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Abstract. Land surface temperature (LST) has gained in-
creased attention in cryospheric research. While various
global satellite LST products are available, none of them is
specially designed for the pan-Arctic region. Based on the re-
cently published EUMETSAT Advanced Very High Resolu-
tion Radiometer (AVHRR) fundamental data record (FDR), a
new LST product (1981–2021) with daily resolution is devel-
oped for the pan-Arctic region. Validation shows good accu-
racy with an average mean absolute error (MAE) of 1.71 K
and a MAE range of 0.62–3.07 K against in situ LST data
from the Surface Radiation Budget (SURFRAD) network
and Karlsruhe Institute of Technology (KIT) sites. Long-term
stability, a strong requirement for trend analysis, is assessed
by comparing LST with air temperatures from ERA5-Land
(T2M) and air temperature data from the EUSTACE (https:
//www.eustaceproject.org, last access: 17 December 2024)
global station dataset. Long-term stability might not be ful-
filled mainly due to the orbit drift of the NOAA satellites.
Therefore, the analysis is split into two periods: the arctic
winter months, which are unaffected by solar illumination
and, therefore, orbital drift, and the summer months. The
analysis for the winter months results in correlation values
(r) of 0.44–0.83, whereas for the summer months (r) val-
ues range between 0.37–0.84. Analysis of anomaly differ-
ences revealed instabilities for the summer months at a few
stations. The same stability analysis for the winter months
revealed only one station with instabilities in comparison to
station air temperature. Discrepancies between the tempera-
ture anomalies recorded at the stations and ERA5-Land T2M
were also found. This highlights the limited influence of or-
bital drift on the LST product, with the winter months pre-

senting good stability across all stations, which makes these
data a valuable source for studying LST changes in the pan-
Arctic region over the last 40 years. This study concludes
by presenting LST trend maps (1981–2021) for the entire re-
gion, revealing distinct warming and cooling patterns.

1 Introduction

In recent decades, the warming in the Arctic has been much
faster than in the rest of the world. Studies (Chylek et al.,
2022; Rantanen et al., 2022) indicate a warming up to 4
times faster since 1979. This phenomenon, known as Arc-
tic amplification, is visible in both instrumental records and
model simulation (Dada et al., 2022). The Arctic Monitor-
ing & Assessment Programme (AMAP) highlights diminish-
ingly long cold spells and increasingly high extreme tem-
peratures, leading to rapid changes in the cryosphere (Arc-
tic Monitoring and Assessment Programme (AMAP), 2021).
These episodes affect the sensitive Arctic ecosystem; vege-
tation dynamics; large-scale circulation patterns; and the dis-
tribution of snow, ice and permafrost (Maturilli et al., 2019).
Permafrost, a crucial component of arctic ecosystems, is par-
ticularly sensitive to increasing air temperatures and changes
in the snow regime. Thawing permafrost affects the stability
of the bedrock, damages infrastructures, and releases mas-
sive quantities of organic carbon (Christensen et al., 2004;
Miner et al., 2022). These potential threats highlight the im-
portance of monitoring climate variables such as tempera-
ture in the arctic regions (Hachem et al., 2012; Urban et al.,
2013). Rapid changes in land surface temperature (LST) pat-
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terns have been observed in the Arctic region (Reiners et al.,
2021). LST can be used as an indicator of the thermal state
of the ground and has, in the last decade, been increasingly
used in arctic research and permafrost modelling (Wester-
mann et al., 2009; Obu et al., 2019; Batbaatar et al., 2020;
Nielsen-Englyst et al., 2021). LST observations are avail-
able from in situ stations or climate models. However, these
sources are insufficient to spatially resolve land surface char-
acteristics and their response to climate change at a hemi-
spheric scale (Nitze et al., 2018; Bartsch et al., 2023).

In contrast, satellite data can derive spatially comprehen-
sive information on LST dynamics (Li et al., 2013, 2023b).
LST is mainly derived from thermal infrared (TIR) radia-
tion measured by satellites with algorithms based on radia-
tive transfer (RT) equations (Li et al., 2013). Passive mi-
crowave (MW) measurements are another source of LST
data. MW measurements are less affected by clouds than
TIR data, but emissivity is challenging to derive for these
wavelengths, especially over snow-covered ground (Jiménez
et al., 2017; Ermida et al., 2017). LST is a critical parame-
ter in Earth’s surface and water energy balance and is widely
exploited across different research fields: cryosphere, geol-
ogy, vegetation monitoring, hydrology, and urban manage-
ment (Li et al., 2013; Guillevic et al., 2018). From a cli-
mate perspective, LST is needed to evaluate land surface and
land–atmosphere exchange processes, constrain surface en-
ergy budgets and model parameters, and provide observa-
tions of surface temperature change globally and in key re-
gions (Guillevic et al., 2018). LST is defined as an essen-
tial climate variable (ECV) by the Global Climate Observing
System (GCOS). To retrieve statistically significant changes
in ECVs, a time series of at least 30 years is needed (WMO,
2010). Typical LST products include the Pathfinder, GLASS,
MODIS, ASTER, and Landsat products (Good et al., 2022;
Reiners et al., 2023; Li et al., 2023a), as well as the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) LST
product produced within the framework of the European Or-
ganisation for the Exploitation of Meteorological Satellites
(EUMETSAT) Satellite Application Facility on Land Surface
Analysis (LSA-SAF) (Freitas et al., 2010; Trigo et al., 2011).

Although many satellite LST datasets with different tem-
poral and spatial resolutions exist, only the Advanced Very
High Resolution Radiometer (AVHRR) on board the NOAA
and MetOp satellites series covers over 4 decades. EU-
METSAT published a new AVHRR fundamental data record
(FDR) in May 2023 (https://navigator.eumetsat.int/product/
EO:EUM:DAT:0862, last access: 17 December 2024). This
dataset was homogeneously produced and consists of re-
flectance and brightness temperatures covering 1978–2021.
It is based on reprocessed near-real-time (NRT) observa-
tions from 17 AVHRR instruments on board NOAA satellites
TIROS-N to NOAA-19, as well as EUMETSAT satellites
MetOp-A, MetOp-B, and MetOp-C (EUMETSAT, 2023a).
The dataset is provided in the Global Area Coverage (GAC)
resolution. Quality control of AVHRR GAC radiances and

updates in the retrieval methods offer more accurate results
and better uncertainty estimates (Karlsson et al., 2023b). No-
tably, CLARA-A3, the third edition of the existing cloud
albedo and radiation (CLARA) data record, was produced
from this FDR (Karlsson et al., 2023a).

Previous LST datasets exist that have a global coverage
(Ma et al., 2020; Li et al., 2023b) or were developed for
continental (Reiners et al., 2021) or local usage. However,
none of them were specifically derived for the pan-Arctic re-
gion. The GLASS product, for example, presents data gaps
above 45° latitude due to its LST retrieval process that re-
lies on visible channels, which are not available during polar
night. Furthermore, the performance of the LST algorithms
is strongly tied to the sampling of atmospheric profiles and
surface properties used to calibrate the RT models. Different
methodologies and data sources have been used in the past,
but most LST products rely (entirely or partially) on the See-
Bor database, which is built from the Thermodynamic Initial
Guess Retrieval (TIGR)-3 database, ERA-40, and radiosonde
datasets (Borbas et al., 2005). Taking advantage of the most
recent ECMWF version-5 reanalysis (ERA5), Ermida and
Trigo (2022) developed a new clear-sky database for the de-
velopment of LST algorithms. The synthetic database is con-
structed from ERA5 data chosen with a dissimilarity crite-
rion to ensure a uniform distribution of atmospheric con-
ditions. The clear-sky database shows a significantly wider
range of conditions and thus a wider range of brightness tem-
peratures than in the SeeBor database specifically. The pan-
Arctic region shows a wide range of temperatures and con-
ditions that are not necessarily common, so it is particularly
important to base the RT modelling on a robust and repre-
sentative database for that region. A new daily LST dataset,
presented here for the northern high latitudes (> 50° N), is
produced based on the EUMETSAT FDR and the clear-sky
database (Ermida and Trigo, 2022).

The new LST dataset represents a valuable source for
studying LST dynamics and its impacts on regional climates
surface energy balance (Hall et al., 2012; Key et al., 2016),
vegetation phenology (Li et al., 2021), and temperature hot
spots (Mildrexler et al., 2018) and characterizing land use/-
land cover dynamics. However, to perform climatological
analyses, it is crucial that the satellite LST observations are
stable and robust (Waring et al., 2023).

The objectives of this paper are first the description of the
LST retrieval and validation methods and, second, the assess-
ment of the stability of the new pan-Arctic LST dataset. Re-
lationships and trends with respect to the following datasets
are compared: (i) in situ air temperature (Tair) measurements
provided by the EUSTACE database and (ii) 2 m air tempera-
ture (T2M) data from ERA5-Land for the overlapping period
(1981–2020). The comparisons are made for selected sites in
the pan-Arctic region. The presence of trends in T2M is well
established and is considered one of the major indicators of
anthropogenic climate change (IPCC, 2021). Previous stud-
ies (Mildrexler et al., 2011; Hachem et al., 2012; Urban et al.,
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2013; Good et al., 2022) obtained a good correlation between
LST and T2M/Tair, although these parameters have different
physical meanings and are measured or modelled with dif-
ferent procedures. Hachem et al. (2012) found that LST de-
rived from MODIS and daily near-surface air temperatures
are comparable. Good (2016) noted that LST and T2M are
very similar when solar heating is low or absent. The NOAA
satellites do not have a stable orbit (Ignatov et al., 2004; Lat-
ifovic et al., 2012), meaning that over the course of their op-
erating years, their Equator crossing time is shifting (Price,
1984). In the case of LST, drifting orbits could lead to artifi-
cial trends in long-term records if only one platform is con-
sidered. In the present case, the LST from the different plat-
forms is combined (morning and afternoon overpasses), and
the final product is generated over multiple satellites. How-
ever, this also means that observed trends are more complex
to interpret (Lieberherr and Wunderle, 2018). Orbital drift
has a more substantial impact in the Southern Hemisphere
and on bare soil (Sobrino et al., 2002; Gleason et al., 2002)
than in the Northern Hemisphere. For example, this effect
has been neglected in previous studies focusing on the Arctic
region (Urban et al., 2013) or lakes (Riffler et al., 2015).

