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Abstract. Snow depth plays an important role in the seasonal
climatic and hydrological cycles of alpine regions. Previous
studies have shown predominantly decreasing trends in aver-
age seasonal snow depth across the European Alps. Addition-
ally, prior work has shown bivariate statistical relationships
between average seasonal snow depth and mean air temper-
ature or precipitation. Building upon existing research, our
study uses observational records of in situ station data across
Austria and Switzerland to better quantify the sensitivity of
historical changes in seasonal snow depth through a multi-
variate framework that depends on elevation, mean temper-
ature, and precipitation. These historical sensitivities, which
are obtained over the 1901-1902 to 1970-1971 period, are
then used to estimate snow depths over the more recent pe-
riod of 1971-1972 to 2020-2021. We find that the year-to-
year estimates of snow depths, which are derived from an
empirical—statistical model (SnowSens), that rely solely on
the historical sensitivities are nearly as skillful as the op-
erational SNOWGRID-CL model used by the weather ser-
vice at GeoSphere Austria. Furthermore, observed long-term
changes over the last 50 years are in better agreement with
SnowSens than with SNOWGRID-CL. These results indi-
cate that historical sensitivities between snow depth, temper-
ature, and precipitation are quite robust over decadal-length
scales of time, and they can be used effectively to translate
expected long-term changes in temperature and precipitation
into changes in seasonal snow depth.

1 Introduction

Snow on the ground is an important component of the hydro-
logical cycle, the climate system, and mountain ecosystems
throughout the world (Beaumet et al., 2021; Beniston et al.,
2018; Gobiet et al., 2014; Notarnicola, 2022). The timing of
snowfall, along with its accumulation, has profound implica-
tions for water resources (Viviroli et al., 2011; Colombo et
al., 2023; Avanzi et al., 2024), mountain tourism (Elsasser
and Biirki, 2002), and mountain hazards such as avalanches
(Marty et al., 2017b). Understanding the impact that climate
change has on this valuable resource is therefore essential to
better assist in regional planning and preparedness.
Correctly quantifying changes in the climate system or hy-
drologic cycle generally requires robust measurements with
sufficiently long time series of high data quality. Historically,
there are two quantities that have been measured in situ by
national hydrometeorological services that fulfill these cri-
teria: (1) snow depth and (2) depth of snowfall. Depth of
snowfall is defined as freshly fallen snow that accumulated
on a snow board during a standard observing period of 24 h,
while snow depth is the total accumulated snowpack from
the ground surface to the snow top (Haberkorn, 2019). In the
European Alps, there is a long history of snow depth and
snowfall measurements that date back to the 19th century
(Scherrer et al., 2013). Over the more recent past, satellite
data have become increasingly important in providing in-
formation on specific spatial patterns (Hiisler et al., 2014;
Lievens et al., 2019). However, the measurement record of
satellite data is relatively short and unfortunately cannot pro-
vide the same quality of information as in situ observations
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when it comes to quantities involving snow depth (Lievens
et al., 2022). Other variables describing snow characteristics,
such as snow water equivalent (SWE), were introduced later
in the measurement record and with a lower-density network
(see, e.g., Haberkorn, 2019).

Matiu et al. (2021) conducted one of the first studies to
provide an extensive and comprehensive analysis of changes
in snow depth for the period of 1961-2020 that truly cov-
ers the entire region of the Alps. It is worth mentioning their
great effort in merging many individual stations across dif-
ferent institutions and networks. In their study, Matiu et al.
(2021) were able to show, predominantly, a decreasing trend
in snow depth across the Alps. In addition to the regional
differences that they found in the trends, they also showed a
strong elevation dependence of snow depth trends. However,
this elevation dependence of the snow depth trends is con-
flated, to some degree, with the fact that stations at higher el-
evations also typically receive more snow. As a result, there
is also a benefit in investigating whether the relative changes
in snow depth are increasing or decreasing with elevation
(Laternser and Schneebeli, 2003; Marty and Blanchet, 2012;
Marty et al., 2023).

Beyond quantifying historical trends in snow depth and
snowfall themselves (Bertoldi et al., 2023), it is additionally
useful to attribute these changes to a certain set of physical
drivers. The accumulation of snow depth over a season is
primarily driven by temperature and precipitation (Sippel et
al., 2020; Pepin et al., 2022). There have been several prior
studies that have linked changes in snow depth, at differ-
ent elevations, to changes in air temperature and precipita-
tion (Scherrer and Appenzeller, 2006; Moradn-Tejeda et al.,
2013; Sospedra-Alfonso et al., 2015; Scalzitti et al., 2016;
Schoner et al., 2019; Monteiro and Morin, 2023). Overall,
these studies have shown snow depth to be strongly related
to air temperature at low elevations and to precipitation at
high elevations (Mordn-Tejeda et al., 2013; Schoner et al.,
2019). However, these studies also experience, to some ex-
tent, a conflation between snow depth quantities and eleva-
tion. Furthermore, the statistical relationships shown are of-
ten correlations, which do not capture how much snow depth
would change, for example, as a function of air temperature.

Our study aims to extend prior work in a number of ways.
First, we start by computing anomalies of snow depth, tem-
perature, and precipitation data for stations across Austria
and Switzerland. This step removes regional and elevation-
dependent climatological differences, thereby allowing us
to better quantify anomalous or relative changes. Next, we
observe how sensitive snow depth has been to anomalous
changes in temperature and precipitation in the historical
record for stations within specified elevation bands. Then,
we use the historically derived sensitivities to construct an
empirical—statistical model to estimate seasonal snow depth
based on seasonal anomalies of temperature and precipi-
tation. Lastly, we evaluate model performance. The model
is calibrated over the period of 1901-1902 to 1970-1971,
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and evaluation is performed over the period of 1971-1972
to 2020-2021. The model evaluation is also compared to
that of GeoSphere’s SNOWGRID-CL model for the Aus-
trian domain. Our primary objective is to provide an effective
yet easy-to-interpret method to translate expected long-term
changes in temperature and precipitation to changes in sea-
sonal snow depth.

2 Data

Stations with daily measured snow depth were collated from
the Austrian and Swiss meteorological services GeoSphere
Austria, Hydrographischer Dienst (HD), MeteoSwiss, and
the WSL Institute for Snow and Avalanche Research (SLF).
Some of these stations began record keeping in the 1880s,
while many others became active in the early part of the 20th
century. At the time that the authors collected the data, these
stations primarily had data coverage through the spring of
2021. While seasonal values of snow depth, mean tempera-
ture, and precipitation reflect the accumulations or averages
spanning from one year to the next, for the duration of the pa-
per, we simply use the year in which the season ends. So, for
example, the year 2021 would refer to the season of Novem-
ber 2020—March 2021. There are a total of 291 snow stations,
with 107 stations in Austria and 184 stations in Switzerland.
The stations range in elevation between 121 and 2536 m, with
a mean height of 1097 m (see Fig. 1). While we use the non-
homogenized snow depth measurements in this study, it is
not expected that the results would substantially change us-
ing homogenized snow data. Through personal communica-
tion, the authors of a recent homogenization study in the Alps
(i.e., Resch et al., 2022) indicated that there are not any sys-
tematic changes in snow depth one way or the other as a re-
sult of the homogenization procedure (Marcolini et al., 2019;
Buchmann et al., 2022). Furthermore, the primary focus of
this study is to present a useful methodology or approach to
quantify the influence that anomalous seasonal temperatures
and precipitation have on snow depth.

