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Abstract. This study investigates the uncertain future con-
tribution to sea-level rise in response to global warming of
Upernavik Isstrøm, a tidewater glacier in Greenland. We
analyse multiple sources of uncertainty, including Shared So-
cioeconomic Pathways (SSPs), climate models (global and
regional), ice–ocean interactions, and ice sheet model (ISM)
parameters. We use weighting methods based on spatio-
temporal velocity and elevation data to reduce ice flow model
uncertainty and evaluate their ability to prevent overconfi-
dence. Our developed initialization method demonstrates the
capability of Elmer/Ice to accurately replicate the hindcast
mass loss of Upernavik Isstrøm. Future mass loss predic-
tions in 2100 range from a contribution to sea-level rise from
1.5 to 7.2 mm, with an already committed sea-level contribu-
tion projection from 0.6 to 1.3 mm. At the end of the century,
SSP-related uncertainty constitutes the predominant compo-
nent of total uncertainty, accounting for 40 %, while uncer-
tainty linked to the ISM represents 15 % of the overall uncer-
tainty. We find that calibration does not reduce uncertainty
in the future mass loss between today and 2100 (+2 %) but
significantly reduces uncertainty in the hindcast mass loss
between 1985 and 2015 (−32 % to −61 % depending on the
weighting method). Combining calibration of the ice sheet
model with SSP weighting yields uncertainty reductions in
future mass loss in 2050 (−1.5 %) and in 2100 (−32 %).

1 Introduction

The primary cause of present-day sea-level change is human-
induced climate change, which will have far-reaching effects
on coastal communities worldwide. To make informed deci-
sions on protective measures, it is crucial to understand the
extent and timing of sea-level rise. Predicting future local
sea-level rise is a challenging task as it depends on many fac-
tors, such as the mean sea-level rise (SLR); ocean dynamics;
local context; and, of course, future mitigation of greenhouse
gas emissions (Durand et al., 2022). As an important com-
ponent of the local solution, it is essential to predict future
mean sea-level rise for the end of the 21st century. As re-
cent assessments by the Intergovernmental Panel on Climate
Change have highlighted (Masson-Delmotte et al., 2021), fu-
ture sea-level change is highly uncertain, especially the high-
end scenarios. The main source of uncertainty in SLR stems
from the constrained ability to model the future mass loss of
the Antarctic Ice Sheet (AIS) and Greenland Ice Sheet (GrIS)
due to limited understanding of their climate forcings and ini-
tial state, as well as uncertainties in ice sheet models (ISMs)
(Goelzer et al., 2018; Seroussi et al., 2019; Goelzer et al.,
2020; Seroussi et al., 2020).

To better understand uncertainties and enhance projections
of the two ice sheets, a collective initiative has emerged: the
Ice Sheet Model Intercomparison Project for CMIP6 (IS-
MIP6) framework (Nowicki et al., 2020). The outcomes of
this endeavour have provided valuable insights into the be-
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haviour of ISMs and the range of their variability. However,
to improve estimates for decision-makers, Aschwanden et al.
(2021) suggest two key areas of improvement. First, although
ISMIP6 quantifies uncertainty in model structure, the intrin-
sic uncertainties associated with model parameters, as well
as initial and boundary conditions, must be more thoroughly
accounted for. Second, simulations should accurately reflect
current observations within the limits of their uncertainty.

In addition to providing a more comprehensive quantifica-
tion of uncertainties, sensitivity analyses play a crucial role
in classifying uncertainties and prioritizing their reduction.
This approach has gained popularity in glaciology, as evi-
dent in case studies conducted with a single ISM in Antarc-
tica (Bulthuis et al., 2019; Hill et al., 2021) and Greenland
(Aschwanden et al., 2019), as well as the ISMIP6 analyses
(Goelzer et al., 2020; Seroussi et al., 2020, 2023), which
also facilitate the examination of model structure uncertainty
through multiple ISMs. The first two individual ISM stud-
ies revealed that the dominant origins of uncertainty were at-
mospheric forcings for Greenland and oceanic forcings for
Antarctica. The ISMIP6 outcomes, in contrast, emphasize
that uncertainties linked to ISMs persist significantly, akin
to uncertainties originating from forcings and their applica-
tion. These findings underscore the potential for reducing un-
certainty in model projection by reconciling the differences
among ISMs. In this regard, a better use of observational data
to calibrate these models and ensure their skill in reproduc-
ing recent data holds promise (Aschwanden and Brinkerhoff,
2022; Nias et al., 2023).

Bayesian calibration using observations has become a
common practice in glaciology, as is evident in previous stud-
ies on the SLR contribution of the GrIS (Applegate et al.,
2012; McNeall et al., 2013; Chang et al., 2014; Aschwanden
and Brinkerhoff, 2022; Nias et al., 2023), the AIS (Gladstone
et al., 2012; Ritz et al., 2015; DeConto and Pollard, 2016;
Nias et al., 2019; Gilford et al., 2020; Wernecke et al., 2020),
or likewise the mountain glaciers (Rounce et al., 2023), and a
review of previous studies is given in the supplementary ma-
terial of Aschwanden and Brinkerhoff (2022). These studies
typically involve two steps: (i) establishing prior distributions
over uncertain model parameters to obtain an ensemble and
projecting it into the future to forecast a prior future SLR
contribution and (ii) adjusting prior distributions by giving
weights to the members according to their ability to repro-
duce past observations. However, due to the limited availabil-
ity of observational data, these studies often employ all avail-
able observational data for calibration without incorporating
any form of validation to assess the improved performance
of the calibrated ensemble compared to the non-calibrated
one. This gives rise to concerns regarding the potential for
overfitting and excessive confidence in future predictions of
sea-level rise, especially in the context of a dataset of consid-
erable size like ours.

In a previous study (Jager et al., 2024), the focus was di-
rected towards investigating the ability of the ISM Elmer/Ice

to replicate past variations in Upernavik Isstrøm (UI) during
the period from 1985 to 2019. UI is a tidewater glacier situ-
ated in the northwest sector of Greenland and is characterized
by four distinct catchments: UI-N, UI-C, UI-S, and UI-SS
(Fig. 1), as named in Mouginot et al. (2019). The diverse dy-
namics of their front enable multiple tidewater glacier studies
to be conducted within this comprehensive catchment. This
approach mitigates the risk of over-interpretation that may
arise when focusing on a single tidewater glacier, providing
more robust results; i.e. if the model successfully reproduces
these varied behaviours, it is likely to do so for other tidewa-
ter glaciers as well. Moreover, UI has experienced substan-
tial mass loss since 1985, contributing to 0.47 mm of sea-
level rise, more than 3 % of Greenland’s total contribution
during this period, indicating significant temporal changes
(Mouginot et al., 2019). The extensive satellite observations
spanning 1985 to 2019 make UI an ideal candidate for eval-
uating the ability of a large-scale ISM to reproduce available
observations of a local glacier. Furthermore, the pronounced
spatial and temporal heterogeneity of this case study helps
prevent unwarranted overconfidence in the model’s perfor-
mance.

To reproduce past changes in UI using Elmer/Ice, Jager
et al. (2024) introduced a new initialization method employ-
ing a model ensemble that incorporates various uncertain-
ties within the ISM, including different basal friction field
calibrations, initial surface elevation, and model parameters.
Additionally, the front positions and surface mass balance
(SMB) were prescribed for each year. Subsequently, the per-
formance of two ensembles, using two different basal fric-
tion relationships, was compared against a comprehensive
dataset comprising spatio-temporal series of velocities and
elevations, ice discharge, and mass loss. Jager et al. (2024)
indicate the necessity of accounting for a reduction in fric-
tion near the glacier front to accurately reproduce these ob-
servational data. The sensitivity analysis, made possible by
the ensemble approach, underscored the predominant role of
the initial friction field compared to the initial surface or sur-
face mass balance in shaping the hindcast variations in ice
mass loss.

The objective of this study is to assess UI’s contribution to
SLR throughout the 21st century and to enhance the quantifi-
cation of associated uncertainties. The following aspects will
be addressed:

1. a sensitivity analysis to project the future SLR contribu-
tion and quantify the contribution of the ISM and forc-
ings to the forecast uncertainty

2. a Bayesian calibration to robustly adjust prior informa-
tion using available observations.

To address the first question, we adopt the ISMIP6 frame-
work for the GrIS (Nowicki et al., 2020). The forcings for
the future are an SMB and a parameterization for the po-
sition of the glacier fronts. The SMB is derived from a re-
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Figure 1. Left: GrIS drainage catchments with the catchment of UI in pale red, northwest (NW) in green, and central-west (CW) in blue as
defined in Slater et al. (2019). The blue box is the validation area shown on the right. Right: the four different catchments (UI-N, UI-C, UI-S,
and UI-SS), the front positions between 1985 and 2018 (Wood et al., 2021), and the surface ice speed (Mouginot et al., 2019) overlaid on a
Landsat image (13 August 2017). All the data collected are from within this validation area.

gional climate model (RCM) that downscales outputs from
an atmosphere–ocean general circulation model (AOGCM)
associated with a specific Shared Socioeconomic Pathway
(SSP). Future front positions are estimated using a parame-
terization that incorporates RCM runoff and AOGCM ocean
temperatures as input variables while allowing for consid-
eration of different front-retreat sensitivities. By incorporat-
ing uncertainties associated with RCMs, AOGCMs, SSPs,
front-retreat sensitivities, and the ISM itself, this approach
enables a comprehensive analysis of the impacts of these var-
ious sources of uncertainty in SLR. Additionally, it quantifies
the potential reduction in uncertainty attributable to the ISM.

To address the second aspect, we propose several weight-
ing methods and have designed a rigorous cross-validation
approach to ensure robust calibration of the model ensem-
ble. The validation process assesses the performance of the
calibrated ensemble against independent data. Additionally,
we investigate the sensitivity of the calibration to different
assumptions, evaluating calibration performance through the
validation procedure. Once the optimal calibration has been
determined, we analyse the implications of this calibration
for the selection of model parameters and its impact on SLR
predictions. We also study the reduction potential when we
change the weighting of the SSPs used.

2 Method

2.1 Model ensemble

In this sub-section, we delineate the methodology employed
for initializing and propagating the ensemble into the fu-

ture, utilizing a single ice sheet model (ISM) and follow-
ing a framework akin to the ISMIP6 framework for the GrIS
(Nowicki et al., 2020). Figure 2 summarize our workflow,
which is described as follows:

1. The shared hindcast prior ensemble (Hpr) covers the pe-
riod from 1985 to 2019 following the methodology of
Jager et al. (2024) and serves as a starting point for the
two other ensembles.

2. The control prior ensemble (Cpr) extends the ISM into
the future from 2015 to 2100 with constant forcing.

3. The predicted prior ensemble (Ppr) extends the ISM into
the future from 2015 to 2100 with realistic forcing.

For the ISM we use Elmer/Ice, which is a parallel finite-
element model (Gagliardini et al., 2013). Several sources of
uncertainty were identified within the ISM, and based on the
findings from our prior study (Jager et al., 2024), we have
exclusively retained those parameters that exert a substan-
tial influence, employing factor fixing. Parameters leading to
undesirable model outputs, when compared to observational
data, were excluded through factor mapping. Factor fixing,
also known as screening, serves to pinpoint model compo-
nents that have a minimal impact on either the variability in
the outputs or the metrics of interest. Conversely, factor map-
ping is employed to ascertain which uncertain model factors
correlate with specific model behaviours (refer to the glos-
sary in Reed et al., 2022). Additional information regarding
the model characteristics and parameter selection is available
in Appendix A and C1, respectively.

Finally, the ISM uncertainty depends on six constant scalar
parameters (Fig. 2), with two parameters influencing the cal-
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Figure 2. Ensemble model and sensitivity analysis. Illustration of the forcings (surface mass balance, front position) used by the three
ensembles: Hpr, Cpr, and Ppr. SSP: Shared Socioeconomic Pathway; AOGCM: atmosphere–ocean general circulation model; RCM: regional
climate model; ISM: ice sheet model.

ibration of the friction field (λreg and OBSinv), three parame-
ters influencing the friction law (flaw, fparam, andm), and one
parameter influencing the ice rheology (E). See Appendix A
to understand what the ISM parameters are.

2.1.1 Shared hindcast prior ensemble (1985–2019)

The ensemble is initialized in 1985 and covers the observa-
tional period.

The SMB is prescribed using annual values from the re-
gional climate model RACMO forced with the global reanal-
ysis ERA5 (Noël et al., 2018). Our previous study showed
that using RACMO as a regional climate model instead of
MAR led to better performance in reproducing the observed
surface elevations while having a small influence on the other
model outputs. Here, using only RACMO, we improve the
overall performance of the ensemble and restrict the param-
eter space to better cover the other sources of uncertainty.

The position of the UI calving fronts is prescribed at each
time step based on observations (Wood et al., 2021). Given
that the uncertainty associated with these observations is
small compared to the model mesh size (less than 60 m ver-
sus more than 150 m), we do not account for this potential
forcing uncertainty during the shared hindcast period.

The state of the ensemble members in 2015 is used as a
starting point for the next two ensembles that cover the period
2015 to 2100.

2.1.2 Control prior ensemble (2015–2100)

Cpr is a control ensemble where the forcings are kept con-
stant.

The SMB is the average of RACMO between 1960 and
1990 to be consistent with the anomaly procedure for the
forecast (see below).

The position of the front is kept constant using the obser-
vation in 2015.

