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Abstract. We use snow course and airborne gamma data
available over North America to compare the validation of
gridded snow water equivalent (SWE) products when eval-
uated with one reference dataset versus the other. We as-
sess product performance across both non-mountainous and
mountainous regions, determining the sensitivity of rela-
tive product rankings and absolute performance measures. In
non-mountainous areas, product performance is insensitive
to the choice of SWE reference dataset (snow course or air-
borne gamma): the validation statistics (bias, unbiased root
mean squared error, and correlation) are consistent with one
another. In mountainous areas, the choice of reference dataset
has little impact on relative product ranking but a large im-
pact on assessed error magnitudes (bias and unbiased root
mean squared error). Further analysis indicates the agree-
ment in non-mountainous regions occurs because the refer-
ence SWE estimates themselves agree up to spatial scales of
at least 50 km, comparable to the grid spacing of most avail-
able SWE products. In mountain areas, there is poor agree-
ment between the reference datasets, even at short distances
(< 5 km). We determine that differences in assessed error
magnitudes result primarily from the range of SWE magni-
tudes sampled by each method, although their respective spa-
tiotemporal distribution and elevation differences between
the reference measurements and grid centroids also play a
role. We use this understanding to produce a combined ref-
erence SWE dataset for North America, applicable to future
gridded SWE product evaluations and other applications.

1 Introduction

Snow water equivalent (SWE) is an essential climate vari-
able critical to determining freshwater availability in mon-
tane and northern regions (Barnett et al., 2005; Clark et al.,
2011). Accurate estimates of SWE are key to the verification
of seasonal forecasts (Sospedra-Alfonso et al., 2016), skilled
streamflow predictions particularly at long lead times (De
Roo et al., 2003; Liu et al., 2012; Wood et al., 2016), and effi-
cient hydropower operations (Turcotte et al., 2007; Magnus-
son et al., 2020). Long-term spatially complete SWE records
are necessary for climate assessments (e.g. Mudryk et al.,
2022), effective water management (Ralph et al., 2014), and
flood prediction (Vionnet et al., 2020).

Numerous publicly available gridded SWE products exist,
generated from a variety of approaches ranging from earth
observation (EO) (e.g. Luojus et al., 2021) to reanalysis prod-
ucts (e.g. Hersbach et al., 2020), snow models of varying
complexity forced by reanalysis data (e.g. Brun et al., 2013),
and data assimilation schemes (e.g. Zeng et al., 2018). As-
sessment of the quality of these products faces two chal-
lenges. First, there are few independent reference datasets
with long time series and well-distributed spatial coverage
across the range of snow-climate zones. Second, even where
and when reference data are available, they are challenging
to apply in a meaningful way because of the spatial mismatch
with the typically coarse resolution of the gridded SWE prod-
ucts.

Point-based SWE measurements from snow pillows
(Beaumont, 1965), snow scales (Johnson, 2004; Smith et al.,
2017), and passive gamma radiation sensors (Kodama et al.,
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Figure 1. Reference data distribution. (a) Total number of measurements by day of water year (1 October–30 September); vertical dotted lines
delineate February–April period assessed in this study. (b) Number of snow course (top) and airborne gamma (bottom) measurements during
February through April 1980–2020. (c) Spatially aggregated reference data (Sect. 3.1) separated into mountain (purple) and non-mountain
(green) domains. Grey shading in (b) and (c) indicates mountain region.

1979; Paquet et al., 2008) provide continuous records of
SWE at a specific location. However, the considerable spatial
variability of SWE means that these point-based measure-
ments are of questionable value when applied to larger areas
(Meromy et al., 2013) and are thus not suitable for the eval-
uation of relatively coarse-scale gridded data. Snow courses
on the other hand, consist of multiple measurements along a
transect several hundreds of metres to kilometres in length
that are averaged together to provide a single SWE value
(WMO, 2018). These measurements better sample the sub-
grid-scale variability than a single-point measurement and so
are more effective in capturing the larger-scale average. As
a result, snow course data can effectively discern subtle dif-
ferences in performance between SWE products (Mortimer
et al., 2022). SWE estimates from airborne gamma surveys
(which measure the attenuation of water mass by naturally
emitted gamma radiation) are averaged across 300 m wide
footprints and along 15–20 km long flight lines. Like snow
courses, they also effectively capture the larger-scale average
and are appropriate to assess the accuracy of gridded SWE
products (Cho et al., 2019, 2020).

SWE reference measurements are unevenly distributed in
space and time (Fig. 1) and, as such, may not sample the
complete range of naturally occurring SWE values. If a par-

ticular dataset is tuned to a specific environment or per-
forms better across a certain range of SWE, the differing
spatiotemporal distributions and sampled SWE ranges of
separate reference datasets could influence the determined
product performance. For example, some EO-based products
have reasonable performance up to approximately 150 mm
SWE (Pulliainen, 2006; Luojus et al., 2021) and so perform
well against a reference dataset composed primarily of low
and moderate SWE values but will have poorer performance
when validated using a reference dataset that samples across
regions with higher SWE.

Independent assessments of gridded SWE products using
either snow courses (e.g. Mortimer et al., 2020, 2022) or
airborne gamma SWE (e.g. Cho et al., 2019, 2020) have
been conducted, but a unified assessment of gridded SWE
products using both reference datasets is lacking. Combining
multiple reference datasets can improve the rigour of such
assessments, but interpreting and reconciling product accu-
racies obtained with multiple reference datasets is hindered
by their differing sampling methodologies and limited uncer-
tainty characterization, as well as their spatiotemporal dis-
tributions. Here, we investigate the agreement in reference
SWE reported by the two reference datasets at various spa-
tial and temporal scales and explore how the choice of ref-
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erence dataset affects the assessed accuracy and ranking of
gridded SWE products. Analysis contained herein resulted in
the creation of a combined (snow course+ airborne gamma)
reference dataset that is used to critically assess 23 gridded
SWE products across the Northern Hemisphere in Mudryk
et al. (2024).

2 Data

2.1 Gridded datasets

Fourteen gridded SWE products were validated in this study
(Table 1). Products include those which utilize EO data, cou-
pled land–atmosphere reanalysis (with and without separate
snow models and/or data assimilation), snow models of vary-
ing complexity driven by reanalysis data, and data assimi-
lation schemes. Some products (e.g. ERA5, JRA-55, Snow
CCI, and U. Arizona) assimilate in situ snow depth mea-
surements, while others (e.g. ERA5-Land, MERRA2 and
GLDASv2.2) do not. Products are described in the references
listed in Table 1 except for ERA5-Snow, which is an offline
run of ERA5 without the assimilation of the IMS snow ex-
tent product to remove a temporal discontinuity associated
with the introduction of its assimilation in 2004 (Mortimer
et al., 2020; Ochi et al., 2023). All products cover the North-
ern Hemisphere except the U. Arizona dataset, which is lim-
ited to the conterminous US (CONUS). The current product
suite includes datasets which were part of a previous evalu-
ation reported in Mortimer et al. (2020), extended now with
updated product versions and entirely new products.