Monthly homogenized temperature and precipita-
tion data for Austria are obtained from GeoSphere
(previously ZAMG) as part of the HISTALP dataset
(i.e., Historical Instrumentation Climatological Sur-
face Time Series of the Greater Alpine Region,
https://www.zamg.ac.at/histalp/dataset/station/csv.php,
last access: 5 July 2023), while homogenized precip-
itation and temperature data for Switzerland are ob-
tained from MeteoSwiss (https://www.meteoschweiz.
admin.ch/service-und-publikationen/applikationen/ext/
climate-tables-homogenized.html, last access: 5 July 2023).
There are a total of 43 temperature stations and 48
precipitation stations in Austria (see Fig. 1), while, in
Switzerland, there are a total of 29 temperature stations and
27 precipitation stations.
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Figure 1. Study region with elevation. Stations with historical measurements of daily snow depth are plotted as the magenta circles. Monthly
homogenized temperature and precipitation stations are plotted as the hollow orange boxes and the filled blue squares, respectively.

We evaluate the statistical model across Austria against
a dynamical snow cover model, SNOWGRID-CL (Olefs
et al.,, 2020), which is a simplified climate version of
the operational snow model SNOWGRID (Olefs et al.,
2013) of GeoSphere Austria. The model was developed
for climatological simulations such as long historical runs
and future scenarios. It relies on an extended degree-day
scheme to approximate snow ablation from air temperature
and the shortwave radiation balance (see Olefs et al., 2020,
for further details). The model is forced with an observation-
based gridded dataset of air temperature and precipitation
(SPARTACUS v2.1, Hiebl and Frei, 2016, 2018) and
simulates daily fields of snowpack properties (i.e., snow
depth, SWE) at a spatial resolution of 1km x 1km over the
Austrian domain. The model output is updated daily and is
publicly available on GeoSphere Austria’s data hub (https://
public.hub.geosphere.at/public/datahub.html?id=snowgrid_
cl-v2-1d- 1km/filelisting&anonymous=true#/snow_depth/,
last access: 1 July 2023).

Evaluation metrics

The performances of different modeled time series of snow
depth are compared using the root mean squared error
(RMSE) statistic. This metric is used because it measures
how well the estimates from the model covary with obser-
vations, while it additionally reflects whether or not there is
any systematic mean bias between the two time series. This
metric is computed using time series of both absolute (which
are the raw modeled and observed values expressed in cen-
timeters and should not be confused with the mathematical
absolute value) and anomalous values. The modeled RMSE
is calculated as follows:

1 n
RMSEyop = |- D (Ymod.i = Yobs.i)*» €))
i=1
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where ymod,; and yobs,; are, respectively, seasonal time series
of modeled and observed snow depths at station i. Likewise,
RMSE(y v is defined as

1 n
RMSEcim = | = > (yelim,i = Yobs,1)’, )
i=1

reflecting the error associated with estimates using climatol-
ogy, where yclim,; is the reference mean climatological snow
depth at station i. One can think about y¢jim ; as either a sin-
gle value (i.e., the climatological mean) or a time series array,
with all of the values being the same. The values of ymod.i
and yclim,; change depending on whether we are computing
the RMSE skill score using absolute values or anomalies.
For the absolute values evaluated over the period of 1972—
2021, Yobs,i» Ymod,i> and Yclim,; would all contain values ex-
pressed in centimeters, where Yclim,; is the mean seasonal
snow depths, computed station by station, over the 1902—
1971 calibration period. When computing the skill of the
model estimated anomalies, Yobs,i> Ymod,i> and yclim,; all con-
tain values expressed as a percentage of normal (e.g., 120 %
of normal, which is 20 % above normal), where ycjim ; is the
mean seasonal snow depth at station i over the 1902-1971
calibration period (i.e., 100 %). Additionally, an RMSE skill
score is also used to evaluate the performance of the mod-
els in terms of their ability to capture observed trends. In that
case, a trend of 0 % per decade is treated as the climatological
reference. Then, the RMSE skill score, SSrmsE, is defined as
follows:

RMSEnop

_ RMSEmop 3
RMSEcLim )

SSrmsE = 1
where an SSrvsg value of 1.0 would perfectly estimate the
observations, while values between 0.0 and 1.0 reflect model
estimates that perform better than the climatology, and val-
ues below 0.0 indicate that the model is less skillful than the
climatology.
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3 Methods
3.1 Seasonal snow depth

In this paper, we focus on snow depth averaged over the
November—March season. Our first goal is to investigate his-
torical empirical relationships between mean seasonal tem-
perature, precipitation, and snow depth. Second, we use
these historically derived empirical relationships to estimate
changes in snow depth driven by changes in mean seasonal
temperature and precipitation. During warmer months, and
particularly at stations at lower elevations, an observable
amount of precipitation will not always translate to a mea-
sured snow depth. This would result in trying to fit a predic-
tor time series (i.e., precipitation) that varies with our pre-
dictand time series that does not (i.e., snow depth). We try
to minimize the number of cases where there is zero mea-
sured snow depth by excluding the months of April and
May from our seasonal average since those months often
contain more stations with zero recorded snow depth. That
way, we can have consistency in the lengths of our sea-
sons for both the predictors, temperature (7°) and precipi-
tation (P), and our predictand, snow depth (SD). Figure 2a
shows the percentage of data for which the 291 stations in
this study measured an average monthly snow depth greater
than 0.0 cm. For example, when considering all of the Jan-
uaries between 1901-2020, there were 20 263 station months
with full data coverage. Of those, 500 recorded 0.0 cm for
every day throughout January at a station. The percentage
of zero measured snow depth for January is then 2.5 %,
which is equal to 500/20263 (this quantity is also equal
to 100 % minus the percentage shown in the left-most bar
of Fig. 2a). We used the season November—March because
each of those 5 months contained less than 20 % zero mea-
sured snow depth. While the November—March season is
somewhat shorter than what some other studies have used
(e.g., Matiu et al., 2021; Mordn-Tejeda et al., 2013), the av-
erage anomalous November—March snow depth (anomalies
are represented as a percentage of normal; see Eq. 6) varies
strongly with the average anomalous snow depth over the
longer November—May season (see Fig. 2b). Thus, if one can
skillfully estimate November—March snow depth then these
will also be skillful for a longer season such as November—
May. In Fig. 2c, average seasonal snow depth can be seen to
vary with elevation, with higher elevations generally receiv-
ing more snow.

Observed changes in seasonal snow depth

Figure 3 shows the trends of snow depth anomalies (see
Eq. 6) across the Austrian and Swiss Alps for the period of
1902-2021 using our four elevation bands. Here, we have
computed linear trends. However, we should mention a cou-
ple of small caveats in doing this. First, the data are bounded
by zero, and a negative trend line would eventually cross the
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origin to produce negative values of snow depth, which can-
not physically happen. Second, the data do typically exhibit
some level of positive skewness, and, as a result, the data can-
not be considered to be truly Gaussian. In order to allow for
easily interpretable trend information, linear trends are com-
puted over the time series. That way, even though the values
are bounded by zero and also cannot be considered to be truly
Gaussian, it can be illustrated that values have decreased
over time, i.e., show a negative trend. Additionally, we pri-
marily want to illustrate that trends have decreased across
each elevation band and that the trends have been greatest at
lower elevations. For the stations below 500 m, the decrease
in snow depth is —8.1 % per decade (Fig. 3a), while the sta-
tions at elevations above 1500 m exhibit less than half of the
relative trend at —3.4 % per decade (Fig. 3d). Additionally,
the regime shift at the end of the 1980s described by Marty
(2008) for the Alps and by Reid et al. (2016) for the global
level is nicely visible, especially for the two lower elevation
bands. Please refer to Appendix A to see trends over a more
recent period, as well as the spatial patterns of the historical
changes.

