are significantly
better for two-layer snowpack retrievals. The mean absolute
relative errors at 30 m resolution are 0.22 and 0.13 for one-
layer and two-layer snowpacks, respectively. The mean ab-
solute relative errors at 90 m resolution are 0.2 and 0.12 for
one-layer and two-layer snowpacks, respectively. There is a
variable number of pixels used for the calculation of the er-
ror metrics for each snow pit, which in the case of 51S is
so small that it suggests the pit is not in the flight path. The
large errors for pits 4500, 44E, and 53W are attributed to very
heterogeneous land cover including water and forest (4500)
and proximity to roads (53W and 44E). After removing these
snow pits in the central area marked in Fig. A12, the average
absolute relative SWE residuals are 5 %–7 % (15 %–18 %)
for the two-layer (one-layer) retrieval algorithm.

Finally, composite spatial maps of successful SWE re-
trievals from all flights overlain by the snow pit measure-
ments between 20 and 24 February are shown in Fig. 12. Be-
cause of the different viewing geometries, retrievals between
incident angles 30–35◦ for the flight path at 18:59:02 GMT
in the composite of overlapping flight paths at 18:43:20 and
18:59:02 GMT were removed. Note the consistency between
30 and 90 m resolutions and the overall agreement between
SWE at snow pits and SWE retrievals on the flight lines.

6 Conclusion

A Bayesian physical–statistical SWE retrieval framework
leveraging prior work (CB20, CB23, P17, P23, Fig. 5) was
applied to airborne X- and Ku-band measurements yielding
robust results from multiple SnowSAR flights over grassland
and mixed grassland and forest in Grand Mesa, Colorado.
Prior distributions of snowpack parameters were obtained
from a multilayer snow hydrology model with atmospheric
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Figure 7. (a) Snow depth measurements using airborne lidar on 25 February 17, 4 d after the SnowSAR flights. (b) Comparison between
lidar snow depth and the two-layer retrieved snow depth from SnowSAR on 21 February 2017 at 18:11:38 GMT. The pixels are color-coded
according to the SnowSAR incidence angle. Panel (c) is the same as (b) with pixels color-coded according to the subgrid-scale variability
measured by standard deviation of lidar snow depth within the corresponding 30 m pixel. Pixels on the edge of forests and grasslands have
higher subgrid-scale standard deviations (SSTDs). (d) Land cover distribution along the flight path; the bottom panel shows a zoomed-in
view of the area in the red box. (e) Spatial distribution of upscaled lidar snow depth SSTD at 30 m; the bottom panel shows a zoomed-in
view of the area in the red box. The edges of forests have higher SSTD due to errors in the lidar snow depth retrievals at high resolution.
(f) Absolute residual between retrievals and lidar snow depth; the bottom panel shows a zoomed-in view of the area in the red box. Residuals
equal to 0.5 m and above are grouped in the same category. The red box in panels (d), (e), and (f) delineates an area with large absolute
residuals. Vegetation–snowpack backscatter interactions at the grassland–forest and grassland–wetland margins are not accounted for in the
retrievals. Gray points in the central panel correspond to zero-depth lidar estimates due to errors in heterogenous land cover.

forcing derived from operational NWP forecasts and analysis
(CB20, CB23). In order to reconcile the number of indepen-
dent measurements and physical constraints and reduce the
number of snowpack parameters, snowpack stratigraphy was
mapped into one-layer and two-layer snowpacks and then
Bayesian inference using Base-AM was applied (P17, P23).

The SnowSAR measurements were averaged to 30 and 90 m
resolutions, and retrievals were conducted independently for
every measurement pixel along the flight lines. Retrievals for
measurements with convergence backscatter relative errors
less than 30 % (±1.2 dB) and for incidence angles in the 30–
45◦ range were considered successful over grasslands, cor-
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Figure 8. Heatmaps of SnowSAR measurements (observed) versus retrievals (simulated) backscatter (σ ) at 30 m resolution for X band (σX)
and Ku band (σKu): (a) one-layer snowpack and (b) two-layer snowpack. Successful retrievals are for pixels with local incidence angles in
the 30–45◦ range and relative residual backscatter (RRB) of less than 30 % for each of the four flights (see Table 4).

responding to 75 %–87 % of all retrievals depending on the
flight.