2.2 Reference datasets

2.2.1 Snow course SWE

Snow courses, also known as snow transects, consist of man-
ual gravimetric snow measurements made at multiple loca-
tions along a predefined transect averaged together to ob-
tain a single SWE value on a given date (WMO, 2018). In
Canada, measurements are typically conducted once or twice
per month during the snow season, although some sites are
only sampled near the timing of peak SWE, and measure-
ments are sparse across the Arctic (Vionnet et al., 2021a).
In the US, measurements generally start in late December
in high-elevation areas of the west and throughout Alaska
and after 1 January in the northeast. Measurement uncer-
tainty for various snow samplers ranges from ∼ 3 % to 13 %
(Table 2 in Dixon and Boon, 2012, and references therein;
López-Moreno et al., 2020). The snow course measurements
used in this study (Table 2, Fig. 1) are independent of the
data assimilated into any of the gridded SWE products, with
the exception of SnowCCI v2, which used an older Cana-
dian dataset (Brown et al., 2019) to interpolate spatially and
temporally varying snow densities (Luojus et al., 2021). The

snow course and gamma SWE reference data used in this
study are available from Mortimer and Vionnet (2024).

2.2.2 Airborne gamma SWE

The attenuation of gamma radiation by the water mass of
the snowpack (liquid or solid phase) can be related to SWE
provided the background soil moisture is properly accounted
for (Carroll, 2001). The US National Oceanographic and At-
mospheric Administration’s (NOAA) National Operational
Hydrologic Remote Sensing Center (NOHRSC) snow survey
program (https://www.nohrsc.noaa.gov/snowsurvey/, last ac-
cess: October 2023) has been using airborne gamma mea-
surements to estimate SWE operationally since 1979 (Car-
roll, 2001). Flights are conducted to measure gamma radia-
tion when the ground is snow-free (background attenuation
by soil moisture only) and again when the ground is snow-
covered (attenuation by soil moisture and the snowpack). The
operational equations used to relate gamma radiation to SWE
are described in Carroll (2001). The detection limit for this
method is ∼ 1000 mm SWE.

The NOHRSC snow survey network (Table 2, Fig. 1) con-
sists of approximately 2400 flight lines in 25 US states and
seven Canadian provinces (Carroll, 2001). SWE is reported
as an aerial average for each flight line, which is typically 15–
20 km long across a 300 m wide footprint. Flights are con-
ducted near the peak of the snow accumulation season and
during melt when SWE information is critically needed for
water supply outlook and flood forecasting (typically Febru-
ary through April depending on the location). Spatial cov-
erage of this dataset has varied over the years, especially
in the western US; flights over Alaska only began in 2003.
Accuracy of these data, determined from comparisons with
coincident ground-based snow observations during specific
field campaigns, is 4 %–10 % in prairie environments across
a SWE range of 20–150 mm (Carroll and Schaake, 1983) and
23 mm in densely forested terrain across a SWE range of 20–
480 mm (Carroll and Vose, 1984).

3 Methods

3.1 Evaluation of gridded datasets

The analysis period for each product is listed in Table 1 and
generally covers 1980–2020. Our analysis was restricted to
February through April, when the ratio of snow courses to
gamma SWE is most consistent (Fig. 1a). Validation statistics
(bias, unbiased root mean squared error – (uRMSE), and cor-
relation) were computed for North America, except U. Ari-
zona (CONUS-only). Our uRMSE estimate is defined as the
square root of the mean squared error minus the squared bias.
Statistics are calculated for all non-zero SWE ≤ 1000 mm
(both reference and product SWE must be ≤ 1000 mm for
inclusion) as well as for a subset of cases when SWE is
≤ 250 mm (see Sect. 4.4). The upper threshold (1000 mm),
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Table 1. Overview of the evaluated gridded SWE products.

Product Abbr. Period Grid Method Snow assim. Reference

JAXA AMSR2 JX 2014–2018 12.5 km Standalone passive microwave None Kelly et al. (2019)

Snow CCI CDR v1 C1 1980–2018 0.25° Passive microwave+ snow depth
assimilation

In situ snow depth Luojus et al. (2021)

Snow CCI CDR v2 C2 1980–2020 0.1° Same as C1 except grid spacing and
variable snow density

In situ snow depth

Brown-ERA5 BE 1981–2018 0.25° Temperature index snow model+
ERA5 forcing

None Brown et al. (2003),
Elias Chereque et al.
(2024)

Brown-JRA55 BJ 1981–2018 1.25° Temperature index snow model+
JRA55 forcing

None

Brown-MERRA2 BM 1981–2018 0.5°×
0.625°

Temperature index snow model+
MERRA2 forcing

None

Crocus-ERA5 Cr5 1980–2021 0.25° Crocus snow model+ERA5 forcing None Decharme and Barbu
(2024)

ERA5-Land EL 1980–2018 0.1° Reanalysis (HTESSEL LSM) None Muñoz-Sabater et al.
(2021)

ERA5 E5 1980–2018 0.25° Reanalysis (HTESSEL LSM) In situ snow depth+ IMS Hersbach et al. (2020),
de Rosnay et al. (2022)

ERA5-Snow ESn 1980–2018 0.25° Reanalysis (HTESSEL LSM) In situ snow depth patricia.rosnay@
ecmwf.int

GLDASv2.2 G2 2003–2018 0.25° Reanalysis (Catchment LSM) None Li et al. (2019)

JRA-55 JR 1980–2018 55 km Reanalysis (Simple Biosphere LSM) In situ snow depth+PMW Kobayashi et al. (2015)

MERRA2 M2 1980–2018 0.5°×
0.625°

Reanalysis (Catchment LSM) None Gelaro et al. (2017)

U. Arizona UA 1981–2017 4 km Data assimilation: surface snow
observations+PRISM temperature
and precipitation

In situ snow depth and SWE Zeng et al. (2018)

Table 2. Reference data used in this study (see Mortimer and Vionnet, 2024).