Different snow depth stations have different record
lengths. As a result, the anomalies from the estimated mean
seasonal snow depth can vary, to some degree, depending on
which seasons are used to compute the average. In Table 1,
we show a range of historical trends depending on how much
data coverage we set as a threshold. The trends are not found
to change very much when only the stations with more com-
plete data coverage are used.

3.2 Constructing homogenized temperature and
precipitation time series at the snow stations

By itself, snow depth is not a measure of how much melted
water is contained in the snow mass. Many different meteo-
rological conditions can affect the density of the snowpack or
the melting of snow. As a result, we cannot directly infer how
much precipitation has fallen based on the snow depth mea-
surements themselves. The precipitation could have fallen as
rain, while precipitation falling as snow can accumulate at
varying densities. Ultimately, we want to quantify historical
changes in mean temperature and precipitation and how these
have translated into changes in snow depth. Therefore, since
many of the snow depth stations have neither temperature
nor precipitation measurements, we construct these time se-
ries using monthly homogenized values of temperature and
precipitation using nearby stations over the period of 1901-
2021.

First, we obtain November—March sums of precipitation
and averages of mean temperatures at all of the homog-
enized stations (see Fig. 1) over the years 1901-1902 to
2020-2021. Additionally, time series of standardized anoma-
lies (i.e., z scores) are computed for each homogenized sta-
tion (the mean and standard deviations are computed using
the calibration period of 1902-1971). Then, for each snow
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depth station, we find the nearest five homogenized stations
for temperature and, separately, for precipitation. Next, we
compute two time series. The first contains the averaged
standardized anomalies of temperature or precipitation as a
function of the inverse distance of the nearest five stations.
The second time series contains the averaged absolute values
of temperature or precipitation as a function of the inverse
distance of the nearest five stations. The inverse-distance-
weighted standardized anomalies of the first time series are
then adjusted to match the mean and standard deviation of
the second time series. This is performed by simply revers-
ing the steps of computing a z score, where the weighted
standardized anomalies at each station are first multiplied by
the standard deviation of the second time series at the same
station, following which we add the mean of the second time
series (also at the same station). This provides us with time
series of seasonal (i.e., November—March) mean temperature
and precipitation located at each of our 291 snow depth sta-
tions.

https://doi.org/10.5194/tc-18-6005-2024

3.3 Sensitivity of snow depth to temperature and
precipitation

Information concerning the bivariate correlations between
mean temperature and snow depth and/or precipitation and
snow depth can be useful. However, correlations by them-
selves do not provide information about the steepness of the
slope between the two variables. For example, given a 1.0 °C
increase in mean temperature or a 20 % increase in precipita-
tion, what would the expected impact on snow depth be? Ad-
ditionally, how might these expected changes be affected by
elevation? Furthermore, what would the multivariate impact
on snow depth be given some combination of mean temper-
ature and precipitation changes? And finally, can we apply
methods that do not have an underlying assumption of lin-
earity?

In Fig. 4a and b, one can observe the spatial distribution
of the bivariate correlations between snow depth and tem-
perature and, similarly, the correlations between snow depth
and precipitation. In Fig. 4c and d, these correlations are
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Figure 3. The seasonal (November—March) snow depth anomalies for all stations and all seasons are plotted as the dots for each of the
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shown to vary as a function of elevation. Generally, we find
the largest correlations (either positive or negative) at lower
elevations for temperature and at higher elevations for pre-
cipitation. For example, a station below 500 m is more likely
to see increases or decreases in temperature translate more
strongly to decreases or increases in snow depth than sta-
tions at higher elevations. The opposite influence is observed
for snow depth and precipitation. Therefore, stations (or re-
gions) at lower elevations are primarily driven by changes in

The Cryosphere, 18, 6005-6026, 2024

temperature, while stations at higher elevations are primar-
ily driven by changes in precipitation. These relationships
support prior findings, such as those by Morédn-Tejeda et al.
(2013) and Schoner et al. (2019).

The utility of the information from Fig. 4 can be im-
proved in the following ways: (1) instead of only considering
the bivariate statistical relationship between either tempera-
ture with snow depth or precipitation with snow depth, we
can consider all three variables in a non-linear, multivariate

https://doi.org/10.5194/tc-18-6005-2024
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Table 1. Table values express trends and changes across different time periods for the four elevation bands. The trends are percentage
changes per decade, given for the two different time periods from Figs. 3 and Al in the Appendix, while the changes are the average
percentage changes between two periods over the last 70 years. Stations have varying data lengths and coverages, which can influence mean
estimation. The percentage of data coverage is evaluated over the 1951-1952 to 2020-2021 period, where 80 % coverage would mean that a
particular station had at least 56 years of data. The first three sets of rows show how much the trends change when using stations with more
or less data coverage. The bottom set of rows gives the number of stations used to compute the trends and changes. The units of the rows are

provided within the square brackets.

All stations

> 80 % coverage > 90 % coverage > 95 % coverage

0-500 m trend (1902-2021) [% per decade] -8.1 -8.1 -7.6 —-7.8
500-1000 m trend (1902-2021) [% per decade] -5.5 -5.3 —-4.9 —-4.9
1000-1500 m trend (1902-2021) [% per decade] —-3.6 —-3.5 —3.4 —-3.5
> 1500 m trend (1902-2021) [% per decade] —34 —3.8 —3.4 -3.3
0-500 m trend (1952-2021) [% per decade] —15.7 —15.8 —15.3 —15.3
500-1000 m trend (1952-2021) [% per decade] —10.3 —10.3 —10.1 —10.3
1000-1500 m trend (1952-2021) [% per decade] —-6.0 —5.7 -5.3 —5.7
> 1500 m trend (1952-2021) [% per decade] —-3.6 —3.8 —3.8 —3.7
0-500 m change (1992-2021 vs. 1952-1981) [%] —46.4 —46.7 —454 —45.6
500-1000 m change (1992-2021 vs. 1952-1981) [%] —34.6 —34.7 —34.6 —35.5
1000-1500 m change (1992-2021 vs. 1952-1981) [%] —25.1 —24.7 —23.5 —24.6
> 1500 m change (1992-2021 vs. 1952-1981) [%] —15.8 —16.7 —16.7 —16.2
0-500 m (number of stations) 52 39 33 32
500-1000 m (number of stations) 75 61 45 40
1000-1500 m (number of stations) 91 72 62 57
> 1500 m (number of stations) 73 47 38 36

framework, and (2) by computing anomalies in the data, we
can leverage information across multiple stations to provide
a more robust empirical—statistical relationship.

In Fig. 5, we illustrate why it can be important to use
anomalous values with our methodology. Figure Sa—c shows
bar plots for the distribution of values using absolute tem-
perature, precipitation, and snow depth, respectively, for the
Austrian and Swiss stations between 500—1000 m. The aver-
age station elevation of the Austrian stations used is 745 m,
while it is 742 m for the Swiss stations. Hence, the average
station elevations are not very different between the two re-
gions. One can observe in Fig. 5a and b that the Swiss sta-
tions are generally warmer and wetter than their Austrian
counterparts. At the same time, the Swiss stations have lower
seasonal averages of snow depth. In order to stress our point
regarding the usefulness of anomalies versus absolute values
in our methodological context, we can take a further subset
of these Austrian and Swiss data points over this 500-1000 m
elevation band. The individual values of these subsets of data
are shown as the scatterplots in Fig. 5d and e. A Student’s ¢
test shows that the means (for temperature, precipitation, and
snow depth) of the subset of Austrian data points (Fig. 5d) are
all statistically significantly different compared to the subset
of Swiss data points (Fig. 5e). We find that, while this sub-
set of data points in Austria has a greater absolute temper-
ature and less absolute precipitation than the Swiss subset,
the Austrian stations have significantly more absolute snow
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depth than the Swiss stations. As we decrease temperature
and increase precipitation, we should expect snow depth to
increase. However, this is exactly the opposite of what the
absolute data are telling us. By simply using the absolute
data alone, we can potentially get the wrong signal when
comparing one region to another. This spatial climatological
difference can be addressed through computing anomalies,
station by station, for the different variables. After comput-
ing anomalies, we can then leverage the information across a
larger region.

