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Abstract. Most climate models do not reproduce the 1979–
2014 increase in Antarctic sea ice cover. This was a con-
tributing factor in successive Intergovernmental Panel on Cli-
mate Change reports allocating low confidence to model pro-
jections of sea ice over the 21st century. We show that recent
rapid declines bring observed sea ice area trends back into
line with the models and confirm that discrepancies exist for
earlier periods. This demonstrates that models exhibit differ-
ent skill for different timescales and periods. We discuss pos-
sible interpretations of this linear trend assessment given the
abrupt nature of recent changes and discuss the implications
for future research.

1 Introduction

The early years of the 21st century revealed a puzzling co-
nundrum in Antarctic sea ice (Turner and Comiso, 2017; Na-
tional Academies of Sciences, Engineering, and Medicine,
2017). Observations of Antarctic sea ice extent (SIE) showed
a small increase during the satellite era (which began in late
1978), with annual mean values reaching a maximum in
2014, but most climate models simulated SIE declines over
the same period. Various studies examined possible reasons
for this discrepancy (Turner and Comiso, 2017). Specifically,
the community discussed whether it could be explained by
internal variability masking the anthropogenic forced signal
in observations (Gagné et al., 2015; Rosenblum and Eisen-
man, 2017; Roach et al., 2020) and the extent to which it re-

vealed model deficiencies in sea ice processes (Fox-Kemper,
2021). Some studies found that the observed pan-Antarctic
trends lay within the distribution of modelled trends (Polvani
and Smith, 2013; Zunz et al., 2013) and that only regional
trends could robustly be deemed inaccurate in the mod-
els (Hobbs et al., 2015). However, these studies considered
1979–2005 trends only, and over this 27-year period the rel-
ative role of internal variability in the models is larger than
it is for longer periods with more recent end dates. Others
suggested that trends in sea ice, particularly SIE, may not be
a robust metric of model performance, particularly when the
observational time series is too short to separate internal vari-
ability from anthropogenic forcing (Notz, 2014). Even so, the
poorly understood discrepancy between models and observa-
tions has been a contributing factor in a widespread lack of
confidence in projections of 21st-century Antarctic sea ice
decline and, consequently, in many aspects of projected cli-
mate change around Antarctica which are underpinned by
projections of substantial sea ice decline (Bracegirdle et al.,
2015, 2018).

Recently, Antarctic sea ice has exhibited a starkly different
pattern of behaviour. Following the pre-2015 era of slightly
increasing ice extent, rapid ice loss beginning in early 2015
culminated in a dramatic drop in spring 2016–2017 (Turner
et al., 2017). This led to several years of record-low SIE,
which has been framed as a “new sea ice state” (Purich and
Doddridge, 2023; Hobbs et al., 2024). This situation shows
no sign of abating, with further declines since 2021 leading
to monthly mean SIE records being broken in 8 months of
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2023 (Fetterer et al., 2017; Siegert et al., 2023). The initial
decline showed strong linkages to patterns of intrinsic atmo-
spheric variability (Turner et al., 2017; Schlosser et al., 2018;
Zhang et al., 2022) which have high internal variability on
short (subannual) timescales. However, growing evidence of
the contribution of warming in the subsurface ocean (Zhang
et al., 2022; Purich and Doddridge, 2023) and the magni-
tude and spatial homogeneity of the sea ice reductions since
2016/17 point to more sustained declines.

We are therefore interested in the fundamental question
as to whether this new data showing rapid decline should
change our judgement of the models’ skill. To do so, in the
context of previous assessments and based on the approx-
imate linearity of the modelled time series, we assess linear
trends. Specifically, we reconsider whether the distribution of
linear trends simulated by the current generation of climate
models, from the Coupled Model Intercomparison Project
Phase 6 (CMIP6; Eyring et al., 2016) dataset, allows for a
trend of the observed magnitude and thus whether observed
trends are consistent with the multi-model ensemble. Key
previous studies have considered trends to 2005 (Hobbs et
al., 2015; Polvani and Smith, 2013; Zunz et al., 2013) or 2013
(Rosenblum and Eisenman, 2017) based on CMIP5 models
and to 2018 based on CMIP6 (Roach et al., 2020). We might
expect the situation to have changed, for two reasons. First,
being able to assess trends in longer time series (due to the
longer observational record) potentially reduces the impact
of short-term internal variability on trend calculations (Notz,
2014). Second, and more specifically, these data now include
the recent years of observed rapid decline of sea ice, decreas-
ing long-term trends. Therefore, we perform an analysis of
all trends with end dates between 2005 and 2023, to place
our results in the context of previous studies and show how
the results change over time due to these two factors while
using a consistent set of CMIP6 model data (such that the
changes are not attributable to changes in model components
or resolution). Our discussion of these results focusses on
the changing assessment of skill depending on the timescale
and period considered, the implications for our confidence in
the models, and the interpretation of linear trend assessments
considering the abrupt nature of recent changes.