Geographic coverage Data provider Source

Sn
ow

co
ur

se Canada CanSWE v3 – Environment and Climate
Change Canada and partners

Vionnet et al. (2021a)
https://doi.org/10.5281/zenodo.5889352
(Vionnet et al., 2022)

Western US and Alaska U.S. Department of Agriculture Natural
Resources Conservation Service (NRCS)

https://www.nrcs.usda.gov/wps/portal/
wcc/home/snowClimateMonitoring/
snowpack/ (last access: February 2023)

Northeast US Northeast Regional Climate Center https://www.nrcc.cornell.edu/ (last ac-
cess: October 2023)

New Hampshire Department of
Environmental Services – Dams

https://www.des.nh.gov/ (last access:
October 2023)

Maine Geological Survey https://mgs-maine.opendata.arcgis.
com/datasets/maine-snow-survey-data/
explore (last access: October 2023)

Gamma US and transboundary
Canadian watersheds

NOAA National Operational Hydrologic
Remote Sensing Center (NOHRSC)

https://www.nohrsc.noaa.gov/
snowsurvey/ (last access: January 2022)

which is consistent with the maximum detection limit of the
airborne gamma SWE method, removes < 2 % of the snow
course data (4 % of the data in mountain regions).

Reference SWE was matched up in space and time with
gridded SWE at the native product resolution. To reduce er-
rors from mismatched water and ice masks, we retained ref-
erence sites that have SWE estimates from two-thirds of the
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products listed in Table 1 as this number is roughly equiva-
lent to the number of products covering the full spatial and
temporal domain. For gamma SWE, we used the midpoint of
each flight line for geolocation, which differs slightly from
Cho et al. (2019, 2020) and Tuttle et al. (2018), who weighted
the average of the gamma SWE footprint (using a fixed di-
ameter of 330 m assigned to each flight line) contained within
each product grid cell. We found that both methods produced
similar results, so we used the flight line midpoint for sim-
plicity.

The reference data were averaged to the resolution of
each product in its native grid. Next, to reduce oversam-
pling in areas with spatially dense networks, all product–
reference pairs within sequential 200 km windows were av-
eraged (see Sect. S0 in the Supplement). This averaging win-
dow corresponds to the range of non-mountain SWE vari-
ability (∼ 150–250 km, Fig. S5 in the Supplement, Pulliainen
et al., 2020). Snow course and gamma SWE were considered
separately, and mountain measurements were separated from
non-mountain ones. This aggregation approach aims to pro-
vide a more even distribution of product errors across land
cover types and snow classes. Sensitivity analysis of various
spatial aggregation windows between 4 km (corresponding to
the finest resolution product analyzed) and 500 km showed
little impact of aggregation window size on product ranking
(Fig. S1 in the Supplement, limited to 300 km for display pur-
poses). In general, product metrics improve with aggregation
window size up to ∼ 100 km, but inter-product differences
remain fairly consistent. We selected a 200 km aggregation
window as a compromise between sample size and spatial
distribution. This approach, which effectively averages the
reference data at the scale of the native product grid and then
averages product errors within a larger area, is sufficiently
flexible to enable the tests of covariates applied in Sect. 4.3
through 4.5.

Due to the well-documented challenges in estimating and
validating mountain SWE at coarse resolutions (Dozier et al.,
2016; López-Moreno et al., 2013; Wrzesien et al., 2019),
we also computed metrics separately for mountain and non-
mountain reference data. Mountain sites are defined as those
intersecting the Global Mountain Biodiversity Assessment
(GMBA) Mountain Inventory v2 (Snethlage et al., 2022a, b;
https://www.earthenv.org/mountains, last access: June 2023)
with a 25 km buffer or with a 2° slope mask derived from
the GETASSE30 DEM. The 25 km buffer was added to the
GMBA mountain mask to avoid contamination of product
grid cells with fractional mountain terrain. SnowCCI prod-
ucts were excluded from our analysis of mountain regions
because SWE is not provided across a complex terrain mask
applied to those datasets.

3.2 Diagnosing the impact of reference data
characteristics

We evaluated how differences in the measurement method
(snow course versus airborne gamma), the spatiotempo-
ral distribution, and the SWE magnitude of the reference
datasets, and differences in the elevation of the reference
measurement compared to the product grid impact both abso-
lute and relative accuracies of the gridded products. For each
of these covariates, a difference-of-means test (two-sided in-
dependent Student’s t test) was applied to determine whether
the mean product metrics calculated using snow courses are
different from those obtained with airborne gamma, using a
significance level of 95 %. Consistency in product rankings
was assessed with the Spearman rank correlation coefficient.

3.2.1 Reference data measurement method

To investigate how the reference measurement method im-
pacts the observed reference SWE value, we quantified the
agreement between snow courses and airborne gamma SWE
data at various spatial separations (5, 10, 25, and 50 km) and
temporal lags (0, ± 3, ± 7 and ± 10 d), separately for moun-
tain and non-mountain regions. This analysis was conducted
on the non-aggregated reference data (Fig. 1b). The spatial
separation of measurements in the two datasets was taken as
the linear distance between the snow course location and the
gamma flight line midpoint. We assigned a 10 % uncertainty
to both reference datasets, informed by the measurement ac-
curacies described in Sect. 2.2. Addition in quadrature of
these independent uncertainties yields a combined baseline
uncertainty of∼ 14 % for the airborne gamma – snow course
comparison. This value is likely an underestimate and does
not consider issues of spatial representativeness and spatial
scale which cannot be quantified with the available data used
in this study, nor does it consider operator error in the case of
snow courses (López-Moreno et al., 2020).

3.2.2 Spatial distribution of the reference data

To evaluate the impact of differences in spatial coverage be-
yond the scale of a typical product grid cell (Table 1) on the
relative and absolute product accuracies calculated with ei-
ther reference dataset, we generated matched reference data
subsets. These subsets are composed of snow course sites
having at least one gamma site within a specified linear dis-
tance and vice versa. We tested various distances between 25
and 500 km, separately for mountain and non-mountain sites
(i.e. reference sites, where both are classified as either moun-
tain or non-mountain). For each spatial separation distance,
the matched snow course and gamma reference data were
each spatially aggregated using a 200 km aggregation win-
dow as described in Sect. 3.1. In this analysis of spatial dis-
tribution, no restriction was placed on temporal separation of
the reference data, meaning the reference sites can be from
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any date during the analysis period. In this way, spatial dis-
tribution serves as a proxy for similar land cover types.

3.2.3 SWE magnitude

To evaluate the impact of SWE magnitude on relative and
absolute product accuracies calculated with either refer-
ence dataset, we calculated validation metrics for sequential
50 mm SWE bins based on the February–April climatologi-
cal mean of the spatially aggregated reference sites (Sect. 3.1,
Fig. 1c) having at least five observations during the study pe-
riod.