To compute anomalies in the data, we begin with abso-
lute (or raw) values of November—March seasonal tempera-
ture, precipitation, and snow depth data. Then, November—
March average temperature anomalies, T ,, for station x €

x,t°

(1,...,291) and year t € (1902, ...,2021) are computed as
T;t =T)c,t _T)m (4)

where T, ; denotes the seasonal averages of absolute temper-
ature, and Ty is the time-averaged mean temperature over the
calibration period of 1902-1971 at station x. Anomalies of
November—March precipitation accumulations, P*, are com-
puted as

P
P, ==, )

, P,

where P, ; denotes the seasonal accumulations of absolute
precipitation, and Py is the time-averaged precipitation over

The Cryosphere, 18, 6005-6026, 2024
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Figure 4. The sizes and magnitudes of the Pearson correlation coefficients between NDJFM snow depth and temperature are plotted in
panel (a). Panel (b) shows the same as (a) but using the seasonal precipitation time series instead of temperature. Downward- and upward-
facing triangles reflect negative and positive correlations, respectively. The sizes of the triangles reflect the magnitude of the correlation.
Panel (c) plots the relationship between station elevations and the correlations between snow depth and temperature (i.e., the same values as
in a), while (d) plots the relationship between station elevations and the correlations between snow depth and precipitation (same values as

in b).

the period of 1902—1971 at station x. Similarly, anomalies of
November—March average snow depths, HS*, are obtained
using

HS
HS;J = H_Sx’t s (6)

X

where HS, ; denotes the seasonal averages of absolute snow
depth, and HSy is the time-averaged snow depth over the pe-
riod of 1902-1971 at station x.

Once we have computed our data anomalies, we can plot
in Fig. 6 the observed historical anomalous snow depths (i.e.,
HS*) along with temperature and precipitation anomalies
(i.e., T* and P*, respectively). The larger squares, bounded
by the black lines, correspond to the anomalous measure-
ments for one example station. That station, named “Feld-
kirch” with the number “11110”, has the coordinates of
47.27 © latitude and 9.60 ° longitude and is situated at an el-
evation of 439 m. As one would expect, the average snow
depth anomalies increase as the temperature anomaly de-

The Cryosphere, 18, 6005-6026, 2024

creases and as the precipitation anomaly increases. This fig-
ure can also be used to show that, for some increase or de-
crease in temperature, there can be a corresponding increase
or decrease in precipitation that will yield approximately the
same snow depth anomaly. Consider, for example, the snow
depth anomalies in Fig. 6 between 2-3 °C below normal tem-
perature and between 100 %—150 % of normal precipitation.
Similar snow depth anomalies can also be observed between
0-1 ° below normal temperature and between 200 %—-250 %
of normal precipitation. This gives us a general idea of how
sensitive snow depth anomalies are to temperature and pre-
cipitation anomalies. Even though Fig. 6 gives us a first look
at the multivariate sensitivity of snow depth to temperature
and precipitation anomalies, we can refine the approach by
adding in a third variable. The sensitivities will change as el-
evation changes. Therefore, we can break up the multivariate
sensitivities shown in Fig. 6 into different elevation bands.
‘We have chosen to use four elevation bands: 0—500 m (con-

https://doi.org/10.5194/tc-18-6005-2024
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Figure 5. Panels (a—c) show bar plots for the distribution of absolute temperature, precipitation, and snow depth, respectively, for the
Austrian and Swiss stations between 500-1000 m over the historical period of 1902-1971. The percentages of the blue and orange bars in
each panel (a—c) sum up to 100 %. The bar plots are comprised of 1755 observed data points for Austria and 558 data points for Switzerland.
A subset of these Austrian and Swiss data points are shown in the scatterplots in (d) and (e), respectively. These are historical, observed
individual seasonal measurements that fall within the climatological regions bounded by the black rectangles. The size of the colored squares
reflects the values of absolute snow depth, where larger squares correspond to larger snow depths. The average values of the Austrian and

Swiss subsets of the data are provided in the inset text in (d) and (e).

taining 52 stations), 500-1000 m (75 stations), 1000-1500 m
(91 stations), and > 1500 m (73 stations).

The points along the left column in Fig. 7 are like those
from Fig. 6, except that the data are broken up by the four
elevation bands, and the data are now only plotted for the
calibration period of 1902—-1971. These are the data that we
will use to fit a model and to make model estimates for our
1972-2021 validation period.

To begin, we calculate the averages of snow depth anoma-
lies across two-dimensional bins of mean temperature and
precipitation for different elevation bands. In our effort to
construct the sensitivity diagrams, let us first consider the
elevation band 0-500 m. In the lowest elevation band over
the calibration period, the arrays T*, P*, and HS* all have a
maximum possible number of measurements of 3640 (which
is 70 seasons over 1902-1971 multiplied by the 52 stations
from that band). Next, we find all of the values in HSE‘)f500m
that fall within a 0.8 °C window centered about a given tem-
perature anomaly (with 0.2 °C increments of the binning win-
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dow), T(>§7500 m» and a 40 % window centered about a given
precipitation anomaly (with 10 % increments), P{ s, We
did experiment with using different bin sizes, but we found
that the choice of bin size does not strongly affect model
performance (please refer to our comments in the paper
discussion at https://doi.org/10.5194/egusphere-2024-1172-
AC2). We calculate the average of all of the station snow
depth anomalies that fall within this two-dimensional win-
dow of temperature and precipitation anomalies, given that
there were at least 50 observed snow depth measurements
that fall within that two-dimensional window. Then, we move
the center of the window in order to perform the same set of
operations across the range of temperature and precipitation
anomalies. And lastly, we repeat the process for the other
three elevation bands. The resulting averages using these
two-dimensional bins are shown in Fig. 7e-h.

Next, the snow depth anomalies, resulting from the multi-
variate binning (Fig. 7e-h), are used to construct a smoothed
and extrapolated sensitivity surface that will then allow us

The Cryosphere, 18, 6005-6026, 2024
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Figure 6. Seasonal temperature anomalies for all stations and all seasons are plotted on the x axis against seasonal precipitation anomalies
on the y axis. The color map corresponds to snow depth anomalies given the pairings of temperature and precipitation anomalies. Open
black squares show the values for one example station, which is named “Feldkirch” with the number “11110” and which is located at the
coordinates 47.27 ° latitude and 9.60 ° longitude. These anomalies are shown for the entire 1902-2021 period of record.

to estimate new values outside of what has been seen in
the calibration record. For all binned values across the two-
dimensional temperature and precipitation space, distances
(in data space) are computed between each specific bin center
and the center of all of the bins where we computed averages
in the previous section (i.e., those are the grid cells which are
colored in Fig. 7e-h). Multiple linear regression is then fit to
the nearest quartile of values, where the bin centers of mean
temperature and precipitation anomalies are the predictors
and where the binned averages of snow depth anomalies are
our predictands. To find the nearest quartile of values, we use
a Euclidean distance measure which essentially equates the
distances of a 10 % precipitation anomaly to a 0.2 °C temper-
ature anomaly. Thus, a data point that is 0.4 °C warmer with
0 % of normal precipitation with respect to a point of inter-
est and another data point that is 0.0 °C with 20 % of normal
precipitation would be treated as the same distance. We did
not find the model to be overly sensitive to providing more or
less weight to the temperature or precipitation axes. Then, the
regression coefficients are used along with the center point of
the bin to obtain a snow depth anomaly. Our application of
localized linear regression is only fit to the nearest quartile
of data points for each bin center; therefore, it can accom-
modate a non-linear response surface across most of the data
domain. At the same time, it smooths out the sensitivity sur-
face (Fig. 7i-1) and also provides extrapolated values beyond
what was observed in the calibration period.