In this study, the analysis is carried out for two cases:
(a) polar winter, defined here as December and January, and
(b) polar summer, defined here as June and July. Incident so-
lar radiation is zero during polar winter (Lund et al., 2017;
Wang and Zeng, 2014); therefore, it is expected that a trend
analysis for case (a) should not be affected by orbital drift.
This paper is structured as follows: the data used to produce
the LST are presented in Sect. 2, and the methodology is
described in Sect. 3. Validation results for the LST product
are presented in Sect. 4.1. Comparisons with air temperature
datasets and trend analysis are presented in Sect. 4.2, 4.3,
and 4.4. Finally, discussions and conclusions are presented
in Sects. 5 and 6.

2 Data

This study uses the newly generated EUMETSAT AVHRR
FDR satellite dataset, one reanalysis dataset, and several
weather station datasets. Snow cover information is based
on the snow water equivalent (SWE) dataset and snow cover
fraction (SCF) from the ESA CCI Snow project.

2.1 EUMETSAT AVHRR FDR

The FDR contains AVHRR reflectance and brightness tem-
peratures for each available orbit and channel. The daily
AVHRR data from one satellite provide nearly complete cov-
erage of the globe. AVHRR GAC measurements have been
processed using pygac – a Python software package to read
and transform AVHRR data in GAC format (https://pygac.
readthedocs.io/en/latest/#, last access: 17 December 2024) –
including the conversion from counts to reflectance or bright-

ness temperature and cross-calibration of the visible channels
of the AVHRR sensor. The two thermal channels are cali-
brated following the platinum resistance thermometer (PRT),
space, and internal calibration target (ICT) count procedure
(Kidwell, 1995; Walton et al., 1998). Detailed information is
available in PyGAC FDR ATBD (EUMETSAT, 2023b). The
data are accompanied by additional metadata (such as orbit
overlap and Equator crossing time) and basic quality indica-
tors (EUMETSAT, 2023c). Only satellites carrying the newer
versions (AVHRR/2 and AVHRR/3) of the AVHRR are con-
sidered in this study. The second version (AVHRR/2) has five
spectral channels, and the third version (AVHRR/3) has six
but transmits only the data from five channels. Brightness
temperature channel 4 is centred at 10.8 µm and brightness
temperature channel 5 at 12 µm. The IR calibration proce-
dure is satellite-specific, with no cross-calibration between
satellites for IR channels (EUMETSAT, 2023d). The PyGAC
AVHRR FDR from EUMETSAT (2023) is available in the
Network Common Data Form (NetCDF) format and covers
the entire globe (−180, 90, 180, −90°). For each satellite,
the orbit files are composited by choosing for each pixel only
the observation closest to nadir. The composited files have
a spatial resolution of 0.05°× 0.05° pixel size and are avail-
able for each satellite twice a day (at daytime and nighttime).
This study focuses on the pan-Arctic region. Therefore, only
data above 50° N have been processed.

2.1.1 Cloud mask

Cloud cover information is obtained from the CM SAF
CLARA-A3 dataset (Karlsson et al., 2023b), which is also
based on EUMETSAT AVHRR FDR (EUMETSAT, 2023a).
The probabilistic cloud mask (CMAPROB), included in the
level-2b product, and quality flags are used. Cloud proba-
bilities range from 0 % to 100 % (EUMETSAT Satellite Ap-
plication Facility on Climate Monitoring (CM SAF), 2023).
The cloud probabilistic detection is based on the naïve
Bayesian theory and offers substantial improvement to pre-
vious CLARA-A2 data records (Devasthale and Karlsson,
2023).

2.1.2 Snow cover data

Snow cover fraction (SCF) from optical satellite data and
snow water equivalent (SWE) products from passive mi-
crowave satellite data from the ESA CCI Snow project (https:
//climate.esa.int/en/projects/snow/, last access: 17 Decem-
ber 2024) are used to obtain information on snow extent
(Luojus et al., 2022; Xiao et al., 2024). The SCF “view-
able snow” (SCFV) product is derived from the EUMETSAT
AVHRR FDR and applied for this study. A value equal to
zero means that the pixel is snow-free, and 100 means that
the pixel is fully covered by snow. The SWE variable is in-
dicated in millimetres. Both snow products are combined to
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get a snow mask independent of the availability of the visible
channels during polar night.

2.2 ERA5-Land 2 m air temperature

ERA5-Land (Muñoz Sabater et al., 2021), provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF), is a downscaled version of the land component
of the global ERA5 reanalysis. Compared to ERA5, ERA5-
Land shows better stability but reduced accuracy (Urraca and
Gobron, 2023). However, the accuracy suffices to capture
inter-annual variations (Rantanen et al., 2023). Data from the
ERA5-Land monthly averaged air temperature 2 m above the
surface are compared to the LST dataset.

2.3 In situ 2 m air temperature

In situ air temperature observations from the EU Surface
Temperature for All Corners of Earth (EUSTACE) land sta-
tion dataset (Brugnara et al., 2019; Rantanen et al., 2023)
are used for comparison. This database stores daily minimum
(Tmin) and maximum (Tmax) temperature values recorded at
weather stations∼ 2 m above the surface. The station dataset
has undergone quality controls, was homogenized, and cov-
ers the period from 1850 to 2015. Weather stations from the
EUSTACE database were selected according to the following
criteria:

– The station lies above 50° latitude.

– The underlying ground is composed of permafrost.

– Different latitudes are represented.

– The surrounding area at a station, corresponding to at
least 1 GAC pixel, must be homogeneous.

– The time series should cover at least 30 years.

Based on these criteria, 12 stations have been selected (Fig. 1
and Table 1).

2.4 Auxiliary data

The generation of LST data requires auxiliary datasets:

– Skin temperature (Tskin) and total column water
vapour (TCWV) from the MERRA-2 reanalysis dataset
(M2T1NXSLV, variables are labelled TS and TQV) are
used. The data come at hourly temporal resolution with
a spatial resolution of 0.5°× 0.625°. Nearest neighbour
resampling was performed to match the AVHRR spatial
resolution and scanline time, i.e. as in the work of Ma
et al. (2020). MERRA-2 is preferred over other reanal-
ysis products with finer spatial resolution to allow com-
parison with the GLASS product (Ma et al., 2020) and
to keep the LST retrieval independent of ERA5-Land,
which will be used for the stability analysis.

– ESA CCI Land Cover 1992–2015 and Copernicus
ICDR Land Cover 2016–2020 datasets are used. Both
datasets are consistent with each other. Their spatial res-
olution was decreased to match AVHRR GAC spatial
resolution. The class labels follow the Land Cover Clas-
sification System (LCCS) developed by the United Na-
tions (UN) Food and Agriculture Organization (FAO)
(Copernicus Climate Change Service, Climate Data
Store, 2019).

– Atmospheric profiles from the Clear-Sky Database de-
veloped at LSA-SAF (Ermida and Trigo, 2022) are used
for the RT modelling (RTM). This database contains at-
mospheric profiles such as temperature, specific humid-
ity, and ozone on 137 model levels (full vertical res-
olution), sampled from ERA5 for the 2009–2019 pe-
riod. The sampling technique follows the method of
Chevallier et al. (2000). Surface variables like T2M, sur-
face pressure, Tskin, and emissivity are obtained from
the combination of ERA5 and satellite data to ensure
the best possible representation of the surface condi-
tions. Column variables, such as TCWV and total cloud
cover (TCC), are also present in the database. The atmo-
spheric profiles are classified on TCWV varying from 0
to 60 mm and TS ranging from 190 to 340 K.

– In situ LST measurements from the Surface Radiation
Budget (SURFRAD) network, the Karlsruhe Institute of
Technology (KIT) network (Göttsche et al., 2016; Mar-
tin et al., 2019), the Atmospheric Radiation Measure-
ment Climate Research Facility US Department of En-
ergy (ARM) site at the North Slope of Alaska (NSA),
and radiation data from the Baseline Surface Radia-
tion Network (BSRN) (Maturilli, 2020; Cox and Hal-
liwell, 2021; Kustov, 2018, 2023) are used for valida-
tion. Table 2 lists the stations. The KIT stations, which
are part of LSA SAF’s validation effort and supported
by EUMETSAT, are located in different climate zones
(Göttsche et al., 2016). In situ LST is computed from
their radiation components as in Martin et al. (2019).
The broadband emissivity (BBE) is obtained from chan-
nel effective emissivity data provided in the ASTER
GED (Hulley et al., 2015) with the linear equation de-
scribed in Cheng et al. (2013).