2 Data and methods

2.1 Sea ice metric

Sea ice cover is calculated as either sea ice extent, SIE (the
total area of all grid boxes where sea ice concentration SIC
exceeds a 15 % threshold), or sea ice area, SIA (the sum of
grid box areas multiplied by grid box SIC). SIA has larger
observational uncertainties, as it is more sensitive to differ-
ences in SIC. However, SIE is a nonlinear measure and so
can give misleading results when comparing models and ob-
servations or when calculating trends (Notz, 2014). There-

fore, in contrast to some previous assessments, but following
community precedent (Roach et al., 2020), we assess SIA.
SIA and SIE have similar trends (Fig. A1).

2.2 Model data

We use data from 39 CMIP6 models, from multiple mod-
elling centres. Across the ensemble, there are multiple differ-
ent model components and resolutions of each component.
Monthly SIA is obtained from the University of Hamburg
(UHH) CMIP6 Sea Ice Area Directory V02 (Notz and Kern,
2023) and aggregated into weighted annual means. This is
supplemented by SIA for the two NorESM models, which
are not available in the UHH dataset due to a bug in an earlier
version of NorESM-released SIA data. We merge historical
simulations ending in December 2014 with the ssp585 forc-
ing scenario run for 2015 to 2023; ssp585 indicates a global
average radiative forcing of 8.5 W m−2 by 2100 (O’Neill et
al., 2016). This is a high-emissions forcing scenario; how-
ever, emissions scenarios have little bearing on results for the
time period considered here. The resulting historical–ssp585
merger constitutes 188 ensemble members from 39 models
(Table A1), each contributing between 1 and 57 members of
an initial condition ensemble.

By using a large number of ensemble members of the his-
torical multi-model ensemble, we sample internal variability
under historical anthropogenic forcing. However, since only
four models contain more than six members, we use a max-
imum of six members from each model to avoid weighting
the results too heavily towards models with large ensembles.
Thus, the final ensemble analysed has 98 members (Fig. B1)
from 39 models (Table B1). The sensitivity of our results to
this treatment of model ensembles and to the emission sce-
nario is discussed in Appendix C.

Since many models have drifts in their pre-industrial runs,
we calculated linear trends over the full pre-industrial period
available (in the range 150 to 500 years across the 32 models
with data available in the UHH dataset; Table B1), hencefor-
ward referred to as “drift”. In all cases, drifts are an order of
magnitude smaller than the trends for years 1979–2023, and
there is no significant inter-model relationship between the
drift in a model’s pre-industrial simulation and the ensemble
mean of linear trends in that model (p = 0.48). This implies
drifts are negligible in the context of historical trends, con-
sistent with results for CMIP5 (Gupta et al., 2013), so they
are not considered further.

2.3 Observational data

For an estimate of observed sea ice cover, NSIDC Sea Ice
Index v3.0 SIA (Fetterer et al., 2017) is used, available from
January 1979–September 2023. We investigate the role of ob-
servational uncertainty by also using other observational esti-
mates for 1979–2019 from the UHH SIA dataset (Dörr et al.,
2021). Data for missing months (December 1987–January
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1988 for the Sea Ice Index v3.0) are infilled by interpolat-
ing between the same month in the previous and following
year (Rosenblum and Eisenman, 2017).

