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Abstract. Snow depth retrievals from spaceborne C-band
synthetic aperture radar (SAR) backscatter have the poten-
tial to fill an important gap in the remote monitoring of sea-
sonal snow. Sentinel-1 (S1) SAR data have been used pre-
viously in an empirical algorithm to generate snow depth
products with near-global coverage, subweekly temporal res-
olution and spatial resolutions on the order of hundreds of
meters to 1 km. However, there has been no published in-
dependent validation of this algorithm. In this work we de-
velop the first open-source software package that implements
this Sentinel-1 snow depth retrieval algorithm as described
in the original papers and evaluate the snow depth retrievals
against nine high-resolution lidar snow depth acquisitions
collected during the winters of 2019–2020 and 2020–2021
at six study sites across the western United States as part of
the NASA SnowEx mission. Across all sites, we find agree-
ment between the Sentinel-1 snow depth retrievals and the
lidar snow depth measurements to be considerably lower
than requirements placed for remotely sensed observations
of snow depth, with a mean root mean square error (RMSE)
of 0.92 m and a mean Pearson correlation coefficient r of
0.46. Algorithm performance improves slightly in deeper

snowpacks and at higher elevations. We further investigate
the underlying Sentinel-1 data for a snow signal through
an exploratory analysis of the cross- to co-backscatter ratio
(σVH/σVV; i.e., cross ratio) relative to lidar snow depths. We
find the cross ratio increases through the time series for snow
depths over ∼ 1.5 m but that the cross ratio decreases for
snow depths less than ∼ 1.5 m. We attribute poor algorithm
performance to (a) the variable amount of apparent snow
depth signal in the S1 cross ratio and (b) an algorithm struc-
ture that does not adequately convert S1 backscatter signal
to snow depth. Our findings provide an open-source frame-
work for future investigations, along with insight into the
applicability of C-band SAR for snow depth retrievals and
directions for future C-band snow depth retrieval algorithm
development. C-band SAR has the potential to address gaps
in radar monitoring of deep snowpacks; however, more re-
search into retrieval algorithms is necessary to better under-
stand the physical mechanisms and uncertainties of C-band
volume-scattering-based retrievals.
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1 Introduction

Runoff from seasonal snow provides water for billions of
people (Barnett et al., 2005; Mankin et al., 2015), supplies
up to 70 % of the annual discharge in the western United
States (WUS; Li et al., 2017a), generates clean hydroelectric
power, and supports agricultural and recreation industries at
a total value estimated in the trillions of dollars (Sturm et al.,
2017). Understanding the spatial distribution of snow water
equivalent (SWE), one of the defining hydrologic variables
of the seasonal snowpack, is essential for effective manage-
ment of this critical resource (Bales et al., 2006). SWE is the
product of snow depth and snow density relative to water,
with snow depth spatial variability providing the majority of
the variation in SWE values (Sturm et al., 2010). Therefore,
accurate measurements of snow depth are crucial for global
SWE estimation, since the measurement of snow depth is
typically much easier and lower cost than direct measure-
ments of SWE.

Current operational snow depth measurement techniques
lack either the spatial or temporal resolution necessary
to accurately monitor basin-scale snow depth patterns for
a variety of scientific and resource management applica-
tions (National Academies of Science, 2018). Networks of
in situ weather stations (e.g., SNOwpack TELemetry Net-
work (SNOTEL) in the United States) make point measure-
ments of snow depth with high temporal resolution. How-
ever, accurate spatial interpolation required to generate dis-
tributed products presents a significant challenge (Dressler
et al., 2006; Bales et al., 2006; Schneider and Molotch,
2016). This challenge is largely due to snow’s typical spa-
tial autocorrelation length of 50–200 m (Trujillo et al., 2009).
Measurements from spaceborne passive microwave instru-
ments (Kelly and Chang, 2003; Takala et al., 2011) can be
used to produce distributed snow depth products with 12 h
temporal resolutions. However, passive microwave measure-
ments, at the typically used 37 GHz, saturate in dry snow-
packs approximately 0.8 m deep (Tedesco and Narvekar,
2010; Smith and Bookhagen, 2018), which represents a small
fraction of total snow depth in some regions, and retrievals
are unreliable over complex topography (Tong et al., 2010)
due to spatial resolutions at the kilometer to tens of kilome-
ter scale. No other global operational SWE remote sensing
tool currently exists despite SWE being one of the largest
uncertainties in the hydrologic cycle (National Academies of
Science, 2018). Given the challenges and limitations associ-
ated with widely operationalized methods, other techniques
are under development to produce spatially distributed snow
depth and SWE measurements.

High-resolution commercial stereo imagery (Shaw et al.,
2020; Hu et al., 2023), airborne lidar (Currier et al., 2019;
Deems et al., 2013) and structure from motion (Nolan et al.,
2015; Miller et al., 2022; Meyer et al., 2023) provide dis-
tributed snow depth maps at meter to submeter-scale spa-
tial resolutions with errors on the order of tens of cen-

timeters (McGrath et al., 2019; Currier et al., 2019; Deems
et al., 2013). The Airborne Snow Observatory (ASO; Painter
et al., 2016) and the Airborne Coastal Observatory (Geospa-
tial, 2021) produce snow depth maps using airborne lidar in
mountain basins across western North America. However, lo-
gistical constraints (e.g., cloud cover, tree canopies, platform
range, large expense) typically limit acquisition frequency
and spatial coverage. Spaceborne lidar has shown promise
for measuring snow depth, yet it currently has high uncer-
tainties (0.5–2 m) in complex terrain and only provides non-
repeating, sparsely distributed and infrequent linear transects
of point-based returns, requiring high-resolution airborne li-
dar snow-free surveys to estimate snow depth (Enderlin et al.,
2022; Deschamps-Berger et al., 2023; Besso et al., 2024).

Synthetic aperture radar (SAR) is a promising technique to
complement new and mature methods for snow depth mon-
itoring. SAR is an active microwave remote sensing tech-
nique that can operate in all weather conditions, does not rely
on solar illumination and is capable of producing datasets
at meter-scale spatial resolution from spaceborne platforms.
Unlike optical and lidar techniques, SAR signals penetrate
the snow surface and interact with the snowpack, allowing
for measurements of snowpack properties. The extent of this
penetration and which snowpack features are interacted with
vary depending on the SAR signal’s frequency and polariza-
tion (Rosen et al., 2000; Tsai et al., 2019; Marshall et al.,
2021). Thus, SAR methods to retrieve snow depth and SWE
have the potential to meet the National Academies of Science
(2018) decadal survey requirement of snow depth and SWE
measurements at 100 m spatial resolution.

Numerous techniques have been explored to extract snow
depth or SWE from SAR imagery. Such techniques include
evaluating backscatter changes to retrieve snow characteris-
tics (Ulaby and Stiles, 1980; Bernier et al., 1999; Shi and
Dozier, 2000; Chang et al., 2014; Lievens et al., 2019), us-
ing change in travel time information between image acquisi-
tions to approximate SWE changes (Guneriussen et al., 2001;
Deeb et al., 2011; Li et al., 2017b; Dagurov et al., 2020; Mar-
shall et al., 2021; Ruiz et al., 2022; Tarricone et al., 2023;
Palomaki and Sproles, 2023; Oveisgharan et al., 2024; Hop-
pinen et al., 2024), exploiting SAR travel time change sensi-
tivity to local slope to capture SWE (Eppler et al., 2022), dif-
ferencing DEMs for snow depth (Leinss et al., 2018), using
differences in the polarimetric response of radar travel times
(Leinss et al., 2014, 2016; Voglimacci-Stephanopoli et al.,
2022), using subswaths of travel time changes of frequency
for SWE estimates (Engen et al., 2004) and utilizing phase
noise in SAR imagery for snow coverage (Shi et al., 1997;
Singh et al., 2008). More detailed reviews of these SAR tech-
niques are available in Tsai et al. (2019), Awasthi and Varade
(2021), and Tsang et al. (2022).

However, these SAR-based methods for retrieving snow
depth and SWE are all relatively immature and require ad-
ditional investigation to understand limitations before they
can be operationalized. Two recent studies (Lievens et al.,
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2019, 2022) have demonstrated the potential of deriving spa-
tially distributed snow depth maps on a global-scale from
Sentinel-1 (S1) SAR imagery. In the original studies, the
technique was validated using snow depth measurements
from point-based stations and spatially distributed modeled
data. A recent independent validation effort from Broxton
et al. (2024) compared S1 snow depths to ASO lidar-based
and University of Arizona (Broxton et al., 2016) modeled
depths at 500 m and 1 km spatial resolution. For all S1 pix-
els, they found moderate coefficient of determination values
(R2
= 0.62) and large negative biases (∼−50 %) compared

to the ASO data. However, error metrics improved when flag-
ging for wet snow pixels (R2

= 0.89). Here, we provide an-
other independent validation of the S1 snow depth retrieval
technique using spatially distributed, lidar-based snow depth
measurements across multiple sites in the WUS (Abedisi
et al., 2022a).