3.2.4 Elevation bias

Mountain snowpacks exhibit considerable spatial and tem-
poral variability at short scales, associated with a suite of
complex and interrelated factors including orientation, wind
exposure, vegetation cover, slope, and elevation (e.g. Clark
et al., 2011; López-Moreno and Stähli, 2008; Mott et al.,
2010, 2018; Pomeroy et al., 1998, 2007, and references
therein; Vionnet et al., 2021b). Previous studies have often
identified a positive correlation between elevation and SWE
that tapers off at high elevations above the treeline (e.g. Du-
rand et al., 2009; Grünewald et al., 2014; Kirchner et al.,
2014; Lehning et al., 2011; Rohrer et al., 1994), which is
above the elevation of most of our reference data. There-
fore, if reference measurements are consistently collected
at higher (lower) elevations relative to a product grid cell
centroid, we might expect them to have more (less) SWE
compared to the grid cell average. To understand the im-
pact of elevation bias on SWE validation statistics, we com-
pared the elevation of product grid centroids with the eleva-
tion reference data sites. We used the model surface geopo-
tential height converted to metres or in the case of Crocus
and U Arizona, the DEM used by the model. For EO prod-
ucts which do not rely on any type of elevation information,
we used the GLOB30 DEM re-gridded to the native prod-
uct grid. Reference data elevations were screened for outliers
using the USGS 30 m NED1 DEM (NED2 60 m DEM for
Alaska) (Gesch et al., 2018), and sites with metadata eleva-
tions > |1000|m from the NED1 DEM were removed. Ref-
erence sites without accompanying metadata elevations (16
gamma sites, 33 snow course sites) were assigned the in-
tersecting USGS NED DEM elevation. Validation statistics
were calculated for sequential 100 m elevation bias bins.

4 Results

4.1 Overall gridded product performance

The relationship between gridded SWE products and ref-
erence data over the full spatial domain (using the aggre-
gated reference data as shown in Fig. 1c) is shown in Fig. 2.
There are clear differences in performance among the prod-

ucts. U. Arizona outperforms all products regardless of the
reference dataset, but the dataset domain and hence the val-
idation statistics are limited to CONUS. Considering the
entire North America domain, ERA5-Land, ERA5, ERA5-
Snow, and Crocus-ERA5 consistently rank among the top
half of the products evaluated, albeit with some differences
according to the metric and reference dataset. The Brown
temperature index model products, despite employing rel-
atively simple formulations for snow processes, also have
reasonable performance, although the JRA-55 forcing re-
sults in poor correlations against snow courses (Fig. 2). A
strength of the U. Arizona, ERA5-Land, and Crocus-ERA5
products is that they show good performance across the
full range of reference SWE values (Fig. 2). While ERA5
and ERA5-Snow have strong correlations against both ref-
erence datasets, these products suffer from larger biases in
high SWE regions because their maximum snow depth is
fixed at 1.4 m (corresponding to ∼ 500 mm SWE depend-
ing on the snow density) to prevent excessive snow accu-
mulation at high elevations and latitudes (Patricia de Ros-
nay, personal communication, 2022). The JAXA-AMSRE,
JRA-55, MERRA2, and GLDASv2.2 products exhibit the
weakest performance. SWE estimates from these products
have very weak statistical relationships to observed SWE.
This makes them unsuitable to discern the impact of co-
variates (i.e., sampling methodology, spatiotemporal distri-
bution, SWE magnitude, product–reference elevation bias as
described in Sect. 3.2) on the differing product statistics ob-
tained with snow courses or airborne gamma SWE, so they
are excluded from this analysis in Sect. 4.3 through 4.5.
The best-performing EO-based products (Snow CCI) satu-
rate when reference SWE exceeds ∼ 250 mm (Fig. 2), which
is an important consideration for the appropriate use of these
datasets.

The validation statistics shown in Fig. 2 provide bench-
mark information on the performance of currently available
gridded SWE products over North America, building on an
earlier assessment of a previous generation of products (Mor-
timer et al., 2020). A detailed analysis of these and nine
other gridded SWE products over the Northern Hemisphere
is provided in Mudryk et al. (2024). Here we focus on the
impact of choice of reference dataset on relative and ab-
solute product accuracies. For all products, the bias mag-
nitude and uRMSE are larger using the snow course refer-
ence dataset as compared to the airborne gamma reference
dataset. This difference is due in large part to the higher pro-
portion of mountain snow course sites for which validation
statistics are poor (Fig. 3): over 50 % of the snow course
data are located in mountain areas compared to just over
30 % of the gamma data. Product performance is consider-
ably worse in mountain compared to non-mountain regions
(Fig. 3), but the discrepancy is larger when snow courses are
used as the reference data. In the following sections, we eval-
uate how differences in measurement method, spatiotempo-
ral distribution, reference SWE magnitude, and differences
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Figure 2. Product versus reference SWE density scatter for measurements > 0 and ≤ 1000 mm during February–April. See Table 1 for
product names, descriptions, and time periods. Note that Snow CCI (*) excludes areas of complex terrain, U. Arizona is limited to CONUS,
and JAXA-AMSR2 (2014–2018) and GLDASv2.2 (2003–2018) are limited temporally.

Figure 3. Box plot of statistical performance for products listed in Table 1 computed separately for snow courses and gamma SWE and
mountain versus non-mountain (“flat”) regions across the full spatial domain.

between matched reference and gridded product elevations
impact both absolute and relative product statistics. A sub-
set of products with coverage of both mountain and non-
mountain areas and a reasonable relationship with reference
SWE as determined from Fig. 2 – Crocus-ERA5, Brown-
ERA5, Brown-MERRA2, Brown-JRA55, ERA5, ERA5-

Land, ERA5-Snow, and U. Arizona – are used for this anal-
ysis.
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Figure 4. Snow course versus gamma measurements. (a) Measurements on the same date within 5, 10, 25, and 50 km for SWE > 0 and
≤ 1000 mm. (b) Measurements within 25 km on the same date (0 d) and within 3, 7, and 10 d.
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Figure 5. Product performance metrics computed with airborne gamma SWE versus snow courses for the full spatial domain (solid grey
circles) and for reference data spatial subsets (c), defined by the linear distance between the gamma and snow course sites for (a) mountain
and (b) non-mountain regions. For example, 200 km refers to metrics calculated using only the subset of gamma (snow course) reference data
having a snow course (gamma) site within 200 km. Each dot represents one of the products Brown-ERA5, Brown-JRA55, Brown-MERRA2,
ERA5, ERA5-Snow, ERA5-Land, Crocus-ERA5, and U. Arizona. Spearman correlation coefficients, which assess the agreement in product
rankings calculated with snow courses versus gamma SWE, are summarized by the range across the spatial lags tested and for the full domain
(parentheses).