2.4 Trend evaluation methodology

Our evaluation methodology is an extension of that previ-
ously used for CMIP5 (Rosenblum and Eisenman, 2017).
Linear trends are calculated for all periods of at least
35 years overlapping with the satellite record (January 1979–
September 2023) using the OLS (ordinary least squares)
method of the Python package statsmodels.api. For compari-
son with the earlier studies mentioned in the Introduction, we
additionally calculate trends for periods 1979–y2, where y2
is between 2005 and 2012. We calculate the mean and stan-
dard deviation of the trends from the model ensemble and
use these to fit a Gaussian distribution, with cumulative dis-
tribution function F(X), to the distribution of these modelled
trends. To estimate the probability that a trend at least as large
as observed would occur in the climate model population, we
calculate the p value for a one-tailed test as 1−F(x), where
x is the observed trend. The extent to which a linear trend is
an appropriate metric for evaluating SIA, given the evidence
for a recent regime change, is considered in the Discussion
below.

3 Results

3.1 Trend evaluation

The recent decade of data has reduced the significant pos-
itive trend (Parkinson, 2019) in observed annual mean and
monthly SIA, which peaked in the period ending 2015, to
near-zero (Fig. 1a–c, red lines; Figs. C1a, A1). For some
months and in the annual mean, the trend since 1979 is
now weakly negative, and trends are statistically insignifi-
cant in all months (Fig. A1). Meanwhile, adding the extra
years of data hardly changed the multi-model mean trend at
all (Fig. 1a–c, blue lines). The mean trend remains strongly
negative, although a few simulations have weakly positive
trends. The simulated trends are less influenced by internal
climate variability as more years are added, and therefore the
standard deviation of the modelled trends for a fixed start
year of 1979 decreases over time (Fig. C1c).

In light of these findings, we test the null hypothesis that
observed sea ice trends are consistent with trends simulated
across the CMIP6 multi-model ensemble and consider how
additional years of data affect the outcome of this test. We
consider trends calculated with both a fixed start date (1979)
and fixed duration (35 years) to aid our interpretation. Un-
til 2010 inclusive, the probability of a CMIP6 model trend
matching or exceeding the observed trend exceeds 0.05, so
we would not reject the null hypothesis that modelled and
observed trends are consistent (as concluded in Zunz et al.,
2013; Hobbs et al., 2015; Polvani and Smith, 2013). How-

ever, in the period 2005 through 2015, the multi-model mean
trend and observed trend diverge while the modelled trend
distribution narrows (Fig. C1), reducing the likelihood that
the observed trend falls within the modelled distribution. As
a result, between 2011 and 2018, the probability of a CMIP6
model trend matching or exceeding the observed trend is very
low (p < 0.05; Fig. 1d), so the null hypothesis is rejected,
and the model trends may be deemed inconsistent with ob-
servations. This test provides a clear result; the short time
period of under 40 years should allow for a generous range
of modelled trends due to internal variability, but this range
still fails to accommodate the observations.

From 2015, the probability of CMIP6 trends matching or
exceeding the observed trend starts to increase, as the ice
loss brings observations into line with the models (Fig. 1d).
However, if trends are calculated with a fixed 1979 start date,
progressively lengthening the trend under consideration de-
creases the modelled trend standard deviation while hardly
affecting the model mean trend (Fig. C1). This makes it less
likely that the observed trends will fall within the distribution
of modelled trends. Only in 2022 does the recent rapid de-
cline in observations counteract this effect and finally bring
observed trends into line with the models (null hypothesis
not rejected at p = 0.05; Fig. 1d). In contrast, for “fixed du-
ration” trends, the standard deviation of modelled trends re-
mains large, while the observed trend more rapidly declines
and becomes negative due to the neglect of early low-SIA
years (Gagné et al., 2015; Schroeter et al., 2023) in addition
to the inclusion of the recent low-SIA years. Therefore, the
null hypothesis is no longer rejected at p = 0.05 as early as
2019 under this measure.