1.1 SAR volume scattering snow depth retrieval theory

SAR sensors emit electromagnetic energy in the microwave
range (1–300 GHz) and measure the amplitude and phase
of the backscattered (returning) waves. In snow-covered ter-
rain the backscattered energy is some combination of re-
turns from vegetation (if present), the snow–air interface,
snow volume, ground–snow interface and ground volume.
The exact magnitude of returning energy from each is a func-
tion of the selected radar frequency, incidence angle, vege-
tation characteristics, snow microstructure, snow liquid wa-
ter content, snow depth and the ground surface characteris-
tics (Ulaby et al., 1974; Cihlar and Ulaby, 1974; Naderpour
et al., 2022). As a simplification, the features that dominate
backscatter are those closest in size to the radar wavelength
and interfaces with the largest dielectric changes. For lower
frequencies (<≈ 20 GHz), the main contributors to backscat-
ter are vegetation volumetric backscatter (if present) and (for
non-grazing incidence angles) specular reflection from the
ground–snow interface, with less significant contributions
from the snow–air interface, snow volume and ground vol-
ume scattering (Long, 1975; Schmugge et al., 1973; Ulaby
et al., 1986; Saatchi et al., 1997; Thiel and Schmullius, 2016;
Hosseini and Garestier, 2021).

When the radar wavelength is within an order of magni-
tude of the diameter of snow grains (∼ 0.1–5 mm), volumet-
ric scattering within the snow volume and at snow-layer in-
terfaces becomes a significant factors in the returning wave
amplitudes (Ulaby et al., 1986; Brangers et al., 2023; Tsang
et al., 2022). Hence, for SAR frequencies between ≈ 5–
40 GHz, the presence of snow increases volumetric scatter-
ing relative to non-snow conditions (Fig. 1; Ulaby and Stiles,
1980). Higher-frequency SAR systems can exploit this in-
creased volumetric backscatter to retrieve measurements of
snow depth and SWE (Tsang et al., 2022). Note that observ-
ing this increase in backscatter assumes negligible changes in
air–snow interface scattering, vegetation or ground backscat-

ter contributions. Also, these approaches are generally inef-
fective in wet snow conditions, where liquid water within the
snowpack absorbs microwave energy, leading to marked re-
ductions in backscatter and limiting microwave penetration
depth (Stiles and Ulaby, 1980; Tiuri et al., 1984; Bonnell
et al., 2021; Lund et al., 2022). In these conditions other SAR
techniques such as DEM generation from the wet snow sur-
face may be more appropriate (Leinss et al., 2018).

The relationship between C-band volume scattering and
snow depth is an ongoing area of investigation. Initial stud-
ies suggested that dry snow has virtually no effect on volu-
metric scattering at C-band and that any mid-winter changes
in backscatter were caused by variations in snow–ground in-
terface scattering and variability in the soil dielectric con-
stant (Bernier et al., 1999; Sun et al., 2015). However,
these studies were limited by shallow (< 1 m depth) snow-
packs (Bernier and Fortin, 1998; Fuller et al., 2009), solely
co-polarized (parallel transmitting and receiving antennas)
backscatter (Fuller et al., 2009; Shi and Dozier, 2000) or
an inconsistent ground footprint (Strozzi et al., 1997). These
results align with microwave scattering theory as the wave-
length at C-band is too large to be scattered by individual
snow grains, which are typically < 5 mm. Previous studies
using tower-mounted radars (Strozzi et al., 1997) and aerial
radar (Bernier and Fortin, 1998) detected either no relation-
ship or even a slight negative correlation between C-band
backscatter and snow depth.

Other studies have suggested that dry snowpacks are not
fully transparent at C-band. A pair of early studies showed
a strong relationship between SWE and the HH backscatter
coefficient at 9 GHz (Ulaby and Stiles, 1980) and that the
depolarization ratio (σ 0

HV/σ 0
HH) for 0.28 m of snow depth in-

creased rapidly between 1–8 GHz (Stiles and Ulaby, 1980).
Later studies specifically at C-band using artificial snow
showed a cross-polarized (orthogonal transmitting and re-
ceiving antennas) backscatter increase of 5 dB with a 1 m
snow depth increase in a laboratory setting (Kendra, 1995)
and then 7 dB increase with a 0.82 m snow depth increase in
a field setting (Kendra et al., 1998). Two recent tower-based
studies showed 2–5 dB increases in co-polarized backscatter
for C-band radiation (Naderpour et al., 2022) and significant
volume scattering from C-band cross-polarized backscatter
at snowpack layering interfaces (Brangers et al., 2023), likely
due to surface roughness effects. More recently, the develop-
ment of dense media radiative transfer (DMRT) models has
suggested that anisotropic clusters of snow grains and multi-
ple scattering effects between interfaces in the snowpack may
produce more cross-polarized backscatter from within the
snowpack volume at C-band than previous isotropic scatter-
ing models suggested (West, 2000; Ding et al., 2010; Chang
et al., 2014; Zhu et al., 2023; Picard et al., 2022). The in-
crease in cross-polarized backscatter from these clusters may
be sufficiently large to allow for measurements of snow depth
increases.
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Figure 1. Idealized conceptual figure showing the increases in
cross-polarized backscatter relative to co-polarized backscatter with
increasing snow depth.

1.2 Research objectives

These theoretical results form the basis for satellite-based
snow depth retrievals. Lievens et al. (2019) developed an em-
pirical algorithm based on the ratio of VH (cross-polarized)
to VV (co-polarized) backscatter, referred to as the cross
ratio, from S1 imagery to map snow depth at 1 km res-
olution. This approach attempts to reduce the impacts of
changes in the soil and geometric signals, which would af-
fect both polarizations, and isolate the snow signal, which is
expected to primarily affect the cross-polarized backscatter.
Initial results over the Northern Hemisphere showed mean
absolute errors (MAEs) of 0.31 m when compared to in situ
station measurements. The technique was further refined in
a subsequent study by Lievens et al. (2022) over Switzer-
land and Austria, where the authors compared the space-
borne retrievals to modeled snow depth changes. The best
results were achieved in regions with snow depths greater
than 1.5 m, forest cover (FC) less than 80 % and elevations
higher than 1000 m, which would minimize wet snow.

While the results presented by Lievens et al. (2019, 2022)
are encouraging, the original works only validated their al-
gorithm against point-based in situ measurements and mod-
eled snow depths. Moreover, a publicly available version of
the algorithm has not been released by the authors, hindering
any independent validation and algorithm enhancements. In
this study we present an open-source Python package called
“spicy_snow” (Hoppinen et al., 2023) that implements the
S1 snow depth retrieval algorithm as described by Lievens
et al. (2022). We then evaluate algorithm performance using

new spatially distributed lidar snow depth datasets collected
during NASA SnowEx 2020–2021 campaigns.

2 Methods

2.1 Datasets

2.1.1 Sentinel-1 (S1) imagery

The S1 mission is a constellation of polar-orbiting satellites
that acquire C-band (5.405 GHz or 5.55 cm) SAR data with a
12 d orbital cycle. We used S1 images acquired in interfero-
metric wide (IW) swath mode, dual-polarized vertical trans-
mit, and vertical and horizontal receive (VV+VH). S1 cap-
tures images from the same orbital geometry only every 6,
12 or 18 d. However, due to the overlapping S1 swaths from
different orbits, most locations see an S1 acquisition every
2–12 d for mid-latitudes and up to daily revisits at polar lat-
itudes. S1 images were processed using the Alaska Satellite
Facility’s (ASF) HyP3 pipeline (Hogenson et al., 2020) to
produce radiometrically terrain-corrected γ0 backscatter im-
ages using GAMMA software (Werner et al., 2000) and the
GLO-30 Copernicus DEM (European Space Agency, 2021).
Although this DEM is different from the Shuttle Radar To-
pography Mission (SRTM) DEM used by Lievens et al.
(2019, 2022) in their S1 image processing, we selected the
GLO-30 dataset in order to avoid inaccuracies inherent in
the SRTM data over mountainous regions in North Amer-
ica (Tarricone et al., 2023). Image preprocessing included
precise orbit file application, border noise removal, thermal
noise removal, radiometric calibration, range-Doppler terrain
correction and terrain flattening to produce γ0 images at 30 m
resolution. We implemented 3× 3 multi-looking processing
step to produce images at 90 m resolution, which approxi-
mates but does not exactly match the 100 m resolution used
by Lievens et al. (2022).