2.1.3 Predicted prior ensemble (2015–2100)

For the SMB, we adopt the ISMIP6 framework for the GrIS
(Nowicki et al., 2020; Goelzer et al., 2020). This approach
employs a RCM to downscale an AOGCM associated with
a specific SSP at the GrIS scale. These results are then pre-
scribed as anomalies which are added to the reference SMB
used for Cpr. The procedure also parameterizes the feedback
with the elevation by proving the SMB altitudinal gradients.
The various combinations of SSP–AOGCM–RCM are pre-
sented in Table 1. As an initial approach, we assign different
probabilities to the various SSP–AOGCM–RCM combina-
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Table 1. SSP–AOGCM–RCM combinations and their probabilities
used in the Latin hypercube sampling.

RCM AOGCM SSP Probability

RACMO CESM2 SSP1-2.6 1/12
RACMO CESM2 SSP2-4.5 1/6
MAR3.9 CESM2∗ SSP5-8.5 1/12
MAR3.12 CESM2∗ SSP5-8.5 1/12
RACMO CESM2∗ SSP5-8.5 1/12
MAR3.12 MPI-ESM1-2-HR SSP1-2.6 1/24
MAR3.12 MPI-ESM1-2-HR SSP2-4.5 1/6
MAR3.12 MPI-ESM1-2-HR SSP5-8.5 1/24
MAR3.9 CNRM-CM6-1 SSP1-2.6 1/6
MAR3.9 CNRM-CM6-1 SSP5-8.5 1/12

∗For practical purposes, this is the same physical model as CESM2 (CMIP6)
but a different ensemble member.

tions (Table 1) to mitigate potential biases arising from the
over-representation of specific SSPs (7/24, 8/24, and 9/24
for SSP1-2.6, SSP2-4.5, and SSP5-8.5) while trying to main-
tain balanced proportions between AOGCMs (1/2, 1/4, and
1/4 for CESM2, MPI-ESM1-2-HR, and CNRM-CM6-1) and
RCMs (1/3 for each). In Sect. 5, we explore alternative prob-
ability distributions for the SSPs.

For the future position of the front, we used the ISMIP6
parameterization (Slater et al., 2019, 2020) for which the
variation in front position 1L is given by

1L= κ1(Q0.4
×TF), (1)

whereQ denotes the mean summer (June–July–August) sub-
glacial runoff (in m3 s−1) from the RCM and TF represents
the ocean thermal forcing (in °C) outside of the fjord from the
AOGCM. κ is the front sensitivity, and it has been calibrated
independently for different sectors of the GrIS using avail-
able observations (Slater et al., 2019). The distribution of κ
effectively encapsulates the uncertainties arising from sev-
eral critical parameters, e.g. calving rates and thermal trans-
port into the fjord.

To examine the uncertainty associated with the future po-
sition of the front, we use six distinct values of κ . UI is lo-
cated in the northwest (NW) sector, just above the central-
west (CW) sector (Fig. 1). Given the distinct sensitivity of
these two sectors, both are considered in our analysis to miti-
gate overconfidence. For the distribution of κ , we adopt three
distinct levels: low, medium, and high. Specifically, the low
sensitivity encompasses the smallest 25 % of the κ values,
medium sensitivity includes the smallest 50 %, and high sen-
sitivity comprises the smallest 75 %. In total, this results in
six different κ values (three levels across two sectors), each
assigned equal probability. To simplify, the sensitivity of this
front parameterization is hereafter referred to as fronts.

2.1.4 Propagation of uncertainty

Having identified the different sources of uncertainty, we
proceed to propagate them through the model. To explore the
various sources of uncertainty in the three ensembles (Hpr,
Cpr, and Ppr), we use a 200-member Latin hypercube sam-
pling technique to cover the 10 different parameters: 6 ISM
parameters and 4 for the forcing (SSP, AOGCM, RCM, and
fronts). As defined by our set-up, the uncertain parameters of
the forcing (SSP, AOGCM, RCM, fronts) do not affect Hpr
and Cpr (Fig. 2).

We use the first-order sensitivity indices to analyse the sen-
sitivity of Ppr to the different parameters (Sobol, 2001):

Si =
Var (E [Y |Xi])

Var Y
, (2)

where Var Y is the variance of an output Y and E[Y |Xi] is
the expectation of having Y given the parameterXi . Here,Xi
is 1 of the 10 different parameters. We provide more details
on the calculation of these first-order sensitivity indices in
Appendix C2.

2.2 Model ensemble evaluation

2.2.1 Observational data

To evaluate the performance of Hpr, we compiled an exten-
sive dataset comprising observations of surface velocity, sur-
face elevation, ice discharge, and ice mass loss. This is sum-
marized in Table 2, and more details on how we obtain these
data are provided in Appendix B.

2.2.2 Metrics

To evaluate the performance of Hpr, we use several ensem-
ble metrics. The continuous rank probability score (CRPS)
measures the accuracy and sharpness (opposite of uncertain-
ty/spread) of the ensemble, where lower values indicate im-
proved alignment between the ensemble mean and observa-
tions, as well as similarity between ensemble spread and ob-
servational uncertainty. To investigate whether changes in the
CRPS result from a reduction in the difference between the
ensemble mean and observations, we examine the mean ab-
solute error (MAE) of the ensemble mean. Similarly, to de-
termine whether changes in the CRPS stem from alterations
in the ensemble’s sharpness, we analyse the spatio-temporal
average of the standard deviation (SD) of the ensemble. Ul-
timately, the RMSE will serve as a metric for assessing the
performance of individual ensemble members, allowing us
to calibrate the ensemble based on their respective perfor-
mance.
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Table 2. Summary of observation data types and sources.

Observation type Data type Source

Surface velocity Spatial Jager et al. (2024)
Surface elevation Spatial Jager et al. (2024)
Ice discharge Global Mankoff et al. (2019), King et al. (2018), Mouginot et al. (2019), MouginotV2∗

Ice mass loss Global Input–output method with the SMB from RACMO (Noël et al., 2018) and ice discharge from above

∗ MougniotV2 is described in Appendix B.

CRPS=
1
nobs

nobs∑
j=1

∫
R

(
F
j
m(Q)−F

j
o (Q)

)2dQ, (3)

MAE=
1
nobs

nobs∑
j=1

∣∣∣Qj

m−Q
j
o

∣∣∣ , (4)

SD=
1
nobs

nobs∑
j=1

√√√√ 1
nm

nm∑
i=1

(
Q
j
m,i −Q

j

m

)2
, (5)

RMSEi =

√√√√ 1
nobs

nobs∑
j=1

(
Q
j
o −Q

j
m,i

)2
, (6)

where nobs is the number of different observations in space
and time, nm is the number of members, Q is a physical
quantity (velocity, elevation, ice discharge, change in vol-
ume), Qm is the ensemble mean, and Fm(Q) is the cumu-
lative distribution function of the ensemble. The subscript i
is associated with the ith member of the ensemble, and the
superscript j is associated with the j th observation. As is
common for Fo(Q), we use the Heaviside function, where
Fo(Q,Qo)= 0 for Q<Qo and Fo(Q,Qo)= 1 otherwise,
with Qo being the observation (Brown, 1974; Matheson and
Winkler, 1976; Unger, 1985; Hersbach, 2000).

2.3 Bayesian calibration

In the context of ice sheet forecasting, the focus is on pre-
dicting the future contribution to global mean sea-level rise
(SLR) while leveraging a diverse array of information, in-
cluding models, observations, and previous studies (see re-
view in the supplementary material of Aschwanden and
Brinkerhoff, 2022). In this study, we adopt the formalism
introduced by Aschwanden and Brinkerhoff (2022), which
updates a model prediction by considering a vector of model
parameters M from the parameter space 6, a collection of
untraversed model assumptions H, the evolution of external
forcings F , and a set of observations B:

P(SLR|B,H,F)︸ ︷︷ ︸
posterior prediction

=

∫
6

P(SLR|M,H,F)︸ ︷︷ ︸
model prediction

·P(M|B)︸ ︷︷ ︸
calibration

dM. (7)

In the rest of this sub-section, we will describe how the
calibration term P(M|B) is obtained from a prior ensemble
thanks to the Bayes formula.

2.3.1 Bayesian problem approached by weighted
bootstrap

To compute the calibration term P(M|B), we employ an en-
semble sampling method named weighted bootstrap (Smith
and Gelfand, 1992), which uses an ensemble of nm particles
M i , corresponding to different members, to approximate the
prior probability of the model P(M) by

P(M)=
1
nm

nm∑
i=1

δ(M −M i), (8)

where δ is the Dirac function.
The posterior distribution, conditioned by the observa-

tions, is approximated by

P(M|B)=
nm∑
i=1

wi · δ(M −M i). (9)

The weight wi represents the likelihood, i.e. the probabil-
ity of observing the data for member i, and is therefore higher
for members that are the closest to the observations. It is de-
fined as

wi =
P(B|M i)

nm∑
k=1

P(B|Mk)

. (10)

Assuming that the nobs values are independent and that
the error is Gaussian with a constant standard deviation, it is
possible to express P(B|M i) as a function of the RMSE as

P(B|M i)= C exp

[
−

nobs∑
j=1

(Q
j
o −Q

j
m,i)

2

2σ 2

]
(11)

= C exp

[
−
nobs

2
·

RMSE2
i

σ 2

]
. (12)

As these assumptions are difficult to fulfil and verify in
practice, we adopt the following expression to compute the
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weights:

wi =

ns∏
s=1

f (RMSEi,s,σ )

N∑
j=1

ns∏
s=1

f (RMSEj,s,σ )
, (13)

with f (RMSE,σ ) being a probability density function
(Gaussian or Student; see below) which depends on the pa-
rameter σ that represents both the observation and the model
error and ns being the number of different error metrics (RM-
SEs) used to compute the performance of the ensemble mem-
bers.

In our study, Eq. (12) cannot be used directly for three
main reasons. First, due to the substantial volume of data at
hand, we encounter a challenge similar to that of the particle
filter framework, which tends to retain only one member and
leads to overfitting (Leeuwen, 2010). To overcome this issue,
a number of ensemble members comparable to the number of
observations would be necessary. However, achieving such a
large ensemble size proves impractical in this case, as the
number of observations exceeds 4 million, even with a sur-
rogate model as proposed in Aschwanden and Brinkerhoff
(2022). Secondly, the assumption of independent and identi-
cally distributed observations is difficult to justify given the
strong temporal and spatial correlations of velocities and sur-
face elevations. Higher values observed at one grid point or
time step are likely to be similarly high at adjacent locations
or subsequent time steps. Thirdly, even supposing observa-
tional uncertainties to be independent and identically dis-
tributed, it is clear that the modelling errors are not. Ulti-
mately, the crux of the matter lies in our lack of a suitable
likelihood function for effective model–data comparison.

Equation (13) uses a performance metric approach to ad-
dress the challenge of spatial and temporal correlation. The
distance between the observed and modelled fields is then
only assessed on average using the RMSE, effectively treat-
ing the multiple observations as a single observation (Pollard
et al., 2016; Bondzio et al., 2018; Albrecht et al., 2020). This
method substantially diminishes the influence of observa-
tions, thereby mitigating the risk of overfitting while poten-
tially introducing underfitting, as previously identified (Wer-
necke et al., 2020). This performance metric is applicable
across various model outputs, encompassing velocity, sur-
face elevation, ice discharge, and cumulative ice discharge.
Furthermore, this metric can be computed for each sub-
catchment (UI-N, UI-C, UI-S, and UI-SS, as illustrated in
Fig. 1) and, potentially, for distinct sub-periods (as detailed in
the sub-period weighting in Sect. 2.3.2). When these ns met-
rics are independent (e.g. an RMSE applied to UI-N is quasi-
independent of the RMSE applied to UI-C), they can be com-
bined by multiplication, as shown in Eq. (13). These differ-
ent combinations will be tested for the full-period weighting
(Sect. 2.3.2 for the methodology and Sect. 4.1 for the results).

In addition, the challenge of selecting a single member
could stem from the restrictive nature of the probability den-
sity function f (RMSE,σ ) outlined in Eq. (13). This issue
may arise from the specific form of f (RMSE,σ ) – for ex-
ample, a Gaussian distribution has lower tails than Student’s t
distribution, thereby reducing the influence of higher RMSE
values – or from the selection of the parameter σ . The pa-
rameter σ , which is partially derived from the standard de-
viation of the observation error as specified in Eq. (12), ad-
ditionally encompasses the structural errors inherent in the
model. The model simplifications of reality hinder an ex-
act representation of the real world, thereby manifesting the
discrepancies between the optimized model parameters and
empirical observations (Nias et al., 2019; Edwards et al.,
2019). However, accurately quantifying structural error re-
mains a persistent challenge, often necessitating retrospec-
tive estimation. To mitigate this limitation, we adopt an as-
sumption that leverages the distribution of RMSE values to
estimate σ . Specifically, we will evaluate the minimum, me-
dian, and maximum RMSE values as potential estimates for
σ . This assumption underpins the weighting methodology
adopted in earlier studies which employ a singular perfor-
mance metric; for instance, in Pollard et al. (2016) and Al-
brecht et al. (2020), the median of such a performance metric
is utilized as an estimate for σ . The effect of the choice of σ
will be assessed using the full-period weighting, as described
in the methodology (Sect. 2.3.2) and presented in the results
(Sect. 4.1).