4.2 Reference data measurement method

Comparisons of snow course versus airborne gamma refer-
ence SWE at various spatial separation distances (Fig. 4a)
and temporal lags (Fig. 4b) demonstrate poor agreement in
the mountain regions, even at short distances and with no
temporal lag (Fig. 4a, bottom row). Depending on the spa-
tial separation distance and temporal lag, the mean difference
between gamma and snow course measurements in moun-
tain regions is between 35 % and 55 % of the mean refer-
ence SWE. The correlation of the two mountain reference
measurements drops markedly with increasing distance. The
agreement between snow course and gamma reference SWE
is much stronger in non-mountain regions: when constrained
to the same dates, the mean difference in non-mountain SWE
measured by gamma and snow courses is ∼ 20 % across
all spatial distances tested (Fig. 4a top row shows mean
bias ∼ 20 mm and mean reference SWE ∼ 100 mm). Relax-
ing the temporal constraint (Fig. 4b) allows for many more
paired measurements such that the mean difference in non-
mountain regions drops to less than 12 % of the mean ref-
erence SWE for temporal lags larger than zero (Fig. 4b, top
row); this is within the 14 % baseline uncertainty estimate
for this comparison (Sect. 3.2.1). In addition, for all sep-
aration distances and temporal lags, the non-mountain ref-
erence SWE values are reasonably correlated with one an-
other: generally above 0.7, although their correlation drops
slightly at the longest temporal lags. Therefore, we con-

clude that in non-mountain terrain, the reference dataset
measurement method does not result in detectable differ-
ences in the determination of product performance, up to
the spatial (50 km) and temporal (10 d) lags evaluated. We
note that the agreement of the reference datasets in non-
mountain regions as evaluated up to 50 km is comparable to
the grid spacing of the majority of SWE products consid-
ered (Table 1). However, because the majority (> 90 %) of
the matched data are located in either the forested northeast
or Central Great Plains of the US (NA L1 Great Plains Ecore-
gion as determined from https://www.epa.gov/eco-research/
ecoregions-north-america, last access: November 2021), we
are unable to extrapolate this result directly to all North
American non-mountainous regions.

4.3 Reference data spatial distribution

Having directly compared the two sources of reference
SWE (Sect. 4.2), in the following sections, we provide
comparisons of product performance metrics calculated us-
ing one reference dataset or the other and demonstrate
under what conditions and to what extent they agree.
This analysis is restricted to the Crocus-ERA5, Brown-
ERA5, Brown-MERRA2, Brown-JRA55, ERA5, ERA5-
Land, ERA5-Snow, and U. Arizona products (see Sect. 4.1).
First, we reassess differences for this product suite over
the full spatial and temporal domain, separately for moun-
tain and non-mountain areas. Over the full domain, there
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is reasonable agreement in relative product rankings of all
three metrics in both mountain and non-mountain regions
(expressed by Spearman correlation coefficients, Fig. 5).
However, there is poor agreement on the absolute bias and
uRMSE magnitudes, especially in mountain regions: the grey
circles do not lie on the 1 : 1 line, and the mean difference
in product bias and uRMSE computed with either reference
dataset is larger than the uncertainty envelope attributed to
measurement error (Fig. S2 in the Supplement, orange dots).
Further, the mean product statistics calculated with either ref-
erence dataset are distinct from each other (p < 0.05) except
for the bias in non-mountain regions and the correlation in
mountain regions (Fig. S2, blue dots).

The statistical differences in metrics assessed from the
snow course versus airborne gamma reference datasets as de-
scribed above may stem from differences in where each ref-
erence dataset has coverage (Fig. 1). Gamma SWE is lim-
ited to the US and southern Canada, and so it misses the
high SWE areas of the boreal forest (e.g. northern Quebec,
Canada), which is sampled by snow courses. Roughly one-
third of the gamma data are in the Central Plains (NA L1
Great Plains Ecoregion), which has limited (< 2.4 %) snow
course data for the paired analysis described in Sect. 4.2.
Conversely, 12 % of the snow course data are in arctic regions
(NA L1 Ecoregions – Arctic Cordillera, Taiga, Tundra, Hud-
son Plains) compared to just 3 % of the gamma data. Unless
all products perform equally well across all land cover types
(which is very unlikely), these spatial differences are likely to
result in differing product accuracies calculated with the two
reference datasets. To examine how sensitive the assessed
product performance is to differences in spatial coverage of
the reference data we recalculated performance metrics using
only reference sites within 25 to 500 km (Sect. 3.2.2) of each
other (Fig. 5, for display purposes only 50, 200 and 500 km
are shown).

Spatially restricting the reference data had a minor impact
on the agreement in product ranking (Spearman correlation
coefficients, Fig. 5). In mountain regions, spatially restricting
the analysis domain resulted in minimal change in product
metrics (Fig. 5a), and thus there was no improvement in the
discrepancy in product metrics according to choice of ref-
erence dataset (Fig. S2). Spatially restricting the reference
data did, however, alter the uRMSE in non-mountain regions
(Fig. 5b). At smaller separation distances (< 300 km) the dis-
crepancy in product uRMSE decreased (Fig. 5b: green and
orange circles fall close to the 1 : 1 line) such that the values
calculated with either snow courses or airborne gamma refer-
ence data are statistically indistinguishable from one another
(Fig. S2 solid blue line above the dashed horizontal line).

The fact that the two reference datasets still yield differ-
ent performance metrics in mountain regions despite the spa-
tial restrictions applied above suggests that (i) our spatial do-
mains are not sufficiently restrictive, or that we need to also
consider the temporal domain, or that (ii) additional factors
such as SWE magnitude or elevation bias have a greater im-

pact on reference dataset performance agreement than spa-
tial distribution does. To test the impact of temporal distri-
bution on absolute and relative product statistics, we fur-
ther restricted the reference dataset to only include nearby
(within 200 km) measurements collected within 10 d of each
other (Fig. 6). For the spatial distance we considered sample
size and the distance at which non-mountain statistics con-
verged. Specifically, in non-mountain areas there was no dif-
ference in mean product uRMSE computed with either refer-
ence dataset when constrained to sites within 250 km of each
other, and there is lower agreement in non-mountain prod-
uct ranking (bias and correlation) at spatial separation dis-
tances >∼ 150–200 km (Fig. S3 in the Supplement). This
spatial subset of sites within 200 km of each other com-
prises most of the mountain observations (> 95 % of gamma
data, ∼ 75 % of snow course data) but only around half
(∼ 60 % of gamma data, ∼ 50 % of snow course data) of the
non-mountain data. The temporal distance was informed by
our direct comparison of reference SWE (Sect. 4.2, Fig. 4),
which showed little impact on agreement up to 20 d. The
temporal restriction reduces the spatial subset by an addi-
tional 75 % (retains 85 % and 20 % of the spatially restricted
gamma and snow course data, respectively).