3.2 Relationship of trends with mean state

It is known that, seasonally and especially in summer, there
is a relationship between sea ice area climatology and future
trends, which is to be expected as, for example, very low sea
ice constrains trends (Holmes et al., 2022). Therefore, we
investigated the relevance of this for our trend assessment.
The relationship between both summer and annual mean cli-
matology and the annual mean trends is highly statistically
significant but has a very weak slope (Fig. C2a, b). Since
there are two models (MIROC6 and MIROC-ES2L; Table
B1) which are clear outliers, having far too little sea ice in
the annual mean (Fig. C2b; Shu et al., 2020), we test the sen-
sitivity to removing these models. This does not change our
conclusion that trends are consistent for an end date of 2023
(Fig. C2c). Therefore, while there is some evidence that the
models with trends closest to observations tend to be biased
low (Fig. C2a, b), this does not appear to dominate our con-
clusion that observed and modelled trends are now consis-
tent.
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Figure 1. (a–c) Linear trends in annual mean SIA in satellite observations (red) and CMIP6 models (blue histogram) and Gaussian fit to
CMIP6 distribution (black) for the periods (a) 1979–2005, (b) 1979–2013 and (c) 1979–2023. The dashed vertical line indicates zero trend,
and the blue line indicates the multi-model mean. (d) The probability of observing a trend at least as large as observed (a one-tailed test)
under the null hypothesis that observations are taken from the same population as the CMIP6 multi-model ensemble, for varying end dates
and either a fixed start date of 1979 as in panels (a) and (b) (crosses) or fixed trend length of 35 years (dots); pval stands for p value.

4 Discussion

Our results show that, if we consider linear trends in mod-
els and observations, then we find that the level of agreement
varies over time. Firstly, for early end dates (prior to 2011)
there is no evidence of inconsistency between observed and
modelled trends, as noted by earlier studies (Hobbs et al.,
2015; Zunz et al., 2013; Polvani and Smith, 2013). Secondly,
there is a mismatch between observed and modelled trends
for the period up to around 2018, as discussed in the Intro-
duction. This suggests that modelled anthropogenic trends
are too strong relative to modelled variability during that pe-
riod. Finally, our study shows the novel result that the per-
sistent low Antarctic SIA of 2022 and 2023 brings observed
trends over the full satellite era back into line with the en-
semble of modelled trends. Trends on the shorter 35-year
timescale also fall within the model ensemble for the five
most recent 35-year periods (Fig. 1d), showing that the eval-
uation depends on the exact period analysed, at least on this
shorter timescale.

We approach our interpretation of the changing assess-
ment of skill as follows: conceptually, for any time period
there is a distribution of model trends and also a distribution
of possible real trends that could have occurred (depending
upon the evolution of internal climate variability). The ob-
served trend is a single realisation of the distribution of pos-
sible real trends. The observed trends with end dates between
2011 and 2021 were outside the model trend distribution.

Now, the latest observed trends fall within the distribution
of modelled trends, as do observed trends for periods end-
ing before 2011. In other words, the observed trends over the
middle period lie in the region where the modelled and real
trend distributions do not overlap, and observed trends in the
earlier and most recent periods lie in the region where they
do overlap.

The nonoverlapping region could arise from a differ-
ence in the spread of the modelled and real trend distri-
butions (due to inaccurate modelled variability) or in their
mean (due to a modelled anthropogenic forced trend that is
too strong). Therefore, inaccurate variability, particularly on
multidecadal timescales, could explain the changing assess-
ment of skill. Indeed, modelled variability exceeds observed
variability and varies greatly between models (Zunz et al.,
2013; Roach et al., 2020; Diamond et al., 2024), with some
models containing large centennial variability (Zhang et al.,
2019). Alternatively, it could be that the modelled anthro-
pogenic trends are too strong (Schneider and Deser, 2018)
or emerge too early. For example, this is consistent with the
hypothesis that models underestimate the timescale or mag-
nitude of the cooling phase of the “two-timescale” response
to stratospheric ozone forcing, whereby increasing westerlies
cause a cooling (sea ice increase) on “short” timescales and
warming (decline) on “long” timescales (Ferreira et al., 2015;
Kostov et al., 2017). However, other evidence from models
suggests this mechanism is unlikely to be a primary driver of
the model–observation mismatch (Seviour et al., 2019).
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We can then consider what our results imply for our ques-
tion as posed in the Introduction, namely whether recent
rapid declines observed in satellite data change our judge-
ment of model skill and ultimately our confidence in the
models. This paragraph considers the answer to this question
based on the linear trend assessment, and the following para-
graphs take the broader view of how a linear trend assessment
should be interpreted in the light of the possible step-change
nature of recent decline. Our results permit the interpreta-
tion that modelled forced trends and variability are realistic
on 45-year timescales (the full length of the modern satellite
record). However, the existing discrepancy for earlier, shorter
time periods points to fundamental issues remaining, either
on shorter timescales in general or specifically for the earlier
time period. If this discrepancy is, as discussed above, linked
to multidecadal variability or to ozone forcing, then one in-
terpretation may be that we can have some level of greater
confidence in projections of substantial centennial decline
(Roach et al., 2020; Holmes et al., 2022) under strong forc-
ing, since model performance on longer (45-year) timescales
is of the greatest relevance to centennial projections of cli-
mate change. However, our confidence would remain low
under weak forcings or in the near term, where multidecadal
variability and ozone forcing retain relative importance. If,
however, the discrepancy is because the forced greenhouse
gas response is too strong, models will produce ice loss that
is too strong even on centennial timescales. Confidence in
which of these interpretations is most appropriate will re-
quire both more years of data and further analysis. Further,
processes lacking from models, such as increasing freshwa-
ter input from accelerating ice sheet melt (Swart et al., 2023),
may provide further complications in the relative evolution of
modelled and observed sea ice over the 21st century.