– The Copernicus digital elevation model (DEM)
GLO-90 upscaled to 0.05° spatial resolution is used
(https://doi.org/10.5270/ESA-c5d3d65, Copernicus
digital elevation model (DEM) GLO-90, 2024) for the
RT modelling. This dataset represents the surface of the
Earth and is based on radar satellite data obtained from
the TanDem-X Mission.
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Figure 1. Selected EUSTACE stations with their IDs (Table 1). Permafrost zonation map adapted from Obu et al. (2018).

Table 1. Selected EUSTACE meteorological stations with WMO code, geolocation, elevation. and available period.

Station ID Station code Station name Latitude [°] Longitude [°] Elevation [m] Available period

1 CA002300500 BAKER LAKE A 64.30 −96.08 19 1946–2015
2 CA002401030 DEWAR LAKES 68.65 −71.17 527 1958–2015
3 TX_SOUID148829 ILIRNEJ 67.25 168.97 352 1944–2013
4 TX_SOUID147048 KANGERLUSSUAQ 67.02 −50.70 50 1975–2015
5 TX_SOUID137416 LAINIO 67.76 22.35 315 1965–2015
6 TX_SOUID148484 NADYM 65.47 72.67 14 1959–2013
7 GLW00016504 SONDRESTROM 67.02 −50.80 50 1947–2015
8 TX_SOUID148639 SUHANA 68.62 118.33 78 1938–2013
9 TX_SOUID111376 SVEAGRUVA 77.88 16.72 9 1978–2015
10 TX_SOUID150449 SVETLOLOBOVO 55.10 90.80 326 1958–2013
11 USC00509869 WISEMAN 67.42 −150.11 349 1918–2015
12 CA002204000 WRIGLEY A 63.22 −123.43 150 1943–2013

3 Methods

LST can be retrieved from thermal infrared data with the
well-established split-window (SW) method (Ma et al., 2020;
Yang et al., 2020; Reiners et al., 2021). Since 1983 (Price,
1984; Prata, 1994) different algorithms have been developed
to obtain LST as a function of the satellite-recorded bright-

ness temperature (BT). The split-window approach takes ad-
vantage of the different water vapour absorption characteris-
tics of two adjacent channels (Lieberherr et al., 2017; Ma
et al., 2020). LST is affected by many factors, which re-
quires additional terms to model the effects of land cover
type, viewing angle, and topography (Trigo et al., 2017).
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Table 2. Description of the stations used for LST validation. Station name and ID, the network the station belongs to, latitude, longitude,
elevation, and the dominant land cover type are listed.

Station name (ID) Network Latitude Longitude Elevation LCCS
[°] [°] [m]

Bondville, Illinois (BND) SURFRAD 40.0519 −88.3731 230 Cropland
Desert Rock, Nevada (DRA) SURFRAD 36.6237 −116.0195 1007 Open shrubland
Fort Peck, Montana (FPK) SURFRAD 48.3078 −105.1017 634 Grassland
Goodwin Creek, Mississippi (GCM) SURFRAD 34.2547 −89.8729 98 Wooded grassland
Penn State University, Pennsylvania (PSU) SURFRAD 40.7201 −77.9309 376 Deciduous broadleaf forest
Sioux Falls, South Dakota (SFA) SURFRAD 43.73403 −96.62328 1689 Cropland
ARM Southern Great Plains, Oklahoma (SGP) SURFRAD 36.60406 −97.48525 314 Cropland
Table Mountain, Boulder, Colorado (TBL) SURFRAD 40.1250 −105.2368 1689 Cropland
Lake Constance, Germany (BOD) KIT 47.58 9.57 396 Water
Evora, Portugal (EVO) KIT 38.54 −8.003 300 Mosaic tree and shrubs
North Slope of Alaska, USA (NSA) ARM 71.323 −156.609 8 Lichens and mosses
Alert, Canada (ALE) BSRN 82.49 −62.42 127 Bare soil
Ny-Ålesund, Norway (NYA) BSRN 78.9227 11.9273 11 Bare soil
Tiksi, Russia (TIK) BSRN 71.5862 128.9188 48 Shrubland

3.1 Generalized split-window algorithm

For this study the generalized split-window (GSW) algo-
rithm, developed by Wan and Dozier (1996) (Eq. 1) and used
within the framework of LSA-SAF (Trigo et al., 2008b; Er-
mida and Trigo, 2022), is selected. The GSW performs well
on a global scale and has the highest relative accuracy among
a selection of SW algorithms investigated in the work of
Yang et al. (2020). The GSW depends on channel-effective
emissivity and sensor-specific coefficients that must be deter-
mined for the expected atmospheric and surface conditions.

Ts =

(
A1+A2

1− ε
ε
+A3

1ε

ε2

)
(T11+ T12)

+

(
B1+B2

1− ε
ε
+B3

1ε

ε2

)
(T11− T12)+C, (1)

where T11 and T12 denote BT of channels centred at approx-
imately 11 and 12 µm; ε = (ε11+ ε12)/2; 1ε = (ε11− ε12);
and Ai , Bi , and C are split-window coefficients (SWCs).

The split-window coefficients in Eq. (1) are obtained by
applying multi-linear regression on a set of simulated BTs
against a calibration database. Simulated BTs are obtained
by performing RTM with version 13 of the Radiative Trans-
fer for TOVS (RTTOV) developed at NWC SAF (Saunders
et al., 2018). The Python wrapper was used in this study
(Hocking et al., 2021). Atmospheric profiles and surface and
column variables from the clear-sky profile database devel-
oped by Ermida and Trigo (2022), complemented by eleva-
tion information and satellite viewing angles, are ingested
by RTTOV. The clear-sky profile database contains 97 files,
each file containing approximately 1000 atmospheric profiles
corresponding to a different class of TCWV and Tskin. In
total, the database contains 82 793 profiles, and each pro-
file possesses 6 different TS values and 25 pairs of emis-

sivity at 11 and 12 µm. More details can be found in Er-
mida and Trigo (2022). Convolving the top-of-atmosphere
radiances produced by RTTOV with the specific AVHRR re-
sponse functions yields BTs as seen by the different sensors
for different atmospheric and viewing conditions. RT mod-
elling was performed on the calibration dataset for each satel-
lite and 15 different satellite view zenith angles (VZAs) rang-
ing from 0 to 70°. Table 3 summarizes the construction of
the simulation dataset. Finally, the calibration was performed
independently for each class, and for each class, the sam-
ples were split into a training (70 %) and test (30 %) set, and
multilinear regression was performed on the resulting BTs.
Based on the test sets, look-up tables (LUTs) with coeffi-
cients are created for each satellite. The LUTs are organized
into classes of TCWV and Tskin, allowing the allocation of
the right SWC to the encountered atmospheric conditions.
Mean absolute error (MAE), the coefficient of determination
(R2), and root mean square error (RMSE) are computed for
all coefficients to keep track of the general performance of
the RTM.

3.1.1 Land surface emissivity retrieval

Land surface emissivity (LSE) is retrieved by combining the
simplified normalized difference vegetation index (NDVI)
threshold method (SNDVITHM) (Sobrino et al., 2008) based
on Sobrino and Raissouni (2000) with channel emissivity
data from spectral libraries and static land cover classifica-
tions.

First, 10 d NDVI maximum value composites (MVCs)
are generated from the AVHRR channels 1 and 2. NDVI
thresholds that determine whether a pixel is considered fully
vegetated or entirely bare soil are set. In the present case,
NDVIsoil is set to 0.2, and NDVIveg is set to 0.5 (Sobrino
et al., 2001). All pixels that have 0.2<NDVI< 0.5 are con-
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Figure 2. LST retrieval from AVHRR data. Input data are shown at the top. The leftmost box refers to the SW coefficient determination;
the next box on the right displays the look-up-table storing coefficients for different atmospheric and surface conditions. The second box
from the right presents the cloud mask application to the thermal channels and the rightmost panel the process of generating land surface
emissivity (LSE) based on land cover and NDVI information.

Table 3. Summary of the simulation dataset: the number of profiles used and the number of instances of view zenith angles (VZAs), TS, and
LSE are shown.

Source No. profiles No. VZA No.TS No. LSE Sample size

LSA SAF (Ermida and Trigo, 2022) 82 793 15 6 25 186 284 250

sidered mixed pixels, and the corresponding emissivity is ob-
tained by using the proportion of vegetation (Pv) method (So-
brino et al., 2008) (Eq. 2) that weighs the emissivity of bare
soil (εsi) and vegetation (εvi) for AVHRR channel i (i = 4 or
5).

εi = εviPv+ εsi(1−Pv) (2)

εsi and εvi are taken from a LUT based on information
from spectral libraries (Trigo et al., 2008a; Peres and Da-
Camara, 2005). The emissivity of pixels with NDVI < 0.2
or NDVI > 0.5 is set to εsi and εvi respectively. Here, the
channel emissivities from Trigo et al. (2008b) (Table I) are
used. The IGBP classes (Sulla-Menashe and Friedl, 2018)
are converted to land cover classes of the ESA CCI project
with plant functional type look-up tables (Wang et al., 2023).
From 1992 to 2020, the ESA CCI land cover at the 12 se-
lected stations changed very little. Therefore, to reduce emis-
sivity uncertainties due to unknown land cover information
before 1992, a static land cover from 2000 is used through-

out the project (Freitas et al., 2010). The land cover was pre-
viously upscaled to the resolution of the AVHRR dataset. Pv
is obtained from NDVI with Eq. (3) (Carlson and Ripley,
1997).