For each study site (Sect. 2.1.2, Table 1, Fig. 2), we
downloaded all available (ascending and descending, S1A
and S1B) S1 images that contained the bounding box of the
lidar validation dataset, beginning on 1 August preceding the
winter season. Different relative orbits produce images with
changing backscattered power due to variable incidence an-
gles. To account for these differences we normalized the im-
ages from each S1 orbit geometry, as done in the Lievens
et al. (2022) algorithm. For each specific orbit geometry and
polarization, we applied a constant shift to all acquisitions
of that orbit geometry, resulting in that particular orbit ge-
ometry time series mean matching the overall mean for that
polarization. To correct for outliers, we calculated the 10th
and 90th percentiles of backscattered power for each polar-
ization and subset of images. We then masked any values that
were 3 dB above the 90th percentile or 3 dB below the 10th
percentile. We also masked out pixels with local incidence
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Figure 2. Bounding boxes of airborne lidar data collected at the
NASA SnowEx sites.

angles greater than 70° to avoid regions of radar shadow. Ad-
ditional processing details are given in Appendix A.

2.1.2 SnowEx lidar acquisitions

The NASA SnowEx campaign (Durand et al., 2019) was
a multiyear effort aimed at addressing knowledge gaps in
snow remote sensing and at preparing for a snow-focused
satellite mission. During the SnowEx 2020 and 2021 cam-
paigns, Quantum Spatial, Inc. (QSI) acquired snow-free and
snow-on lidar validation datasets at six research sites across
the WUS (Fig. 2): Fraser Experimental Forest (Fraser) and
Cameron Pass (Cameron) in Colorado; Little Cottonwood
Canyon (Little Cottonwood, LCC) in Utah; and Dry Creek
Experimental Watershed (Dry Creek), Mores Creek Sum-
mit (Mores) and Banner Summit (Banner) in Idaho (Abe-
disi et al., 2022a, b). Banner, Fraser and Mores were sur-
veyed in both 2020 and 2021, resulting in nine unique snow
depth products (Table 1). QSI processed these data, provid-
ing snow-free digital elevation models (DEMs) and vegeta-
tion height, and Abedisi et al. (2022a) used these products
to produce snow depth maps at 0.5 m spatial resolution. To
compare these maps with S1 snow depth retrievals, we ag-
gregated the lidar snow depth measurements at 90 m spatial
resolution by taking the average of all 0.5 m lidar snow depth
measurements inside each 90 m S1 pixel.

2.1.3 Ancillary datasets

The S1 snow depth retrieval algorithm requires FC and
snow cover datasets in addition to S1 imagery. Following
the procedure outlined in Lievens et al. (2022), we used
the Copernicus Global Land Service PROBA-V land cover
dataset (Buchhorn et al., 2020) at 100 m resolution to quan-
tify FC and mask open-water areas. Additionally, we use
the Interactive Multisensor Snow and Ice Mapping System
(IMS) (NSIDC, 2008; Helfrich et al., 2007), a daily binary

snow cover product at 1 km spatial resolution, to delineate
binary snow presence.

2.2 Snow depth retrieval algorithm

We implemented a fully reproducible, open-source Python
version (Hoppinen et al., 2023) of the S1 algorithm intro-
duced by Lievens et al. (2022). A complete description also
appears in Appendix A. The central equation of this pixel-
wise approach can be written as

1SD= C
[
(1−FC) ·1

(
Aγ 0

VH− γ
0
VV

)
+B ·FC ·1γ 0

VV

]
, (1)

where snow depth (SD) is obtained within each S1 pixel
using the cross-polarized (γ 0

VH) and co-polarized (γ 0
VV) S1

backscatter (in units of dB); forest cover (FC) fraction within
the pixel; and three empirical tuning parameters (A, B and
C) that are used to control the relative weight of the VH
backscatter to VV in the cross-polarized ratio (A), control
the influence of vegetation effects (B) and rescale a “snow
index” to snow depth (C). Note that A and B parameters
are dimensionless, while C has units of meter per decibel
(mdB−1). Subtraction of cross- and co-polarized backscatter
in the logarithmic decibel scale equates to a ratio in the linear
power scale, and we refer to this γ 0

VH−γ
0
VV term as the cross

ratio (CR). The 1 operator in Eq. (1) denotes changes be-
tween two S1 images with the same orbital geometry, which
may not be the two closest images in time. The S1 algorithm
implements Eq. (1) only for pixels with snow present in the
IMS data corresponding with the timestamp of the S1 image.
Starting with an assumed 0 SD on 1 August of a given year,
1 SD is integrated over time.

The empirical A, B and C parameters in Eq. (1) are de-
signed to be tunable to optimize algorithm performance.
Lievens et al. (2022) used parameter valuesA= 2.0,B = 0.5
and C = 0.44 optimized to modeled snow depth data over
Switzerland. Here, we derived a new set of parameters op-
timized for the WUS using the S1 image closest in time to
each of the nine lidar acquisitions (Table 1). The time be-
tween S1 and lidar snow depth acquisitions was less than
2 d, except for Mores 2020 (2 d, 1 h) and Fraser 2020 (5 d,
13 h). As in Lievens et al. (2022), we optimized the A and
B parameters by maximizing the Pearson correlation coeffi-
cient R and the C parameter by minimizing mean absolute
error (MAE) (Webster and Oliver, 2007) between the lidar-
and algorithm-retrieved snow depths. We varied A between
1 and 3 by increments of 0.1, B between 0 and 1 by incre-
ments of 0.1, and C between 0 and 1 by increments of 0.01.
Our new WUS-optimized parameter set is A= 1.5, B = 0.1
and C = 0.59, and we used this parameter set in all subse-
quent analysis. We further investigated the relative impacts
of these three tuning parameters on retrieved snow depth, a
discussion of which is included in Appendix B.

To ensure that we had effectively implemented the algo-
rithm described by Lievens et al. (2022), we compared the
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Table 1. Overview of six study sites and lidar data. Lidar snow depth accuracies were computed by averaging the 0.5 m resolution lidar data
within a 3 m buffer around the SNOTEL location. The snow classes montane forest (MF), boreal forest (BF), prairie (P) and tundra (T) are
defined by Sturm and Liston (2021).

Site Center Area Elevation Snow Date(s) Accuracy S1 pixels SNOTEL Mean
name coordinates (km2) range (m) class (m/d/y) (m) (count) depth (m)

Cameron −105.890°, 22.1 2897– BF (92 %) 3/19/2021 0.02 2378 Joe Wright 1.41
40.538° 3711 MF (4 %) (CO:551)

T (4 %)

Fraser −105.894°, 63.2 2667– BF (57 %) 2/11/2020 0.03 3847 Fool Creek 1.11
39.885° 3800 MF (40 %) 3/19/2021 0.02 6787 (CO:1186) 0.86

T (3 %)

Little −111.668°, 28.1 1983– BF (30 %) 3/18/2020 0.19 2827 Snowbird 1.81
Cottonwood 40.560° 3457 MF (31 %) (UT:766)

T (35 %)
P (4 %)

Banner −115.184°, 168.7 1566– BF (20 %) 2/18/2020 0.02 16415 Banner 1.51
44.268° 2820 MF (40 %) 3/15/2021 0.03 16 692 Summit 1.48

T (20 %) (ID:312)
P (20 %)

Mores −115.685°, 34.7 1551– BF (18 %) 2/09/2020 0.01 3694 Mores 1.79
43.946° 2469 MF (45 %) 3/15/2021 0.06 3813 Creek 1.60

T (12 %) Summit
P (25 %) (ID:637)

Dry Creek −116.104°, 38.3 1233– MF (97 %) 2/19/2020 0.05 3792 Bogus 1.05
43.747° 2279 P (3 %) Basin

(ID:978)

snow depth maps produced for our study sites to correspond-
ing snow depth maps produced as part of the Lievens et al.
(2022) effort, known as C-SNOW. These data are available
by request at the C-SNOW data portal (https://ees.kuleuven.
be/eng/apps/project-c-snow-data/, last access: 1 April 2024).
Across all study sites, the average correlation between our
snow depth maps and the Lievens et al. (2022) snow depth
maps was 0.64. Differing real-time computing (RTC) pro-
cessing applications (Alaska Satellite Facility’s Hyp3 in this
study vs. the ESA Sentinel Application Platform (SNAP)
toolbox used by Lievens et al., 2022) may partially ex-
plain this discrepancy. Additional differences may be ex-
plained by updates to the procedure used to generate the C-
SNOW data products which are not described in the pub-
lished article (Hans Lievens, personal communication, 25
December 2023). These updates include averaging backscat-
ter changes relative to the previous 6, 12, 18 and 24 d; us-
ing the wet snow flags to reduce wet-snow-influenced snow
depth changes; and using different averaging weight vectors
for calculating the previous snow index (see Appendix A for
a description of the snow index). When compared to lidar
snow depth data, we found negligible differences in accuracy
between the products produced using our open-source soft-
ware and C-SNOW. Since the average correlation to the lidar

across the nine sites was 0.003 higher for our retrievals rela-
tive to the provided data, we continued with the open-source
retrievals.