2.3.2 Cross-validation and weighting choices

At the heart of this Bayesian calibration is the calculation of
weights (Eq. 13). Several choices are possible for calculat-
ing them, as discussed above. To assess the performance of
these different choices, we have developed a cross-validation
method. This process entails computing weights and cali-
brating the ensemble using data from three out of the four
sub-catchments and subsequently employing the ensemble-
based metrics previously defined (CRPS, MAE, and SD) to
appraise the performance of the posterior ensemble with re-
spect to the fourth sub-catchment. These metrics are normal-
ized with metrics obtained with the prior ensemble, wherein
a value exceeding 1 signifies inferior performance of the
posterior ensemble in contrast to the prior ensemble (Hpr),
whereas a value of less than 1 signifies enhanced perfor-
mance.

The evaluation encompasses three distinct weighting ap-
proaches:

1. full-period weighting

2. sub-period weighting

3. fparam weighting.
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Figure 3. Bayesian calibration (Sect. 2.3). Different steps of our methodology to obtain a robust Bayesian calibration from a hindcast
ensemble (Hpr) and observations. Titles in red refer to the sub-sections where the results are presented (Sect. 4), while the remainder relate
to the Bayesian calibration method (Sect. 2.3). In the top-right box, a simple explanation of Bayes’ theorem (Eq. 9 in the case of weighted
bootstrap) with the three main components: in green the posterior model, in red the weighting (Eqs. 10 and 13), and in orange the prior
model.

Full-period weighting

In the case of full-period weighting, the weighting of ensem-
ble members depends on their ability to, on average, replicate
the temporal evolution of various sub-catchments through-
out the entire period from 1985 to 2019. To determine the
final weight, we compute the RMSE for each sub-catchment
over the entire observation period and then apply Eq. (13)
to combine these RMSEs, with ns being the number of sub-
catchments; i.e. ns = 3 for the cross-validation and ns = 4 for
posterior ensemble.

In the context of full-period weighting, several assump-
tions are also examined:

1. The selection of probability density is Gaussian, follow-
ing Nias et al. (2023), or Student’s t , as in Aschwanden
and Brinkerhoff (2022).

2. The choice of the σ estimate is the minimum, mean, or
median of the RMSE distribution.

3. The choice of data source is surface elevations, surface
velocities, ice discharge, or cumulative ice discharge.

Sub-period weighting

In the case of sub-period weighting, the weighting of ensem-
ble members depends on their ability to, on average, replicate
the temporal evolution of different sub-catchments across
various sub-periods, such as the pre-retreat, retreat, and post-
retreat periods. To accomplish this, distinct RMSE values are

calculated for each combination of sub-catchment and sub-
period. For instance, for UI-N, RMSEs are computed for the
periods 1985–2004, 2004–2010, and 2010–2019, while for
UI-C, RMSEs are determined for the periods 1985–2009,
2009–2015, and 2015–2019 (see evolution of front in Fig. 1).
Conversely, for sub-catchments UI-S and UI-SS, RMSEs are
assessed over the entire period. To determine the final weight,
we apply Eq. (13) to combine all these RMSEs with, this
time, ns, the total number of periods, i.e. eight for the poste-
rior ensemble (three for UI-N and UI-C, one for UI-S and UI-
SS). Similarly to the full-period weighting approach, the as-
sessment of the posterior ensemble through cross-validation
employs ensemble metrics spanning the entire period from
1985 to 2019. Because this weighting involves more RMSEs
than the full-period weighting (eight versus four), it leads to
a narrower posterior distribution.

fparam weighting

This alternative weighting approach was investigated based
on insights from our previous study, which demonstrated
that the model’s ability to reproduce observation data im-
proved significantly when accounting for the reduction in
friction near the front (Jager et al., 2024). Indeed, in most
of the large-scale applications of Elmer/Ice (e.g. Goelzer
et al., 2018; Seroussi et al., 2020; Hill et al., 2023), friction
is considered to be constant over time with no dependence
on subglacial hydrology. The parameterization developed in
this previous study addresses this limitation. This also allows
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us (i) to see the effect of our parameterization in terms of
the predicted future sea-level-rise contribution of Upernavik
Isstrøm and (ii) to compare this weighting with the other
weightings to see if they are able to highlight this character-
istic without going into as much detail as this previous study.

In the case of fparam weighting, the weighting of ensem-
ble members depends on the presence or the absence of
the parameterization of the sub-hydrology effect on friction
(Eq. A3). We then give a weight ofwi = w for members with
parameterization (fparam = true) and a weight wi = (1−w)
for members without parameterization (fparam = false) and
test different values of w (0.6, 0.7, 0.8, 0.9, and 1). Then we
evaluate the performance of this ensemble with the CRPS,
MAE, and SD for each weighting.

2.3.3 Summary

The main steps of the Bayesian calibration and the sub-
sections where the results are discussed are summarized in
Fig. 3.

3 Results: sensitivity analysis

To comprehensively assess the future sea-level-rise contribu-
tion of Upernavik Isstrøm in our sensitivity analysis, we be-
gin by projecting the ensemble into the future using the ini-
tialization method established in Jager et al. (2024). This ini-
tial exploration sets the stage for determining a reference sea-
level-rise contribution and understanding the components of
Upernavik Isstrøm’s mass loss, particularly focusing on ice
discharge and surface mass balance. Additionally, it high-
lights disparities between the predicted prior ensemble (Ppr)
and the control prior ensemble (Cpr). Following this, we dis-
sect the uncertainty within the predicted prior ensemble, ex-
amining the importance of different sources such as Shared
Socioeconomic Pathways (SSPs), atmosphere–ocean gen-
eral circulation models (AOGCMs), regional climate models
(RCMs), frontal sensitivity (fronts), and the ice sheet model
(ISM). This analysis underscores the potential of ISM cali-
bration to effectively reduce overall uncertainty.

3.1 Model prediction

In Fig. 4, the ice mass change is depicted relative to 2015
for observations and three simulation ensembles (Fig. 2): the
shared hindcast prior ensemble (Hpr), the control prior en-
semble (Cpr), and the predicted prior ensemble (Ppr). The
figure encompasses the various SSPs for Ppr, and the results
for the individual scenarios are given in Fig. S1 in the Sup-
plement.

The shared hindcast prior ensemble (Hpr) yields a median
mass loss of 200 Gt between 1985 and 2019, ranging from
100 to 250 Gt (95 % confidence interval). The Hpr median
reproduces the observations very faithfully. This result con-

firms the ability of the methodology established in Jager et al.
(2024) to reproduce past observations.

By 2015, UI had already contributed 0.47 [0.23, 0.64] mm
to sea-level rise (SLR) since 1985, and the mass loss of Cpr
and Ppr is projected to add an additional 1.1 [0.6, 1.3] mm
and 2.7 [1.5, 7.2] mm, respectively, by 2100. Notably, the
most extreme values of Ppr indicate a contribution to SLR
exceeding 10 mm, while the majority of Ppr values range
from 1 to 3.5 mm. It is worth noting that the distribution’s
tail for values above this interval is wider than for values be-
low, which is similar to other results in glaciology studies
(e.g. Robel et al., 2019). Finally, the loss of mass due to fu-
ture warming, given by subtracting Cpr members from Ppr
members, gives us an additional contribution to SLR of 1.7
[0.7, 6.3] mm.

The SMB and the ice discharge have two opposite trends
at the end of the century (Fig. 5). Until the 2090s, some
members following the SSP5-8.5 see their discharge in-
creasing sharply, reaching high values of 60 Gt a−1, but
with a sharp decrease between 2090 and 2100. We attribute
this late-period decrease to the fact that two of the three
marine-terminating glaciers of the UI catchment become
land-terminating from this point onwards for members with
large retreat forcings. On the other hand, the median SMB re-
mains close to current levels at around 6 Gt a−1 (mass gain)
until the 2050s, before falling slowly to around 3 Gt a−1. In
2050, members forced by SSP5-8.5 start to have a negative
SMB, which becomes permanently negative from 2070 on-
wards. Looking at the discharge and SMB of Cpr, it can be
seen that UI has still not reached an equilibrium in 2100,
with a discharge of 13 [11.1,13.9] Gt a−1, while the SMB is
9 Gt a−1, resulting in a negative mass balance.

3.2 Uncertainty partitioning

Figure 6 depicts the evolution from 2015 to 2100 of the sen-
sitivity indices computed with the predicted prior ensemble
(Ppr) for the volume, the ice mass change, the cumulative
SMB, and the cumulative ice discharge. Sensitivity to ice
mass change is equivalent to the sensitivity of UI’s contri-
bution to SLR. To make things simpler, we sum all the in-
dices influencing the ISM (flaw, fparam, m, E, λreg, OBSinv)
and compare them with the indices associated with the SSP,
AOGCM, RCM, and front parameterization. Neglecting the
sensitivity indices of the parameter combinations leads to a
small underestimation of the impact of the dynamics, since
part of its influence comes from the parameter combinations.

The sensitivity indices provided in the figure are presented
in their non-normalized form. It should be emphasized that a
sum of sensitivity indices of less than 1 means a substantial
impact of specific parameter combinations, e.g. the fact that
the influence of the combination of the emission scenario and
front sensitivity is stronger than the sum of the influences of
each due to non-linearities. Otherwise, if the sum is greater
than 1, this implies interdependencies between input param-
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Figure 4. UI ice mass change relative to 2015 for the hindcast (grey), the predicted (orange with /) and the committed mass loss (blue with
r). For each ensemble, the mean is represented by a solid line and the shading includes 95 % of the ensemble members. Observations of the
1985–2019 period are represented by+. The red box shows a zoomed-in view of the 1985–2030 period. The histogram on the right illustrates
the distribution of the predicted (orange) and the committed (blue) mass loss UI contribution to sea-level rise spanning 2015 to 2100.

eters, e.g. the fact that the SSP, AOGCM, and RCM are not
independent in our case.

As expected, in 2015 the initial volume is independent of
the choice of SSP, RCM, AOGCM, and fronts (Fig. 6a), and
the sum of the ISM sensitivity indices is equal to 0.65. The
value being smaller than 1 is attributed to the interactions
between various ISM parameters. The influence of the ISM
only diminishes as we move away from this initial state, with
the influence of the other sources increasing with very differ-
ent characteristics.

By 2040, the RCM exhibits the most significant increase
in influence on the volume, with a sensitivity index of 0.3,
equal to that of the ISM (Fig. 6a). Subsequently, from 2040
to 2075, the sensitivity indices associated with the RCM and
ISM gradually decrease to 0.2. During this period, the influ-
ence of the AOGCM diminishes from 0.1 to 0. Conversely,
the sensitivity index associated with the front parameteriza-
tion experiences the most pronounced increase, rising from
0.1 in 2040 to 0.3 in 2075.

Beyond 2075, the sensitivity indices of the ISM, front pa-
rameterization, and RCM, in terms of the volume, gradu-
ally decline until they reach 0.1, 0.2, and 0.1, respectively
(Fig. 6a). Meanwhile, the impact of the SSP starts to emerge,
becoming non-negligible in the 2050s and significantly ac-
celerating from 2070 onwards. By 2100, the SSP becomes
the most influential parameter, with a sensitivity index of
0.45. Throughout this period, the influence of the AOGCM
remains at zero.

For the ice mass change in the year 2100, the impact of
the parameters exhibits similarities to their influence on total
volume, contrasting with the cumulative SMB and cumula-
tive ice discharge (refer to Fig. 6b, c, d). Specifically, for total
mass loss, the influence of the SSP is substantial (0.4), while
the front parameterization (0.2), the RCM (0.1), and the ISM
(0.15) also exhibit discernible but lesser effects. In contrast,
the AOGCM demonstrates no discernible influence on total
mass loss.

As anticipated, the cumulative ice discharge is primar-
ily influenced by the ISM parameters and the front param-
eterization fronts. Additionally, the roles played by the SSP,
AOGCM, and RCM are not negligible. The combined sensi-
tivity indices of ISM and fronts exhibit a peak value of 0.6
by 2075 and 0.55 by 2100. This heightened influence is also
reflected in ice mass loss, with a peak sensitivity index sum
of 0.5 in 2075. In contrast, the sensitivity indices of the SSP,
AOGCM, and RCM peak at 0.65 in 2030 and gradually de-
crease to 0.35 towards the later stages.

Conversely, the cumulative SMB demonstrates strong sen-
sitivity almost exclusively to the SSP, AOGCM, and RCM,
with their sensitivity indices reaching approximately 2 at the
maximum and 1.1 towards the end of the analysis period. For
the ISM and fronts, their influence on the cumulative SMB
remains limited, with sensitivity indices not exceeding 0.2
(maximum 0.15 for dynamics and 0.05 for front parameteri-
zation), owing to feedback interactions with the elevation and
ice-covered area.
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Figure 5. The UI ice discharge and SMB over the period 1985–
2100 for the hindcast (grey), the predicted (orange with /), and the
committed (blue with r) mass loss ensemble simulations. For each
ensemble, the mean is represented by a solid line and the shading
includes 95 % of the ensemble members. Observations from Moug-
inot et al. (2019) of the 1985–2019 period are represented by +.

Significant changes in the influence of the SSP emerge af-
ter 2050, notably impacting the cumulative ice discharge, the
total mass loss, the volume, and the cumulative SMB. Ex-
cept for the cumulative SMB, the SSP influence is almost
zero before 2050, before becoming the most important pa-
rameter after 2090 for the total mass loss, the volume, and
the cumulative SMB.

The influence of the AOGCM demonstrates an intriguing
trend. From 2050 to 2080, the AOGCM’s impact gradually
decreases until it reaches zero for ice volume and ice mass

change. Concurrently, its effect on the cumulative SMB and
cumulative ice discharge also diminishes, though it never
reaches zero. This intriguing behaviour is a result of an equi-
librium phenomenon, where AOGCMs with the smallest sur-
face mass balance gains correspond to those associated with
the lowest ice discharge losses.