The retrievals, specifically the local means of the posterior
distributions, were evaluated against the spatial distribution
of lidar snow depth estimates up to 2 m and against snow
pit SWE measurements up to 700 mm and snow depth up
to 2.13 m. Since the lidar and snow pit measurements were

not concurrent with the SnowSAR flights, the assessment
of retrieval skill was conducted over a period of 5 d with-
out snowfall or significant day-to-day weather changes. The
two-layer snowpack retrievals perform better overall, captur-
ing the observed spatial gradients of snow depth, with SWE
relative errors ≤ 7 % as compared with 18 % for single-layer
SWE retrievals, and snow depth absolute retrieval residuals
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Figure 9. Spatial distribution of successful SWE retrievals for one-layer (a) and two-layer (b) snowpacks in grassland pixels at 30 m resolu-
tion. Successful retrievals are for pixels with local incidence angles in the 30–45◦ range and relative residual backscatter (RRB) of less than
30 % for each of the four flights (see Table 4).

Figure 10. Heatmap of lidar and MSHM-predicted snow depth priors at 30 m resolution using overlapping pixels from the MSHM and lidar.
Only pixels with an incidence angle between 30 and 45◦ and moderate subgrid-scale variability of lidar snow depth (< 0.3).

10 %–20 % depending on land cover heterogeneity and mea-
surement uncertainty. The statistical structure of retrieved
snow depth is similar to that estimated by lidar, which is
indicative of the retrievals ability to capture snow patterns
and scaling behavior to support scientific process studies.
For satellite-based monitoring from space in the context of
a future snow mission, time series of measurements would
be available that should improve the estimates of the pri-
ors based on antecedent information. This is not possible

for one-time observations during field experiments such as
SnowEx’17, and thus improved results would be expected
under realistic satellite-based applications. NWP forecasts
are available worldwide, and therefore this retrieval frame-
work can be applied to SAR measurements anywhere.

The radar model used in this study (MEMLS) does in-
corporate snow–ground–vegetation scattering interactions.
Grassland vegetation during the accumulation season is as-
sumed to be submerged and the impact of vegetation is in-
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Figure 11. Heatmap of lidar versus successful snow depth (SD) retrievals at 30 m resolution using overlapping lidar and retrieval pixels.
Successful retrievals are for pixels with local SnowSAR incidence angles in the 30–45◦ range and relative residual backscatter (RRB) of
less than 30 % for each of the four flights (see Table 4). Lidar SD in pixels with subgrid-scale variability corresponding to standard deviation
of less than 0.3 m for the upscaled 90 m lidar pixel are not included.

Table 5. Summary of statistics and error metrics of the three snow depth (SD) data sets at 30 m resolution: lidar measurements, MSHM
predictions, and successful SnowSAR retrievals for grassland pixels and subgrid-scale standard deviation (σ ) of less than 0.3 m for the
upscaled lidar pixel. MARE is the mean absolute relative error (Eq. 6), and BC is the Bhattacharya coefficient (Eq. 7). Here mean and
standard deviation refer to the spatial distribution, unlike the prior mean and standard deviation used in Base-AM (Table 3). Successful
retrievals are for pixels with local incidence angles in the 30–45◦ range and relative residual backscatter (RRB) of less than 30 % for each of
the four flights (see Table 4).

Flight N Spatial SD µ [m] Spatial SD σ [m] MARE SD BC SD

(GMT) Layer Retrieved MSHM Lidar Retrieved MSHM Lidar Retrieved MSHM Retrieved MSHM
lidar lidar lidar lidar

18:11:38

1

1.39 1.42 1.42 0.32 0.15 0.28 0.19 0.11 0.94 0.67
18:43:20 1.41 1.38 1.42 0.32 0.21 0.27 0.18 0.11 0.96 0.75
18:59:02 1.49 1.38 1.44 0.33 0.20 0.27 0.18 0.09 0.94 0.76
20:23:38 1.66 1.58 1.77 0.36 0.16 0.22 0.21 0.13 0.71 0.25