The Cryosphere, 18, 6005-6026, 2024

3.4 A multivariate sensitivity model to estimate snow
depth

The multivariate sensitivity plots shown in Fig. 7i—1, which
are constructed using only data in the 1902—1971 calibration
period, are now used to estimate snow depth anomalies at all
stations and for all NDJFM seasons over the period of 1972—
2021. For each station, we first determine the elevation band
in which it falls (e.g., 0-500 m, 500-1000 m). Second, we lo-
cate the nearest bin center given each season’s (e.g., Novem-
ber 1971-March 1972) anomalies of mean temperature and
precipitation. The snow depth anomaly corresponding to that
bin is then used as the estimated value for that season for that
station. For example, consider a station in the elevation band
0-500 m which experienced a mean seasonal temperature at
2.0°C above normal (where normal is defined with respect
to 1902-1971) and a mean seasonal precipitation at 100 % of
normal. The snow depth anomaly in Fig. 7i at 2.0 °C along
the x axis and 100 % of normal along the y axis corresponds
to 37.6 % (indicated by the color in that bin). So, given those
meteorological anomalies at that station and in that season,
the historical sensitivities would lead to an estimation of the
snow depth being 37.6 % of normal. This procedure is re-
peated to produce the model estimates for all 291 stations
and for all 50 seasons over the 1972-2021 validation period.
The model estimates derived in this manner and driven by the
historical sensitivities are referred to as the SnowSens model
for the duration of the paper.

https://doi.org/10.5194/tc-18-6005-2024
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Figure 7. Panels (a—d) are the same as in Fig. 6 except for the fact that the data are broken up by elevation band, and we only plot the data
over the 1902-1971 calibration period. Panels (e-h) show the binned anomalies of snow depth using two-dimensional binning windows.
The bins are centered using a 0.8 °C temperature binning window (with 0.2 °C increments of the binning window) and a 40 % precipitation
window (with 10 % increments). Panels (i-1) show the fitted surface through localized linear regression using the nearest quartile of bins
from (e-h) (see text). The dashed black lines show contours of 100 % of normal snow depth.

To be clear, we use known values of concurrent seasonal
temperature and precipitation anomalies to estimate snow
depth using the SnowSens model. As a result, our modeled
values are not really forecasts. While we refer to the values
produced by the SnowSens model as “estimates”, our broader
aim is for the model to be capable of producing actual fore-
casts of future snow depth conditions given future projections
of temperature and precipitation. True long-term forecasts of
snow depth over some future period can be thought of as a
modeling chain with two chain links. The first link in the
modeling chain is made up of the projections of tempera-
ture and precipitation, while the second link is made up of
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the projections of snow depth driven by the temperature and
precipitation projections from the first link. In this paper, our
model validation is done by quantifying the skillfullness or
the uncertainty associated with the second link of that mod-
eling chain. With knowledge of how skillful the SnowSens
model is, the model can then be forced or driven with a plau-
sible range of future projections of temperature and precipita-
tion. In this way, the SnowSens model can be run to produce
actual forecasts of snow depth, which also contain the uncer-
tainty of future projections from the first link of the modeling
chain.

The Cryosphere, 18, 6005-6026, 2024
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When evaluating the performance of the SnowSens and
the SNOWGRID-CL models, we use both the absolute and
anomalous values. The methodology outlined above provides
SnowSens model estimates as anomalies for all stations and
seasons. At the same time, the SNOWGRID-CL model pro-
vides estimates of absolute snow depths. Therefore, we must
produce absolute estimated values for the SnowSens model
and estimated anomalies for the SNOWGRID-CL model. Let
us begin with the estimates of the SnowSens model, where
the absolute snow depths, HSymop, are computed as

HSwmop.+.: = HSYop ., X HSoBs.x . (7

where HS{qp, ., denotes the SnowSens- estimated anoma-

lies at station x and time 7, and H_SOBs, » 18 the observed mean
seasonal snow depth at station x over the calibration period
of 1902-1971. Now, we have absolute estimates for both
models. Next, we want to address any mean biases present
in the models while simultaneously computing anomalies in
the data. To do this, a common period of record is used. The
SNOWGRID-CL model data begin in 1962, and, therefore,
we use the common reference period of 1962-1971 to com-
pute the anomalies and bias correction:

HSwmoD, x,¢

* _ %k
HSMODBCJ‘J - X HsOBS]%z—]gﬂ,x ’ ®)

HSMOD 9651971 ,x

where HS;(,IODBC’X’ , denotes our estimated anomalies at sta-
tion x and time ¢, which have been bias-corrected to re-
move any mean biases present over the common period of
1962-1971. Equation (8) is applied to both models to pro-
vide the estimated anomalies which have been mean-bias-
corrected for all of the stations (i.e., all Austrian stations
for SNOWGRID-CL and all Austrian and Swiss stations for
SnowSens).

4 Results
4.1 Model performance

4.1.1 Comparing the SnowSens and SNOWGRID-CL
models

The skill of the SnowSens model is evaluated with respect
to the SNOWGRID-CL model. The SNOWGRID-CL model
is run over the Austrian domain, and, as a result, the perfor-
mance of the SnowSens model is evaluated in this section
only using the 107 stations within Austria.

Prior to any bias correction, the SNOWGRID-CL esti-
mates perform about as well as or worse than the clima-
tology. The performance of the SNOWGRID-CL absolute
model values over the period of 1972-2021 can be evaluated
using different periods to calculate the climatological mean
or what is treated as normal. When this period is 1902-1971,
SNOWGRID-CL has an SSgrmsg value of 0.03, and when
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the 1972-2021 period is treated as the climatological normal,
SNOWGRID-CL has an SSgmsE value of —0.09. In contrast,
the absolute estimates of the SnowSens model have greater
skill, with SSpmsg values of 0.25 and 0.16, respectively, for
the two different climatological periods (the skills with re-
spect to climatologies computed over the 1902—-1971 period
can be found in Table 2).

After applying mean bias correction to both models, the
performance of the SNOWGRID-CL model is much im-
proved. Now, using the estimated anomalies which have been
bias-corrected, the skills (i.e., SSrmsg) of the SNOWGRID-
CL and SnowSens models over the 1972-2021 evaluation
period are 0.34 and 0.26, respectively. Figure 8a—d show
the modeled seasonal snow depth anomalies against the ob-
served seasonal snow depth anomalies for the two models for
each of the four elevation bands. While both contain statis-
tically significant skill (p < 0.01, where we used bootstrap-
ping to assess the statistical significance), the bias-corrected
SNOWGRID-CL model is found to be more skillful than the
SnowSens model when it comes to modeling the year-to-year
variability of the seasonally averaged snow depths.