Pv =

(
NDVI−NDVIsoil

NDVIveg−NDVIsoil

)2

(3)

Pixels with low NDVI values (NDVI < 0.2) are defined as
bare soil. Such NDVI values can also indicate the presence
of snow or cloud cover. Snow cover extent information is
retrieved from two data products from the ESA CCI Snow
project, and cloudy pixels are masked out in the final LST
product. A threshold of 70 % of SCFV or 4 mm for SWE
is used to categorize the pixel as fully snow-covered. Snow-
covered pixels are assigned to laboratory emissivity spectra
values of medium snow (Fig. 5 of Hulley et al., 2014). Water
pixels and permanent snow and ice areas are retrieved based
on land cover information from the ESA land cover CCI for
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the year 2000 and are assigned to channel effective emissivity
values from Hulley et al. (2014).

3.2 LST retrieval

LST is retrieved as follows: (i) all necessary data (BTs, cloud
mask, emissivity, and atmospheric data) are read; (ii) atmo-
spheric data from MERRA-2 (TS and TQV) are downscaled
to GAC spatial resolution, and the corresponding timestamp
is matched with the scanline time for each pixel; (iii) based
on satellite identification number, satellite viewing angle, to-
tal column water vapour (TQV), skin temperature (TS), and
the corresponding SWC from the LUT are assigned to each
pixel; and (iv) LST is computed from channel BTs, emissiv-
ities, and the assigned SWC (Eq. 1). Pixels with a satellite
view zenith angle greater than 40° and the MAE of the test
set in the RTM simulations greater than 0.5 K are masked
out.

3.3 Validation procedure

The AVHRR LST dataset is validated against in situ data
from different sites (Table 2). In situ LST and AVHRR LST
datasets are jointly based on acquisition time and geoloca-
tion. The closest pixel to the station is taken, and a time
difference of up to 5 min between the satellite overpass and
the in situ measurement is considered. For Lake Constance,
a time difference of up to 30 min is allowed. Similarly, as
in Ma et al. (2020), 3σ filtering was performed to remove
outliers (Pearson, 2002). The most accurate surface temper-
atures can be obtained over large water bodies, such as lakes
and reservoirs. Densely vegetated surfaces are also particu-
larly suitable for LST validation (Coll et al., 2009).

3.4 LST AVHRR time series generation

Depending on the heterogeneity of the land cover, between
4 and 9 AVHRR LST GAC pixels are extracted around
each station (Table 1). Pixels that have a cloud probabil-
ity higher than 0.1 are removed, and the average of the re-
maining pixels is computed. Pixels with a cloud probability
of 0.1 or lower are considered cloud-free (Karlsson et al.,
2023b). This cloud probability threshold is a compromise
between data availability and avoiding cloud contamination.
Daytime data from NOAA-7, NOAA-9, NOAA-11, NOAA-
14, NOAA-16, NOAA-18, and NOAA-19 (satellites with as-
cending (northbound) Equator crossing times), as well as the
entire MetOp series (satellites with descending (southbound)
Equator crossing times), are considered for constructing the
time series. The considered period for each satellite is chosen
to minimize orbital drift and avoid the outage periods (EU-
METSAT, 2023d). The retained periods are listed in Table 4.

Once the relevant periods are extracted, outlier detection is
performed based on a 10 d rolling window analysis, and de-
tected outliers are removed. Daily temperature variability is
very high (Mildrexler et al., 2011), and AVHRR-derived LST

Table 4. Considered time period for each satellite and sensor that it
carries.

Satellite Platform Valid period

NOAA-07 AVHRR-2 24 November 1981–1 February 1985
NOAA-09 AVHRR-2 25 February 1985–7 November 1988
NOAA-11 AVHRR-2 8 November 1988–16 October 1994
NOAA-14 AVHRR-2 20 January 1995–31 December 2000
NOAA-16 AVHRR-3 1 January 2001–30 June 2005
NOAA-18 AVHRR-3 1 July 2005–28 February 2009
NOAA-19 AVHRR-3 1 March 2009–31 December 2015
MetOp-A AVHRR-3 1 January 2016–31 December 2018
MetOp-B AVHRR-3 1 January 2016–31 December 2020
MetOp-C AVHRR-3 3 July 2019–31 December 2020

time series are subject to noise. Therefore, monthly means
are computed from concatenated daytime time series for fur-
ther analysis.

3.5 Time series analysis

The AVHRR LST monthly means time series is compared
with two independent datasets: ERA5-Land and EUSTACE
Tair. ERA5-Land pixels collocated to each weather station
are selected, and values of T2M for the same position are
extracted. The EUSTACE Tair data are filtered to keep only
data that passed all quality assurance checks (Menne et al.,
2012), and monthly means are computed. This yields time
series of LST, ERA5-Land T2M (hereafter referred to as
“T2M”), and EUSTACE Tair (hereafter referred to as “Tair”)
for each station. Before performing the actual stability anal-
ysis and starting with trend analysis, the overall relationship
between the datasets is assessed by computing statistical pa-
rameters such as the Pearson correlation coefficient (r), the
MAE, and the RMSE. Previous studies (Mildrexler et al.,
2011; Hachem et al., 2012; Westermann et al., 2012; Urban
et al., 2013) found variability in the LST–Tair correlation de-
pending on the season and the land cover.

Then, anomalies of the monthly mean time series are com-
puted for the LST, T2M, and Tair time series at all stations
to remove the strong seasonal cycle inherent to tempera-
ture data (Good et al., 2022). A temperature anomaly de-
scribes the difference from a baseline climatology. In the
present study, the anomalies are computed by subtracting the
mean temperature for the entire time series from the monthly
values. The LST, T2M, and Tair anomalies are compared
by computing the Pearson correlation coefficient (r). Three
different periods are considered for the anomaly analysis:
(a) the entire year, (b) polar winter (December, January), and
(c) polar summer (June and July). June and July are chosen as
summer months to respect the symmetry of the winter period.
First, the relationship between the anomalies of the different
datasets is evaluated with the Pearson correlation coefficient
(r), and the general stability of the LST dataset is assessed
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by computing the trends of the anomaly differences. Three
sets of differences are computed:

1TanomLST−T2M = LSTanom−T2Manom (4)
1TanomLST−Tair = LSTanom−Tairanom (5)
1TanomTair−T2M = Tairanom−T2Manom, (6)

where LSTanom denotes the LST anomalies, and T2Manom
and Tairanom represent the ERA5-Land air temperature
anomalies and EUSTACE air temperature anomalies respec-
tively. The anomaly differences are represented by 1Tanom.
The stability analysis is performed separately on the sum-
mer and winter periods. Non-parametric trend analysis is per-
formed on the anomaly differences using the Theil–Sen slope
to quantify the trend and the Mann–Kendall test to determine
its significance. The Python implementation of the Mann–
Kendall trend test (Hussain and Mahmud, 2019) was used
in this work. Finally, trends are computed at each station for
the entire year for all three datasets, and summer and winter
trends are computed for the whole pan-Arctic region.

4 Results

In the first parts of the Results section (Sect. 4.1.1 and 4.1.2),
the performances of the GSW algorithm and the validation
results are presented. The remaining subsections present the
relationships of the different datasets as well as the stability
analysis and trend computation.

4.1 LST validation results

4.1.1 Performance of the split-window algorithm

Multi-linear regression was used to fit Eq. (1) to the RTM re-
sults for each class of TCWV and Tskin in a training set that
consisted of 70 % of the samples, thereby retrieving the cor-
responding SWCs. The performance of the regression model
was evaluated with the remaining independent samples (test
set). The performance of the model is assessed by using the
MAE and the coefficient of determination (R2). The values
shown in Fig. 3 are mean values across all satellites: the
MAEs of the predictions are below 0.5 K for dry conditions
(TCWV < 30) and low satellite viewing angle (VZA < 40).
In cases with very moist atmospheres and high VZA (VZA
> 50), the MAE increases substantially, and R2 is consid-
erably lower (R2 < 0.92). Higher temperatures and higher
VZA also lead to an increased error. The overall MAE is
always below 2 K for water vapour below 50 mm TCWV.
MAE values above 2 K are reached for high TCWV (TCWV
> 50 mm) and high VZA values (VZA > 50°). Overall, the
amount of water vapour in the Arctic atmosphere is low,
which indicates that the model is well suited for the present
use case.

