

Corrigendum to

“Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry” published in The Cryosphere, 18, 575–592, 2024

Zachary Hoppinen^{1,2}, Shadi Oveisgharan³, Hans-Peter Marshall¹, Ross Mower^{4,5}, Kelly Elder⁶, and Carrie Vuyovich⁷

¹Department of Geosciences, Boise State University, 1295 University Drive, Boise, ID, USA

²Cold Regions Research and Engineering Laboratory, Engineer Research and Development Center, United States Army, Hanover, NH 03755, USA

³Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA, USA

⁴National Center for Atmospheric Research, Boulder, Colorado, USA

⁵Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

⁶US Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA

⁷Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Correspondence: Zachary Hoppinen (zachary.keskinen@boisestate.edu)

Published: 8 January 2026

In the manuscript “Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry”, some elements of the numerator and denominator were inadvertently reversed in Eq. (3) in the section *Setting the reference UAVSAR phase*. The corrected equation is:

$$\phi_{\text{scene}}(t) = -\Delta d_{\text{insitu}}(t) \frac{4\pi}{\lambda} \left(\cos \alpha - \sqrt{\epsilon_s(\rho_s) - \sin^2 \alpha} \right) \quad (1)$$

This equation follows directly from the standard formulation of electromagnetic wave propagation between two approximately lossless dielectric layers with the first medium assumed to have a unitary real permittivity.

The two-layer system is defined with the permittivity of the first medium given by $\epsilon_1 = 1$, which is a valid approximation for air. Under this assumption, the first term in the parenthetical of the general expression,

$$\left(\sqrt{\epsilon_1 - \sin^2 \alpha} - \sqrt{\epsilon_2 - \sin^2 \alpha} \right), \quad (2)$$

simplifies as follows. Substituting $\epsilon_1 = 1$ yields

$$\sqrt{1 - \sin^2 \alpha} = \cos \alpha, \quad (3)$$

and therefore the expression reduces to the form shown in the corrected equation with ϵ_2 replaced with the secondary

(snow) permittivity. This simplification is a direct consequence of modeling the system as a two-layer lossless problem at the air-snow boundary.

This equation for air-snow is first derived in Guneriussen et al. (2001).

The code implementation was correct, and the relevant lines can be found at: https://github.com/ZachHoppinen/uavasar-validation/blob/main/src/data_acquisition/create_create_netcdfs.py#L342 (last access: 23 December 2025) and https://github.com/SnowEx/uavasar_pytools/blob/main/uavasar_pytools/snow_depth_inversion.py#L157 (last access: 23 December 2025).

References

Guneriussen, T., Hogda, K. A., Johnsen, H., and Lauknes, I.: Insaar for Estimation of Changes in Snow Water Equivalent of Dry Snow, IEEE T. Geosci. Remote, 39, 2101, <https://doi.org/10.1109/36.957273>, 2001.