Next, we want to know how well the observed trends
over the evaluation period have been modeled by both
SNOWGRID-CL and SnowSens. The relative changes are
computed for all of the Austrian stations between the period
of 1997-2021 and the period of 1972-1996. This is done for
the two models and for the observations. These values are
plotted in Fig. 8e. When it comes to correctly modeling the
trend, the SnowSens model now outperforms SNOWGRID-
CL. SNOWGRID-CL generally overestimates the changes
over the last 50 years. The skill score, SSrmsE, for the mod-
eled versus observed changes over the evaluation period is
0.19 for the SnowSens model and 0.10 for SNOWGRID-CL
(see Table 2 for a number of comparative skill scores).

We also computed an ensemble average of the two mod-
els using their estimated anomalies, and this was found to be
more skillful than either model alone. This is true for both the
skill scores of year-to-year variability and relative changes
observed in the last 50 years. Given this result, using an en-
semble such as that between these two models has the po-
tential to further improve the projections of future seasonal
snow depth.

4.1.2 Model performance for the entire domain

In the last section, we compared how well the estimates of
the SnowSens and SNOWGRID-CL models performed at the
locations of the 107 stations across Austria. We investigated
the ability of the models to capture both the year-to-year vari-
ability and the historical trends of the observed records. Here,
we present the results of the SnowSens model performance
for all of the stations. Since we do not have SNOWGRID-CL
estimates for the Swiss domain, we are now only showing the
results for the SnowSens model.

https://doi.org/10.5194/tc-18-6005-2024
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Table 2. A comparison of different skill scores for the two models over the Austrian domain. In the top two rows, the absolute year-to-year
skill (i.e., using the raw model estimates) is shown for each elevation band and for all stations. The middle three rows give the year-to-year
model skill using the estimated anomalies, which have been bias-corrected, for each of the two models and an ensemble average of the two.
The last three rows provide skill scores of how well the models estimate relative changes between the period of 1997-2021 and the period of

1972-1996.

0-500m 500-1000m  1000-1500m > 1500m  All stations
SNOWGRID-CL SSgrvsg (HS) —0.24 0.05 —0.06 0.18 0.03
SnowSens SSgvse (HS) 0.44 0.21 0.26 0.25 0.25
SNOWGRID-CL SSrysg (HS*) 0.37 0.35 0.34 —0.02 0.34
SnowSens SSpmsg (HS*) 0.39 0.20 0.22 0.27 0.26
Ensemble Mean SSgvsg (HS*) 0.47 0.35 0.37 0.31 0.39
SNOWGRID-CL SSrwmsE (% changes) 0.37 —0.10 0.05 0.41 0.10
SnowSens SSrumsE (% changes) 0.35 0.05 0.24 0.15 0.19
Ensemble Mean SSrvsg (% changes) 0.39 0.04 0.35 0.62 0.24
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Figure 8. SnowSens- and SNOWGRID-CL-estimated seasonal (November—March) snow depth anomalies (x axis) plotted against observa-
tions (y axis) for stations which fall in each of the four elevation bands, as shown in (a)—(d), respectively. The estimated changes in seasonal
snow depth for the two models are plotted against observed changes in (e). Changes in (e) are the differences, at each station, in the anoma-
lous seasonal snow depths between the more recent period of 1997-2021 and the prior period of 1972—-1996. The black lines in (a)—(e) show

the one-to-one lines.

In the previous section, we found that the SNOWGRID-
CL model better captures the observed year-to-year variabil-
ity at the station scale. However, we want to be clear that
the SnowSens model still exhibits substantial skill for the
year-to-year seasonal estimates at the station scale. Figure 9
shows all of the estimated seasonal snow depth anomalies
against the observed anomalies for the 1972-2021 valida-
tion period. The Pearson correlation coefficient between es-
timated and observed anomalies for these 10985 cases is
0.59, with an SSrmsg of 0.25 (p < 0.01). We used bootstrap-
ping to assess the level of statistical significance, where dif-

https://doi.org/10.5194/tc-18-6005-2024

ferent shuffled seasons from the calibration period are used
as estimates for the validation period. That way, the spa-
tial autocorrelative structure of the seasonal snow depths is
preserved in our bootstrapping procedure. We evaluated the
skill of 10 000 bootstrapped simulations and found the largest
SSrmse value from these randomly generated simulations to
be 0.022 (compared to the value of 0.25 from the SnowSens
model). While we present our p value as less than 0.01, it is
actually much smaller. Please also refer to Table 3 for some
additional model skill scores using all of the seasons and all
of the stations in the study domain.

The Cryosphere, 18, 6005-6026, 2024
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Table 3. Skill scores of the SnowSens model for different elevation bands over the entire domain. The top and middle rows are the skill
scores using the absolute and estimated anomalies, respectively. The bottom row is the skill in estimating the relative changes between the
1997-2021 and 1972-1996 periods. The three skill scores in the right-most column (which includes all stations over the entire domain) are

statistically significant with p < 0.01.

0-500m 500-1000m  1000-1500m > 1500m  All stations
SnowSens SSpmse (HS) 0.43 0.24 0.22 0.19 0.21
SnowSens SSpvsg (HS™) 0.32 0.24 0.20 0.20 0.25
SnowSens SSruMsE (% changes) 0.49 0.10 0.21 —0.02 0.24

500

SSrmse=0.25

400 1
300 e e e ue e

2004

Observed [% of Normal]

1004 :"

0 50 100 150 200 250
SnowSens [% of Normal]

Figure 9. All seasonal SnowSens model estimates versus observa-
tions over the validation period using all of the stations in the study
domain. Again, the black line plots the one-to-one line.

We would also like to know how well the model performs
in its ability to extrapolate to new climatological terrain.
Put another way, how well does the model perform in cases
which it had not really seen before in the calibration period?
In Fig. 10, we test the effectiveness of the SnowSens model
in a climatological region that had rarely seen observations in
the calibration period. Figure 10a shows the 95 cases where
the average seasonal temperature in the validation period was
greater than +1.0 °C and less than 50 % of normal precipita-
tion. For these cases, the error of the SnowSens estimates is
less than half that of the climatological estimates (indicated
by SSrmMse > 0.50). The SSrwmsg for the points in Fig. 10a
is 0.62, which is statistically significant with p < 0.01. Note
that nearly all of the modeled and observed values fall be-
low 100 % of normal. Averaging across this set of cases (the
larger green squares), we find that both the modeled average
and the observed average are 33 % of normal. In Fig. 10b,
we increase the sample size by using a threshold of less than
75 % of normal precipitation (instead of 50 %). This gives
us 988 cases. The SSrmsk in this case is 0.55, which is also
found to be statistically significant with p < 0.01. The mod-

The Cryosphere, 18, 6005-6026, 2024

eled and observed averages over these cases are 42 % and
41 %, respectively. So, while we are extrapolating to “un-
known” climatological terrain, we find that the model is quite
capable of performing skillfully in that new terrain, espe-
cially when aggregating over a number of cases. We do ad-
vise, however, that one proceeds with caution when interpret-
ing any of the individual model estimates.