Temporally restricting (within 10 d of each other) nearby
reference measurements (i.e. within 200 km of each other)
reduced the mean difference in mountain (product) bias and
uRMSE computed with the two reference datasets by over
25 % (the hollow purple circles in Fig. 6 move closer to
the 1 : 1 line compared to the solid purple dots). Yet, these
metrics remain statistically larger and distinct when com-
puted against snow courses rather than airborne gamma.
Such differences are expected given the discrepancy in ob-
served reference values at the measurement scale (Fig. 4). In
non-mountain regions, agreement of the spatially restricted
dataset was already strong, and the temporal restriction did
not result in any further improvement (Fig. 6). In the next
sections we use this coincident reference data subset (200 km
and ± 10 d) to explore the impact of SWE magnitude and el-
evation bias on absolute and relative product accuracies. This
spatial and temporal subset comprises less than 20 % of the
original reference data, so comparisons with the full domain
are included where appropriate. The 200 km distance is con-
sistent with previously reported SWE autocorrelation lengths
of 150 km to 250 km from snow course data (non-complex
topography) (Pulliainen et al., 2020) and with analysis of the
spatial variability of the snow courses used in our analysis
(Fig. S5).

4.4 SWE magnitude

The relationship between product and reference SWE deteri-
orates for most gridded products at higher SWE magnitudes
(Fig. 2). In some cases, there is a clear contribution to this de-
terioration by thresholds that are applied to avoid excessive
snow accumulation (i.e. ERA5 and ERA5-Snow, Sect. 4.1)
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Figure 6. Product metrics computed with airborne gamma versus snow course sites within 200 km of each other collected at any time during
February–April 1980–2020 (solid circles) and for a subset of reference measurements collected within 10 d of each other (hollow circles).
Each dot represents one of the products: Brown-ERA5, Brown-JRA55, Brown-MERRA2, ERA5, ERA5-Snow, ERA5-Land, Crocus-ERA5,
and U. Arizona, in mountain (purple) and non-mountain (green) regions. The p values from the two-sided independent Student’s t test
(Sect. 3.2) compare the difference in mean product statistic computed with snow course and with airborne gamma. When p < 0.05 the
ensemble mean metrics computed using either reference data are statistically distinguishable at 95 % confidence. The map on the lower right
shows reference data locations of the spatially and temporally constrained subset (not separated by reference data type for display purposes).

or, in the case of EO approaches, as the physical retrieval ba-
sis is no longer applicable (Chang et al., 1982, 1987; Luojus
et al., 2021). In mountain areas, despite having similar eleva-
tion distributions, snow courses sample a much larger range
of SWE than the airborne gamma dataset does, whether eval-
uating the complete domain or the spatially and temporally
restricted subset (Fig. 7). In non-mountain areas, mean SWE
observed by snow courses and airborne gamma is compara-
ble over the coincident reference subset but is slightly higher
for snow courses over the full domain due to high SWE sites,
primarily in the northern boreal forest, which are not sampled
by airborne gamma.

For the subset of products used to analyze the impact of
covariates (as determined from Fig. 2, Sect. 4.1), bias and
uRMSE magnitude increase with reference SWE magnitude
in both mountain (Fig. 8) and non-mountain regions (not
shown) whether computed over the full reference domain
(Fig. S4 in the Supplement) or the restricted one. The spread
in product uRMSE and bias values also increases with SWE
magnitude; however, because airborne gamma observations
are limited to moderate SWE values, it fails to capture most

of these inter-product differences. Correlations calculated us-
ing snow course or gamma reference SWE are fairly sta-
ble between 50 and 150 mm. Those calculated using snow
courses drop sharply above the 100–150 mm SWE bin except
for U. Arizona, consistent with Fig. 2, which shows good
agreement between reference and U. Arizona SWE across
the full SWE range.

Restricting the coincident subset to the SWE domain con-
sistently sampled by both reference datasets in mountain
regions (250 mm and below as constrained by the gamma
dataset, Fig. 7a) reduced the discrepancy in product metrics
(bias and uRMSE) computed with snow courses and airborne
gamma in mountain regions by almost two-thirds (Fig. 9a).
The systematic negative product bias against snow courses
observed over the full analysed mountain SWE range is re-
duced considerably when the moderate and high SWE sites
responsible for much of this underestimation are excluded.
Of course, restricting analysis in mountain regions to SWE
≤ 250 mm is unrealistic since this represents shallow-to-
moderate mountain snow conditions. The uRMSE is reduced
for both reference datasets, but the magnitude of improve-
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Figure 7. Climatological reference SWE (a–d) and elevation (e, f) distribution of the aggregated reference data (Fig. 1c) for the spatially and
temporally restricted subset (a, b) and the full domain (e, f) for mountain (a, c, e) and non-mountain (b, d, f) regions. The spatiotemporal
subset (a, b) is the same reference dataset used to calculate the product statistics shown in Fig. 6 (hollow dots). The y-axis values are total
counts. The 250 mm SWE threshold applied in the analysis of mountain regions (Figs. 9 and 10) is indicated by the grey vertical line.

ment is considerably larger for the snow course dataset which
improves the inter-reference dataset agreement (Fig. 9a, hol-
low purple circles fall along the 1 : 1 line) such that the en-
semble means calculated with either reference dataset are no
longer statistically distinct (p= 0.09). Restricting the refer-
ence dataset to sites with climatological SWE ≤ 250 mm had
negligible impact on non-mountain product metrics (and so
the full domain is not shown on Fig. 9a) because the non-
mountain reference SWE distributions are similar and mostly
below the 250 mm threshold (Fig. 7).

4.5 Elevation bias

A consistent high-level message is that products perform
considerably worse in mountains compared to non-mountain
areas. Restricting the analysis to moderate levels of SWE
(≤ 250 mm) decreases the discrepancy in product statistics
calculated with one reference dataset versus the other, but
they are still worse in mountain compared to non-mountain
regions (Fig. 9a). As outlined in Sect. 3.2.4, in mountain and
complex terrain, the relationship between SWE and elevation

can result in large SWE gradients over short distances (i.e.
less than a single product grid cell). In these regions, system-
atic differences in elevation between reference measurements
and the centroid of a product grid could, therefore, produce
validation errors that are a result of the validation approach
rather than the products themselves.