4.1.2 Validation with in situ LST

Figures 4 and 5 show the validation results for NOAA-
14, NOAA-16, NOAA-17, NOAA-18, and NOAA-19 and
MetOp-A, MetOp-B, and MetOp-C against in situ LST from
the validation sites in Table 2. The validation is separated for
daytime (represented in red) and nighttime (blue). For each
validation site, the MAE, RMSE, and mean bias error (MBE)
are shown. The match-up with the SURFRAD stations cov-
ers the period from 1985 to 2020, the match-up period for
the KIT station in EVORA (EVO) starts in 2009 and ends
in 2020, the match-up period for Lake Constance starts in
2016 and ends in 2020, and finally the match-up period for
the ARM site at the North Slope of Alaska (NSA) starts in
2007 and ends in 2012. Regarding the BSRN data, for the
station in Alert (ALE) the match-up period starts in 2004
and ends in 2014, for Ny-Ålesund (NYA) it starts in 2006
and ends in 2020, and for Tiksi (TIK) it starts in 2010 and
ends in 2018. EVO is located in an evergreen oak wood-
land with approximately 33 % tree crown cover, which can
affect the satellite-retrieved LST due to directional effects
(Rasmussen et al., 2011; Guillevic et al., 2013; Ermida et al.,
2014). Due to this anisotropy, the surface in EVO presents
high temperature differences between trees and the ground.
The nighttime in situ measurements in EVO are therefore
more suited than daytime observations. The surface is very
heterogeneous at the NSA site, the station being close to la-
goons (North Salt Lagoon and Imikpuk Lake) and very close
to the coast. This explains why the performances are much
worse during summertime than during wintertime when the
entire area is snow and ice covered. Similarly, the BSRN
stations are all located near the coast. In addition, the ter-
rain around NYA station is mountainous and heterogeneous,
leading to worse validation results. The in situ data for Lake
Constance (BOD) are collected during the operating hours
of the ferry and are thus only available during daytime. Both
daytime and nighttime data are considered at the SURFRAD
sites. BOD has the fewest available points due to the shorter
match-up period. The overall RMSE range for the 10 sta-
tions is 0.80–3.43 K. The highest performance is reached at
BOD. LSTs are more stable over water bodies, and water
emissivity is less prone to inducing significant uncertainties
(Masuda et al., 1988; Niclòs et al., 2005). On land, during the
daytime, the highest agreement was obtained for the Desert
Rock (DRA) and Goodwin Creek (GCM) sites. The lowest
agreement was found at Fort Peck (FPK). During nighttime,
the highest agreement was obtained at Sioux Falls (SFA), and
the worst nighttime agreements were obtained at Desert Rock
(DRA) and Fort Peck (FPK). Compared to previous studies
on AVHRR LST (Ma et al., 2020; Reiners et al., 2021; Li
et al., 2023a), the present dataset shows a similar accuracy
and precision.
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Figure 3. Split-window algorithm (SWA) performances: (a) distribution of the mean absolute error (MAE) and (b) coefficient of determi-
nation as a function of the view zenith angle (VZA) and total column water vapour (TCWV). Panels (c) and (d) show the corresponding
distributions dependent on VZA and Tskin.

4.1.3 Comparison with the GLASS dataset

The pan-Arctic AVHRR LST dataset is compared against
the well-established GLASS product (Zhou et al., 2019; Ma
et al., 2020) that provides twice-daily LST observations for
the whole globe for the 1980–2000 period. Figures 6 and 7
present a comparison of monthly means at two stations lo-
cated in the Arctic (BAKER LAKE A and SVEAGRUVA).
The classical GLASS LST, the orbital-drift-corrected (ODC)
GLASS LST, and the pan-Arctic AVHRR LST are com-
pared at the pixel closest to the station. In the high north-
ern latitudes, the GLASS product is only available during the
summer months. This is particularly visible for the SVEA-
GRUVA site (located on Svalbard), where very few GLASS
observations are available. Also at BAKER LAKE A our
product presents considerably more and slightly higher val-
ues, which can be explained by the different cloud masking
and emissivity computation.

4.2 Relationships between the temperature datasets

The relationship between AVHRR LST and station EU-
STACE Tair and the relationship between AVHRR LST and
ERA5-Land T2M at each EUSTACE station are first as-
sessed by computing the Pearson correlation coefficient (r),
the MAE, and RMSE of the monthly mean temperature data
(see Sect. 3.5). Comparisons against Tairmin show, in general,
higher RMSE and MAE values than comparisons against
Tairmax and T2M (Table 5). For the stations in Table 5, the

mean MAE values are 8.47, 5.56, and 5.92 K for LST ver-
sus −Tairmin, −Tairmax, and −T2M respectively. Stations
WRIGLEY A, WISEMAN, and SVEAGRUVA exhibit lower
MAE and RMSE values than the other stations. WISEMAN
and SVEAGRUVA have slightly fewer comparison samples
(N < 230). SVEAGRUVA, located in Svalbard, is the north-
ernmost station and experiences persistent cloud cover, lead-
ing to fewer usable satellite observations. The EUSTACE
time series at WISEMAN is shorter due to missing data.
WRIGLEY A exhibits low MAE and RMSE values com-
pared to Tairmax but presents similar values to other stations
compared to Tairmin.

As to be expected, the analysis reveals a high degree of
correlation between monthly LST, Tair, and T2M with cor-
relation coefficients all above 0.9 (r) (Table 5). In line with
higher RMSE and MAE, Tairmin has slightly lower (r) val-
ues compared to LST. The better performance of Tairmax can
be attributed to the closer daytime overpass of the NOAA–
MetOp satellites (Good et al., 2022). Conversely, Tairmin is
generally recorded during night.

The relationship between the monthly AVHRR LST
anomalies versus EUSTACE Tair anomalies and ERA5-Land
T2M anomalies is assessed with the Pearson correlation co-
efficient (r) (Table 6). All stations except SUHANA (Siberia)
and SVEAGRUVA (Svalbard) display strong positive cor-
relations (r > 0.5) between LST and both air temperature
datasets (Tair and T2M). Correlations are consistent for both
air temperature datasets; only minor differences are visible.
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Figure 4. AVHRR LST versus in situ LST at (a) Bondville (BND), (b) Desert Rock (DRA), (c) Fort Peck (FPK), (d) Goodwin Creek
(GCM), (e) Penn State University (PSU), (f) Sioux Falls (SFA), (g) Southern Great Plains (SGP), (h) Table Mountain (TBL), (i) Evora
(EVO), (j) Lake Constance (BOD), and (k) North Slope of Alaska (NSA). Red represents daytime measurements, and blue represents
nighttime measurements. Match-up periods are provided in the text.

The r values for comparing Tair with T2M are higher than
those in the corresponding comparison with LST. Correla-
tions of LST versus T2M anomalies vary between 0.46 (r)
and 0.71 (r). For Tairmax versus LST, the r values r of are

between 0.40 and 0.71, whereas for Tairmin, r has a range of
0.35–0.70. In general, slightly higher r values are obtained
for the comparison against T2M than Tair. Comparison val-
ues of Tair versus T2M have values of r between 0.69 and
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Figure 5. AVHRR LST versus in situ LST at BSRN stations: (a) Alert, Lincoln Sea (ALE); (b) Ny-Ålesund, Svalbard (NYA); and (c) Tiksi,
Russia (TIK). Red represents the daytime measurements, and blue represents the nighttime measurements. Match-up periods are provided in
the text.

0.97. Similarly to in Table 5, lower r values are found for the
comparison with Tairmin than for Tairmax. The lowest correla-
tion value between T2M and Tair is obtained at WISEMAN
(Alaska). NADYM (Russia) shows consistently high corre-
lations (r ≈ 0.7) across all comparisons and has the highest
correlation value for the Tair versus T2M evaluation. Previ-
ous studies have also found high correlations between station
Tair and LST data for other LST datasets (Urban et al., 2013;
Good et al., 2022), e.g. from the ESA CCI project (Ghent
et al., 2023). The differences in r between Tables 5 and 6 can
be attributed to a phase shift between the anomalies and to a

strong seasonal signal present in the time series on monthly
means.

To assess the general stability of the LST dataset, the
differences between the monthly anomalies of the datasets
(Eqs. 4, 5 and 6) and the trends of these differences are
calculated. Since high correlation values were obtained for
T2M and Tairmax, these two datasets are considered for the
LST stability analysis. The confidence interval is set to 95 %,
meaning that trends with p values below 0.05 present a sig-
nificant trend. Ideally, the trend of the difference should be
zero or very close to zero. The results are shown in Ta-
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Figure 6. Monthly mean LST product comparisons at BAKER LAKE A.

Figure 7. Monthly mean LST product comparisons at SVEAGRUVA.

ble 7: 10 of the 24 trends of the anomaly differences involv-
ing LST present statistically significant trends. This indicates
that for these datasets, the difference between the anoma-
lies increases or decreases over time and, thus, is not sta-
ble. Four stations (DEWAR LAKES, SVEAGRUVA, SVET-
LOLOBOVO, and WISEMAN) show statistically significant
trends when comparing T2M and Tairmax anomalies (e.g. see
SVEAGRUVA in Fig. 8). However, these stations present sta-
ble trends for the comparison with LST anomalies. For exam-
ple, the comparison of LST versus T2M at SVEAGRUVA is
very stable (0.10 K per decade) (see Fig. 8). The same obser-
vation can be made at DEWAR LAKES. SVEAGRUVA is a
special case as the data are very sparse. Overall, the LST–

Tairmax trend and LST–T2M trends shown in Table 7 are
not consistent across datasets. For example, Fig. 9 shows the
trends of the anomalies at KANGERLUSSUAQ. All trends
are stable (statistically non-significant), but differences are
visible in the trend values for both LST comparisons. Plots
of the trends of the other stations are shown in Appendix A1.
Several reasons, such as orbit drift, missing data, or corrupt
station data, could explain the observed discrepancies. Insta-
bilities are also visible in the Tair versus T2M comparisons.
The significant trend for the comparison of Tair versus T2M
can be explained by missing station data (Appendix A1). Six
of the 12 LST versus T2M experiments are statistically non-
significant, suggesting no detectable trends for the anomaly
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Table 5. MAE, RMSE, and Pearson coefficient (r) at the selected EUSTACE stations for monthly mean comparisons. N is the number of
samples.