Concerning the sensitivity indices of the ISM parameters
for the volume, ice mass loss, cumulative SMB, and cumu-
lative ice discharge, the friction parameterization fparam ex-
hibits the highest significance at the end of the analysis pe-
riod (Fig. C1). In 2100, its sensitivity index is 0.06 for vol-
ume, 0.05 for ice mass loss, and 0.1 for cumulative ice dis-
charge, i.e. at least a third of the ISM total. Additionally,
the observation used for the friction calibration OBSinv has
a substantial impact at the beginning, with a sensitivity index
of 0.5 for volume. However, its influence gradually dimin-
ishes over time and becomes negligible by 2080 (less than
0.01). Lastly, the exponent of the friction law m emerges as
another significant factor in 2100 for dynamics, with a sensi-
tivity index of 0.04 for volume, ice mass loss, and cumulative
ice discharge.

4 Results: Bayesian calibration

This section present the results of the different steps of our
Bayesian calibration as given in Fig. 3. First, we present
our cross-validation process, which evaluates the robustness
of the calibration methodology and allows us to select only
the robust weightings. Second, we perform a factor mapping
analysis to assess the impact of these weightings on our six
ISM parameters (λreg, OBSinv, flaw, fparam,m, andE). Third,
we examine the impact of weightings on the model predic-
tions of UI’s contribution to sea-level rise.

4.1 Cross-validation

This section presents the key findings of the cross-validation.
As detailed in Sect. 2.3.2, the cross-validation is used to as-
sess the ability of the calibration to improve the ensemble
performance. The ensemble performance is assessed with the
CRPS (Eq. 3) computed using several sets of observations
that were not used for the calibration. A detailed analysis is
given in Appendix D, and the main conclusions are summa-
rized below.

1. Weighting using the Student distribution generally ex-
hibited superior performance compared to the Gaussian
distribution: by assigning less preference to the best
members, the Student distribution effectively reduced
total variance and mitigated overfitting. Similarly, in-
creasing σ led to reduced emphasis on the best mem-
bers and aided in avoiding overfitting. However, exces-
sively high values of σ resulted in decreased CRPS per-
formance due to underfitting. We determined that an op-
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Figure 6. Sensitivity indices for the five sources of uncertainty in Ppr (the ISM, the front parameterization, the RCM, the AOGCM, and the
SSP) for the volume (a), the ice mass change relative to 2015 (b), the cumulative SMB since 2015 (c), and the cumulative ice discharge since
2015 (d).

timal compromise is achieved by utilizing the median or
mean of the RMSE distribution for determining σ .

2. Utilizing surface elevations and velocities in the weight-
ing process yielded the most robust outcomes, reducing
the CRPS across all variables. Weighting solely based
on ice discharge or volume change improved the CRPS
for these specific quantities but not for surface velocities
and elevations.

3. The introduction of multiple periods into the weighting
process enhanced the CRPS for volume changes but not
for surface elevation and velocity, as it excessively re-
duced overall variance. To mitigate this effect, it is ad-
visable to increase σ by selecting the third quartile of
the RMSE distribution, thereby balancing undesirable
reductions in variance while preserving desirable out-
comes.

4. The fparam weighting scheme generally yielded a su-
perior CRPS for volume change and ice discharge but
exhibited poorer performance for surface elevation and
velocity compared to alternative weighting approaches.

4.2 Factor mapping

Figure 7 shows the prior and posterior distributions of our six
ISM parameters for two weighting methods. For full-period
weighting, we adopt Student’s distribution with the median
as the estimate of σ , along with the integration of the combi-
nation of velocity and surface elevation data (ZSxV). In the
case of sub-period weighting, we maintain these character-
istics, except for the σ estimate, which is determined by the
75th percentile (SP_Q75) of the RMSE distribution.

While the primary findings are presented herein, addi-
tional details can be accessed in Appendix C4:

1. Full-period weighting favours members initialized with
friction data from the 1990s and 2000s due to lower
RMSE values, while members with inversions con-
ducted in 2010 or 2017 exhibit poorer performance, par-
ticularly in ice-free areas pre-retreat, due to extrapola-
tion needs. Confidence in predictions increases as data
are faithfully reproduced after the ice front retreats.

2. The presence or absence of fparam is a significant fac-
tor influencing the distribution shift between the prior
and posterior in full-period weighting, highlighting its
crucial role in accurately reproducing data.
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Figure 7. Distribution of λreg (a), OBSinv (b), fparam (c), flaw (d),
m (e), and E (f) for the prior ensembles (Hpr, Ppr, and Cpr) in
orange and for the calibrated ensembles (Hpo, Ppo, and Cpo) in
green: full-period weighting in dark green with • and sub-period
weighting in light green with r.

3. Excessively high regularization weight (λreg) values re-
sult in elevated RMSEs due to overly smooth friction
fields, emphasizing the importance of balancing regu-
larization strength and model fidelity.

4. Parametersm, flaw, and E show no substantial trends in
the difference between prior and posterior distributions.
However, higher weights are observed for certain val-
ues of m, E, and flaw =W due to the influence of λreg,
OBSinv, and fparam.

5. Sub-period weighting amplifies discrepancies in fparam
selection, indicating a greater likelihood of accurately

replicating distinct periods. This indicates that the mem-
bers that best reproduce changes in dynamics are those
that use the parameterization proposed in Jager et al.
(2024).

4.3 Posterior ensembles

Mass changes between 1989 and 2100 for the prior end pos-
terior ensembles are shown in Fig. 8. Results are shown for
the full-period, sub-period, and fparam weightings. For the
full-period and sub-period weightings, we use both surface
velocities and elevations for the calibration with a Student
distribution. For the full-period weighting, σ is the median of
the RMSE distribution, along with the integration of a com-
bination of velocity and surface elevation data (ZSxV). In the
case of sub-period weighting, we maintain these characteris-
tics, except for the σ estimate, which is determined by the
75th percentile (SP_Q75) of the RMSE distribution.

4.3.1 Hindcast ensemble

Throughout the hindcast period, weightings based on ISM
performance over the period 1985–2019, as the full-period,
sub-period, and fparam weightings, have considerably nar-
rowed the mass loss distribution around the observations
(Fig. 8). This narrowing of the distribution is particularly pro-
nounced for the fparam weighting (−51 % of the 95 % confi-
dence interval in 1985) and sub-period weighting (−61 %),
surpassing that achieved by full-period weighting (−32 %).
For the fparam weighting, the notable reduction in uncertainty
mainly arises from adjusting the weights assigned to mem-
bers with the greatest mass loss rather than adjusting those
assigned to members with the lowest mass loss. Conversely,
the opposite trend is observed for the other two weighting
methods. This second pattern is attributed to the selection
of members based on the year of inversion (Fig. 7) rather
than on the presence or absence of the fparam parameter-
ization. Specifically, members initialized before the retreat
and not employing fparam show lower mass losses, which is
less consistent with the observed data. Sub-period weighting
emerges as a compromise between the other two weighting
approaches. It incorporates the more precise selection crite-
rion of the fparam weighting while retaining the inclusion of
members with a lower mass loss, which are members using
inversion data before the retreat.

4.3.2 Control ensemble

The results of the mass loss analysis of the posterior con-
trol ensemble (Cpo) are not shown in this section, but these
results present trends similar to those observed over the
hindcast period. In particular, the reduction in uncertainty is
greater for the fparam weighting and the sub-period weighting
approaches. In these cases, the main impact is the exclusion
of ensemble members characterized by the lowest mass loss,
leading to projected contributions in 2100 of 0.83 to 1.31
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Figure 8. Evolution of Upernavik Isstrøm ice mass loss over the period 1985–2100 for the hindcast prior (grey), the hindcast posterior (dark
green with /), the predicted prior (orange), and the predicted posterior (light green with /) for different weightings (full-period weighting
in a, c, d, and e; fparam weighting in b, f, g, and h; sub-period weighting in i, k, l, and m; and SSP weighting in j, n, o, and p). Each
ensemble’s median is represented by a solid (prior) or dotted (posterior) line, and the shaded area encompasses 95 % of the ensemble
members. Observations from the 1985–2019 period are indicated by the symbol +. The red box highlights a zoomed-in view of the 1985–
2030 period. Sub-plots (c)–(h) and (k)–(p) show changes in the histogram, distribution, and box plot (95 % interval, interquartile interval,
and median) between the SLE prior and posterior in 1985, 2050, and 2100.
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and 0.83 to 1.25 mm sea-level equivalent (SLE), respectively.
This contrasts with the prior ensemble (Cpr), which ranges
from 0.56 to 1.31 mm SLE. For the full-period weighting ap-
proach, the uncertainty reduction is more symmetrical, af-
fecting the ensemble members with the highest and lowest
mass loss, resulting in a range of 0.64 to 1.26 mm SLE.

4.3.3 Predicted ensemble

Regarding the prediction for the year 2050 and 2100, both
the full-period weighting and the sub-period weighting meth-
ods exhibit minimal changes in the posterior ensemble, as
depicted in Fig. 8. The median contribution of Upernavik
Isstrøm to sea-level rise by the end of the century remains
unchanged at 2.7 mm, consistent with the earlier ensemble.
Moreover, few revisions are observed in the 50 % and the
95 % confidence interval, which has been adjusted upwards
for both weighting (Fig. 8d, e, i, m).

In contrast, when using fparam weighting for weighting,
significant changes are observed in the prediction of the pos-
terior ensemble, leading to a larger projected loss of mass.
The median SLR contribution in 2100 increases to 3.0 mm
compared to 2.7 mm in the prior ensemble. Moreover, the
50 % interval and the 95 % confidence interval expand sig-
nificantly (Fig. 8g, h).

5 Results: dependence on SSP

To complete this results section, we explored an alternative
probability distribution for the SSPs given its pronounced un-
certainty in 2100 (Fig. 6). Contrary to many studies where the
results are discussed for different SSPs, our results encom-
pass three scenarios that were almost equally weighted. This
allowed us to discuss the sensitivity to the SSP with respect
to the other sources of uncertainty. Without any preconceived
ideas about their distribution, we have assigned an almost
equal weighting to each SSP (Sect. 2.1.3). However, recent
evidence suggests that each SSP is not equally likely to oc-
cur in the future, with higher probabilities associated with
scenarios projected to reach 2 to 3.5 °C of warming by 2100
(Raftery et al., 2017; Hausfather and Peters, 2020; Intergov-
ernmental Panel on Climate Change (IPCC), 2022; Hausfa-
ther and Moore, 2022; Pielke et al., 2022). Drawing from
the survey results presented in Tollefson (2021), we propose
allocating probabilities of 1/10, 6/10, and 3/10 to SSP5-
8.5 (representing more than or equal to 4 °C of warming),
SSP2-4.5 (indicative of warming between 2.5 and 3.5 °C),
and SSP1-2.6 (corresponding to warming below or equal to
2 °C), respectively. We base these probabilities on the chal-
lenges we face in achieving SSP5-8.5 under current policies
(Intergovernmental Panel on Climate Change (IPCC), 2022),
which leads us to give more weight to SSP2-4.5. Similarly,
SSP1-2.6 is deemed improbable due to the limited extent of
CO2 emission reductions to date (Raftery et al., 2017). How-

Figure 9. Evolution of UI ice mass loss over the period 1985–2100
for the hindcast prior (grey), the hindcast posterior (dark green with
/), the predicted prior (orange), and the predicted posterior (light
green with /) for the combined sub-period and SSP weightings,
achieved by multiplying the weights of these two weightings. For
each ensemble, the median is represented by a solid (prior) or dot-
ted (posterior) line and the shading includes 95 % of the ensemble
members. Observations of the 1985–2019 period are represented by
+. The red box shows a zoomed-in view of the 1985–2030 period.
Sub-plots (b)–(d) show changes in the histogram, distribution, and
box plot (95 % interval, interquartile interval, and median) between
the SLE prior and posterior in 1985, 2050, and 2100.

ever, it is important to acknowledge that these probabilities
are approximate estimates and should not be taken at face
value. By construction, these probabilities have no effect on
Hpr, and the performance in terms of the CRPS, MAE, and
SD cannot be evaluated.

The SSP weighting on the future prediction has a very
significant effect, reducing the median contribution of UI in
2100 from 2.7 to 2.2 mm. The 50 % and 95 % confidence
intervals are also revised downwards (Fig. 8p). In 2050, on
the other hand, the range of the 95 % confidence interval be-
comes wider, while the median is revised downwards, from
0.90 to 0.79 mm (Fig. 8o).

Through the combination of ISM weighting, specifi-
cally sub-period weighting, with the existing SSP weight-
ing (Fig. 9), we are able to constrain the wider 95 % inter-
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Figure 10. Evolution of UI ice mass loss over the period 1985–
2100 (a) for the hindcast prior (grey), the hindcast posterior (dark
green with /), the SSP1-2.6 prior and posterior (blue), the SSP2-
4.5 prior (light orange) and posterior (dark orange with /), and the
SSP5-8.5 prior and posterior (red) ensemble simulations for the sub-
period weighting. For each ensemble, the median is represented by
a solid (prior) or dotted (posterior) line and the shading includes
95 % of the ensemble members. Observations of the 1985–2019 pe-
riod are represented by +. The red box shows a zoomed-in view of
the 1985–2030 period. Sub-plots (b)–(g) show changes in the his-
togram, distribution, and box plot (95 % interval, interquartile inter-
val, and median) between the prior and posterior in 2050 and 2100.

val in short-term predictions (2050) compared to using the
SSP weighting alone (Figs. 8o and 9c). This combined ap-
proach results in a reduced interval of [0.53, 1.89] compared
to the [0.46, 2.05] interval achieved by SSP weighting alone
(Fig. 8o) and is slightly smaller than the prior interval of
[0.52, 1.90]. Moreover, the combination remains essentially
unchanged with the median shifting upwards from 0.79 to
0.80 mm.

