

Supplement of

Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback

Alison Delhasse et al.

Correspondence to: Alison Delhasse (alison.delhasse@uliege.be)

The copyright of individual parts of the supplement might differ from the article licence.

Random years (2091-2100) sampled until 2200							
Runned year	Original year	Runned year	Original year	Runned year	Original year	Runned year	Original year
2101	2096	2126	2091	2151	2097	2176	2095
2102	2091	2127	2097	2152	2097	2177	2091
2103	2095	2128	2095	2153	2097	2178	2099
2104	2094	2129	2093	2154	2099	2179	2093
2105	2098	2130	2096	2155	2091	2180	2095
2106	2098	2131	2100	2156	2091	2181	2098
2107	2098	2132	2091	2157	2096	2182	2099
2108	2095	2133	2098	2158	2093	2183	2092
2109	2100	2134	2095	2159	2096	2184	2096
2110	2092	2135	2094	2160	2095	2185	2098
2111	2091	2136	2095	2161	2094	2186	2093
2112	2096	2137	2094	2162	2096	2187	2097
2113	2099	2138	2092	2163	2100	2188	2093
2114	2091	2139	2091	2164	2092	2189	2098
2115	2093	2140	2093	2165	2093	2190	2093
2116	2099	2141	2095	2166	2098	2191	2099
2117	2100	2142	2093	2167	2091	2192	2091
2118	2092	2143	2099	2168	2092	2193	2099
2119	2094	2144	2093	2169	2098	2194	2098
2120	2092	2145	2094	2170	2094	2195	2095
2121	2098	2146	2092	2171	2093	2196	2091
2122	2100	2147	2092	2172	2097	2197	2096
2123	2099	2148	2093	2173	2096	2198	2096
2124	2091	2149	2095	2174	2092	2199	2095
2125	2095	2150	2097	2175	2092	2200	2094

Table S1. Random years from CESM2 (2091-2200) sampled until 2200 to extend the large-scale forcing field for MAR.

Figure S1. Surface mass balance (SMB) gradients $(mm.yr^{-1}/m)$ in 2200 as calculated by the offline correction (Franco et al., 2012) over the PISM-4.5 km grid and considering the SMB and surface elevation from the 9 nearest grid-cells of the MAR-25 km grid.

Figure S2. Spinup simulations results of SMB in red (MAR), and of MB in blue (PISM).

Figure S3. Evaluation of MAR-CESM2 compare to MAR-ERA5 over the reference period 1961-1990 with the initialised topography from the coupling between MAR and PISM through differences of the 4 main variables: a) the surface mass balance (SMB, mmWE yr⁻¹)), b) melt (ME, mmWE yr⁻¹), c) snowfall (SF, mmWE yr⁻¹) and d) summer temperatures (JJA Temp., °C). Non-significant (smaller than the inter-annual variability) differences are hatched.

Figure S4. Difference of observational data sets - model spinup for a) thickness and b) velocity. For the ice thickness observation, the BedMachineV3 data set (Morlighem et al., 2017) was used. For spinup and observational data set only values with thicknesses >= 1 m were considered to display the thickness differences and calculate the root mean square error (RMSE) of 224.02 m. The differences of the surface velocities are given by comparing the model spinup to the observational data set (Joughin et al., 2018) with velocity fields averaged over the years 1995–2015. The RMSE for the velocity fields yields 113.53 ms^{-1} . Basins are adjusted following Rignot and Mouginot (2012)

Figure S5. Differences in the year 2200 of MAR-PISM 2-way coupling (MAPI-2w) minus 1-way experiment (MAPI-1w) for a) thickness (m) and b) surface velocities (m yr⁻¹).

Figure S6. a) SMB differences in 2171-2200 between MAPI-1w and MAPI-2w interpolated on their respective PISM topography (mmWE yr^{-1}). b) Same as a) but both interpolated on the same topography of PISM from MAPI-2w. c) Differences between a) and b).

Figure S7. a) Cross sections along 66.64–67.35 ° N of mean wind speed (ms^{-1}) of Greenland in 2200. Upper cross-sections are represented over the coupled-topography of MAR in MAPI-2w experiment (coupled). Lower cross-sections are represented over the uncoupled-topography of MAR in MAPI-2w experiment (uncoupled). b) Wind speed differences (ms^{-1}) between MAPI-1w and MAPI-2w experiments in 2200. Non-significant differences (lower than the interannual variability over 2171 - 2200) are hatched. The black line situates the cross section in a). c) and d) are the same than a) and b) for the U-wind component (west-east, positive eastward, ms^{-1}).

References

- Franco, B., Fettweis, X., Lang, C., and Erpicum, M.: Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR, The Cryosphere, 6, 695–711, https://doi.org/10.5194/tc-6-695-2012, 2012.
- 5 Joughin, I., Smith, B. E., and Howat, I. M.: A complete map of Greenland ice velocity derived from satellite data collected over 20 years, Journal of Glaciology, 64, 1–11, https://doi.org/10.1017/jog.2017.73, 2018.
 - Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W.,
- 10 Wood, M., and Zinglersen, K. B.: BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation, Geophysical Research Letters, 44, 11–051, https://doi.org/10.1002/2017GL074954, 2017.
 - Rignot, E. and Mouginot, J.: Ice flow in Greenland for the international polar year 2008–2009, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL051634, 2012.