Relationship (MAE, RMSE, and r) of monthly means

Station name
LST versus Tairmin LST versus Tairmax LST versus T2M N

RMSE MAE r RMSE MAE r RMSE MAE r

BAKER LAKE A 9.56 8.07 0.97 5.27 4.26 0.98 6.40 4.89 0.98 298
DEWAR LAKES 10.62 8.37 0.95 9.92 8.46 0.96 8.17 6.18 0.97 330
ILIRNEJ 10.06 8.58 0.97 5.92 4.98 0.98 7.65 6.2 0.98 316
KANGERLUSSUAQ 10.80 8.65 0.95 8.69 7.28 0.96 8.38 6.91 0.97 357
LAINIO 7.78 6.61 0.96 5.34 4.18 0.97 5.63 4.59 0.97 290
NADYM 9.52 8.05 0.97 6.71 5.33 0.98 7.41 6.06 0.98 282
SONDRESTROM 12.15 9.91 0.95 8.11 6.93 0.96 9.39 7.76 0.97 329
SUHANA 9.82 8.70 0.98 5.76 4.62 0.98 6.37 5.20 0.98 339
SVEAGRUVA 5.03 3.66 0.93 7.17 5.82 0.94 5.65 4.22 0.94 228
SVETLOLOBOVO 15.30 13.08 0.96 7.31 6.06 0.97 10.72 8.94 0.97 343
WISEMAN 9.42 7.98 0.96 6.79 5.54 0.98 6.43 5.20 0.98 176
WRIGLEY A 10.79 9.97 0.97 4.39 3.31 0.98 5.75 4.91 0.98 279

Table 6. Correlation coefficient (r) from all stations for the comparison between the LST monthly mean anomalies versus the T2M and Tair
monthly mean anomalies.

Station name
Pearson correlation coefficient (r) of the monthly mean anomalies

LST vs. Tairmin LST vs. Tairmax LST vs. T2M T2M vs. Tairmin T2M vs. Tairmax

BAKER LAKE A 0.53 0.56 0.57 0.91 0.92
DEWAR LAKES 0.59 0.58 0.63 0.88 0.89
ILIRNEJ 0.56 0.61 0.61 0.86 0.91
KANGERLUSSUAQ 0.66 0.68 0.70 0.93 0.96
LAINIO 0.61 0.65 0.64 0.93 0.94
NADYM 0.70 0.71 0.71 0.97 0.97
SONDRESTROM 0.67 0.70 0.69 0.93 0.96
SUHANA 0.43 0.48 0.51 0.88 0.94
SVEAGRUVA 0.35 0.40 0.46 0.92 0.95
SVETLOLOBOVO 0.59 0.70 0.68 0.91 0.95
WISEMAN 0.47 0.61 0.65 0.69 0.75
WRIGLEY A 0.57 0.57 0.62 0.85 0.87

differences at these stations. Regarding the Tairmax anoma-
lies minus LST anomalies trends, 4 out of 12 stations show
a significant trend. The stations located at DEWAR LAKES,
KANGERLUSSUAQ, LAINIO, SUHANA, SVEAGRUVA,
and WRIGLEY A do not show a significant trend in the com-
parisons to LST (see Table 7).

LST and air temperature trends of stable stations (DEWAR
LAKES, KANGERLUSSUAQ, LAINIO, SUHANA, SVEA-
GRUVA, and WRIGLEY A) have the same order of mag-
nitude (Table 8), and all stations present a warming trend.
DEWAR LAKES, located east of Nunavut (Canada), shows
a more pronounced trend for LST than for the air temper-
ature (Tair and T2M). Tair captured at the weather station
does not present a significant trend. KANGERLUSSUAQ in
Greenland shows similar trends in LST as in air tempera-
ture. LAINIO, located in a forested area in northern Scandi-

navia, presents similar trends to LST and Tair, while the cor-
responding T2M trend is lower. The LST trend in SUHANA
(Siberia) does not show a significant trend for LST, but both
air temperature datasets show a consistent trend. WRIGLEY
A, located in the Northwest Territories in a forested area,
shows a higher LST trend than T2M trend.

4.3 Analysis of summer and winter periods

To further investigate whether the orbital drift of the NOAA
satellites influences the stability analysis and determined
trends, the previous analysis is now performed separately for
polar winter and polar summer (see Sect. 3.5). Correlation
coefficients (r), trends (slopes), and p values of the differ-
ences between LST anomalies minus Tairmax anomalies and
LST anomalies minus T2M anomalies are calculated.
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Table 7. Trend of the anomaly differences for the three pairs of differences. Trends in italic are significant (p value < 0.05), and associated
p values are marked in bold.

Station name
LST–T2M LST–Tairmax Tairmax–T2M

Trend [K per decade] P value Trend [K per decade] P value Trend [K per decade] P value

BAKER LAKE A 0.52 0.0005 0.63 0.0003 −0.07 0.13
DEWAR LAKES 0.04 0.81 0.22 0.22 −0.11 0.03
ILIRNEJ 0.35 0.005 0.21 0.21 0.03 0.72
KANGERLUSSUAQ −0.23 0.13 −0.10 0.62 −0.04 0.42
LAINIO 0.25 0.054 0.10 0.50 0.06 0.08
NADYM −0.57 0.003 −0.59 0.01 −0.00 0.96
SONDRESTROM 0.37 0.04 0.55 0.008 −0.05 0.35
SUHANA −0.16 0.27 −0.33 0.06 −0.01 0.80
SVEAGRUVA 0.10 0.63 0.35 0.10 −0.13 0.000
SVETLOLOBOVO −0.52 0.002 −0.36 0.04 −0.17 0.005
WISEMAN 0.27 0.02 0.05 0.88 −0.56 0.006
WRIGLEY A 0.11 0.32 0.21 0.31 −0.04 0.65

Figure 8. Monthly differences in the anomalies at SVEAGRUVA (Svalbard) between 1981 and 2015.

Correlation coefficients (r) (Table 9) for summer and win-
ter for the analysis against LST lie in the range 0.4–0.8. Cor-
relation results are, on average, slightly higher for LST ver-
sus T2M than LST versus Tairmax, for winter and summer.
SVEAGRUVA had insufficient data points in winter, and
the trends for summer were not significant. Therefore, this
station was removed from the analysis. Winter shows only
slightly higher correlation values than summer. At BAKER
LAKE A, ILIRNEJ, SONDRESTROM, and WISEMAN, r
values in summer are higher than in winter. Correlation val-
ues are slightly higher for the separate seasons (Table 9)
than for the general analysis (Table 6). Correlation results for
the Tairmax versus T2M experiment range between 0.57 and
0.96. The lowest correlation values are obtained at WISE-
MAN and WRIGLEY A. All of the stations except SVET-

LOLOBOVO exhibit r values in a similar range in summer
and winter. The air temperature correlation value at SVET-
LOLOBOVO is considerably lower in summer than in win-
ter. SVETLOLOBOVO is the station located the furthest
south, at 55° latitude. At WRIGLEY A, r values are simi-
lar for all significant results.

The results in the previous section show that some insta-
bilities could be detected from the trends of the anomaly dif-
ferences. The same analysis is now performed separately for
summer and winter (Table 10). Five out of 12 stations do
not show any significant trend either in summer or in win-
ter. Except for SUHANA, the remaining stations only show
a significant trend during summer. For example, KANGER-
LUSSUAQ (Table 10 and Fig. 10) presents a significant pos-
itive trend during summer but no significant trend in win-
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Figure 9. Monthly differences in the anomalies at KANGERLUSSUAQ (Greenland) between 1981 and 2015.

Table 8. Trends in monthly mean anomalies (K per decade) for selected stations. Values in italic are significant (p value < 0.05), and
associated p values are marked in bold.

Station name
LST EUSTACE Tair ERA5-Land T2M

Trend [K per decade] p value Trend [K per decade] p value Trend [K per decade] p value

DEWAR LAKES 0.61 0.005 0.21 0.11 0.39 0.002
KANGERLUSSUAQ 0.50 0.025 0.52 0.0008 0.55 0.0001
LAINIO 0.64 0.0004 0.64 0.0001 0.50 0.0001
SUHANA 0.26 0.18 0.47 0.007 0.54 0.0001
WRIGLEY A 0.47 0.009 0.34 0.1 0.32 0.005

ter. SUHANA experiences a significant positive trend in win-
ter for the LST anomaly minus Tairmax anomaly difference,
but this trend is not observed in comparison to T2M (Ta-
ble 10 and Fig. 11). From Fig. 11, it can also be noticed
that the differences between Tairmax and T2M increase over
time in winter and summer, which suggests discrepancies
between air temperature measured at the station and from
ERA5-Land. The magnitude of the LST anomalies is also
generally higher than Tair and T2M magnitude (Figs. 10
and 11), which can be explained by the higher amplitude
of the LST diurnal cycle pattern compared to air temper-
ature (Good, 2016; Sharifnezhadazizi et al., 2019). SVET-
LOLOBOVO and KANGERLUSSUAQ present poor corre-
lation results in summer (see Table 9) and also exhibit strong
significant summer trends for the anomaly difference, con-
trary to winter trends that remain stable (Table 10).

4.4 LST analysis for the pan-Arctic region

The previous sections identified a few stability issues in the
current LST dataset, particularly during summer months (Ta-
bles 7 and 10). However, these limitations are not unique

to LST, as analyses of the difference between both air tem-
perature datasets also revealed instabilities (Table 7). While
this highlights the stability and accuracy of the LST dataset,
the trend analysis should be interpreted with care. The sum-
mer months are more prone to instability in the analysis than
the winter months. Therefore, the trends of the winter and
summer months are computed separately for the entire pan-
Arctic region (Fig. 12). This allows us to compare and anal-
yse temperature changes across different seasons. Addition-
ally, mean LST values for summer and winter for the pan-
Arctic are calculated (Fig. 13) to further understand temper-
ature distributions during different seasons.