18:11:38

2

1.38 1.41 1.40 0.30 0.17 0.29 0.14 0.12 0.98 0.67
18:43:20 1.35 1.38 1.42 0.31 0.20 0.28 0.14 0.11 0.97 0.75
18:59:02 1.40 1.38 1.44 0.31 0.20 0.27 0.12 0.09 0.95 0.75
20:23:38 1.89 1.61 1.80 0.39 0.14 0.24 0.17 0.12 0.76 0.23

cluded in the estimation of the background backscatter (σbkg,
Fig. 1). Because the land cover data are categorical, in ad-
dition to the uncertainty of the data at 30 m resolution, ad-
ditional uncertainty is tied to the selection of homogeneous
grassland pixels at 90 m resolution, which explains some of

the unsuccessful retrievals, especially along the grassland–
forest, shrub, and wetland boundaries. The potential for esti-
mating σbkg independently for each location as proposed by
Cao and Barros (2023b) provides an alternative to simplify
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Table 6. Evaluation of successful SWE retrievals at 30 m resolution against SWE at SnowEx’17 snow pits and retrieved snowpacks at 30 m
resolution. All N pixels with centroids within 100 m of each snow pit are in the grasslands (according to the land cover data set at 30 m
resolution; see Table 1). SD stands for snow depth. Italicized rows correspond to large local MARE (mean absolute relative error, Eq. 6).

Date x y Pit SD Pit SWE Retrieved SWE (m) MARE N Avg. dist Pit ID

(m) (m) 1 layer 2 layer 1 layer 2 layer pixels (m)

20 Feb 2017 −108.184 39.014 1.15 0.368 0.455 0.386 0.236 0.049 28 18 KC1C
20 Feb 2017 −108.184 39.014 1.19 0.386 0.457 0.387 0.184 0.003 27 12 KC1E
20 Feb 2017 −108.184 39.014 1.18 0.386 0.456 0.387 0.181 0.003 26 15 KC1N
20 Feb 2017 −108.184 39.013 1.24 0.414 0.456 0.387 0.101 0.065 27 20 KC1S
20 Feb 2017 −108.184 39.014 1.30 0.435 0.455 0.385 0.046 0.115 29 11 KC1W
22 Feb 2017 −108.136 39.006 1.32 0.436 0.556 0.484 0.275 0.110 22 8 29E
22 Feb 2017 −108.090 39.021 1.65 0.583 0.685 0.596 0.175 0.022 19 17 38E
22 Feb 2017 −108.060 39.030 2.10 0.763 0.368 0.449 0.518 0.412 12 16 53W
22 Feb 2017 −108.044 39.017 1.68 0.566 0.480 0.505 0.152 0.108 5 51 63E
22 Feb 2017 −108.049 39.017 1.49 0.48 0.494 0.513 0.029 0.069 13 29 63W
22 Feb 2017 −108.029 39.032 1.66 0.55 0.558 0.581 0.015 0.056 18 15 67N
23 Feb 2017 −108.067 39.029 2.13 0.761 0.593 0.504 0.221 0.338 9 23 44E
23 Feb 2017 −108.061 39.030 1.59 0.568 0.365 0.408 0.357 0.282 3 75 51S
24 Feb 2017 −108.033 39.030 1.80 0.576 0.657 0.573 0.141 0.005 20 10 0
24 Feb 2017 −108.033 39.030 1.84 0.598 0.652 0.581 0.090 0.028 21 14 800
24 Feb 2017 −108.033 39.030 1.80 0.571 0.650 0.581 0.138 0.018 22 19 1390
24 Feb 2017 −108.033 39.030 1.75 0.566 0.654 0.581 0.155 0.027 21 15 2000
24 Feb 2017 −108.033 39.030 1.67 0.560 0.654 0.581 0.168 0.037 21 9 2500
24 Feb 2017 −108.034 39.030 1.12 0.331 0.660 0.580 0.994 0.752 18 19 4500

Mean 1.56 0.52 0.54 0.50 0.22 0.13 19.00 20.84

Figure 12. Composite spatial distribution of SWE (two-layer retrievals) successfully retrieved at 30 m (a) and 90 m (b) resolution for grass-
land pixels for the four SnowSAR flights. Snow pits (20–24 February, Fig. 4, Table 6) are marked by triangles colored according to SWE.
SnowEx’17 snow pit locations are marked by triangles and colored according to SWE. Successful retrievals are for pixels with local incidence
angles in the 30–45◦ range and relative residual backscatter (RRB) of less than 30 % for each of the four flights (see Table 4). As two flights
overlap, only retrievals with higher incidence angles are shown in the composite figure. Gray elevation contours are plotted every 100 m.

the retrieval workflow and target the Bayesian inference to
the snow mass and volume backscatter (σvol = σtotal− σbkg).