3 Results

3.1 Algorithm performance

Here we assess the performance of the S1 snow depth re-
trieval algorithm using root mean square error (RMSE) andR
to enable a comparison with the results reported by Lievens
et al. (2022). Mean site-wide snow depth is variable across
the lidar datasets; thus, we also use a normalized RMSE
(nRMSE), produced by dividing the RMSE by the site-wide
mean snow depth, to enable an easier comparison across the
sites. For all available measurements across all sites (n=
60 245 pixels), the S1-derived snow depths have an RMSE of
0.92 m (nRMSE= 68 %) and a correlation value of R = 0.46
when compared to lidar-derived snow depths (Table 2). For
individual study sites, RMSE ranges between 0.65–1.07 m
(nRMSE between 57 %–83 %) with correlation values be-
tween R = 0.02–0.54. When pixels flagged as wet snow are
removed from the comparison, RMSE and R metrics slightly
improve at some sites but decline at others (Table 2).
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Across pixels at all study sites, there is poor agreement be-
tween S1-retrieved snow depths and lidar snow depths, par-
ticularly where lidar snow depths are less than 1 m (Fig. 3a).
For individual sites, snow depth distributions broadly fail to
match the distributions of snow depth captured with lidar
(Fig. 3b). At most other sites snow depth is strongly underes-
timated by the S1 retrieval, and retrieved snow depths exhibit
much larger dynamic ranges compared to lidar (Table 2).

We use the Banner 2021 site to qualitatively illustrate the
differences between lidar and S1 snow depths (Fig. 4). Ban-
ner 2021 has a relatively good agreement between S1 and
lidar snow depths (RMSE= 0.89, R = 0.42) compared to
the other sites. The spatial distribution of snow depth from
lidar (Fig. 4a) and S1 (Fig. 4b) has a first-order similar-
ity, with deeper snow depths along the site’s central ridge
and shallower snow depths at lower elevations to the east
and west. However, the S1 algorithm estimates shallower
snow depth across considerable portions of the study area
(brown in Fig. 4c). This negative bias (S1−lidar) appears es-
pecially prevalent in lower-elevation regions (Fig. 4d) with
higher FC (Fig. 4e). Conversely, the algorithm overestimates
snow depths in high-elevation regions with less tree cover-
age. Lidar-derived snow depths generally change smoothly
over the landscape, with more abrupt changes in snow depth
coinciding with topographic features. In contrast, S1-derived
snow depths are noisier, with abrupt snow depth changes that
do not coincide spatially with topographic features.

We further explore algorithm performance at Banner 2021
within the context of differences in absolute snow depth
(measured by lidar), FC, elevation, snow type (dry vs. wet),
terrain aspect and spatial resolution of the datasets (Fig. 5).
In general, pixels corresponding to a given lidar snow depth
bin (e.g., 0–1 m) have a substantially larger range of S1-
retrieved snow depths (Fig. 5a). Where lidar snow depth is
shallower than 2 m, the S1 retrieval algorithm generally un-
derestimates snow depth. Where lidar snow depth exceeds
2 m, the S1 snow depth retrieval mean more closely agrees
with the lidar snow depth mean but exhibits a considerably
wider spread. S1 and lidar snow depths agree best in regions
of moderate forest cover (25 %–75 %), and errors increase in
pixels with either very sparse or very dense vegetation, with
higher FC leading to underestimated snow depth (Fig. 5b).
The elevation-dependent results in Fig. 5c reinforce the spa-
tial patterns visible in Fig. 4, with better agreement at higher
elevations and underestimated snow depth at lower eleva-
tions, although this may also be due to a correlation between
elevation and FC at this site. Algorithm performance at Ban-
ner 2021 does not vary considerably for wet vs. dry snow
(Fig. 5d), nor do we observe large variations with respect to
terrain aspect (Fig. 5e). Lastly, in accordance with Lievens
et al. (2022), we find increased agreement between lidar and
S1 snow depths at coarser spatial resolutions (Fig. 5f).

The impacts of changing snow depth, FC, elevation, as-
pect and spatial resolution on retrieved SD accuracy at the
other eight sites appear similar to the results shown for Ban-

ner 2021 (Fig. 6). In general, nRMSE is lowest in regions
with deeper snow, moderate FC and higher elevation. We also
note decreasing nRMSE at coarser spatial resolutions across
all sites (Fig. 6e).

3.2 S1 cross ratio (CR)

Despite tuning the S1 retrieval algorithm to lidar-derived
snow depths (see Appendix B), snow depths obtained using
the algorithm do not agree well with the nine lidar datasets.
We consider two possible explanations for this poor agree-
ment, which are not necessarily mutually exclusive. First,
the algorithm structure, with its three empirical parameters,
is not appropriate for application over the WUS. Second,
the underlying S1 data does not provide sufficient informa-
tion for estimating snow depth (i.e., there is no S1 snow
depth signal). To investigate this second explanation, we
compared a time series of measured snow depth from the
nearest SNOTEL station for each site to a time series of the
S1 CR (γ 0

VH− γ
0
VV) from a 1 km buffer around that station

(Fig. 7). A visual comparison reveals a positive correlation
between the two variables at most sites (e.g., Banner 2021
and Mores 2020) with little to no relationship at a few sites
(e.g., Dry Creek 2020 and Fraser 2020). At some sites, the
correlation is weak at the beginning of the accumulation sea-
son and becomes stronger as the season progresses (e.g., Lit-
tle Cottonwood 2021).

Separately, we compare the CR signal to lidar snow depth
by integrating1CR, VH and VV through time for pixels with
IMS snow coverage to the date of the lidar survey at each site
(Fig. 8). We ran a Wilcoxon signed rank test comparing the
mean change relative to zero in all bins for 1CR, 1VH and
1VV (Virtanen et al., 2020). All p values were below 0.0001
except for the bin from 0–0.5 m for 1CR (p = 0.11) and
from 0–0.5 m for 1VH (p = 0.003). Across all pixels at all
sites there is a relationship between the increase throughout
the winter in cumulative 1CR for snow depths at or exceed-
ing 1.5 m and no change or even a decrease in1CR for snow
depths shallower than 1.5 m (Fig. 8a). Digging into the two
components of 1CR we find that 1VH seems to match the
pattern in 1CR with no change or a decrease throughout the
season for snow depths < 1.5 m and increases in backscat-
ter with increasing snow depths above 2 m (Fig. 8b). 1VV
shows a different pattern with snow-on increases in1VV for
bins below 2 m and then decreasing1VV for bins above 2 m
(Fig. 8c).

4 Discussion

4.1 Snow depth retrieval accuracy

Across all pixels and study sites, we find that the S1 backscat-
ter algorithm proposed by Lievens et al. (2022) captures
some of the snow depth spatial distribution (R = 0.46; Ta-
ble 2) but struggles with estimating appropriate magnitudes
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Table 2. RMSE and R values for S1 snow depth retrievals compared to lidar measurements for all pixels (all) and dry snow pixels only (dry).

RMSE (m) R Bias

Site all dry all dry all dry

All sites combined 0.92 1.03 0.46 0.45 −0.49 −0.02

Banner 2020 1.00 0.92 0.40 0.37 −0.71 −0.04
Banner 2021 0.89 1.14 0.42 0.49 −0.19 0.23
Dry Creek 2020 0.74 0.78 0.21 0.24 −0.43 −0.43
Fraser 2020 0.93 1.26 0.38 0.14 −0.78 0.12
Fraser 2021 0.65 0.79 0.18 0.44 −0.45 0.26
Little Cottonwood 2021 1.07 1.17 0.54 0.51 −0.17 0.46
Mores 2020 1.07 0.97 0.08 0.19 −0.72 −0.47
Mores 2021 0.91 0.91 0.40 0.34 −0.51 −0.15
Cameron 2021 1.07 1.03 0.02 0.46 −0.86 0.06

Figure 3. (a) Site-wise comparison of the distributions of lidar and S1 snow depths. (b) Pixel-wise log-scaled 2D histogram of lidar vs. S1
snow depths. Dashed lines within histograms represent the 25th, 50th and 75th percentiles.

of snow depth (RMSE= 0.92 m, nRMSE= 68 %). Three
sites have correlations below 0.2, four sites have RMSE val-
ues > 1 m, and all sites have nRMSE values greater than
50 % of their site-wide mean snow depths. Only one site
(Cottonwood 2021) has a correlation coefficient exceeding
0.5, and one site (Frasier 2021) has an RMSE lower than
0.7 m. Unfavorable sites, such as Cameron 2021 and Mores
2020, have R values as low as 0.02 and 0.08, respectively.
While errors improve at coarser spatial resolutions (Fig. 6e),
nRMSE values range between 31 %–74 % across all sites,
even at the coarsest 1000 m resolution. At sites with deeper
snow depths (e.g., Banner 2021, Little Cottonwood 2021),
the S1 retrieval algorithm appears to capture first-order spa-
tial patterns in snow depth despite meter-scale RMSEs.