Cold glaciers and mountain zones in western Canada and
Alaska are well captured in the summer mean temperatures
(Fig. 13). These regions also exhibit a pronounced warming
during summer and winter (Fig. 12). Warmer mean winter
temperatures are present along the Lena River in Siberia,
which is also visible in the mean annual ground tempera-
ture (MAGT) map from Obu et al. (2019). Generally, sum-
mer and winter mean LST values follow the temperature pat-
tern shown in the MAGT map. For example, valleys in Rus-
sia present in the MAGT map are also visible in the mean
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Table 9. Pearson correlation coefficient (r) of the monthly anomalies for the summer and winter period.

Station LST versus Tairmax (r) LST versus T2M (r) Tairmax versus T2M (r)

BAKER LAKE A
Summer 0.65 0.66 0.88
Winter 0.46 0.47 0.90

DEWAR LAKES
Summer 0.60 0.72 0.91
Winter 0.62 0.83 0.85

ILIRNEJ
Summer 0.73 0.76 0.91
Winter 0.44 0.46 0.88

KANGERLUSSUAQ
Summer 0.37 0.38 0.90
Winter 0.59 0.63 0.96

LAINIO
Summer 0.62 0.75 0.95
Winter Not significant Not significant 0.95

NADYM
Summer 0.46 0.57 0.93
Winter 0.74 0.67 0.90

SONDRESTROM
Summer 0.70 0.72 0.90
Winter 0.60 0.63 0.96

SUHANA
Summer 0.84 0.77 0.93
Winter Not significant Not significant 0.83

SVETLOLOBOVO
Summer 0.47 0.37 0.79
Winter 0.67 0.75 0.92

WISEMAN
Summer 0.60 0.64 0.75
Winter 0.55 0.59 0.64

WRIGLEY A
Summer Not significant 0.55 0.57
Winter Not significant Not significant 0.58

Figure 10. Winter and summer anomalies and the difference between anomalies of LST, T2M, and Tair time series for KANGERLUSSUAQ
(Greenland).
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Table 10. Trends of the anomaly differences for winter and summer. Trends in bold–italic are statistically significant.

Station Trend [K per decade] LST–Tairmax (p value) Trend [K per decade] LST–T2M (p value)

BAKER LAKE A
Summer −0.57 (0.30) – 0.80 (0.043)
Winter −2.04 (0.10) −1.61 (0.28)

DEWAR LAKES
Summer 0.96 (0.23) 0.81 (0.22)
Winter −0.00 (1.0) 0.39 (0.45)

ILIRNEJ
Summer 0.06 (0.71) 0.21 (0.44)
Winter −0.43 (0.75) −0.33 (0.54)

KANGERLUSSUAQ
Summer 0.83 (0.008) 1.06 (0.001)
Winter −0.05 (0.93) 0.17 (0.85)

LAINIO
Summer 0.58 (0.08) 0.51 (0.10)
Winter – –

NADYM
Summer 1.56 (0.002) 1.41 (0.001)
Winter −0.97 (0.59) −0.89 (0.53)

SONDRESTROM
Summer −0.57 (0.11) −0.46 (0.21)
Winter −1.13 (0.19) −1.22 (0.16)

SUHANA
Summer 0.47 (0.028) 0.71 (0.0001)
Winter 1.43 (0.01) 0.80 (0.10)

SVEAGRUVA
Summer −0.53 (0.45) −0.42 (0.40)
Winter – –

SVETLOLOBOVO
Summer 1.22 (0.009) 1.14 (0.01)
Winter 0.43 (0.41) 0.38 (0.55)

WISEMAN
Summer 0.34 (0.62) 0.34 (0.18)
Winter −1.39 (0.44) −0.71 (0.08)

WRIGLEY A
Summer 0.54 (0.23) 0.17 (0.29)
Winter −1.33 (0.39) −0.81 (0.46)

Figure 11. Winter and summer anomalies and the difference between anomalies of LST, T2M, and Tair time series for SUHANA (Siberia).
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LST values (Obu et al., 2019). The Verkhoyansk Mountains
(Yakutia) present a pronounced winter warming trend. Dur-
ing summer that area does not show a significant temperature
trend.

During the winter period, pronounced warming can also
be observed in the south of Greenland as well as in east-
ern Canada (Fig. 12c). Vandecrux et al. (2024) analysed firn
and ice temperature at 10 m below the surface (T10m) across
the Greenland Ice Sheet and found a general warming trend
across the ice sheet. Parts of southern Siberia show negative
winter and summer trends. Similar cooling trends for winter
are also visible in the AVHRR Polar Pathfinder product over
Siberia, as well as warming trends along the Siberian north
coast during winter (Key et al., 2016). Large areas at latitudes
> 70° suffer from persistent cloud cover and are not covered
by satellite LST data. Summer LST trends reveal warming
in the northern Siberian lowlands and the Lena Delta area.
Northern Canada and most of Greenland also show warm-
ing. Cooling trends are visible in the summer period in the
south of Siberia and southern Canada.

5 Discussion

5.1 Datasets

5.1.1 EUMETSAT AVHRR FDR

The AVHRR data used in this study are not considered a
fundamental climate data record (FCDR) because the cali-
bration for the thermal channels is satellite-specific, and un-
certainty quantification is missing. The absence of thermal
inter-calibration of the IR sensors on board AVHRR might
introduce sensor discontinuities in the dataset (EUMETSAT,
2023c). Therefore, the stability of this dataset needs to be
thoroughly assessed before using it for climatological analy-
ses. Solutions to fix this issue might be implemented in the
next release of the FDR. However, in the present study, sen-
sor discontinuities were not detected. AVHRR data are af-
fected by orbital drift and, although this effect is negligible
for the Northern Hemisphere and monthly means, this still
might introduce artificial trends. Different solutions to cor-
rect for orbital drift exist (Ma et al., 2020; Julien and So-
brino, 2022). However, for the moment, none of the existing
LST datasets applies such a correction to the entire AVHRR
time period. The present study revealed artificial trends dur-
ing summer months for a few stations when compared to
ERA5-Land T2M and in situ air temperature.

5.1.2 ERA5-Land T2M

T2M data from reanalyses have the advantage that they are
continuous and free of data gaps. However, the coarse res-
olution of ERA5-Land (9 km) represents a challenge when
compared with variables such as LST, which have high spa-
tial variability and are linked to intrinsic properties of the

surface such as roughness and moisture (Hulley et al., 2014).
Some discrepancies between ERA5-Land T2M and the EU-
STACE station Tair data are visible in the anomaly analysis
(Figs. 10 and 11). Previous work performed for the Chinese
Qilian Mountains (Zhao and He, 2022) found an average
RMSE of 2.2 °C between ERA5-Land and air temperature
measurements from weather stations, which was mainly at-
tributed to elevation differences between both data sources.
However, ERA5-Land performed well in estimating trends.
Another study from the northeast of Brazil (de Araújo et al.,
2022), which also compares air temperature data from sta-
tions to ERA5-Land, indicates that ERA5-Land generally
underestimated average air temperature values.

5.1.3 EUSTACE Tair

EUSTACE air temperature data are homogenized and have
undergone break detection and quality checks (Brugnara
et al., 2019). Large parts of eastern Siberia, northern Canada,
and Alaska only have a few EUSTACE weather stations in
their territory (Rayner et al., 2020). In general, stations are
placed close to settlements and road access, meaning it is
difficult to obtain quality weather station data from remote
places. Satellite imagery represents, therefore, a valuable
source for obtaining temperature data from remote places. In
the current study, many stations were discarded due to their
proximity to large water bodies or the coast, which would im-
pact the comparison with remote sensing data. In Greenland,
two EUSTACE stations are located in close vicinity to each
other (KANGERLUSSUAQ and SONDRESTROM). How-
ever, they present very different results when compared to
ERA5-Land data and satellite data (see Tables 7 and 9). Both
stations are assigned to different ERA5-Land and satellite
pixels. This area in Greenland is composed of deep fjords
with steep hillslopes, which might not be captured well by
the spatially coarse model data and satellite data.

5.1.4 Pan-Arctic AVHRR LST

The AVHRR LST dataset developed in this study covers
40 years and represents a valuable data source, complement-
ing data from models and weather stations for obtaining tem-
perature information at a hemispheric scale. A dynamic snow
and vegetation cover mask is integrated into the LST algo-
rithm to assign correct emissivities to snow-covered pixels.
This is particularly important for cryospheric research at high
latitudes. Most of the existing LST datasets do not use a dy-
namic snow mask and assign snow emissivity based on a
static LSE map (Ma et al., 2020). Snow cover onset and snow
melt onset are events that can be captured by satellite thermal
imagery and are of particular interest for the thermal regime
of the ground (Grünberg et al., 2020; Hammar et al., 2023).
Westermann et al. (2012) highlighted the importance of using
an accurate cloud mask when using LST data for permafrost
modelling, as this can lead to high uncertainties and a lack of
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Figure 12. Panels (a) and (b) show the trends for the winter period and (c) and (d) the trends for the summer period. The left panels (a,
c) show the trends independent of their significance. The right panels (b, d) show only the significant trends; i.e. areas with statistically
insignificant trends (p > 0.1) are masked out.

accuracy. The pan-Arctic AVHRR LST dataset incorporates
the latest cloud mask from the CLARA-A3 database (Karls-
son et al., 2023b), and a low cloud probability threshold (see
Sect. 3) was used to avoid cloud contamination.