Airborne measurements are characterized by large
changes in viewing geometry across the flight line and due
to other factors such as variable winds and turbulence de-
pending on weather conditions, thus pointing to improved
skill from satellite platforms. Building on previous mission

concepts (e.g., Rott et al., 2012) and leveraging substantial
theory advances and field campaigns in the last decade, this
study demonstrates the utility and effectiveness of X-and Ku-
band SAR technology to remotely monitor snow mass at
high spatial resolution and with accuracy and uncertainty lev-
els that meet the requirements expressed in the most recent
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Earth Science and Applications from Space Decadal Survey
(NASEM, 2018).

Appendix A

Figure A1. The same as Fig. 7b but with pixels color coded according to the local SnowSAR incidence angle for all four flight lines and for
one- (a) and two-layer (b) retrievals at 30 m resolution.
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Figure A2. The same as Fig. 7b but with pixels color coded according to the local SnowSAR incidence angle for all four flight lines and for
one- (a) and two-layer (b) retrievals at 90 m resolution.

Figure A3. Comparison between lidar snow depth (SD) and successful retrievals for one- and two-layer algorithms. The pixels are color
coded according to the subgrid-scale variability of the 30 m upscaled lidar pixel.
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Figure A4. Comparison between SnowSAR snow depth and successful retrievals. The pixels are color coded according to the subgrid-scale
variability of the 90 m upscaled lidar pixel.
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Figure A5. Heatmaps of SnowSAR backscatter measurements (observed) versus retrievals (simulated) of backscatter at 90 m resolution:
(a) one-layer snowpack and (b) two-layer snowpack for X (σX) and Ku (σKu) bands. Successful retrievals are for pixels with local incidence
angles in the 30–45◦ range and relative residual backscatter (RRB) of less than 30 % for each of the four flights (see Table 4).
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Figure A6. Spatial distribution of successful SWE retrievals for one-layer (a) and two-layer (b) snowpacks in grassland pixels at 90 m
resolution. Successful retrievals are for pixels with local incidence angles in the 30–45◦ range and relative residual backscatter (RRB) of
less than 30 % for each of the four flights (see Table 4).

Figure A7. Heatmaps of lidar snow depth and snow depth predicted by MSHM at the time of SnowSAR flights for overlapping pixels at
90 m resolution.
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Figure A8. Heatmaps of lidar versus successful snow depth (SD) retrievals at 90 m resolution using overlapping lidar and retrieval pixels.
Successful retrievals are for pixels with local SnowSAR incidence angles in the 30–45◦ range and relative residual backscatter (RRB) of
less than 30 % for each of the four flights (see Table 4). Lidar SD in pixels with subgrid-scale variability corresponding to standard deviation
of less than 0.3 m for the upscaled 90 m lidar pixel are not included.

Figure A9. Histogram of snow depth (SD) from lidar, MSHM, and successful retrievals at 30 m using one- and two-layer snowpacks. The
total number of pixels for each snow depth product is the same. Successful retrievals are for pixels with local incidence angles in the 30–
45◦ range and relative residual backscatter (RRB) of less than 30 % for each of the four flights (see Table 4). Lidar SD in pixels with
subgrid-scale variability corresponding to standard deviation of less than 0.3 m for the upscaled 90 m lidar pixel are not included.
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Figure A10. Histogram of snow depth (SD) from lidar, MSHM, and successful retrievals at 90 m using one- and two-layer snowpacks.
The total number of pixels for each snow depth product is the same. Successful retrievals are for pixels with local incidence angles in the
30–45◦ range and relative residual backscatter (RRB) of less than 30 % for each of the four flights (see Table 4). Lidar SD in pixels with
subgrid-scale variability corresponding to standard deviation of less than 0.3 m for the upscaled 90 m lidar pixel are not included.

Table A1. The same as Table 5 but for a resolution of 90 m.