To better understand the algorithm application, we ex-
plored the effects of various environmental and geophysical
variables on S1 snow depth retrieval accuracy (Figs. 5 and 6).
For all sites, nRMSE decreases with increasing snow depth.
This improved performance in deeper snow is expected due
to increased depolarization and a correspondingly higher
signal-to-noise ratio (SNR; increased snow-depth-change-
related signal relative to other sources, such as thermal noise
or radar speckle). When we compare S1- and lidar-derived
snow depth in dry snow across all sites (Fig. 3a), we find
little to no correlation below lidar snow depths of approxi-
mately 1.5 m (R = 0.02 for 0–1 m), with an improved cor-
relation for deeper snow (R = 0.29 for +2 m). We also note
a decreasing nRMSE with increasing elevation, although we
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Figure 4. From Banner 2021: (a) lidar snow depth, (b) S1 snow depth, (c) S1 snow depth bias, (d) elevation, (e) forest cover and (f) aspect
angle.

expect considerable correlation between snow depth and ele-
vation across our sites.

At C-band wavelengths, SAR signals within the snowpack
interact primarily with large anisotropic grains, with grain
clusters and at layer interfaces within the snowpack rather
than with individual snow grains (Naderpour et al., 2022;
Tsang et al., 2022; Brangers et al., 2023). While in most
cases snow depth is likely correlated with volume scatter-
ing from snow layers, other factors controlling the snow-
pack’s structural characteristics additionally impact volume
scattering. Spatiotemporal variability in snowpack structure
(i.e., faceted grains, ice layers) that is not correlated with
snow depth is an important source of uncertainty that may
contribute to the poor overall performance of the snow depth
retrieval algorithm. Additionally, surface scattering contribu-
tions throughout the season that are uncorrelated with snow
depth change could also impact the CR time series, leading
to uncertainties in retrievals.

The effects of FC on algorithm performance are compli-
cated (Fig. 6b), with high errors occurring in areas with dense
forest cover (i.e., FC> 75 %). Dense vegetation cover is typ-
ically associated with elevated levels of SAR volume scat-
tering (Vreugdenhil et al., 2020). As such, a strong vegeta-
tion volume scattering signal may overwhelm a weaker sig-
nal due to increasing snow depth. Indeed, nRMSE values
decrease with decreasing FC down to approximately 35 %.
However, errors increase again when FC drops below 30 %.
This decline in retrieval performance for sparse tree coverage
is unexpected, as (1) previous research found performance
improvements with decreasing forest cover (Lievens et al.,
2022) and (2) decreasing volume scattering from non-snow
sources is expected to improve the snow-related SNR. This
observed decline in performance is potentially caused by
very deep snow pixels at high elevations where forest cover is
sparse. All deep snow outliers (> 3 m) are located where FC
is low, most being below 10 % FC. The retrieval algorithm
is optimized for mean snow depths (∼ 1–2 m), so algorithm
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Figure 5. Distributions of lidar- and SI-retrieved snow depths at Banner 2021 subset by (a) snow depth, (b) FC, (c) elevation, (d) wet vs.
dry snow, (e) aspect and (f) spatial resolution. Values between the 1st–99th percentiles are incorporated into the distributions, while outliers
beyond this range are indicated with blue or orange points. Dashed lines indicate the 25th, 50th and 75th percentiles.

performance likely degrades in extreme snow depth cases.
As such, we interpret poor retrieval algorithm performance
for low FC values to be caused by the algorithm design rather
than low SNR.

Terrain aspect influences snow deposition and melting,
with east-facing slopes receiving more wind-deposited snow
in the WUS and south- and west-facing slopes receiving
more direct solar radiation, including during warmer periods
of the day in the Northern Hemisphere (Mock and Birkeland,
2000). Therefore we might expect degraded performance on
south aspects (wet snow) and improved performance on east
aspects (deeper snow), but average nRMSE values across all
sites do not vary substantially across aspect angles (Fig. 6d).
nRMSE curves for individual sites vary drastically in shape,
with differences likely caused by complex interactions be-
tween satellite incidence angle, FC and wet snow effects. The
specific impacts of aspect on algorithm performance are still
unclear and a potential investigation for future work.

Recent work by Broxton et al. (2024) showed a marked
performance increase when excluding wet-snow-flagged pix-

els. Therefore, algorithm performance was expected to de-
cline substantially for wet-snow-flagged pixels. In wet snow,
maximum penetration depth of incident C-band radiation is
on the order of 10 cm (Casey et al., 2016), which attenu-
ates the signal and prevents the volume scattering that occurs
in dry snow. Unexpectedly, we found that algorithm perfor-
mance did not improve across all sites when pixels flagged as
wet snow were masked (Table 2, Fig. 5d). The results from
Table 2 suggest that the wet snow flag in the algorithm is not
correctly separating wet snow from dry or refrozen snow. Ad-
ditionally, there may be non-snow scattering mechanisms in
shallow snowpacks that trigger the wet snow flag when the
snow present is actually dry. For more details on wet snow
considerations, see Appendix B2.

We finally consider the effect of spatial resolution on al-
gorithm performance. We find that at 90 m spatial resolution,
S1 snow depth retrievals have meter-scale RMSEs, suggest-
ing limited utility for accurately capturing snow depth at this
resolution across our WUS domain. Coarser-resolution S1
retrievals show better agreement (nRMSE= 0.50, r = 0.47 at
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Figure 6. Site-by-site nRMSEs along with grouped mean nRMSE for all sites for bins of (a) lidar snow depth, (b) FC, (c) elevation quantile,
(d) aspect and (e) spatial resolution. Elevation was normalized between 0 and 1 at each site to improve comparison of the intra-site trends.
Note that (a–c) have histograms of their distributions shown above them. Since the distributions were even for the elevation quantiles (d) and
spatial resolutions (e), they are omitted.

1km) with similarly resampled lidar measurements (Fig. 6e),
suggesting that the algorithm is better suited for provid-
ing large-scale information about snow patterns that may be
valuable for water resource managers and hydrologic model-
ing. As horizontal resolution coarsens, nRMSE decreases by
up to 300–500 m, after which improvements level off. This
improvement at coarser resolutions may be related to the rel-
atively subtle C-band snow volume scattering signal com-
pared to background noise from SAR speckle, variations in
ground and vegetation properties, and other sources.

However, we note that these spatial resolution results
need to be interpreted carefully, as (1) spatial averaging de-
creases the standard deviation and sample size of the S1 snow
depth distribution, which can artificially decrease RMSE,
and (2) algorithm parameter fits may be improved as the li-
dar and S1 snow depth distributions are spatially averaged.
“Snow index” values from the S1 retrieval algorithm are con-
verted to snow depth by scaling with the single C parameter,
which was optimized by minimizing MAE between the S1
and lidar snow depth data across all sites. Meanwhile, spatial
averaging brings individual pixel values closer to the mean
values of the distributions, oversimplifying important spatial
patterns of snow depth distribution but improving the fit of
the C parameter to the S1-derived snow index and lidar snow
depth data. While simplification of the data via spatial aver-
aging may improve the model fit to the data, this does not

necessarily indicate an underlying correlation between the
two datasets but only that two simple surfaces can be more
easily fit together than two complex surfaces using a single
empirical parameter. Thus, improvements in algorithm per-
formance with decreasing spatial resolution must be inter-
preted as a potential artifact of the particular error metric and
algorithm structure.

Overall, these results suggest that S1 snow retrievals agree
best with lidar snow depth measurements in regions with
snowpacks deeper than 1.5 m, moderate FC (∼ 35 %) and
spatial resolutions between 500–1000 m, a set of conditions
generally in accordance with Lievens et al. (2022). Even un-
der these ideal conditions, nRMSE values for all sites exceed
40 %, well above the 10 % target at 100 m spatial resolution
set in the National Academy of Sciences 2017–2027 Decadal
Survey (National Academies of Science, 2018). Nonethe-
less, no current satellite-based operational snow depth prod-
uct exists. Even the proposed Ku- and X-band missions from
NASA and the Canadian Space Agency will saturate at ∼ 1–
2 m snow depth (Tsang et al., 2022). Continued exploration
to improve this technique is warranted, especially focused on
areas of deeper snow (> 1.5 m).
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Figure 7. Time series of mean S1 cross ratio for a 1 km buffer around the SNOTEL site (γ 0
VH–γ 0

VV, blue lines) and measured snow depth
from the SNOTEL site (black lines) for all sites. Note that the length of the time series varies between sites.