In the context of long-term predictions (2100), the combi-
nation with sub-period weighting also results in an upward
shift compared to SSP weighting alone (Figs. 8p, 9d). The
95 % confidence interval shifts from [1.5, 5.7] to [1.6, 5.5],
while the median experiences a slight increase from 2.18 to
2.25 mm.

By employing this weighting combination, we are able
to capitalize on the long-term reduction achieved by SSP
weighting while simultaneously leveraging the uncertainty
reduction facilitated by dynamic performance-based weight-
ing in the short and medium term. Notably, dynamic
performance-based weighting also contributes to the reduc-
tion in long-term uncertainty by excluding members that un-
derestimate past mass loss and provide the lowest SLR con-
tributions.

An alternative method to assess the influence of Bayesian
calibration with reduced SSP-related uncertainty entails pre-
senting results for each distinct SSP (Fig. 10). This approach
reveals effects that the aggregation of SSPs otherwise con-
ceals. For SSP2-4.5 (Fig. 10d, e), the application of sub-
period weighting significantly tightens the 95 % confidence
interval across medium-term (30 % in 2050) and long-term
(20 % in 2100) projections. Concerning SSP1-2.6 (Fig. 10b,
c) and SSP5-8.5 (Fig. 10f, g), the reduction in uncertainty
is less pronounced, not mirroring the levels seen in previous
studies about the Greenland Ice Sheet (e.g. Aschwanden and
Brinkerhoff, 2022). This modest reduction is attributed to the
robustness of our model, with a prior close to observations.
Nonetheless, a notable shift in probability towards higher
values is observed for each SSP, as shown by histograms,
box plots, and median values in Fig. 10b–g. Similar results
for the full-period and fparam weightings are illustrated in the
Supplement (Fig. S2).

To conclude this section, our exploration yielded two no-
table findings: (i) incorporating information about the pri-
mary source of uncertainty (Fig. 6) and adjusting its proba-
bilities can notably diminish overall uncertainty; (ii) subse-
quent to reducing this uncertainty, integrating ISM Bayesian
calibration further diminishes total uncertainty to a greater
extent compared to applying ISM Bayesian calibration alone
without updating SSP probabilities.
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6 Discussion

6.1 Prior ensemble

One of the reasons behind the use of a control run in ISMIP6
was to address the limitations of the models in accurately re-
producing recently observed changes in the ice sheets due
to artificial model drift, thus making it easier to assess the
deviation of each projection from this drift (Goelzer et al.,
2020; Seroussi et al., 2020; Nowicki et al., 2020). However,
the control run represents the average state of the recent pe-
riod, accounting for both model drift and climate change al-
ready experienced, such as a 0.5 °C warming in 1990 com-
pared to pre-industrial conditions (Masson-Delmotte et al.,
2021). Consequently, the results obtained by differentiating
between a simulation with realistic forcing and a control sim-
ulation with constant forcing do not allow us to predict the
future evolution of sea-level rise (SLR), as they do not take
into account the mass loss already underway as a result of
past global warming.

The initialization method developed in Jager et al. (2024)
effectively reproduces the past UI trend, negating the need
for control run differentiation as practised in the ISMIP6
framework. In our case, since we can successfully reproduce
recent observations, the prediction (Ppr) offers a comprehen-
sive SLR prediction encompassing this committed mass loss.
Subtracting the control (Cpr) from the prediction of the prior
ensemble (Ppr) would have underestimated UI’s contribution
to SLR by approximately 1 mm (i.e. the median contribution
of Cpr), almost 35 % of the median value of Ppr. This also
implies that stabilizing the forcing at present levels does not
stabilize the ice sheet, which would continue to melt. How-
ever, it is important to note that in this study, we do not em-
ploy a constant forcing from the present day in the control
experiment or Cpr. Instead, we utilize a prescribed SMB rep-
resentative of the period between 1960 and 1990, along with
a prescribed front characteristic of the year 2015. It is worth
mentioning that using an SMB averaged over more recent
years, such as those from the 2010 decade, would yield a
higher estimate of melt for Cpr and consequently result in an
even greater committed mass loss. Additionally, considering
the current climate conditions, it is more likely for the front
to retreat than to advance, leading to increased discharge and
more mass loss.

6.2 Uncertainty in future prediction

Our sensitivity study on the contribution of sea-level rise dif-
fers from previous studies (Aschwanden et al., 2019; Goelzer
et al., 2020; Hill et al., 2021) by incorporating the SSP into
the parameters, rather than conducting separate analyses for
each SSP. However, this approach is not unique and is sim-
ilar to studies carried out for glaciers outside the Greenland
and Antarctic ice sheets (Marzeion et al., 2020), as well as
for global temperature and precipitation (Hawkins and Sut-

ton, 2009). As the SSP is included in our sensitivity analysis,
in contrast to previous studies on the Greenland Ice Sheet
up to at least 2100, such as those of Goelzer et al. (2020)
and Aschwanden et al. (2019), we have had to reassess the
estimates of uncertainty associated with the SSP, the ISM,
the RCM, and the AOGCM used in those studies. Herein,
we describe our approach to this reassessment process and
demonstrate that these revised estimates yield results consis-
tent with those obtained in our study.

Specifically, the ISMIP6 study highlights a substantial dif-
ference of approximately 58 mm of sea-level equivalent be-
tween the means of the RCP8.5 and RCP2.6 scenarios (RCP
denotes Representative Concentration Pathway), with the
combined uncertainty spanning 125 mm of sea-level equiv-
alent, representing a variability of over 45 %. Similarly, the
variance between RCPs in Aschwanden et al. (2019) ac-
counts for nearly 35 % of the overall uncertainty. In our study,
which focuses on a single tidewater glacier in Greenland, we
observe a comparable magnitude of uncertainty (40 %). No-
tably, when examining the ISM, the uncertainty attributed to
this factor is considerably lower in our study (15 %) com-
pared to ISMIP6 (35 %). Conversely, the uncertainty associ-
ated with front parameterization is higher in our study (20 %)
than in ISMIP6 (15 %) because we are looking at uncertainty
due to parametric differences in one model compared to dif-
ferent models in ISMIP6. The uncertainty in the RCM is not
investigated in ISMIP6, preventing direct comparisons. Fur-
thermore, our study reveals zero sensitivity of the AOGCM,
in contrast to ISMIP6 where it accounts for almost 30 % of
the overall variability (36 mm of the 125 mm total uncer-
tainty). This lack of influence can be attributed to a com-
pensatory effect: the AOGCM exerts a non-zero influence on
both the ice discharge and the SMB as depicted in Fig. 6.
Nevertheless, AOGCMs with higher discharge rates are as-
sociated with a higher SMB, and vice versa, culminating in
a comparable net ice mass change across different AOGCMs
(Fig. S1). Finally, Rohmer et al. (2022) demonstrated that
spatial resolution and front parameterization were the two
most influential parameters in the ISMIP6 framework, which
notably does not account for RCM and SSP uncertainties.
Regarding the significance of front-retreat parameterization,
our study aligns with this observation, demonstrating its sub-
stantial influence. In fact, it emerges as the second most in-
fluential factor after SSP, which was not explored in the men-
tioned study. For the spatial resolution, our sensitivity anal-
ysis does not take it into account. However, we conducted
mesh sensitivity tests during the hindcast period, changing
the resolution by factors of 0.5, 2, and 4. These tests re-
vealed that such modifications resulted in approximately a
30 % alteration in local velocities at a given time, which de-
pends on the precise timing of the front’s position as it moves
discretely along the edges of the elements. Nevertheless, the
overall mass loss across these varying meshes exhibited min-
imal variation, amounting to less than 5 %.
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6.2.1 Reducing uncertainty through ISM calibration

Considering the small sensitivity of the ice mass loss to the
ISM, our calibration analysis reaffirms the limitation of re-
ducing uncertainty solely through ISM calibration. Notably,
our prior results indicate a considerable reduction in uncer-
tainty compared to broader intercomparison studies like IS-
MIP6 when employing a single model. This discrepancy can
be partly attributed to ISMIP6’s more comprehensive con-
sideration of structural uncertainties within the models. Ad-
ditionally, the prior ensemble already demonstrates a high
level of skill in reproducing past observations, as shown in
Fig. 4. However, it is important to acknowledge that all mod-
els must overcome this challenge before a future intercom-
parison study like ISMIP7, as suggested in Aschwanden et al.
(2021). Once this hurdle has been successfully addressed by
the ice sheet dynamics modelling community, it will be es-
sential to focus on reducing other sources of uncertainty.

6.2.2 Reducing uncertainty through climate forcing
calibration

Our findings regarding the weighting of SSPs underscore
the significant reduction in uncertainty, particularly for long-
term predictions with a 20 % reduction in the 95 % confi-
dence interval, that can be achieved through this approach.
This opens up possibilities of conducting similar studies
aimed at assigning weights to other model assumptions, such
as front parameterization, the selection of RCMs, or the se-
lection of AOGCMs. For short-term predictions, which are
of great interest to some practitioners, it appears that the
primary sources of uncertainty are associated with RCMs,
AOGCMs, and front parameterization. Although significant
uncertainty remains regarding ice sheet dynamics for UI,
with certain aspects still unexplored (e.g. bed elevation), we
appear to be approaching the practical limit for uncertainty
reduction while preserving the robustness of our results re-
lated to these dynamic processes of the GrIS, unless other
sources of uncertainty are addressed first. Specifically, after
reducing the uncertainty associated with the SSPs, applying
a weighting to the ISM further reduces uncertainty by 10 %
by 2100 (Ppo in Fig. 8j and a).

In the context of front-retreat parameterization, despite its
foundation in observational data, there remains significant
room for reducing associated uncertainties. In our study, we
have considered two sectors, CW and NW, at three distinct
sensitivity levels (low, medium, and high) to prevent unwar-
ranted confidence in our findings. Applying the parameteri-
zation to the hindcast period results in a uniform retreat of
all branches, with 6 km for the highest sensitivity (high sen-
sitivity of the central-west sector) and 0.9 km for the lowest
sensitivity (low sensitivity of the northwest sector). In com-
parison, UI-N retreated by 5.7 km and UI-S by 1.1 km over
the same period (Fig. 1). To improve the parameterization,
it will be necessary to take into account additional factors

beyond currently considered runoff and far-field ocean tem-
perature changes, which do not allow for the difference in ice
dynamics between the different ice streams as shown here for
Upernavik Isstrøm. Furthermore, given the significant influ-
ence of this front parameterization on the ice discharge and
the mass loss of UI, as revealed by the sensitivity analysis,
it seems important for the scientific community to engage in
further research aimed at improving this characterization of
front retreat and introducing a more physics-based formula-
tion of this parameterization. Such efforts would require a
comprehensive analysis of past behaviour, along the lines of
previous studies (Wood et al., 2021), followed by calibra-
tion efforts for an appropriate calving law (Bondzio et al.,
2018) and investigations into the complex interactions be-
tween ocean, atmosphere, and outlet glaciers (Slater et al.,
2019).

In the realm of RCMs, multiple studies have been con-
ducted to compare these models with data obtained from the
Greenland Ice Sheet (Fettweis et al., 2020; Vernon et al.,
2013). These comparative analyses serve to identify the bi-
ases inherent in different RCMs and guide efforts towards
their correction in subsequent iterations. However, despite
these endeavours, the various models continue to yield sig-
nificantly divergent results, attributable in part to dispari-
ties in the underlying physics employed and the downscaling
techniques used. For example, in our previous study (Jager
et al., 2024), we demonstrated that members using RACMO,
which employs a 1 km statistical downscaling approach to
the 5.5 km grid (Noël et al., 2016), reproduce past trends
in surface elevation better than those using the MAR model
without statistical downscaling (Fettweis et al., 2017). One
potential solution to address the disparities among RCMs is
to incorporate multiple ensemble members from these mod-
els, accounting for their associated uncertainties. This pre-
supposes that the RCMs themselves undertake uncertainty
quantification to follow the Bayesian approach proposed in
Aschwanden et al. (2021). By doing so, it becomes possi-
ble to generate a range of forcing scenarios for both hindcast
and forecast periods and evaluate their performance against
past surface elevation observations. Efforts can also be di-
rected towards reducing uncertainty by promoting conver-
gence among different RCMs, contingent upon them duly
accounting for their intrinsic uncertainties.

Considering the substantial impact of the SSP on uncer-
tainty, it would be valuable to conduct a more thorough ex-
amination of this uncertainty, particularly given that SSP2-
4.5 and SSP1-2.6 exhibit similar outcomes in this study. Cur-
rently, many studies primarily focus on the SSP5-8.5 sce-
nario, which yields striking results due to its high level of
warming (Hausfather and Peters, 2020), and only a few in-
clude SSP1-2.6 or SSP2-4.5, as used in this study. However,
considering the notable differences in results between SSP2-
4.5 and SSP5-8.5, a more refined discretization of future sce-
narios would provide more comprehensive understanding of
uncertainty in future sea-level-rise projections. This will also
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help macro-studies such as that of McKay et al. (2022) to
better identify at what level of warming the GrIS and AIS
tipping points may be exceeded.