To investigate the impact of elevation biases, we com-
puted product metrics for sequential 100 m elevation dif-
ference bins (determined by the reference measurement lo-
cation versus the centroid of a product grid, Sect. 3.2.4).
This analysis is restricted to mountain regions because el-
evation mismatches are smaller in non-mountain regions
(< 10 % of reference–product data pairs have elevation bi-
ases > |200|m). The mean metrics of Brown-ERA5, Brown-
MERRA2, Brown-JRA55, ERA5, ERA5-Snow, ERA5-
Land, Crocus-ERA5, and U. Arizona are shown in Fig. 10.
Product SWE bias increases linearly with elevation differ-
ence and the minimum uRMSE occurs at or near zero ele-
vation difference. Correlations tend to be highest when el-
evation biases are smallest. The impact of elevation biases
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Figure 8. Product performance in mountain regions for sequential 50 mm SWE bins (x-axis location is bin midpoint) over the spatially and
temporally restricted domain. Bottom row shows the difference between snow-course-derived and airborne-gamma-derived metrics for each
product and bin. Displayed product metrics are limited to ≤ 250 and ≤ 500 mm for airborne gamma and snow course, respectively, due to
the limited number of data pairs above these thresholds (Fig. 7).

on product performance is reduced, but not eliminated, for
snow courses when SWE is restricted to 250 mm and below
(Fig. 10, blue hollow circles). This indicates that snow course
sites with large elevation biases also have moderate to high
SWE. Surprisingly, we did not find a systematic relationship
between elevation bias and product grid spacing (e.g. larger
and/or greater frequency of elevation bias for more coarsely
gridded products).

Restricting the analyzed data pairs to those with elevation
biases < |200|m (Fig. 9b, red) improves the mean bias and
uRMSE across both the full and restricted SWE domains.
However, the improvement in bias is small compared to that
achieved by SWE thresholding (Fig. 9a). The discrepancy in
product metrics (bias and uRMSE) assessed with one refer-
ence dataset versus the other also improves when restricted
to data pairs with small elevation biases, although improve-
ment is smaller when considering an already restricted set of
pairs for which SWE ≤ 250 mm (Fig. 9b, hollow circles).

5 Discussion

There are limited types of reference data available to evalu-
ate gridded SWE products, with snow courses and airborne
gamma providing the most appropriate options. Our analysis
shows that the choice of reference dataset has little impact

on the general assessment of relative product performance
(Fig. 2) but has a large impact on the magnitude of the statis-
tics calculated in mountain areas.

5.1 Non-mountain regions

There is no measurable difference in SWE measured by air-
borne gamma or snow courses in non-mountain terrain up to
the scale of most gridded products evaluated (Fig. 4). This
result suggests the reference data are sampling the true SWE
field at spatial and temporal scales less than its intrinsic vari-
ability, and hence the reference SWE observations are repre-
sentative at scales appropriate for gridded SWE evaluation
in non-mountain areas. When constrained spatially, which
serves as a proxy for land cover type, validation statistics
from either of the two reference datasets are comparable
(Fig. 5). The fact that validation statistics from either of the
two independent reference datasets are comparable in non-
mountain regions when evaluated over similar environments
demonstrates that we can robustly validate gridded SWE es-
timates in such regions. Together, the strong agreement in
reference SWE and consistent accuracies suggests that we
can confidently use these two reference datasets in concert.
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Figure 9. Sensitivity of product metrics computed with gamma SWE versus snow courses to (a) SWE magnitude and (b) elevation bias for
the spatially and temporally restricted domain. (a) Mountain (purple) and non-mountain (green) product metrics for SWE ≤ 1000 mm (solid
circles) and SWE ≤ 250 mm (hollow circles). (b) Mountain product metrics for reference–product pairs with elevation biases < |200|m (red
circles) and with no elevation bias restriction (purple) for the full (solid) and restricted≤ 250 mm (hollow) SWE domain. Each dot represents
one of the products Brown-ERA5, Brown-JRA55, Brown-MERRA2, ERA5, ERA5-Snow, ERA5-Land, Crocus-ERA5, and U. Arizona.
Squares represent the mean of the products. The t test p values are as in Fig. 6. Solid purple dots correspond to hollow purple in Fig. 6.
Non-mountain SWE ≤ 1000 mm circles overlap almost entirely with SWE ≤ 250 mm and are not shown. Purple dots in (a) and (b) are the
same.

5.2 Mountain regions

In mountain areas, challenges remain surrounding the es-
timation and evaluation of coarse-resolution gridded SWE
products. The U. Arizona SWE product demonstrates that
strong performance in mountain areas is possible if obser-
vations from dense national in situ networks (SNOTEL and
COOP) are combined with downscaled temperature and pre-
cipitation data (PRISM) at a fine spatial resolution (Zeng
et al., 2018). Aside from this product, a consistent high-
level message from our analysis is that products perform
considerably worse in mountain compared to non-mountain
areas. The grid spacing of nearly all products evaluated is
larger than the mountain SWE autocorrelation length deter-
mined from our reference snow courses (. 5 km, Fig. S6
in the Supplement), which suggests that the current suite of
global reanalysis and EO products are too coarse to capture
the smallest-scale information provided by the reference data
in mountain regions. This is a well-documented issue (Fang
et al., 2022, and references therein; Kim et al., 2021; Liu

et al., 2022; Snauffer et al., 2016; Terzago et al., 2017; Wrze-
sien et al., 2019). However, our analysis also shows that the
choice of reference data may also contribute to differences in
assessed product performance, as demonstrated by the large
discrepancy in product metrics computed with the two refer-
ence datasets in coincident mountain areas (Fig. 6).

In mountain areas, SWE magnitude has the largest im-
pact on product accuracies and their agreement according to
the choice of reference dataset (Fig. 9a). Elevation bias and
the spatiotemporal distribution of the reference datasets have
comparable impacts, both of which are smaller than the im-
pact of SWE magnitude. High SWE observations also tend
to have large elevation biases, so the order in which the el-
evation bias and SWE thresholds are applied will influence
their relative impact.