4.2 Cross ratio time series

To provide context for our evaluation of S1 snow depth re-
trieval accuracy, we performed a brief exploration of the CR
time series for each of our study sites. We found that CR
appears to be correlated with SNOTEL snow depth at some
sites (e.g., Banner 2021, Little Cottonwood 2021, and Mores
2020 and 2021), correlated only in mid–late winter at other
sites (e.g., Banner 2020, Cameron 2021 and Fraser 2021)
and uncorrelated at others (e.g., Dry Creek 2020 and Fraser
2020). We note that sites with deeper snow depths tended to
exhibit the strongest qualitative correlation between CR and
snow depths. These results suggest that while there likely is
snow depth information in the S1 CR, there is large spa-
tial and temporal variability in the snow depth SNR. Ide-
ally, S1 retrieval algorithms should only be applied where
the snow depth signal is detectable. Even with additional
sources of snow depth information, identifying these periods
in real time will be a challenge and time series analysis may
be required along with ancillary-modeled, higher-frequency
SAR or optical datasets.

We further compared the spatial mean of time-integrated
1CR,1VH and1VV with lidar snow depth data. We found
that snow depths below 1.5 m do not appear to cause a de-
tectable increase in S1 depolarization over the time leading
up to the lidar acquisition at our study sites, which likely ex-
plains the poor retrieval algorithm performance in shallow
snow and contributes to the poor early-season performance
of the algorithm at some study sites. The exact reason for
this change or decrease in 1CR below 1.5 m is unclear and

should be a subject of future research, but some potential ex-
planations are that (1) wet snow at these shallow, potentially
lower-elevation sites prevents signal penetration and depolar-
ization; (2) early-season faceting in these areas leads to large
increases in depolarization early in the season that decrease
as snow depth increases and faceted grains are rounded; and
(3) there are simply not enough anisotropic grains, grain clus-
ters and layers for increases in 1CR to be captured. Com-
paring the 1VV and 1VH components we find that VV
is relatively unchanged or even slightly increased for snow
depth bins < 2 m, but we see decreases above 2 m of snow
depth. The especially large decrease for +2.5 m (−3.55 dB)
is surprising for VV. A possibility for this decrease is that
these especially deep snow depths may be capable of atten-
uating the ground signal by a considerable amount even in
the VV polarization. The 1VH changes generally matched
the trends of 1CR and suggest we have some unknown fac-
tor decreasing VH backscatter from 0.5–1 m of snow depth.
Also for snow depths above 1.5 m do we see significant in-
creases in backscatter with snow depth, but the spread will
be quite large until snow depths are above 2 m.

These results, when combined with previous research on
C-band depolarization, suggest that S1 CR data may be a po-
tential source of information in deep snow (> 1.5 m) but that
snow depth retrieval algorithms using only S1 data will not
be reliable until snow depths reach a threshold close to 1.5 m.
Where maximum snow depths are shallower or snow is wet,
the S1 CR may not provide useful snow depth information.
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Figure 8. Time-integrated change for snow-on periods in (a) cross
ratio (1CR), (b) 1VH and (c) 1VV for different snow depths
across all pixels and sites.

4.3 Limitations and future work

The interpretation of algorithm performance is complicated
by a poor understanding of the underlying physical processes
and scattering mechanisms that affect the CR. If the time-
integrated CR signal contains information related to chang-
ing snow depth at the surface, the snow-related effects are
subtle and difficult to untangle in shallow snowpacks (Figs. 7
and 8). However, the S1 algorithm we evaluated has no
method to indicate where snow depths have surpassed this
minimum snow depth threshold and instead requires in situ
data to identify those regions where future changes in the
CR signal may be related to changes in snow depth. This
is a significant challenge for global applications of the al-
gorithm, where vast snow-covered regions do not have in
situ data available for reference. Future algorithm devel-
opment should integrate additional data sources (e.g., pas-
sive microwave satellite data, future higher-frequency SAR
approaches, interferometric SAR approaches, polarimetric
SAR approaches or physically based snow accumulation
models) to derive snow depth changes early in the accumu-
lation season.

While incremental improvements to the algorithm may
still be possible with additional analysis, more parameter tun-
ing or improved ancillary datasets, perhaps more important
is a better understanding of the physical mechanisms con-
trolling the CR signal. This is beyond the scope of a sin-

gle study and will likely require an iterative approach that
considers modeling efforts, laboratory or small-scale field
studies, and satellite data. In tandem with future investiga-
tions into the CR signal, we advocate for the development of
novel approaches for harnessing the snow information that
may be present in C-band SAR data. More effective algo-
rithms could incorporate results from radiative transfer mod-
els, which would allow for more detailed explorations of po-
tentially covariated scattering mechanisms related to vegeta-
tion, snow wetness and soil properties (Zhu et al., 2023; Bo-
rah et al., 2024) Alternatively, machine learning approaches,
including physics-informed neural networks, may result in
more accurate snow depth retrievals from S1 data and pro-
vide insights that guide subsequent modeling and field stud-
ies. Lastly, the algorithm presented here has known differ-
ences when compared to Lievens et al. (2022) due to the
closed-source nature of their work. Until the original code
is released in an open-source framework, additional develop-
ment and improvements from the larger snow remote sensing
community will be hindered.

Finally a few other suggestions for future work on
backscatter-based snow depth retrievals at C-band include
(1) analyzing speckle-related uncertainty by pixel resolution
to better understand the tradeoffs between resolution and un-
certainty for this retrieval technique, (2) assessing the im-
pacts of incidence angle on the depolarization and amplitude
relationship to snow depth, and (3) expanding our SNOTEL
analysis of CR to include a larger set of SNOTEL stations.

5 Conclusions

In this study we present an independent evaluation of a
promising S1 volume-scattering-based snow depth retrieval
algorithm proposed by Lievens et al. (2022). We developed
an open-source Python package implementing a version of
the algorithm (Hoppinen et al., 2023) and compared S1 snow
depth retrieval algorithm results to nine mid-winter lidar
snow depth retrievals over the WUS collected for the NASA
SnowEx campaign. Over all study sites, we find that S1 snow
depths agree poorly with lidar snow depths, with a mean
RMSE of 0.92 m and a mean correlation of 0.46. We find
moderate improvements in algorithm performance in deeper
(> 1.5 m) snow and FC of around 35 %; however, even under
these ideal conditions mean nRMSE is 40 %, which is above
the 10 % target at 100 m spatial resolution set in the National
Academy of Sciences 2017–2027 Decadal Survey (National
Academies of Science, 2018).

To help explain algorithm performance, we briefly explore
the S1 CR time series data that the algorithm relies on. We
find that the S1 CR is visually correlated with snow depth
at some sites, though this correlation sometimes only be-
gins in mid–late winter. We find a relationship between snow
depth and CR signal above ∼ 1.5 m but no detectable posi-
tive time-integrated change in S1 CR for snow depths less
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than ∼ 1.5 m. We therefore attribute poor algorithm perfor-
mance partly to the lack of information in the CR when the
snow SNR is very low and partly due to algorithm structure,
which fails to reliably convert change in S1 CR to snow depth
where SNR is high.

Given the inconsistent nature of the snow depth signal
in S1 CR data, we recommend that algorithms using these
data integrate other sources of snow depth information to
identify conditions where S1 data are likely to be useful.
Future efforts would benefit from improved understanding
of the physical mechanisms controlling the interaction be-
tween spaceborne C-band radar measurements and the snow-
covered landscape. At the same time, more complex em-
pirical algorithms or machine learning approaches may be
able to more accurately translate changes in S1 backscatter
to snow depth. Measuring global snow depth and SWE from
space will require a synergistic approach including various
remote sensing techniques, modeling approaches and in situ
data sources. While questions remain as to how best to utilize
S1 for snow depth, we believe C-band SAR remote sensing
products will be a valuable tool in monitoring global snow-
packs.

Appendix A: Sentinel-1 snow depth retrieval algorithm
details

The retrieval algorithm relies on the assumption that no snow
exists on the surface at the beginning of the time series (we
use 1 August for the Northern Hemisphere). Snow depth
is calculated iteratively by attributing increases in backscat-
ter to increases in snow depth. The IMS snow presence
dataset (NSIDC, 2008) is incorporated to avoid misattribut-
ing backscatter changes from other non-snow factors. Snow
depth at each pixel is set to zero until the IMS dataset indi-
cates snow presence, and snow depth is also set to zero after
meltout.

The primary S1 input to the snow depth retrieval algorithm
is the cross ratio of co- and cross-polarized backscatter. The
cross ratio is calculated at every valid pixel (i) over all avail-
able image acquisitions (t) by taking the ratio of VH to VV
backscatter in a linear scale or equivalently by subtracting
VH from VV in a logarithmic [dB] scale:

γ 0
CR(i, t)= Aγ

0
VH(i, t)− γ

0
VV(i, t), (A1)

where A is an empirical fitting parameter used to control the
relative weight of the VH backscatter to VV.