A spatial plot showing the geographical distribution of the
station-by-station skill scores is shown in Fig. 11a. With the
help of Fig. 11b, it can be observed that the skill of the
model estimates generally decreases with elevation (it is not
shown, but the SNOWGRID-CL model also sees decreasing
skill with increasing elevation). This makes sense, given that
stations at lower elevations are more sensitive to tempera-
ture changes, and the ranges of these temperature changes
at lower elevations are particularly large in the context of
climate change. Bootstrapping is used again to test for the
statistical significance of the model skill at each individual
station (Fig. 11a and b). We find that there are only a total of
11 stations which either perform worse than the climatology
or perform worse than randomly estimated time series (with
p < 0.01). Therefore, we find that the SnowSens estimates
of snow depths from more than 95 % of the stations in our
study exhibit statistically significant positive skill. Figure 11c
plots the modeled and observed relative changes in seasonal
snow depth between the periods 1972-2021 and 1902-1971,
while Fig. 11d shows this between the periods 1997-2021
and 1972-1996. The yellow diamonds are relative changes
averaged across the four elevation bands. The SSrmsg of the
band-averaged estimate changes for these two periods is 0.80
and 0.73, respectively. By implementing spatial averaging of
the estimates across elevation bands, the skill improves dra-
matically. We should also note that we also applied the same
methodology to snow water equivalent (SWE) values that
we constructed via the approach outlined in Winkler et al.
(2021). While not shown here, the skill of the SWE estimates
follows the skill in estimating snow depth very closely.

In Fig. 12, estimated anomalies of seasonal snow depth are
averaged across all of the stations which fall within each of
the four elevation bands. The resulting band-averaged time
series can be seen alongside the band-averaged observed time
series in the panels of Fig. 12. Again, we find that SnowSens
does not fully capture the observed year-to-year variability

https://doi.org/10.5194/tc-18-6005-2024
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Figure 10. Figure 10 shows the effectiveness of the SnowSens model in terms if its ability to estimate in new climatological terrain. Panel
(a) plots the pairings of modeled versus observed anomalies for the 95 cases where the average seasonal temperature in the validation period
was greater than 41.0 °C and less than 50 % of normal precipitation. Panel (b) plots the pairings for the 988 cases when using a threshold
of less than 75 % of normal precipitation (instead of 50 %). The larger green squares show the modeled versus observed averages across the

respective cases from (a) and (b). Again, the one-to-one lines are plotted in black.

49°N
0.5
0.4
48°N 03 ™
02 =
0.1 g
0.0 %
N -0.1 .,
47°N T2 8
-0.3 @
-0.4
-0.5
46°N
¥
0y,
6°E 7°E  8°E  9°E 10°E 11°E 12°E 13°E 14°E 15°E 16°E 17°E
18 1972-2021 - 1902-1971 1997-2021 - 1972-1996
0.6/®a T (© (d)
g e gmo- 160 ..
o 04-m it-" Z 1401 140 - .
Q < 4 | ] | | d
2 027 faf e L . 5 sy 200, daes
— | ] u,
= -.g.__-l,l'_,_. £100 1 - 100 - =
w 0.0 = m i' = © ]
u . ] < 80 ] 80 - =
s [} @) ..I : o5 -
@ _0.2 D 60 60 - - b
c "y [
Q40 " 40 ll- L]
—-0.4 A 4 [ - o "
: — . . O 20 . ; 20 . : .
0 500 1000 1500 2000 2500 50 100 50 100 150

Elevation [m]

Modeled Change [% of Normal]

Modeled Change [% of Normal]

Figure 11. (a) Skill over the 1972-2021 evaluation period at each of the stations. (b) Plotting how the skill varies with respect to elevation.
(¢) Modeled versus observed relative changes in snow depth between the periods 1972-2021 and 1902-1971. (d) Same as (c) but using the
periods 1996-2020 and 1972-1996. The larger yellow diamonds in (c) and (d) show the changes averaged across the four elevation bands.

https://doi.org/10.5194/tc-18-6005-2024 The Cryosphere, 18, 6005-6026, 2024



6020

M. Switanek et al.: Snow depth sensitivity in the Austrian and Swiss Alps

(a) 0-500 Meters (b) 500-1000 Meters
350 OBS -9.5% decade™?! 350 OBS 6.7% decade™!
— trend =" ° — treng=-6.7%
Observed MODyeng=-11.0% decade™! Observed MODyreng=-7.3% decade™1
300 A SnowSens SSpuse=0.65 300 { =— SnowSens SSpmse=0.52
= ‘ r=0.89 r=0.84
22501 ‘ 250
2s |
< £ 200 l‘ | 200
£2 A e
2% 150 | | 150
=2 Al
S~ 100 A \ M } fhl‘ 100 - -
& ‘ L J rF 1. ‘ A
J t’ B \ \‘.
50 | \J f v 50
0 . . . 0+ T : . : ; ;
1001 1921 1941 1961 1981 2001 2021 1901 1921 1941 1961 1981 2001 2021
350 (c) 1000-1500 Meters 350 (d) >1500 Meters
OBStreng=-6.7% decade™! OBStrend=-3.1% decade™!
— Observed MODiyenq=-4.3% decade~! Observed MODireng=-1.6% decade~1
300 4 =— SnowSens SSpmse=0.39 300 { == SnowSens SSpmse=0.39
> r=0.81 r=0.75
g 2501 250 -
o ©
< % 200 - 200 -
'gz
8 ‘S 150 A 150 4
; O\O
S~ 100 - 100 -
C
(0]
50 1 50 1
0 T T . ; . ; 0+ ; : ; . ; ;
1901 1921 1941 1961 1981 2001 2021 1901 1921 1941 1961 1981 2001 2021
Year Year

Figure 12. Average (November—March) estimated snow depth anomalies and observations are plotted as time series for each of the four
elevation bands. The thinner and thicker lines show the average anomalies during the calibration and validation periods, respectively. The
text in the upper right of each panel lists a select number of metrics (i.e., observed trend per decade, modeled trend per decade, SSpvisg. and
Pearson correlation coefficient) corresponding to the 1972-2021 validation period. We should also note what the correlation coefficients are
between the modeled and observed time series when the trends of both time series have been removed over the validation period. In those
cases, the correlations are 0.89, 0.83, 0.79, and 0.74, respectively, which are very similar to those that are reported in the figure with the
trends present. The number of stations used to compute the band averages is 52, 75, 91, and 73, respectively (see Table 1).

and is not able to reproduce the high and low extreme values.
However, we do find that the model performance is further
improved using these band averages.

Figure 13 provides a useful and simple-to-interpret plot of
expected future changes in snow depth as a function of tem-
perature and precipitation anomalies. A user can take a range
of expected future projections of temperature and precipita-
tion and evaluate how these would translate into expected
changes in snow depth. These expected changes in snow
depth given different temperature and precipitation scenarios
can be compared to prior studies, such as those of Schmucki
et al. (2014) and Marty et al. (2017a). In Fig. 13, we have
simplified the information provided in Fig. 7i-1. Figure 13
shows cross-sections of Fig. 7i-1 for three different precipi-
tation anomalies, and those are 100 % of normal, along with
80 % and 120 % of normal (i.e., 20 % below and above av-
erage). The vertical pink lines show how much warming has
already taken place in each elevation band over the period of

The Cryosphere, 18, 6005-6026, 2024

1972-2021 with respect to the period of 1902—-1971. The av-
erage estimated and observed snow depth anomalies are plot-
ted, respectively, as the open square and the “x”. One can
use this plot to gain a more detailed understanding of how
something like an additional 2 °C would translate to snow
depth anomalies at different elevations, given the assumption
that precipitation stays about the same (100 % of the 1902-
1971 normal). For elevations below 500 m, an additional 2 °C
(which is 3.2 °C above the 1902—1971 normal) could lead to
seasonally averaged accumulated snow depths being a thing
of the past. Put another way, there would be nearly no snow
depth accumulation projected at those temperature anoma-
lies. Given 2 °C more warming in the other three elevation
bands, we could expect snow depth anomalies of approxi-
mately 25 %, 50 %, and 80 % of normal, respectively.