This study uses linear trend analysis as a metric for evalu-
ation. Linear trends are a limited parametric assessment, and
the observed time series when the years 2017–2023 are in-
cluded arguably looks strikingly nonlinear in time (Fig. B1).
Indeed, the recent abrupt change has been interpreted by
some as a regime shift (Purich and Doddridge, 2023; Hobbs
et al., 2024), which points to limitations in applying a lin-
ear trend evaluation. Nevertheless, an update to the linear
trend evaluation has significant value. Firstly, the use of lin-
ear trends in many previous assessments (as cited in the In-
troduction) merits a careful examination of whether the con-
clusions of those studies still hold. Secondly, many models
have approximately linear evolution in time (Fig. B1), which
justifies a comparison of linear trends, although the time evo-
lution of SIA in many models also exhibits nonlinear features
so that the apparent observed nonlinearity itself is not a rea-
son to conclude there is a discrepancy between models and
observations.

A third justification of the linear trend assessment is that
a regime shift is not the only interpretation of the observa-
tions, and multidecadal variability superimposed on a forced
linear trend (e.g. Zhang et al., 2019) could cause the abrupt

change seen since 2016. This interpretation is consistent with
evidence of steady sea ice decline in the 20th century be-
fore the satellite era (Fogt et al., 2022) and with early satel-
lite data, which suggest that the ice area was more variable
in the 1960s (Meier et al., 2013; Gallaher et al., 2013) and
dropped rapidly immediately before the onset of continuous
coverage in 1979 (Cavalieri et al., 2003). Under this “mul-
tidecadal variability” interpretation, evaluating linear trends
on increasingly long timescales would capture more of the
underlying forced trend. In this context, it is a key novel re-
sult that our results show that models no longer fail the fun-
damental test of being able to simulate observed linear trends
over the full 45-year modern satellite era. However, captur-
ing the underlying forced trends would require a period much
longer than the timescale of multidecadal variability.

Nevertheless, we must interpret the results of the linear
evaluation in the light of the recently observed abrupt de-
cline, whereby the linear model looks increasingly less valid
for observations. This again implies the emerging agreement
on linear trends should not necessarily imply more confi-
dence in model projections. From this perspective, the rapid
decline provides a new context for comparing observations
and models (Diamond et al., 2024) and adds evidence for
which characteristics of sea ice variability the models are
unable to simulate and should therefore be a focus of fu-
ture studies. Therefore, while it is a tenable view that the
observed rapid decline could be the first indication that the
declines projected in the models could occur, there is now
a need to probe the nature of this recent change, specifically
the contribution of multiple timescales, and its representation
in models. This will be challenging, since extremes and mul-
tidecadal variability are difficult to assess due to limited ob-
servational data. Moreover, the recent declines are still short-
lived, so further years of data will add clarity to the nature
of recent change. More broadly, there are many measures
by which modelled sea ice may be assessed and found to
have deficiencies, including seasonal and interannual vari-
ability (Zunz et al., 2013), spatial patterns (Hobbs et al.,
2015), physical processes (Holmes et al., 2019), and relation-
ships between trends and other variables (e.g. global warm-
ing; Rosenblum and Eisenman, 2017, or mean state, as dis-
cussed in Sect. 3.2). Improving knowledge on the strengths
and weaknesses of climate models in representing sea ice is
important for understanding wider implications for both ma-
rine ecosystem function and Southern Hemisphere climate –
including Southern Ocean heat and carbon uptake, circum-
polar winds (Bracegirdle et al., 2018), and melting of the
Antarctic Ice Sheet. This understanding in turn underpins de-
cisions about the mitigation of future greenhouse gas emis-
sions and about ecosystem management.
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5 Conclusions