Next, two backscatter change variables are calculated be-
tween the image at the current time step (t) and the prior time
step (tpri). Depending on the study site and orbit geometries,
the time elapsed between t and tpri can be 6, 12, 18 or 24 d.
The change in the cross-polarized to co-polarized backscatter
ratio (1γ 0

CR) is given by

1γ 0
CR(i, t)= γ

0
CR(i, t)− γ

0
CR(i, tpri), (A2)

and the change in the co-polarized backscatter (1γ 0
VV) is

given by

1γ 0
VV(i, t)= γ

0
VV(i, t)− γ

0
VV(i, tpri). (A3)

Vegetation causes significant cross-polarized backscat-
ter that may obscure the snow-depth-related signal. Conse-
quently, a weighted combination of 1γ 0

VV and 1γ 0
CR is im-

plemented using the forest cover fraction (FC, bounded be-
tween 0 and 1):

1γ 0(i, t)= (1−FC(i)) ·1γ 0
CR(i, t)+B ·FC(i)

·1γ 0
VV(i, t)q. (A4)

This weighted combination is parameterized by the second
empirical fitting parameter B that controls the relative in-
fluence of the co-polarized backscatter change on the final
snow depth retrievals. To remove outliers, we masked pixels
in the result of Eq. (A4) with backscatter changes of more
than +3 dB and less than −3 dB.

A snow change index (SI, units of dB) captures changes in
1γ 0 over time, taking in information from multiple snow in-
dexes and snow coverage data from the IMS. The algorithm
is initiated with SI set to 0 for all pixels and SI= 0 as long
as the IMS dataset indicates no snow presence. Once snow
presence is indicated, a previous snow index is calculated
that takes the weighted average of the snow indexes centered
around the last time step from the same orbital geometry (6 or
12 d ago) combined with the snow indexes from around that
previous time step (± 5 d or ± 11 d) (Eq. A5) with weights
that are the inverse distance in days between the previous
time step and that image’s acquisition date (Eq. A6).

SI(i, tpri)=
1
w

tpri+RI−1∑
timage=tpri−RI+1

w×SI(i, timage);

RI ∈ 6,12,18,24 [days] (A5)

and w given by

w =


[1..] RI= 6
[1..] RI= 12
[1..] RI= 24

(A6)

For example, an image captured on 30 January in an orbital
geometry that captures an image every 6 d (RI= 6) would
multiply all the previously calculated snow indexes from 19–
29 January (24 January± 5 d) by the repeat interval minus
the number of days separating each image from the previous
image acquisition date (24 January): so a vector of [1, 2, 3,
4, 5, 6, 5, 4, 3, 2, 1]. This sum would then be divided by that
same vector with days without images removed to get the
previous snow index.

The current time step’s1γ 0 is then added to this previous
snow index to calculate the current snow index. If the cur-
rently calculated snow index is negative, it is set to zero for
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this time step (Eq. A7).

SI(i, t)=


max(0, [SI(i, tpri)+1γ

0
])

IMS= snow
0
IMS= no snow

(A7)

Next, we convert the current snow index in decibels to
snow depth in meters by multiplying it by the parameter C
(Eq. A8). C controls the increase in snow depth correlated
with increasing backscatter and was varied between 0 to 1 in
increments of 0.01.

SD(i, t)= C ·SI(i, t) (A8)

Finally, a binary wet snow flag is applied with the intention
of identifying changes in backscatter due to the wetting of
the snow (causing a strong decrease) or refreezing (causing
a strong increase) instead of changes in snow depth. Since
different orbit geometries have different local incidence an-
gles and acquire data at different times of the day (06:00 and
18:00 LT), the wet snow flag is only calculated for changes
between images of the same orbital geometry. Additionally,
once a pixel has been flagged as wet, it continues to be wet
until a refreezing event occurs at that pixel.

A pixel is flagged as wet if the cross-polarized ratio drops
by more than 2 dB (wet snow threshold) from the previous
image with the same orbital geometry for a pixel with less
than 50 % FC or if the co-polarized backscatter drops by
more than 2 dB for pixels with more than 50 % FC. This wet
snow flag persists for that orbital geometry until an increase
of 1 dB (freeze snow threshold) in the cross-polarized ratio
(for regions of FC< 50 %) or co-polarized ratio (FC> 50 %)
is observed, after which point the pixel is flagged as dry until
the next drop in backscatter is observed (Eq. A9).

An “alternate wet snow flag” is also applied if SI drops
below zero in a region where the IMS still indicates snow
presence, which attempts to capture snow wetness in regions
of shallow or patchy snow cover or highly vegetated areas.

Wet Flag(i, t)=

wet1γ 0
CR/VV(i, t) <−2dB

wetWet Flag(i, tpri)

= wet;1γ 0
CR/VV(i, t) <+1dB

wetSI(i, t) < 0; IMS(i, t)= Snow
dryt = 1 August
dry1γ 0

CR/VV(i, t) >+1dB
dryWet Flag(i, tpri)

= dry;1γ 0
CR/VV(i, t) >−2dB

(A9)

After 1 February, if a pixel was flagged as wet for 50 % or
more of the previous four observations from the same orbital
geometry, we consider the snowpack to be permanently wet
at that location and flag as wet the remainder of the time se-
ries until the next 1 August.

Appendix B: Parameter optimization

B1 Parameter importance

The optimal parameter values for our WUS validation dataset
are A= 1.5, B = 0.1 and C = 0.59. Of these three parame-
ters, changing C has the largest impact on RMSE ( ∂RMSE

∂A
=

0.207 m, ∂RMSE
∂B

= 0.176 m, ∂RMSE
∂C

=0.908 m (m dB−1)−1;
Table B1). Because C is used as a scaling parameter in
Eq. (1), it has no impact on R. Modifying B has a larger
impact on scene-wide R values than changing A does ( ∂R

∂A
=

0.035, ∂R
∂B
= 0.101). However, when considering only pixels

with FC < 25%, changing A has a larger impact on R and
RMSE. In contrast, B increases in importance for high FC
pixels.

We use the Banner 2021 validation dataset to further il-
lustrate the sensitivity of the S1 snow depth retrievals to the
three parameters (Fig. B1a–c). Changes in the B and C pa-
rameter have approximately linear effects on the change in
mean scene-wide snow depth, with changes to C impacting
the snow depth retrieval the greatest. Changes in A were
generally linear until ≈ 0.5 m, where minimal snow depth
changes were observed for further decreases in A. Increas-
ing the A parameter primarily impacts higher-elevation ar-
eas with lower FC (Fig. B1d), while increasing B results
in increased snow depths in lower-elevation forested regions
and actually causes a slight snow depth decrease in the less-
forested regions (Fig. B1e). Modifying the scaling parameter
C affects all pixels, with the largest changes in regions with
the greatest retrieved snow depths.

We found that the C parameter has the greatest impact on
RMSE (Table B1) and total retrieved snow depth (Fig. B1),
indicating that C is the most important parameter to opti-
mize if minimizing scene-wide RMSE is the primary con-
sideration. Since C simply scales values in the final step of
the retrieval, this parameter can be optimized efficiently and
should be adjusted first when applying this technique at a
new site.

The A and B parameters had a much lower impact on
scene-wide RMSE but controlled the spatial and temporal
distribution of error. As such, practitioners optimizing these
two parameters should evaluate the environmental character-
istics of areas with high RMSE. Optimizing B may be most
important in areas with greater forest cover, while conversely,
optimizing A may be more important in high-elevation areas
with low forest cover. Importantly, A and B are not indepen-
dent. Varying one will cause the other to be misoptimized,
highlighting a potential weakness of this empirical model. A
potential avenue to lower RMSE across a scene with varied
environmental characteristics could be to apply two imple-
mentations of the algorithm: one optimized for areas with
dense forest cover and another optimized for alpine areas
with sparse vegetation.

While we did not evaluate the impact of outliers on pa-
rameter optimization, a visual examination of 2021 S1 snow
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Figure B1. Percent change in scene-wide mean snow depth with varying A, B and C parameters from optimized values (A = 1.5, B = 0.1,
C = 0.59) for the Banner Summit 2021 site (a–c). Changes in S1 snow depth retrievals when increasing each parameter by 0.5 from the
optimal value and keeping the other parameters at their optimal value (d–f).

Figure B2. Binned mean normalized RMSEs (a, c) and fraction of
dry pixels (b, d) for permutations of the newly wet and freezing
thresholds and with (a, b) and without (c, d) the alternative wet
snow flagging for the Banner 2021 lidar flight.

Table B1. Parameter sensitivity.