The systematically higher SWE measured by snow
courses in mountain areas (compared to airborne gamma)
(Fig. 7), even over short distances (5 km) (Fig. 4a), trans-
lates to measurable differences in product bias and uRMSE
(Figs. 3 and 5a). It is only possible to obtain reasonable
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Figure 10. Mean mountain bias, uRMSE, correlation, and total number of reference–product data pairs for sequential 100 m elevation bias
bins (reference minus product elevation) for the products Brown-ERA5, Brown-JRA55, Brown-MERRA2, ERA5, ERA5-Snow, ERA5-Land,
Crocus-ERA5, and U. Arizona. Metrics are computed for the spatially and temporally restricted reference dataset (Sect. 4.3) over the full
(≤ 100 mm) and restricted (≤ 250 mm) SWE ranges. The x-axis labels indicate the centre of a 100 m wide elevation bin. Only bins with > 2 %
of total data pairs are shown. Gamma statistics (orange circles) are nearly identical for both SWE ranges, so solid and hollow circles often
overlap.

reference dataset agreement in product metrics by restrict-
ing the analysis to sites with climatological mean SWE of
250 mm and below (Fig. 9a). Such a restriction is unrealistic
as it omits a majority of the SWE range observed by snow
courses, at which differences in product performance are
greatest. Airborne gamma is known to underestimate SWE in
areas with high snowpack spatial variability (Carroll and Car-
roll, 1989; Cho et al., 2019; Cork and Loijens, 1980), com-
monly caused by drifting snow or complex terrain. Consid-
ering the full spatiotemporal domain, despite having similar
elevation distributions to snow courses, the aggregated air-
borne gamma SWE estimates have a maximum of∼ 350 mm
(Fig. 7), which best represents shallow mountain snow con-
ditions. This is an important consideration for the appropriate
use of airborne gamma SWE estimates in these regions.

5.3 Towards a combined North American reference
SWE dataset

Across North America, snow course and airborne gamma
networks have largely complementary spatial coverage
(Fig. 1). Creating a combined reference dataset using both
of these sources contributes to a fuller picture of gridded
SWE dataset performance. Given the strong agreement in
reference SWE and their derived product accuracies in non-

mountain areas, we are confident in pooling all snow course
and gamma SWE observations together and computing a sin-
gle product accuracy from these pooled data. As there is lim-
ited overlap between the datasets in the non-mountain do-
main outside of the northeastern US, weighting as a function
of footprint size or spatiotemporal sampling density is not
necessary.

In mountain regions, the decision on whether and how to
combine the reference data is less straightforward because of
the lack of agreement between snow course measurements
and gamma-derived estimates of SWE (e.g. Fig. 4). Rea-
sonable alignment in mountain SWE product metrics from
the two reference datasets only occurs when constraints on
similar locations, dates, and climatological SWE are ap-
plied (Fig. 9). The higher spatial and temporal density of
the snow course dataset (Fig. 1) will bias any combined
dataset towards snow courses, and we considered evenly
weighting snow courses and airborne gamma in mountain
regions to address this. However, Fig. 7 shows the gamma
SWE distribution is shifted toward lower values in moun-
tain areas, so evenly weighting snow courses and gamma
SWE would artificially reduce the relative peak SWE (be-
cause the less frequent gamma flights are typically conducted
near peak SWE). Given these constraints we chose not to
combine snow course and gamma SWE data in mountain
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Figure 11. Combined and spatially aggregated in situ SWE dataset consisting of snow course and airborne gamma SWE measurements over
North America for February through April 1980–2020. Grey shading indicates mountain regions.

areas. Instead, we recommend considering these two refer-
ence datasets separately in mountain regions. The new com-
bined reference dataset, illustrated in Fig. 11 (described in
Sect. 3.1), is the basis of a comprehensive evaluation of 23
gridded SWE products over the Northern Hemisphere in the
context of the European Space Agency “Satellite Snow Prod-
uct Intercomparison and Evaluation Exercise” (SnowPEx;
Mudryk et al., 2024).

6 Conclusions

The choice of reference dataset has little impact on SWE
product ranking but a large impact on the magnitude of val-
idation statistics in mountain regions (Fig. 3). The strong
agreement in non-mountain areas occurs because the refer-
ence SWE measured by gamma or snow courses agrees up to
the scale of most gridded products evaluated (Figs. 4 and S5).
In mountain regions the poor agreement in product statis-
tics results primarily from the larger SWE range sampled
by snow courses compared to airborne gamma (Fig. 7). Rea-
sonable agreement in mountain product statistics was only
achieved by restricting the reference data to similar dates, lo-
cations, climatological SWE, and elevation biases (Fig. 9).
This approach is ultimately not appropriate, however, as
it omits all but shallow-to-moderate mountain snowpacks.
Building on insights gained from our analysis of reference
SWE agreement and of the impact of covariates on product
accuracies (SWE magnitude and product–reference elevation
offsets both impact the absolute and relative product perfor-
mance), we produced a combined spatially aggregated North
American reference SWE dataset (Fig. 11). This dataset is
used to assess gridded SWE products in non-mountain areas
as part of the SnowPEx+ intercomparison project (Mudryk
et al., 2024).

Data availability. The reference data are available from Mortimer
and Vionnet (2024), https://doi.org/10.5281/zenodo.10287093, ex-
cept for data from the Ministère de l’Environnement, de la Lutte
contres les changements climatiques, de la Faune et des Parcs that
we are unable to share publicly. Gridded SWE product (Table 1)
availability is as listed below.
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Product name Availability/DOI
B-TIM-ERA5 https://doi.org/10.5683/SP3/

HHIRBU (Elias Chereque, 2024a)
B-TIM-JRA55 https://doi.org/10.5683/SP3/

X5QJ3P (Elias Chereque, 2024b)
B-TIM-MERRA2 https://doi.org/10.5683/SP3/

C5I5HN (Elias Chereque, 2024c)
Crocus-ERA5 https://doi.org/10.5281/zenodo.

10943718 (Decharme and Barbu,
2024)

ERA5 https://doi.org/10.24381/cds.
adbb2d47
(Hersbach et al., 2018)

ERA5-Snow Available on request from
patricia.rosnay@ecmwf.int

ERA5-Land https://doi.org/10.24381/cds.
e2161bac
(Muñoz Sabater, 2019)

GLDAS v2.2 [CLSM] https://doi.org/10.5067/
TXBMLX370XX8
(Li et al., 2020)

JRA-55 https://doi.org/
10.5065/D6HH6H41 (Japan Mete-
orological Agency/Japan, 2013)

MERRA2 https://doi.org/10.5067/
RKPHT8KC1Y1T
(GMAO, 2015)

Snow_CCI v2 https://doi.org/10.5285/
4647cc9ad3c044439d6c643208d3c494
(Luojus et al., 2022)

Snow_CCI v1 https://doi.org/10.5285/
fa20aaa2060e40cabf5fedce7a9716d0
(Luojus et al., 2020)

JAXA-AMSR2 Preliminary version provided
as part of SnowPEx+
Available on request from
rejkelly@uwaterloo.ca

U. Arizona https://doi.org/10.5067/
0GGPB220EX6A (Broxton et
al., 2019)
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