6.3 Cross-validation method for Bayesian calibration

To address the challenge of spatial and temporal correlation
and its impact on model weighting, various approaches have
been previously explored. We discuss three methods here.
The first approach involves the utilization of aggregated data,
such as volume and discharge changes, as they were used
with a single global value in Ritz et al. (2015) for calibrat-
ing the future of the Antarctic Ice Sheet with the mean rate
of change for each sub-catchment. However, using time se-
ries, the approach does not effectively resolve the issue of
temporal correlation as used in Aschwanden and Brinker-
hoff (2022) with the mass calibration. The second approach
employs a performance metric, which can be interpreted as
the distance between the observed and modelled fields, effec-
tively treating multiple observations as a single observation
(i.e. nobs is then equal to 1 in Eq. 12). This is the method
used in our study. For example, in a different context fo-
cused on constraining a calving law, Bondzio et al. (2018)
proposed an approach to weight ensemble members using
a metric that measures the distance between each member’s
front and the observed one. In other contexts of Antarctic
Ice Sheet modelling, Pollard et al. (2016) and Albrecht et al.
(2020) also proposed weighting methods based on a metric
that measures the performance of each member. A third op-
tion is to use one observation for each mode (a distinct group
of ensemble members with similar characteristics) of the en-
semble using principal component decomposition. In the do-
main of glaciology, Wernecke et al. (2020) implemented the
third approach by employing it in the context of the Amund-
sen Sea embayment. The calibration process utilized two-
dimensional satellite data reflecting surface elevation change.
Notably, this investigation conducted a comparative analy-
sis by comparing this mode-based approach with both the
first method (i.e. aggregated data approach) and an approach
that kept all the information encapsulated in the field of view
(Eq. 12). The study’s results indicated that this mode-based
approach succeeded in reducing uncertainty to a greater ex-
tent compared to the approach utilizing aggregated data but
not as effectively as an approach that harnessed the complete
observation field. The study postulated that this second as-
pect could signify potential overconfidence in the retrieved
parameter values or, conversely, more efficient exploitation
of the available information. However, it is worth noting that
the study did not perform an evaluation of the calibrated en-
semble’s performance, leaving a distinction between these
two possibilities uncharted.

Our validation method responds to the limitations raised
above and represents a significant advance in Bayesian cali-
bration within model ensembles of ice sheet modelling. We
used a cross-validation approach that allows us to examine

the diverse impacts of weighting choices and mitigate the risk
of overfitting. However, it is important to acknowledge that
the selection of hyper-parameters (e.g. the number of param-
eters taking into account the ISM sensitivity analysis) itself
may contribute to overfitting, and we have yet to identify an
effective strategy to address this challenge.

While there is room for further improvement in our
method, the unique characteristics of glaciology pose chal-
lenges in drawing inspiration from other scientific disci-
plines. In contrast to hydrology, meteorology, or oceanog-
raphy, where a wealth of events can be used for weighting
or calibration, glaciology often deals with a limited num-
ber of observed events. For instance, in hydrology, multi-
ple flood events can be employed for weighting and cali-
bration, with additional events available for validation (Hal-
louin et al., 2020). In contrast, glaciology typically involves
only a single observed retreat event per catchment, as demon-
strated in our study of UI. Consequently, the application of
such techniques becomes unfeasible in glaciology. Nonethe-
less, the notion of calibrating and validating parameters on
a catchment-specific basis holds great promise, as it would
enable a more targeted parameter selection within individual
catchments rather than considering the entire ice sheet as a
whole. To effectively validate the calibration of parameters
on a per-catchment basis, it is imperative to identify a glacier
exhibiting dual events (e.g. two major retreats of the same
front since the 1980s). Subsequently, the model ensemble
can be calibrated using the initial retreat data, followed by
a comparison of the calibrated model’s CRPS performance
against that of the non-calibrated model. Such a case study
could also serve as a basis for comparing the calibration with
weights as developed here to other transient data assimilation
methods as developed in Goldberg et al. (2015).

Furthermore, the validation approach employed in this
study has demonstrated the additional benefits of transient
calibration compared to snapshot inversion, i.e. the tradi-
tional inverse method of friction calibration. This is partic-
ularly the case in scenarios where a front retreat occurs, as
is evident in the case of the substantial retreat of the UI-
N and UI-C fronts. In contrast, when there are no signifi-
cant front retreats (UI-S) or velocities are low, implying a
limited role of dynamics (UI-SS), calibration does not seem
to offer any discernible improvements. This observation is
likely attributable to the fact that, in the absence of substan-
tial changes in dynamics, all ensemble members can effec-
tively reproduce these dynamics through inversion alone.

Our study underscores the substantial impact of calibrat-
ing with velocity and elevation data (full-period weighting)
in diminishing the uncertainty linked to hindcast ice mass
loss in the UI region, especially when considering their tem-
poral aspects (sub-period weighting). This reduction in un-
certainty opens up possibilities for data assimilation of past
velocity and elevation data inspired by Goldberg et al. (2015)
or Gillet-Chaulet (2020), offering a way to reconstruct dis-
charge with better-characterized uncertainties compared to
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the conventional input–output method. Using advanced tran-
sient data assimilation techniques can lead to enhanced per-
formance in terms of cumulative ice discharge, moving be-
yond the limitations of the simplistic gate-based approach.
By incorporating velocity and elevation data through data
assimilation, uncertainties related to velocities, surface ele-
vation, and bed elevation can be effectively addressed, mak-
ing the use of gates unnecessary. This approach represents a
promising advancement in improving the accuracy and relia-
bility of ice discharge reconstructions.

6.4 Insights for future studies

Thanks to our validation methodology, designed to mitigate
the risk of overfitting, we can assert the reliability of our find-
ings concerning future sea-level rise and the interpretation of
related outcomes. In this context, we offer valuable insights
that hold significance for ice sheet modellers concerned with
Bayesian calibration through the weighting choices and ret-
rospective modelling.

6.4.1 Use of Bayesian calibration

Our investigation reveals that the selection of weighting
strategies for Bayesian calibration, encompassing the prob-
ability distribution shape, the determination of an appropri-
ate standard deviation (σ ), and the incorporation of multi-
ple periods, can precipitate over-adjustment during the cali-
bration process. Opting for an overly narrow distribution or
favouring a distribution with very thin tails such as Gaus-
sian over a distribution with fatter tails as Student’s t can re-
sult in overfitting, wherein only a few high-performing mem-
bers are emphasized, thereby disregarding crucial informa-
tion. This observation resonates with findings presented by
Jiang and Forssén (2022), wherein they highlight significant
challenges arising from the utilization of complex likelihood
functions (as encountered in our study with multiple periods)
or extremely small data errors (represented by excessively
small σ values). Such circumstances may lead to the selec-
tion of a limited number of members, potentially overlook-
ing vital aspects of the posterior distribution. Consequently,
cautious consideration is warranted when employing these
techniques, and our validation approach serves as a safeguard
against such pitfalls.

Regarding the selection of data, our analysis revealed a
notable asymmetry between spatialized data, such as speeds
and elevations, and global data, such as ice discharge and to-
tal mass loss. Specifically, when members were chosen based
on their ability to accurately reproduce velocities and ele-
vations, it resulted in an overall enhancement in the ensem-
ble’s performance for both spatialized data and global indi-
cators like ice discharge and mass loss. However, the con-
verse was not observed to hold true. This discrepancy can
be attributed to potential compensatory effects, wherein a
model that closely matches the observed discharge may ex-

hibit excessively high velocities and disproportionately low
elevations. Conversely, a model that accurately represents
velocities and elevations will inherently yield a satisfactory
discharge estimation. Additionally, selecting members based
on spatialized data also facilitates improved reproduction of
other phenomena that indirectly influence discharge, such as
shear margins.

We conducted an analysis of the influence of sub-periods
that characterize different phases, namely before, during, and
after glacier retreat. Our findings indicate that the use of sub-
periods results in a slightly improved selection of members
using parameterization compared to full-period weighting,
as the former exhibits better representation of glacier ac-
celeration. This approach can be considered an intermediate
method between fparam weighting and full-period weighting,
particularly during the hindcast period. However, it should
be noted that the selection process is still strongly influenced
by the choice of inversion data, which becomes less influen-
tial in future predictions. A potential future approach could
involve using only pre-retreat data to create a new ensem-
ble, enabling a slightly more refined selection based on other
model parameters. This calibration method also provides
more relevant information, as it demonstrates the model’s
ability to accurately reproduce past total mass change data,
which aligns with our ultimate objective. Consequently, we
place slightly more confidence in sub-period weighting than
we do in full-period weighting.

6.4.2 Friction law

The most influential parameter within the ISM, regarding
the reproduction of past Upernavik Isstrøm behaviour, is the
choice of input data for the inverse method of the friction
field. Weights are notably larger when using inversion data
from the pre-retreat period (1990s and 2000s). This is be-
cause no extrapolation is needed in the ice-free areas during
this period, in contrast to post-retreat inversions where ex-
trapolation is necessary due to ice front retreat, introducing
additional uncertainties into their performance assessment.
Consequently, post-retreat inversions exhibit lower perfor-
mance in ice-free areas before the retreat. The accurate re-
production of data when the front retreats instils greater con-
fidence in our predictions, aligning with the observed trend
of front retreat. However, if one wishes to delve further back
in time or undertake a paleo-climatic study, extrapolation be-
comes necessary (e.g. Haubner et al., 2018). Thus, the choice
of friction field extrapolation will become a crucial issue as
it significantly influences the result, as previously shown in
Jager et al. (2024).

Concerning the shape of the friction law, our findings em-
phasize that incorporating the sub-hydrological effect – al-
beit in a parameterized manner as demonstrated in this study
– is crucial for accurately simulating the historical dynamics
of UI. Additionally, inclusion of this effect is associated with
an amplification of projected future mass loss of the glacier,
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consistent with expectations outlined in Jager et al. (2024).
In that study, we highlighted the significance of the sub-
hydrological effect and posited that its consideration would
likely exacerbate glacial mass loss. Moreover, the findings
related to parameter selection indicate that the role of param-
eterization is more crucial than the specific choice of friction
law formulation when it comes to reproducing the observed
data. In Joughin et al. (2019), reducing friction near the front
probably contributed as much as, if not more than, using a
regularized Coulomb law to obtaining better agreement with
observed data. This suggests that a Budd law, whose formula-
tion is close to that used here for members using Weertman’s
law and which takes subglacial hydrology into account, at
least in a parameterized way, would perform just as well
as the regularized Coulomb law in reproducing past accel-
eration of UI. For Greenland tidewater glaciers, Choi et al.
(2022) also showed that friction laws that include a parame-
terized dependence on the effective pressure better reproduce
the observed acceleration and mass loss of the past decade
in northwest Greenland. However, despite the promising re-
sults from our previous paper, the predominance of inversion
data had a moderating effect on the extent of the observed
improvements. In the previous study, only front-end post-
processing data were employed for the inversion process. In
contrast, the current study incorporates data from both the
pre- and the post-retreat periods, which noticeably influenced
the calibration due to the necessity for extrapolation. In the
future, as the front continues to retreat, it is anticipated that
this influence will diminish, rendering extrapolation unnec-
essary in ice-covered regions.

7 Conclusions

In conclusion, we have shown that our initialization method
for Elmer/Ice effectively captures trends of ice mass change
and enhances the credibility of future tidewater glacier con-
tributions to sea-level rise, aligning with recommendations
from Aschwanden et al. (2021). This approach not only
characterizes model uncertainties but also reproduces past
observations, akin to successful efforts with ISMs such as
ISSM and PISM for Greenland (Aschwanden and Brinker-
hoff, 2022; Nias et al., 2023). By addressing model drift, our
study moves beyond conventional projections and sensitiv-
ity analyses (Goelzer et al., 2020; Seroussi et al., 2020), sig-
nalling a paradigm shift towards more localized and precise
sea-level-rise predictions, particularly for polar ice sheets.

Our sensitivity analysis emphasizes that, in 2100, the most
significant factors affecting the future contribution of Uper-
navik Isstrøm to sea-level rise are the Shared Socioeconomic
Pathways (SSPs) followed by the front-retreat parameteri-
zation. Regional climate models (RCMs) and ISMs have a
slightly lower impact on sea-level-rise contribution in the
long term, while atmosphere–ocean general circulation mod-
els (AOGCMs) play a minor role. However, in the short and

medium term, for results that may be of interest to public
policy, the influence of the SSP is much lower, with uncer-
tainties coming mainly from the four other sources.

Furthermore, our ISM calibration with different weight-
ings brings about marginal improvements in 2100 due to its
relatively low impact on the ice mass loss sensitivity. How-
ever, the combination of multiple weightings shows promise,
suggesting that a more holistic approach may yield greater
benefits. In addition, our methodology combining Bayesian
calibration and cross-validation has generated noteworthy
findings that are of relevance to the scientific community: (i)
spatially based weighting demonstrates enhanced robustness
compared to globally based weighting strategies; (ii) tempo-
ral partitioning of the calibration period, particularly consid-
ering calving events (prior to calving, during calving, and
post-calving), significantly reduces overall uncertainty while
preserving comparable model performance; (iii) the model
initialization using inverse methods exhibits robustness, par-
ticularly in scenarios involving glacier front retreat, with
friction initializations derived from pre-retreat data yielding
superior performance. These insights contribute to advanc-
ing our understanding of ice sheet modelling and calibra-
tion techniques, offering avenues for further research and im-
provement in future studies.