Our new evidence shows that the level of agreement be-
tween modelled and observed linear trends in Antarctic sea
ice varies over time. Specifically, we show two new results.
Firstly, trends over a fixed 35-year timescale have chang-
ing agreement depending on the time period analysed. Sec-
ondly, trends over the full satellite era 1979–2023 do not
disagree between observations and models. This could im-
ply that models are better able to represent changes over
longer timescales. Alternatively, it could be the case that even
on this 45-year timescale, the specific time period analysed
(i.e. the inclusion of the low-sea-ice years 2017–2023) de-
termines the level of agreement between observations and
models. Increasing confidence in these interpretations will
require an increased understanding of the recent decline and
of variability on different timescales in models and observa-
tions. Moreover, understanding the applicability of our lin-
ear trend assessment requires an increased knowledge of the
extent to which the observed trend can be interpreted as a
linear trend superimposed with interannual to multidecadal
variability. Nevertheless, our new evidence shows that the re-
cent years of observed low sea ice have changed the picture
of model–observation agreement in linear trends in Antarctic
sea ice.

Appendix A: Monthly trends

Figure A1. Observed sea ice trends for (a) sea ice area and (b) sea ice extent in individual months for 1979–2014 (squares), the full 45-year
trend 1979–2023 (crosses) and the 35-year trend to 2023 (circles). The 1979–2023 trends are highlighted in shades of red as this period is
the focus of the paper. The 5th–95th percentile uncertainties are indicated by vertical lines. Data are from the NSIDC Sea Ice Index v3.0 (see
Methods).
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Appendix B: CMIP6 models

Figure B1. The 1979–2023 annual mean sea ice area in observations (NSIDC Sea Ice Index v3.0, top left) and in all CMIP6 model ensemble
members considered in the analysis. Panels are sorted by their linear trend over 1979–2023. Linear trends are shown and indicated in red
(statistically significant at p < 0.05) or grey (statistically insignificant). Each panel includes annotation showing the simulation’s 1979–2023
climatology and trend. The y axis shows the SIA anomaly from the 1979–2023 climatology (106 km2).
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Table B1. The models available for the study and summary values: the number of ensemble members number used (as well as the number
available where this differs); the ensemble mean trend (106 km2 per decade) and the climatology (106 km2) across the ensemble members
used only for the period specified and the trend in the pre-industrial simulation “pi control” (106 km2 per decade). NorESM values were
calculated by the authors from SIC data; all other values were obtained from the CMIP6 Sea Ice Area Directory V02 (Notz and Kern, 2023)
made available by the University of Hamburg, and methods are fully detailed there. Model names appear first as formatted in the CMIP6 SIA
Directory V02 (Notz and Kern, 2023) and then by their official names.

Mean trend Climatology Trend n members
pi control used (available)