Flight N Spatial SD µ [m] Spatial SD σ [m] MARE SD BC SD

(GMT) Layer Retrieved MSHM Lidar Retrieved MSHM Lidar Retrieved MSHM Retrieved MSHM
lidar lidar lidar lidar

18:11:38

1

1.41 1.42 1.40 0.33 0.18 0.26 0.19 0.09 0.90 0.78
18:43:20 1.27 1.39 1.41 0.32 0.19 0.25 0.21 0.08 0.90 0.85
18:59:02 1.48 1.38 1.42 0.37 0.20 0.25 0.21 0.07 0.90 0.82
20:23:38 1.68 1.52 1.66 0.38 0.17 0.19 0.24 0.12 0.66 0.50

18:11:38

2

1.41 1.42 1.40 0.35 0.18 0.26 0.15 0.09 0.95 0.77
18:43:20 1.29 1.39 1.41 0.32 0.19 0.25 0.16 0.08 0.92 0.85
18:59:02 1.41 1.38 1.42 0.35 0.20 0.25 0.15 0.07 0.92 0.82
20:23:38 1.67 1.52 1.66 0.45 0.17 0.19 0.22 0.12 0.76 0.50
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Figure A11. Analysis of unsuccessful retrievals for pixels with large mean snow depth residuals at 90 m resolution. (a) Map of lidar snow
depth highlighting in deep blue the locations where very shallow snow is attributed to measurement error. (b) Note the spatial agreement
between shallow snow depth and very large residuals. (c) There are only a few points at the edges of forests and shallow snow depths that
are flagged as not successful. The gray elevation contours are plotted every 50 m.

Table A2. The same as Table 7 but for a resolution of 90 m.

Date x y Pit SD Pit SWE Retrieved SWE (m) Mean abs rel error N Avg. dist Pit ID

(m) (m) 1 layer 2 layer 1 layer 2 layer pixels (m)

20 Feb 2017 −108.184 39.014 1.15 0.368 0.473 0.398 0.29 0.08 4 18 KC1C
20 Feb 2017 −108.184 39.014 1.19 0.386 0.471 0.397 0.22 0.03 3 12 KC1E
20 Feb 2017 −108.184 39.014 1.18 0.386 0.473 0.399 0.22 0.03 2 29 KC1N
20 Feb 2017 −108.184 39.013 1.24 0.414 0.474 0.398 0.15 0.04 3 27 KC1S
20 Feb 2017 −108.184 39.014 1.3 0.435 0.476 0.399 0.09 0.08 3 47 KC1W
22 Feb 2017 −108.136 39.006 1.32 0.436 0.572 0.490 0.31 0.12 2 39 29E
22 Feb 2017 −108.060 39.030 2.10 0.763 0.340 0.384 0.55 0.50 1 43 53W
22 Feb 2017 −108.044 39.017 1.68 0.566 0.454 0.499 0.20 0.12 1 75 63E
22 Feb 2017 −108.049 39.017 1.49 0.480 0.521 0.530 0.09 0.10 1 29 63W
22 Feb 2017 −108.029 39.032 1.66 0.550 0.529 0.553 0.04 0.01 4 47 67N
23 Feb 2017 −108.067 39.029 2.13 0.761 0.751 0.606 0.01 0.20 1 70 44E
24 Feb 2017 −108.033 39.030 1.8 0.576 0.718 0.601 0.25 0.04 3 60 0
24 Feb 2017 −108.033 39.030 1.84 0.598 0.717 0.600 0.20 0.00 2 57 800
24 Feb 2017 −108.033 39.030 1.80 0.571 0.717 0.600 0.26 0.05 2 55 1390
24 Feb 2017 −108.033 39.030 1.75 0.566 0.687 0.592 0.21 0.05 1 54 2000
24 Feb 2017 −108.033 39.030 1.67 0.560 0.687 0.592 0.23 0.06 1 54 2500
24 Feb 2017 −108.034 39.030 1.12 0.331 0.687 0.592 1.08 0.79 1 62 4500
20 Feb 2017 −108.184 39.014 1.15 0.368 0.473 0.398 0.29 0.08 4 18 KC1C
20 Feb 2017 −108.184 39.014 1.19 0.386 0.471 0.397 0.22 0.03 3 12 KC1E

Mean 1.51 0.50 0.56 0.50 0.26 0.13 2.21 42.53
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Figure A12. Spatial context for snow pits with very large absolute relative errors (MARE) calculated as the mean of the relative difference
between SWE retrievals within 100 m of the snow pit and the values at the snow pit. Locations with very large errors (orange to red) are
inside the red box marked in the top plot. Snow pit 4500 is a region of complex land cover including evergreen forest, a road, and a pond.
Snow pits 53W and 44E are close to each other on the same side of the road in expansive grassland.
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