Looking ahead, it would be interesting to extend our
methodology to the scale of the Greenland Ice Sheet. This
would involve creating frontal masks dating back to the
1980s, collecting velocity and elevation data over this hind-
cast period for the peripheral regions of the ice sheet, and
running ensemble simulations for comprehensive compar-
isons. Such an undertaking could lead to better understanding
of ice sheet dynamics and improved forecasting capabilities.

Appendix A: Model description

The ISM employed in this study is the parallel finite-element
code Elmer/Ice (Gagliardini et al., 2013). The model domain
corresponds to the UI catchment, as depicted in Fig. 1. The
model used here follows the methodology presented in Jager
et al. (2024), and we provide a concise overview of its main
aspects in this section. For more comprehensive understand-
ing, we refer readers to the original paper.

The shelfy-stream approximation, also called shallow-
shelf approximation (SSA; MacAyeal, 1989), is used for the
force balance equations together with Glen’s flow law (Glen
and Perutz, 1955), which is non-linear, for the constitutive
relation. It relies on three parameters: the Glen exponent n,
the rate factor A, and the enhancement factor E. Thermo-
mechanical coupling is disregarded due to the short time pe-
riod considered (Seroussi et al., 2013), and for simplicity, the
rate factor A is assumed to be constant over time. The initial-
ization of A involves using a present-day 3D ice tempera-
ture field computed with SICOPOLIS (Greve, 1997), which
is preceded by paleo-climatic spin-up and incorporates the
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prefactors and activation energies provided by Cuffey and
Paterson (2010). Uncertainties related to this flow law are
commonly accounted for through the enhancement factor E,
which serves as a scaling factor for A.

In this study, two distinct friction laws (flaw =W or RC)
governing the relationship between basal velocity ub and
basal shear stress τ b are employed for grounded areas:

– a Weertman friction law (Weertman, 1957),

τ b =−βW ||ub||
1
m
ub

||ub||
; (A1)

– a regularized Coulomb friction law (Joughin et al.,
2019),

τ b =−βRC

(
||ub||

||ub|| + u0

) 1
m ub

||u||
. (A2)

Both Eq. (A1) and Eq. (A2) involve a friction parameter
(βW or βRC, respectively) and a positive exponent m, and
a threshold velocity u0 is included in the case of the reg-
ularized Coulomb friction law (Joughin et al., 2019). The
friction parameter β can either remain constant over time
(fparam = false) or take into account the effective pressure in
a parameterized way as in Jager et al. (2024) (fparam = true):

β = βref+βlim
d

d + dlim
, (A3)

where βref represents a time-independent reference field, d
denotes the distance to the front, and βlim and dlim are two
parameters accounting for the dependence of β on this dis-
tance.

Significant uncertainties surround the parameter β, often
initialized based on current topography and surface velocity
observations (OBSinv) using an inverse approach that min-
imizes a composite cost function. This cost function com-
prises terms assessing the discrepancy between observed
and modelled velocities, a regularization term promoting a
smooth friction field solution, and a third term that penal-
izes flux divergence anomalies (Gillet-Chaulet et al., 2012).
These last two terms are weighted with the parameters λreg
and λdiv that are adjusted using an L-curve approach (Gillet-
Chaulet et al., 2012). The inversions in this study are con-
ducted at the UI scale, distinguishing it from our previous
study that used inversions previously made at the GrIS scale
(Gillet-Chaulet et al., 2012).

For the evolution of the bottom and top free surfaces,
we solve the continuity equation for the ice thickness using
the flotation condition. As we do not resolve the thermo-
mechanical coupling, we neglect the basal melt rate in
grounded areas. We also set it to 0 in floating areas, as they
remain small during our simulations. For the surface mass
balance ȧs, we use outputs from an RCM.

The unstructured mesh is refined near the ice front and
in areas where high velocity or thickness curvatures are ob-
served, featuring element sizes ranging from 150 to 600 m
within the initial 50 km and increasing to around 5 km fur-
ther upstream. A time step of 5 d is used.

The temporal variation in the glacier fronts is treated as an
external forcing, with the fronts’ positions considered fixed
within each time step. The mesh remains unchanged, and
the effective ice–ocean boundary is defined by the edges
connecting glaciated and deglaciated elements, resulting in
discrete changes over time. Deglaciated elements are subse-
quently deactivated and excluded from the numerical solu-
tion.

Appendix B: Observation description

For surface velocity and surface elevation, we used the same
spatio-temporal data as presented in our previous work (Jager
et al., 2024). These observational data have a grid resolution
of 150 m and are annually averaged to improve spatial cover-
age. However, these data are somewhat unbalanced, exhibit-
ing better coverage in both time and space from the 2010s
onwards compared to earlier years. To facilitate model–data
comparison, the model fields are bilinearly interpolated onto
the same regular grid as the observations.

The ice discharge data used in our analysis comprise a
compilation of published data from Mankoff et al. (2019),
King et al. (2018), and Mouginot et al. (2019). These data
correspond to the flow of ice through the gates, assuming
that the average velocity over the thickness is equal to the ob-
served surface velocity. As a result, the derived ice discharge
data may exhibit variations depending on the positioning of
the gates, the selection of ice heights, and the velocity mea-
surements used. In addition, Jérémie Mouginot has recalcu-
lated a set of discharges, this time using BedMachine rather
than a flight line, which we call MouginotV2, and the data
obtained are close to those of Mankoff et al. (2019). Our ob-
servation of ice discharge is then an average of these four
datasets. For the model, we used the same methodology by
taking the gate defined in Mankoff et al. (2019).

The total ice mass loss at the catchment scale is assessed
using the input–output method (Mouginot et al., 2019). This
method entails subtracting the ice discharge from the surface
mass balance outputs of RACMO. In the ISM, the volume is
an output obtained by integrating the thickness over the en-
tire active domain. Consequently, the change in volume en-
compasses the variations due to front retreat, which are not
considered in the input–output approach. Nevertheless, this
change in volume was found to be negligible (less than 1 %).
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Appendix C: ISM parameters

C1 Factor fixing and factor mapping

As detailed in the main paper, modifications have been made
to the dynamic parameters in comparison to parameters used
in Jager et al. (2024).

– The ice rheology. Considering the enhancement factor
(E), we ascertained that members withE between 1 and
3.5 yield better results. Consequently, we transformed
the distribution from continuous between 0.5 and 5 to
a log-normal distribution with parameters µ= 0.8 and
σ = 0.5 to enhance the values within the range [1, 3.5].

– The friction law, To distinguish between the influence of
the choice of friction law and the presence of the param-
eterization described in Jager et al. (2024), we introduce
two new parameters. The first parameter, denoted flaw,
is characterized by two states: “RC” when the mem-
ber employs the regularized Coulomb friction law and
“W” when utilizing the Weertman friction law. The sec-
ond parameter, termed fparam, possesses binary values:
“true” to signify the friction parameter βRC or βW evolv-
ing according to Eq. (A3) and “false” when the friction
parameter remains constant. We also keep in our param-
eter space the choice of exponent of the friction law m.
Finally, the impact of u0 on model outputs was found
to be less significant than that of the other ISM param-
eters. We therefore use a single u0 of 300 m a−1, which
is similar to the median value of our previous study and
to the one used in Joughin et al. (2019).

– The calibration of the friction field. For the friction field,
we do not take into account the uncertainty in the whole
field (i.e. one parameter per mesh node), but we con-
sider only the uncertainty in the hyper-parameters of
the inverse method, which considerably reduces the pa-
rameter space. Our two hyper-parameters are the reg-
ularization weight λreg and the observed data used for
the inversion OBSinv. In the previous study, the impact
of λdiv on friction was found to be less significant than
that of the other ISM parameters, and we therefore use a
single λdiv. In terms of the overarching framework, we
have implemented modifications to our inversion pro-
cedure. In our previous study, a 40-member inversion
had previously been carried out at the scale of Green-
land. In contrast, the present study involves individual
inversions for each member at the Upernavik Isstrøm
scale, affording enhanced continuity within the param-
eter space of inversion. An L-curve analysis was con-
ducted to determine the revised distribution profile of
λreg, alongside the optimal value for λdiv. While our
previous study used five observational velocity datasets
from the 2010s, aligned with BedMachine surface ele-
vations, the current approach employs average veloci-

ties and altitudes representative of the entire temporal
span from 1985 to 2019. These averages were com-
puted using our own dataset, spanning distinct periods
for OBSinv: 1985–1995, 1995–2005, 2005–2015, and
2015–2019. Due to the presence of ice-free regions in
certain areas of the glacier following its retreat around
2005, it is imperative to extrapolate the friction field
in these regions for members using observational data
from 2005–2015 or 2015–2019. When the parameteri-
zation of the effective pressure change effect is enabled
(i.e. fparam = true), the time-independent reference field
βref is set to 0 in the extrapolated areas. Conversely,
when parameterization is disabled (fparam = false), ei-
ther βW or βRC set to 0 is utilized. The implications of
the chosen extrapolation method are further examined
and discussed in Jager et al. (2024).

– The initial geometry. With regard to the initial surface
elevation, we have established that it exerts a minimal
influence on both ice mass loss and ultimate volume.
Compared with the previous study, we have therefore
fixed the parameters influencing only this initial sur-
face, namely the period for relaxation, which we set at
5 years, and the period over which the SMB was aver-
aged, which is now the average over the period 1960–
1990. By doing so, the initial surface depends only on
the ISM parameters (material property, friction law, and
friction field calibration).

C2 Calculation of sensitivity indices

Accurately computing sensitivity indices of an order greater
than 1 usually requires a large number of simulations, and
methods have been developed to optimize the experimen-
tal design (Reed et al., 2022). However, due to the exten-
sive computational demands of our model, conducting such
a large number of simulations is impractical. Therefore, to
simplify the approach, we opted to focus solely on first-order
sensitivity indices (Eq. 2), which assess the individual im-
pacts of the parameters without considering their interac-
tions; these interactions correspond to higher index orders.
These sensitivity indices are computed using the ANOVA
method (Brevault et al., 2013; Lamboni et al., 2011). When
the probability distribution of Xi is discrete, determining
Var (E [Y |Xi]) involves averaging the Y values for each
value thatXi assumes and then calculating the variance of the
means of these distinct subgroups. For continuous probabil-
ity distributions ofXi , we discretized the distribution, assum-
ing only four distinct values for Xi . This approach simplifies
the problem significantly but results in the loss of subtleties
present in continuous distributions. Brevault et al. (2013) em-
phasized the importance of the number of levels chosen for
discretization. Different levels can lead to variations in the
sensitivity indices, as small-scale variations in continuous
parameters may be smoothed out during discretization. So
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Figure C1. Sensitivity indices for the six ISM parameters of Ppr (λreg, m, E, OBSinv, flaw, fparam) for the volume (a), the ice mass change
relative to 2015 (b), the cumulative SMB since 2015 (c), and the cumulative ice discharge since 2015 (d).

we tested the convergence of these indices as a function of
the number of members considered and found that they con-
verged towards a value that changed by less than 3 % from 50
members upwards. Given the primary objective of the qual-
itative discussion of results rather than precise estimation,
the ANOVA method is well-suited for this purpose. Our fo-
cus remains on the identification of principal influences and
overarching patterns, supported by Figs. 6 and C1, that offer
approximate magnitudes of the observed effects.

C3 Sensitivity analysis

Figure C1 illustrates the evolution of sensitivity indices for
ISM parameters from 2015 to 2100, computed using the
predicted prior ensemble (Ppr), concerning the ice mass,
ice mass change, cumulative SMB, and cumulative ice dis-
charge. The sensitivity indices provided in the figure are pre-
sented in their non-normalized form.

C4 Weighted parameters

The full-period weighting method used shows a clear pref-
erence for members for whom friction initialization was car-
ried out with data from the 1990s and 2000s, as shown by

the weights assigned (Fig. 7b). This preference is attributed
to the comparatively low RMSE values observed for these
members. Conversely, members with inversions conducted
in 2010 or 2017 necessitate extrapolation in regions where
the ice front has retreated, thereby introducing additional un-
certainties into their performance assessment. Consequently,
these later inversions exhibit poorer performance in ice-free
areas before the retreat due to the need for extrapolation. No-
tably, the influence of the inversion year diminishes consid-
erably after the retreat of the ice front. The fact that we faith-
fully reproduce the data when the front retreats gives greater
confidence in the results of our predictions, as the front tends
to retreat.

The presence or absence of the fparam emerges as the sec-
ond prominent factor influencing the distribution shift be-
tween the prior and posterior in the full-period weighting
process, subsequent to OBSinv (Fig. 7c). This finding aligns
with the findings of our previous study (Jager et al., 2024),
where we demonstrated the crucial role of this parameter-
ization in enabling the model to accurately reproduce data
spanning the period from 1985 to 2019.

Regarding the regularization weight of the cost function,
λreg, the distribution tends to shift towards lower values
(Fig. 7a). This implies that excessively high λreg values result
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in elevated RMSEs due to an overly smooth friction field.
This result is noteworthy, as it suggests that solutions with
less smoothness, potentially influenced by data noise, are
not necessarily of inferior quality. This scenario is preferred
over excessive regularization, highlighting the importance of
striking a balance between regularization strength and model
fidelity.

Regarding the parametersm, flaw, andE, there are no sub-
stantial trends in the difference between the prior and pos-
terior distributions (see Fig. 7d, e, and f). However, for the
parameter m, members with values exceeding 0.4 or approx-
imately 0.25 exhibit higher weights, although this outcome
could be attributed largely to the influence of λreg, OBSinv,
and fparam. Likewise, members characterized by an E value
near 1.9 and flaw =W demonstrate increased weights. In
hindsight, our initial choice of distribution for these three
parameters proves to be suitable due to the absence of sig-
nificant changes observed in their posterior distributions.