Model 1979–2013 1979–2023 1989–2023 February annual
1979–2023 1979–2023

ACCESS_CM2 (ACCESS-CM2) −0.049 −0.173 −0.265 0.532 7.435 −0.021 1
ACCESS_ESM1 (ACCESS-ESM1-5) −0.151 −0.099 −0.104 2.120 8.238 NA 3
AWICM1 (AWI-CM-1-1-MR) −0.405 −0.473 −0.420 1.171 9.802 0.004 1
BCC_CSM2 (BCC-CSM2) 0.194 −0.443 −0.803 0.294 6.644 −0.027 1
CAMS_CSM1 (CAMS-CSM1-0) −0.067 −0.096 −0.230 0.012 5.846 −0.023 2
CESM2 (CESM2) −0.369 −0.382 −0.388 1.602 8.960 −0.007 3
CESM2_WACCM (CESM2-WACCM) −0.474 −0.447 −0.446 1.760 9.181 −0.012 3
CIESM (CIESM) −0.251 −0.261 −0.261 0.079 5.487 −0.019 1
CMCC_CM2_SR5 (CMCC-CM2-SR5) −0.356 −0.330 −0.328 0.679 7.568 −0.040 1
CMCC_ESM2 (CMCC-ESM2) −0.297 −0.247 −0.254 0.719 7.699 −0.045 1
CNRM_CM6 (CNRM-CM6-1) −0.362 −0.379 −0.376 0.940 9.192 −0.018 6
CNRM_CM6_1_HR (CNRM-CM6-1-HR) −0.443 −0.583 −0.950 0.499 8.065 −0.065 1
CanESM5 (CanESM5) −0.386 −0.356 −0.373 4.014 11.841 0.005 6 (19)
E3SM_1_1 (E3SM-1-1) −0.323 −0.360 −0.422 1.320 9.166 0.003 1
ECEarth3 (EC-Earth3) −0.267 −0.222 −0.236 0.263 4.654 −0.009 6 (57)
ECEarth3_CC (EC-Earth3-CC) −0.231 −0.126 −0.147 0.056 3.187 −0.013 1
ECEarth3_Veg (EC-Earth3-Veg) −0.149 −0.196 −0.276 0.298 4.816 −0.008 5
ECEarth3_Veg_LR (EC-Earth3-Veg-LR) −0.325 −0.280 −0.293 0.182 4.819 −0.005 1
FGOALS_f3L (FGOALS-f3-L) −0.122 −0.159 −0.109 0.277 6.360 NA 1
FGOALS_g3 (FGOALS-g3) −0.279 −0.226 −0.135 2.214 10.813 0.000 4
FIO_ESM (FIO-ESM-2-0) −0.316 −0.342 −0.339 2.035 9.448 −0.001 3
GFDL_CM4 (GFDL-CM4) −0.223 −0.193 −0.159 0.529 9.791 −0.019 1
GFDL_ESM4 (GFDL-ESM4) −0.039 −0.111 −0.075 0.641 8.455 −0.019 1
GISS_E2_1_G (GISS-E2-1-G) −0.135 0.008 0.062 0.731 8.049 NA 1
HadGEM3_GC31_LL (HadGEM3-GC31-LL) −0.514 −0.607 −0.674 1.957 8.692 NA 3
HadGEM3_GC31_MM (HadGEM3-GC31-MM) −0.312 −0.313 −0.362 1.482 6.144 −0.047 4
INM_CM4_8 (INM-CM4-8) −0.193 −0.210 −0.228 0.242 4.386 −0.012 1
INM_CM5_0 (INM-CM5-0) −0.238 −0.232 −0.200 0.904 6.231 0.021 1
IPSL_CM6A_LR (IPSL-CM6A-LR) −0.363 −0.384 −0.414 1.616 10.606 0.006 6
KIOST_ESM (KIOST-ESM) −0.259 −0.215 −0.156 0.725 6.252 NA 1
MIROC6 (MIROC6) −0.014 −0.015 −0.006 0.017 1.505 −0.001 3
MIROC_ES2L (MIROC-ES2L) −0.072 −0.084 −0.108 0.019 1.398 0.002 6 (8)
MPI_ESM1_2_HR (MPI-ESM1.2-HR) −0.277 −0.274 −0.356 0.298 5.833 −0.004 2
MPI_ESM1_2_LR (MPI-ESM1.2-LR) −0.108 −0.078 0.019 0.259 4.325 0.000 6 (30)
MRI_ESM2 (MRI-ESM2-0) −0.325 −0.377 −0.436 2.537 11.964 −0.009 1
NESM3 (NESM3) −0.202 −0.283 −0.374 0.485 7.746 −0.010 2
NorESM2_LM (NorESM2-LM) −0.096 −0.082 −0.102 1.385 6.238 NA 1
NorESM2_MM (NorESM2-MM) −0.014 −0.077 −0.041 1.402 6.543 NA 1
UKESM1_0_LL (UKESM1-0-LL) −0.721 −0.666 −0.652 2.947 9.954 0.005 5