LST trends computed at different stations (Table 8) are
positive and lie in the same ranges as trends computed for
Tair and T2M. Furthermore, LST temperature trend maps
(Fig. 12) highlight areas that are particularly sensitive to Arc-
tic amplification and present pronounced warming trends.
LST trends computed for the summer and winter periods at
a hemispheric scale reveal distinct warming areas as well as

some regions with cooling trends. Maturilli et al. (2019) de-
termined air temperature trends from weather station data in
Ny-Ålesund (Svalbard) from 1993 to 2017 and found that
the strongest warming trend occurred during the winter sea-
son. They found a summer warming trend of +0.6 K per
decade, which corresponds to the LST warming trend for
Svalbard shown in Fig. 12. Compared to air temperature
trends, satellite-derived LST trends can present a cold bias
as only clear-sky days are considered in the LST generation
(Westermann et al., 2017). Therefore, the all-sky LST trends
might be even higher. All-weather LST datasets have been
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Figure 13. Mean LST (1981–2020) for (a) winter and (b) summer.

generated in the past by combining energy balance modelling
or reanalysis LST data with LST TIR data (Martins et al.,
2019; Zhang et al., 2021).

5.2 Point to pixel comparison

The landscape in the pan-Arctic region is very heteroge-
neous; for example, complex wetland systems are difficult
to map from satellite imagery (Olefeldt et al., 2021; Palmtag
et al., 2022). Land cover data such as from the CCI project
are thus prone to high uncertainties in the high northern lat-
itudes (Bartsch et al., 2024). The nominal spatial resolution
of AVHRR GAC pixel is 4 km. Air temperature measured at
a nearby location might differ considerably from the corre-
sponding AVHRR LST and depends on vegetation type and
water content of the ground.

5.3 Comparison of LST, Tair, and T2M

Day length and, consequently, solar irradiance cover a wide
range in the Arctic. During winter, there is constant night,
and Tair is in close agreement with LST (Hachem et al.,
2012; Urban et al., 2013). Furthermore, during winter, most
of the pan-Arctic region is covered by snow. Snow cover vari-
ations directly influence LST (Thiebault and Young, 2020).
LST and air temperature anomalies exhibit a strong corre-
lation (mean (r) > 0.6), and LST anomalies show a simi-
lar pattern to air temperature anomalies (Figs. 10 and 11).

LST anomalies present a greater magnitude, which can be
explained by a greater amplitude in the LST diurnal cycle
than in the air temperature diurnal cycle. Differences in win-
ter anomalies are more pronounced than summer anomalies.
This can be explained by the clear-sky bias that occurs in
satellite LST data (Westermann et al., 2012): cloud cover af-
fects the winter period more than the summer period. Such a
cooling bias was also observed over the Greenland Ice Sheet
over ice surface temperature (Hall et al., 2012). Regarding
monthly means, the air temperature mean is higher than the
LST mean value, which only considers clear-sky days. Under
cloudy skies, air and surface temperature are in close agree-
ment (Obu et al., 2019). A few missing data occurred in the
EUSTACE, which made the ERA5-Land data more reliable
for such an analysis. However, EUSTACE records two tem-
peratures per day: Tmax and Tmin. Therefore, for analysis at
daily frequency, EUSTACE might be more suitable, espe-
cially for satellites having an overpass time close to noon.
Winter data proved to be stable over all investigated stations.
This makes this dataset particularly interesting for studying
the winter months in the high latitudes. The winter period
is a particularly active time for the ecosystem in the Arctic
(Berge et al., 2015), but it tends to be understudied.

Finally, trends for the three different datasets computed at
stations with good temporal stability (Table 8) showed good
agreement, with LST trends generally exhibiting stronger
positive trends than air temperature. In addition, LST winter
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trends for central Siberia (Fig. 12) showed similar values as
in Waring et al. (2023). Strong summer warming in the north
of the Krasnoyarsk region and northern Nunavut (Canada)
(visible in Fig. 12d) is also visible in ERA5-Land tempera-
ture data for the period 1984–2022 in the work of Larocca
et al. (2024). The regions showing positive trends in LST
are generally associated with lichens, moss, and herbaceous
land cover, whereas regions with negative trends are mostly
located in forested areas. Mildrexler et al. (2011) revealed
the cooling effect of forests on LST, which might slow the
general temperature increase in the Arctic. The presence of
thermokarst lakes and wetlands as depicted in Olefeldt et al.
(2021) might also slow the warming trends slightly. The Ya-
mal Peninsula, for example, contains many water bodies and
thermokarst lakes and shows a slower warming trend than an
area with a majority of barren soil. Hemispheric LST data
can also be used to highlight fast-warming areas that might
lead to abrupt permafrost thaw, which in turn influences car-
bon fluxes (Treat et al., 2024). LST also has the advantage
over air temperature of being more sensitive to changes in
vegetation density (Mildrexler et al., 2011), which makes
LST a particularly interesting variable for cryospheric re-
search.

6 Conclusions

This study presents the workflow to derive a pan-Arctic LST
dataset from the EUMETSAT AVHRR GAC FDR and vali-
dates the new LST product against in situ LST. AVHRR LST
is derived with the generalized split-window algorithm (Wan
and Dozier, 1996), and the corresponding RTM is performed
with RTTOV v.13, based on a new calibration database (Er-
mida and Trigo, 2022). This ensures an optimal representa-
tion of atmospheric conditions in the pan-Arctic region. This
LST dataset utilizes a recent cloud mask with notable im-
provements compared to previous cloud products (Karlsson
et al., 2023b), which is of particular importance for LST re-
trieval. The pan-Arctic AVHRR LST product showed good
performance, and validation results lie in the range of simi-
lar products. The new LST product is assessed for stability
in the pan-Arctic region by comparing it to air temperature
data from weather stations and T2M data from ERA5-Land.
Twelve weather stations belonging to the EUSTACE global
station dataset are chosen based on several criteria: latitude
> 50° N, a minimum of 30 years of overlapping data, and ho-
mogeneous land cover over at least 1 GAC pixel. LST trends
and variability are compared to ERA5-Land T2M and EU-
STACE Tair maximum data. The correlation coefficients be-
tween the datasets indicate good agreement: r > 0.9 for the
monthly mean correlation and∼ 0.5 to∼ 0.8 for the anomaly
analysis. The analysis of the differences in anomalies showed
slightly significant trends for the summer months but no arti-
ficial trends in the data during the winter months when solar
irradiance is absent. LST trends for the winter and summer

periods were computed for the entire pan-Arctic region and
revealed spatially varying trends. In winter, positive trends in
the south of Greenland, Siberia, and eastern Canada were re-
vealed. Summer temperature trends highlight the fast warm-
ing of the Greenland Ice Sheet and a large region in the vicin-
ity of the Lena Delta. Its good accuracy and emissivity re-
trieval based on dynamical vegetation and snow masks make
this product suitable for a wide range of research applica-
tions in the pan-Arctic region. However, future research in-
vestigate a possible spatial upsampling of the dataset (e.g. to
1 km spatial resolution). Orbital drift correction with a ro-
bust method would allow one to extend the study to lower
latitudes.
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Appendix A: Anomaly differences

Figure A1. Differences in the anomalies at BAKER LAKE A (Canada) as a time series.

Figure A2. Differences in the anomalies at DEWAR LAKES (Canada) as a time series.
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Figure A3. Differences in the anomalies at ILIRNEJ (eastern Siberia) as a time series.

Figure A4. Differences in the anomalies at LAINIO (Norway) as a time series.
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Figure A5. Differences in the anomalies at NADYM (Siberia) as a time series.

Figure A6. Differences in the anomalies at SONDRESTROM (Greenland) as a time series.
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Figure A7. Differences in the anomalies at SUHANA (Siberia) as a time series.

Figure A8. Differences in the anomalies at SVETLOLOBOVO (Siberia) as a time series.
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Figure A9. Differences in the anomalies at WISEMAN (Canada) as a time series.

Figure A10. Differences in the anomalies at WRIGLEY A (Alaska) as a time series.
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Data availability. The EUMETSAT AVHRR FDR, the ba-
sis for this study, is available through the EUMETSAT
Data Portal: https://doi.org/10.15770/EUM_SEC_CLM_0060
(EUMETSAT, 2023a). The pan-Arctic LST monthly
means used in this study are available on Zenodo:
https://doi.org/10.5281/zenodo.13361744 (Dupuis et al., 2024).
The probabilistic cloud masks from CLARA-A3 can be found here:
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003
(EUMETSAT Satellite Application Facility on Climate Mon-
itoring (CM SAF), 2023). The land cover data, which
were used for the emissivity maps and the water masks,
can be obtained from the Copernicus Climate Data Store:
https://doi.org/10.24381/cds.006f2c9a (Copernicus Cli-
mate Change Service, Climate Data Store, 2019). In ad-
dition, the CCI Snow project datasets are available here:
https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494
(Luojus et al., 2022) for the SWE dataset, and
https://doi.org/10.5285/7491427f8c3442ce825ba5472c224322
(Xiao et al., 2024) for the fractional snow cover dataset. The clear-
sky database used for the radiative transfer modelling is accessible
through Zenodo (https://doi.org/10.5281/zenodo.5779543, Ermida
and Trigo, 2021).
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