https://doi.org/10.5194/tc-18-6005-2024
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Figure 13. This figure plots cross-sections of Fig. 7 at 80 %, 100 %, and 120 % of normal precipitation. Within a climate change context,
this figure serves to provide greater ease in quantifying the changes in snow depth given a range of projected changes in temperature and
precipitation. The vertical pink lines show how much warming has already taken place in each elevation band over the period of 1972-2021
with respect to the period of 1902-1971. The average (November—March) estimated and observed snow depth anomalies over the 1972-2021

validation period are plotted, respectively, as the open square and the *

5 Conclusions

Climate change has already had an observable impact on
the average seasonal snow depths across the European Alps.
Over the historical period of 1902-2021, stations across
Austria and Switzerland showed a decrease in seasonally
averaged November—March snow depth, ranging between
—8.1 % per decade at elevations below 500m and —3.4 %
per decade for elevations above 1500 m. Over the more re-
cent historical period of 1952-2021, these changes were
even greater, with decreases ranging between —15.7 % and
—3.6 % per decade for stations below 500 and above 1500 m,
respectively (see Appendix A). Changes in seasonally aver-
aged snow depth can primarily be attributed to changes in
meteorological forcing variables such as mean temperature
and precipitation. In some cases, blowing wind and sublima-
tion of snow can greatly affect the snowpack, and, in these in-
stances, temperature and precipitation alone may not suffice
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as predictors. In this paper, however, we focus exclusively on
using anomalies of temperature and precipitation across dif-
ferent elevation bands as predictors of seasonally averaged
snow depth.

Using historical observations of seasonally averaged tem-
perature, precipitation, and snow depth at four different ele-
vation bands over the period of 1902-1971, we constructed
a multivariate empirical—statistical model, which is named
SnowSens. Model validation, which was performed over
the period of 1972-2021, shows that both the SnowSens
and SNOWGRID-CL models can skillfully estimate year-to-
year seasonally averaged snow depths across the Austrian
domain. While SNOWGRID-CL is found to perform bet-
ter in estimating the year-to-year variability of snow depth,
the SnowSens model estimates historical trends better. The
SnowSens model is not to be seen as a replacement for oper-
ational models such as the SNOWGRID-CL. Rather, this pa-
per highlights how effectively historical sensitivities can be

The Cryosphere, 18, 6005-6026, 2024
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used in a multivariate framework to produce quite accurate
estimates of long-term changes in snow depth. The model
performs particularly well when the estimates are aggregated
over a number of cases, such as across different elevation
bands (as seen in Fig. 12). Furthermore, SnowSens relies on a
comparatively simplified modeling framework, which lends
itself well to easily translating projected changes in temper-
ature and precipitation to changes in snow depth. Our re-
sults show that the historical sensitivities have been robust
and persistent. If these sensitivities continue to remain per-
sistent into the future and if future projections of tempera-
ture and precipitation are also skillful then this modeling ap-
proach can be expected to yield skillful forecasts for the next
50 years.

The impacts of a changing climate will vary from region
to region. We developed multivariate sensitivities that are re-
gionally specific to the Austrian and Swiss Alps. While out-
side of the scope of this study, the same approach can be ap-
plied to other mountain regions. How might the sensitivities
of the Rocky Mountains or the Cascades of the United States
compare to what we observe in the Alps? Another way our
research can be extended relates to quantifying the changes
in snow depth versus streamflow. Are specific reductions in
snow depth at certain elevations noticeably affecting aggre-
gated streamflow measurements? Or is it rather the timing
of discharge that is impacted? And lastly, it would be valu-
able to investigate how capable a variety of different gen-
eral circulation models (GCMs) and regional climate models
(RCMs) are in capturing the observed sensitivities that we
have produced.

Snow depth is a valuable resource that affects many com-
munities adjacent to and downstream of mountain regions.
Changes in snow depth can have broad impacts that range
from water resources to snow tourism and avalanche pre-
paredness. Climate change is expected to bring about fur-
ther increases in temperature across the Alps, while it is less
clear what the impact will be on precipitation. With improved
tools, we can better quantify the impact that these meteoro-
logical changes will have on snow depth, thus allowing com-
munities to better plan and prepare for the changes to come.

Appendix A

In Fig. A1, we plot the historical trends over the more recent
period of 1952-2021. There are greater relative decreases in
snow depth over a more recent historical record of 1952—
2021 (in contrast to Fig. 3). In this more recent period, we ob-
serve decreases in snow depths ranging between —15.7 % per
decade (Fig. Ala) for stations below 500 m and —3.6 % per
decade for stations at elevations above 1500 m (Fig. Ald).
Anthropogenic climate change is often more clearly recog-
nizable in the recent past, and, hence, the trends derived for
this period can help to improve our understanding of the ex-
pected future changes in snow depth.

The Cryosphere, 18, 6005-6026, 2024

Figure A2 plots the raw changes in snow depth over the
last 30-year period of 1992-2021 compared to the period
of 1962-1991 as a function of elevation. Greater absolute
changes in snow depth are observed as elevation increases.
However, this information needs to be placed in the context
of differences in climatology. As is shown in Fig. 2c, the av-
erage seasonal snow depth scales with elevation. The rela-
tive changes in snow depth over the last 30 years are plot-
ted against elevation in Fig. A2b. Using anomalies, we ob-
tain a stronger relationship between the more recent changes
in snow depth and elevation (compare the correlations be-
tween Fig. A2a and b). The explained variance between el-
evation and relative changes is approximately 34 %, while it
is only about 10 % when using the absolute changes. In addi-
tion to giving us a better statistical relationship, we also get a
clearer picture of where we can observe the greatest relative
changes in snow depth. While stations at lower elevations
saw smaller absolute changes in their snow depth over the
last 30 years, these same stations saw a greater relative de-
crease over the same period of time. For example, stations be-
low 500 m had an average absolute change of —1.58 cm, but
this reasonably small absolute amount reflected a large rela-
tive change, which was 71 % of normal. In contrast, stations
above 1500 m had an average absolute change of —8.38 cm,
while the average relative change was 93 % of normal. Next,
we observe where the changes in snow depth have been the
greatest, or the least so, as a function of geographic location.
To do this, we first isolate the influence of latitude and lon-
gitude (i.e., x and y space) by removing the dependence of
these snow depth changes on elevation (i.e., z space). The
dashed line in Fig. A2b shows the fitted line through least-
squares linear regression of the data. The data are detrended
with respect to the regression line while preserving the pop-
ulation mean (Fig. A2c). The downward-facing and upward-
facing triangles in Fig. A2d show anomalous snow depth
conditions over the period of 1992-2021, where the influ-
ence of elevation has been removed. Figure A2d, along with
Fig. A2e and f, shows that, as one traverses the Austrian and
Swiss Alps from east to west and from north to south, the sta-
tions experience slightly greater relative decreases in snow
depth.
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Figure A1. Same as Fig. 3 but using the 1952-2021 period of record.
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Figure A2. Changes in snow depth (1992-2021 vs. 1962-1991). Panel (a) shows the absolute snow depth changes as a function of elevation.
Panel (b) shows the relative or anomalous snow depth changes as a function of elevation. The dashed line is the fitted least-squares regression
of the data. Panel (c) plots the snow depth anomalous changes where the elevation dependence has been removed by detrending the data
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dependence. Panel (d) plots the detrended anomalous changes (from Fig. 8c) across the study region. The size of the triangles reflects the
size of the anomalies. Panels (e) and (f) show the detrended anomalous changes against longitude and latitude, respectively.

Data availability. Supporting  data can  be
https://doi.org/10.6084/m9.figshare.25623714

al., 2024).
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