In terms of sub-period weighting (Fig. 7), the notable alter-
ation is the amplification of the discrepancy in fparam selec-
tion. Specifically, the posterior probability rises from 6.4 to
7.4, indicating a greater likelihood for parameterized mem-
bers to accurately replicate distinct periods. These findings
provide further validation of and support for the outcomes
reported in Jager et al. (2024).

Appendix D: Cross-validation of Bayesian calibration
choices

Figure D1 visually presents the normalized continuous rank
probability score (CRPS) as a performance metric for distinct
calibrated ensemble configurations. These configurations en-
compass full-period weighting, sub-period weighting, and
fparam weighting approaches. The CRPSs are computed for
ice discharge, cumulative ice discharge, surface elevation,
and surface velocity, providing a comprehensive view of the
calibrated ensembles’ performance across various datasets.
In addition, it is important to note that similar figures illus-
trating the mean absolute error of the ensemble mean (MAE,
Eq. 4), the standard deviation of the ensemble (SD, Eq. 5),
and the non-normalized values are not included to avoid du-
plication (see Supplement, Figs. S1 to S5). Moving beyond
the graphical presentation, this section undertakes a thorough
analysis of the calibrated ensemble’s performance in relation
to Hpr under different weightings. We begin by scrutinizing
the full-period weighting approach, delving into how varia-
tions in probability density form, the estimate used for σ , and
the data choice for the calibration. Subsequently, we evaluate
the outcomes of sub-period weighting and fparam weighting
methodologies.

In general, all the various calibrations result in notable
improvements in the CRPS of the ensemble. This improve-
ment is evident in the prevalence of blue shades (67 %), in-
dicating lower CRPS values, compared to yellow–red shades

(33 %), indicating higher CRPS values, and the presence of
more dark-blue shades than dark-red shades. For all combi-
nations, the SD is reduced by 20 [4,56] % for cumulative
ice discharge, 18 [5,47] % for ice discharge, 10 [2,23] % for
surface elevation, and 17 [2,34] % for velocity. Furthermore,
the MAE is also reduced overall, with a decrease observed in
70 % of the cases.

Notably, significant differences are observed between the
CRPS of the different sub-catchments: for the cumulative ice
discharge and ice discharge, the CRPS rarely increases for
UI-S and UI-SS, while the opposite is true for UI-N and UI-
C. This disparity corresponds to lower CRPS values for cu-
mulative ice discharge and ice discharge before calibration.
For UI-S and UI-SS, the CRPS before calibration applied to
cumulative ice discharge is 0.07 and 0.06 Gt, respectively,
compared to 0.22 and 0.43 Gt for UI-N and UI-C. Similarly,
their CRPS applied to ice discharge is also lower, at 1.1 and
0.8 Gt a−1, compared to 1.7 and 4.1 Gt a−1 for UI-N and UI-
C, respectively. The regions where the CRPS is lower before
calibration correspond to areas where the front retreat was
not brief, as is seen in the case of UI-N and UI-C. This can
be attributed to the fact that, due to the inversion process and
with no major change in dynamics like that observed for UI-
N and UI-C, all the members are already capable of repro-
ducing the observed data, rendering the calibration process
less impactful on the inversion ensemble in these cases.

Additionally, a disparity is observed in the response of dif-
ferent data types, with notably greater reductions or increases
observed for global data, such as cumulative ice discharge
and ice discharge, compared to spatio-temporal data, such
as surface elevation and velocity. Furthermore, no significant
patterns are discernible between sub-catchments concerning
these spatio-temporal data.

D1 Influence of the data used

Among the full-period weightings using different data, the
calibration using the RMSE of both surface velocity and sur-
face elevation (ZSxV) demonstrates the highest robustness
in reducing the CRPS for various observations. For the UI-
N sub-catchment, ZSxV significantly reduces the CRPS for
cumulative ice discharge, ice discharge, surface elevation,
and velocity by −8.4 %, −0.3 %, −5.4 %, and −0.7 %, re-
spectively. Similarly, for the UI-C sub-catchment, it leads
to substantial reductions in the CRPS for cumulative ice
discharge, ice discharge, surface elevation, and velocity by
−39 %, −11.8 %, −0.8 %, and −5.7 %, respectively. Addi-
tionally, ZSxV contributes to reducing almost all the CRPS
values for surface elevation and velocity in the UI-S sub-
catchment by +1.3 % and −2.3 %, respectively, and in the
UI-SS sub-catchment by −1.5 % and −0.8 %, respectively.
This is due to a reduction in the MAE in the majority of
cases (75 %), as well to a reduction of −17 [−11, −25] %
in the SD.
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Figure D1. Normalized CRPS applied to cumulative ice discharge (red), ice discharge (green), surface elevation (blue), and surface ve-
locity (purple) for different calibrated ensembles: full-period weighting (G_min: Gaussian distribution with σ =min(RMSEs); G_max:
Gaussian distribution with σ =max(RMSEs); G_med: Gaussian distribution with σ =median(RMSEs); S_min: Student’s distribution with
σ =min(RMSEs); S_max: Student’s distribution with σ =max(RMSEs); S_med: Student’s distribution with σ =median(RMSEs); ZSxV:
calibration with RMSE for surface elevation and velocity; ZS: calibration with RMSE for surface elevation; V: calibration with RMSE
for surface velocity; ID: calibration with RMSE for ice discharge; CID: calibration with RMSE for cumulative ice discharge), sub-period
weighting (SP_mean: σ =mean(RMSEs); SP_Q75: σ = quantile0.75(RMSEs)), and fparam weighting (P90: wi = 0.9 if f iparam = true, else
wi = 0.1). The “UI” line represents the calibration using data from all four sub-catchments and is evaluated over the entire validation area.
On the other hand, the “UI-N”, “UI-C”, “UI-S”, and “UI-SS” lines correspond to calibrations using data from the three other sub-catchments,
and they are evaluated over their respective sub-catchments (Fig. 1).

On the other hand, the cumulative-ice-discharge (CID) cal-
ibration enhances the CRPS for the UI-N and UI-C sub-
catchments concerning cumulative ice discharge (−18 %
and −28 %), ice discharge (−1 % and −14 %), and veloc-
ity (−2 % and −2 %) but does not yield significant im-
provements for surface elevation (+0 % and +1 %). How-
ever, for the UI-S and UI-SS sub-catchments, cumulative-
ice-discharge calibration results in increased CRPS values
(88 % of the cases). These observed increases are likely in-
dicative of overfitting, as evidenced by a reduction in the
MAE in most cases and in the SD in all cases.

In the case of the ice discharge (ID) calibration, it primar-
ily improves the CRPS for ice discharge itself but does not
have a considerable impact on other observations, such as
cumulative ice discharge, surface elevation, and velocity. For
most instances, this improvement is accompanied by an in-
crease in the MAE, suggesting that the ice discharge calibra-
tion may not effectively identify the “best” members due to
the presence of noisy or imprecise data.

Lastly, applying a weighting system based on surface el-
evation (ZS) or velocity (V) leads to improved the CRPS
for each type of observation in the UI-N and UI-C sub-
catchments, including cumulative ice discharge, ice dis-
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charge, surface elevation, and velocity. However, the de-
gree of improvement is less pronounced compared to the
weighting with the combined use of both variables (ZSxV),
e.g. −29 % and −20 % for ZS and V calibrations for
the cumulative-ice-discharge CRPS in UI-C as opposed to
−39 % for ZSxV. Notably, there is a reduction in the MAE,
primarily for surface elevation and velocity observations, and
SD, though it is not as significant as when employing the
combined data. Consequently, relying solely on velocity or
surface elevation (ZS) for calibration assignment appears to
result in under-utilization of data.

D2 Influence of the form of the probability density on
ZSxV

To assess the sensitivity of the calibration to the choice of
probability density functions, we explore two distinct distri-
butions: Gaussian (G) and Student’s with 2 degrees of free-
dom (S). These distributions are combined with three differ-
ent estimates for the parameter σ , which are based on the
minimum (min), median (med), and maximum (max) values
within the ensemble of RMSEs. We do not show the results
with the mean, which are almost identical to those with the
median. In Fig. D1, the first letter (G or S) denotes the dis-
tribution type, while the second part signifies the specific σ
estimate employed.

Among the six different distribution shapes (G_min,
G_max, G_med, S_min, S_max, S_med) used for calibra-
tion, the utilization of the Student distribution leads to a
marginally lower CRPS compared to its Gaussian counter-
part across all variables and catchments, with an average re-
duction of −1.6 % compared to −1.3 %. In most cases, em-
ploying Student’s distribution for weighting leads to a lower
reduction in SD (−14 % against −15 % on average) but a
lower increase in the MAE (+0.18 % against+0.42 % on av-
erage). However, based on these results, it remains inconclu-
sive whether weighting using a Gaussian distribution yields
a poorer CRPS because it is less close to observations with
the MAE or because it is too confident with the SD, i.e. too
low a sharpness.

Similarly, calibration using the median or the mean of
RMSE as an estimate of σ demonstrates a better CRPS in
most cases compared to those using the minimum or max-
imum of RMSE as an estimate, which assigns greater and
lower weights, respectively, to members that fit the data best.
Thus, there is an average CRPS reduction of −1.8 % for the
median versus −1.0 % for the minimum and −1.2 % for the
maximum. Weighting with the maximum leads to a reduction
in the mean absolute error (MAE) by an average of−0.69 %,
whereas using the minimum and median weights results in
an increase of +1.2 % and +0.43 %, respectively. However,
when considering the SD, the values of the minimum esti-
mate are consistently lower, with reductions of −23 % on
average for the minimum compared to −15 % and −6 % for
the median and maximum. Therefore, the relatively modest

reduction in the CRPS with the minimum estimate can be
attributed to its overconfident nature, whereas the limited re-
duction in the CRPS with the maximum estimate is indicative
of its underconfident nature. The median RMSE estimate for
σ appears to strike the best balance, with additional tests in-
dicating that using the mean as an estimate of σ yields results
similar to those obtained with the median.

D3 Use of sub-periods

The sub-period weighting SP_mean uses the following char-
acteristics: Student’s distribution, the mean of RMSEs for
the estimate of σ , and utilization of surface elevation and
velocity data (ZSxV); it does not yield improvements in
the CRPS for ice discharge, surface elevation, and velocity
(+8 %, −0.9 %, and −2 %, respectively, against an average
of +4.6 %, −1.6 %, and −2.4 %, respectively). However, a
reduction in the CRPS is observed for cumulative ice dis-
charge (−10.6 % against an average of−7.7 %). Despite this,
SP_mean leads to a decrease in the MAE of the mean in 69 %
of the cases and a significant decrease in SD for these vari-
ables (−26 % against an average of −14 %). These findings
indicate that the SP_mean weighting may be overconfident,
as it excessively reduces the model’s uncertainty.

To address the issue of overconfidence, alternative prox-
ies for σ were tested. It was found that using the 75th per-
centile (SP_Q75) of the RMSE distribution as an estimate
for σ resulted in better CRPS values for ice discharge, sur-
face elevation, and velocity (+6.5 %, −1.4 %, −2.3 %, re-
spectively, compared to +8 %, −0.9 %, and −2 %, respec-
tively, for SP_mean previously). However, the CRPS for cu-
mulative ice discharge becomes worse and closer to S_med
(−9.3 % versus −10.6 % for SP_mean previously). Conse-
quently, we decided to analyse the results of this calibration
choice as the sub-period weighting.

D4 The fparam weighting

To evaluate the effectiveness of an ensemble that assigns
greater significance to the parameterization developed in
Jager et al. (2024), we conducted an analysis of the fparam
weighting’s performance in terms of the CRPS, MAE, and
SD. This also enables us to assess whether the intricacies of
the validation analysis conducted in the initial study, which
encompassed elements such as initial state maps and the tem-
poral evolution of velocity and surface elevation, can be ef-
fectively captured within the broader scope of this global
analysis.

The CRPS analysis reveals that the fparam weighting out-
performs both the full-period and the sub-period weightings
for cumulative ice discharge and ice discharge, achieving re-
ductions of−1.6 % and−13 %, respectively, for P90. In con-
trast, the SP_Q75 weighting shows CRPS changes of+5.5 %
and −7.7 % for cumulative ice discharge and ice discharge,
while the S_med weighting yields CRPS changes of +4.6 %
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and −7.7 % for the same variables on average. However, for
surface elevation and velocity, the fparam weighting results in
slightly lower CRPS reduction (−0.6 % and−0.8 % for P90)
compared to the CRPS reduction of −1.6 % and −2.2 % for
SP_Q75 and −1.6 % and −2.4 % for S_med on average.

Consistent patterns are observed for the MAE of the
mean and the SD. For cumulative ice discharge and ice dis-
charge, the P90 weighting yields lower MAE values (−2 %
and +1.6 % for P90, respectively) compared to the SP_Q75
weighting (+4.8 % and +7 %). Similarly, the P90 weighting
leads to lower SD values for cumulative ice discharge and ice
discharge (−19.6 % and −23.4 %, respectively) in contrast
to the SP_Q75 weighting (−19.1 % and−21.4 %). However,
for surface elevation and velocity, the P90 weighting results
in higher MAE values (−1.7 % and −2.1 %, respectively)
compared to the SP_Q75 weighting (−3 % and −5.3 %).
Similarly, the P90 weighting leads to higher SD values for
surface elevation and velocity (−8.4 % and−11.2 %, respec-
tively) in contrast to the SP_Q75 weighting (−10.6 % and
−19.6 %).
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