NA: not available
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Appendix C: Sensitivity tests

C1 Sensitivity to observational dataset

Observational uncertainty in SIA is particularly high prior to
winter 1987 (not shown) due to missing SIC data. Trends
in the other datasets, in particular OSI SAF 450/430b
(Fig. C1, green; Lavergne et al., 2019), are in general more
strongly positive than those in the NSIDC Sea Ice Index
v3.0 (Fig. C1a). Therefore, for the “1979 start date” trends,
these might exhibit consistency with model-simulated trends
at later end dates than 2022 (Fig. C1d, crosses); note that all
datasets already display consistency for the 35-year trends
ending in 2019 onwards (Fig. C1d, dots).

C2 Sensitivity to treatment of CMIP6 models

We also tested the sensitivity of our conclusions to our treat-
ment of CMIP6 models. First, we tested the sensitivity to
treatment of individual model ensembles. As stated in the
main text, the choice of using a maximum of six ensemble
members per model was to sample internal variability ad-
equately without weighting towards models with large en-
sembles. By including all ensemble members (instead of
a maximum of six per model), we largely add simulations
from models with weak negative average trends (Table B1)
and therefore increase consistency with observations (not
shown). However, the evolution with end year of the model–
observation comparison (Fig. 1d) and the broad timings of
threshold crossings are unchanged. On the other hand, since
curtailment to a maximum of six members per model still
constitutes uneven sampling across models which have dif-
ferent internal variabilities, we also verified that when using
one ensemble member per model, results remain on average
the same for 2023 end dates (Fig. C2d).

Second, we tested sensitivity to using the weaker forcing
scenario ssp245 instead of ssp585 for the extension of mod-
elled trends after 2014. The effect of forcing scenario is small
early in the 21st century (Hawkins and Sutton, 2012) so that
any difference arising is due to internal variability or struc-
tural differences between the models with simulations avail-
able. For the overlapping subset of 147 model–realisation
combinations, ssp245 has marginally stronger trends and so
is slightly less consistent with observations. In contrast, using
the full ssp245 ensemble (with all available members) means
including a larger ensemble of MIROC6 than in the overlap-
ping subset or in the ssp585 ensemble; MIROC6 implausi-
bly has virtually no sea ice year-round (Shu et al., 2020) and
therefore zero trends (Holmes et al., 2022), leading to weaker
mean trends and slightly greater consistency with observa-
tions. In summary, these effects are small, so our conclusions
are robust to these sensitivity tests.
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Figure C1. Contributions to the p value shown in Fig. 1d. (a) Observed trend, with NSIDC Sea Ice Index v3.0 in black as in the main text
and other datasets as indicated. (b) Mean of modelled trends, (c) standard deviation of modelled trends and (d) p value (pval; as main text
Fig. 1d but with alternative observational estimates (Dörr et al., 2021)).

Figure C2. The role of ice-free conditions in explaining model spread (a and b) and result sensitivity to ensemble treatment (c and d).
(a) Scatterplot of summer (February) sea ice climatology for 1979–2023 against the annual mean trend over 1979–2023. (b) As (a) but
for annual mean climatology against the trend, with a cutoff threshold (a quarter of the observed climatology) to exclude MIROC models
indicated by a dashed grey line. Panels (a) and (b) show a maximum of six ensemble members per model. (c) As Fig. 1d but excluding
MIROC models. (d) As Fig. 1d but the mean of p values (pval) from 10 000 resamples each using one random ensemble member from each
model.
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Code availability. The code for calculating trends, performing the
evaluation and preparing the figures is available from the corre-
sponding author on request.

Data availability. Sea ice area from the CMIP6 models is avail-
able from the University of Hamburg (UHH) CMIP6 Sea
Ice Area Directory V02 (https://www.cen.uni-hamburg.de/en/icdc/
data/cryosphere/cmip6-sea-ice-area.html; Notz and Kern, 2023).
The NSIDC Sea Ice Index v3.0 SIA (Fetterer et al., 2017) is avail-
able from https://doi.org/10.7265/N5K072F8 (Fetterer et al., 2017).
Other observational estimates of sea ice area (Dörr et al., 2021) are
available from https://doi.org/10.25592/uhhfdm.8559.
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