All pixels < 25 % FC > 75 % FC

∂ RMSE/∂ A [m] 0.207 0.454 0.144
∂ RMSE/∂ B [m] 0.176 0.019 0.367
∂ RMSE/∂ C 0.908 1.871 0.412
[m (mdB−1)−1

]

∂ R/∂ A [−] 0.035 0.047 0.030
∂ R/∂ B [−] 0.101 0.013 0.226
∂ R/∂ C 0.000 0.000 0.000
[(m/dB)−1

]

depth results at the Banner study site shows isolated areas of
extreme snow depth along a rugged ridgeline at the center of
the site (Fig. 4b). These extreme outliers in snow depth likely
caused a decrease in theC parameter and a corresponding de-
crease in snow depths in other areas, potentially introducing
a negative bias in the S1 snow depth results. These outliers
are also visible in Fig. 3b, with some outliers over 4 m appar-
ent in the S1 retrievals but not in the lidar ones. To mitigate
this issue, it may be advantageous to perform parameter opti-
mization on a high-confidence subset of the radar data within
elevation bands or after outlier removal.
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B2 Wet snow parameters

Figure B3. Time series of snow classifications for the 2020–2021 winter at the Banner study site (a) with no snow (white), dry snow (light
blue) and wet snow (dark blue). (b) Number of dry vs. wet snow pixels in the scene from August 2020 to August 2021. (c) Temperature and
snow depth values from the Banner Summit SNOTEL.

The S1 algorithm has increased uncertainty over areas
with wet snow (Lievens et al., 2022), which is why careful
consideration must be taken to optimize the wet snow pa-
rameters to accurately classify wet snow. The three wet snow
parameters described in Appendix A (wet snow threshold,
freeze snow threshold and alternate wet snow flag) were not
systematically optimized by Lievens et al. (2022). When at-
tempting to optimize these parameters to minimize scene-
wide RMSE, we found that no global optimum exists. In-
stead, we found that by increasing both the wet snow thresh-
old and freeze snow threshold, RMSE decreases at the ex-
pense of a reduced number of retrieved snow depths as more
pixels are masked out. This tradeoff is visualized in Fig. B2.

During our analysis we found the original freeze snow
threshold of + 2 dB to be overly conservative: pixels that we
expect to refreeze remain wet throughout the entire winter
season despite air temperatures dropping well below freez-
ing. We noted a jump in backscatter in these pixels but not
enough to satisfy the + 2 dB threshold. Similar considerable
(but not quite + 2 dB) jumps in VV backscatter during re-
freezing events were also observed by Lund et al. (2022). The
+ 1 dB freeze snow threshold we implemented resulted in a
more realistic match with SNOTEL temperatures (Fig. B3).
Our selected parameters of a wet snow threshold of −3 dB, a
freezing threshold of +2 dB and choosing to keep the alter-
nate wet snow flag enabled provide a good compromise that
results in an effective wet snow mask without overmasking
to artificially boost algorithm performance.

With our optimized wet snow flagging parameters, the
time series of wet snow and dry snow pixels matches well
with the temperature and snow depth trends observed at the
Banner Summit SNOTEL site (Fig. B3). The spatial pro-
gression of melt agrees well with the SNOTEL temperature
and snow depth measurements. Wet snow is observed in the
early accumulation season (October through early Decem-
ber) when warmer daytime temperatures and mixed-phase
precipitation occur. Then, as daytime temperatures progres-
sively cool, water within the snowpack freezes and dry snow
precipitation increases, expanding dry snow extent in the
colder winter months (mid-December through early March).
Finally, warmer spring temperatures and increased shortwave
radiation introduce surface melt in the snowpack, turning dry
snow to wet snow beginning in mid-March until the snow
melts away. This progression also coincides well with eleva-
tion: at Banner Creek, snow at lower elevations is more often
observed as wet, and snow at higher elevations is more often
observed as dry.

Though we make these recommendations for wet snow
parameters, end users will have to make a final selection
of parameter values that consider both local conditions and
retrieval quality vs. retrieval quantity. In this way, it is im-
portant to treat the wet snow parameter value selection just
as carefully as the A, B and C parameter value selection.
Additionally, it is important to remember that this algorithm
should only be used in the accumulation season (Tsang et al.,
2022). Though the pixels flagged as wet snow can often fol-
low reasonable snow depth trends, we suggest caution in the
interpretation of these pixels, as changes in snow depth are
likely not due to changes in volume scattering as prescribed
in the algorithm.
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Appendix C: Sentinel-1 imagery used

All Sentinel-1 imagery used is presented below in Table C1.

Table C1. Grouped Sentinel-1 observation dates by site, satellite orbit and direction.

Site Satellite Direction Orbit Acquisition timing (yyyy-mm-dd)

Banner S1B ascending 93 2019-08-05, 2019-08-17, 2019-08-29, 2019-09-10
2019-09-22, 2020-01-20, 2020-02-01, 2020-02-13, 2020-02-25, 2020-08-11,
2020-08-23, 2020-09-04, 2020-09-16, 2020-09-28, 2020-10-10, 2020-10-22,
2020-11-03, 2020-11-15, 2020-11-27, 2020-12-09, 2020-12-21, 2021-01-02,
2021-01-14, 2021-01-26, 2021-02-07, 2021-02-19, 2021-03-03, 2021-03-15,
2021-03-27

Banner S1B descending 71 2019-11-07, 2019-11-19, 2019-12-01, 2019-12-13, 2019-12-25, 2020-01-06,
2020-01-18, 2020-01-30, 2020-02-11, 2020-02-23, 2020-08-09, 2020-08-21,
2020-09-02, 2020-09-14, 2020-09-26, 2020-10-08, 2020-10-20, 2020-11-01,
2020-11-13, 2020-11-25, 2020-12-07, 2020-12-19, 2020-12-31, 2021-01-12,
2021-01-24, 2021-02-17, 2021-03-01, 2021-03-13, 2021-03-25

Banner S1A descending 71 2019-09-26, 2019-11-01, 2019-11-13, 2019-11-25, 2019-12-07, 2019-12-19,
2019-12-31, 2020-01-12, 2020-01-24, 2020-02-05, 2020-02-17, 2020-08-03,
2020-08-15, 2020-08-27, 2020-09-08, 2020-09-20, 2020-10-02, 2020-10-14,
2020-10-26, 2020-11-07, 2020-11-19, 2020-12-01, 2020-12-13, 2020-12-25,
2021-01-06, 2021-01-18, 2021-01-30, 2021-02-11, 2021-02-23, 2021-03-07,
2021-03-19

Banner S1A ascending 93 2019-11-03, 2019-11-15, 2019-11-27, 2019-12-09, 2019-12-21, 2020-01-02,
2020-01-14, 2020-01-26, 2020-02-07, 2020-02-19, 2020-03-02, 2020-08-05,
2020-08-17, 2020-08-29, 2020-09-10, 2020-09-22, 2020-10-04, 2020-10-16,
2020-10-28, 2020-11-09, 2020-11-21, 2020-12-03, 2020-12-15, 2021-01-08,
2021-02-01, 2021-02-13, 2021-02-25, 2021-03-09, 2021-03-21

Cameron S1A descending 56 2020-08-02, 2020-08-14, 2020-08-26, 2020-09-07, 2020-09-19, 2020-10-01,
2020-10-13, 2020-10-25, 2020-11-06, 2020-11-18, 2020-11-30, 2020-12-12,
2020-12-24, 2021-01-05, 2021-01-17, 2021-01-29, 2021-02-10, 2021-02-22,
2021-03-06, 2021-03-18, 2021-03-30

Cameron S1B ascending 151 2020-08-03, 2020-08-15, 2020-08-27, 2020-09-08, 2020-09-20, 2020-10-02,
2020-10-14, 2020-10-26, 2020-11-07, 2020-11-19, 2020-12-01, 2020-12-13,
2020-12-25, 2021-01-06, 2021-01-18, 2021-01-30, 2021-02-11, 2021-02-23,
2021-03-07, 2021-03-19, 2021-03-31

Dry Creek S1A descending 144 2019-08-02, 2019-08-14, 2019-08-26, 2019-09-07, 2019-09-19, 2019-10-01,
2019-10-13, 2019-10-25, 2019-11-06, 2019-11-18, 2019-11-30, 2019-12-12,
2019-12-24, 2020-01-05, 2020-01-17, 2020-01-29, 2020-02-10, 2020-02-22

Dry Creek S1A ascending 93 2019-11-03, 2019-11-15, 2019-11-27, 2019-12-09, 2019-12-21, 2020-01-02,
2020-01-14, 2020-01-26, 2020-02-07, 2020-02-19, 2020-03-02

Dry Creek S1B descending 71 2019-11-07, 2019-11-19, 2019-12-01, 2019-12-13, 2019-12-25, 2020-01-06,
2020-01-18, 2020-01-30, 2020-02-11, 2020-02-23

Dry Creek S1B ascending 166 2019-08-10, 2019-08-22, 2019-09-03, 2019-09-15, 2019-09-27, 2019-10-09,
2019-10-21, 2019-11-02, 2019-11-14, 2019-11-26, 2019-12-08, 2019-12-20,
2020-01-01, 2020-01-13, 2020-01-25, 2020-02-06, 2020-02-18, 2020-03-01

Fraser S1A descending 56 2019-08-08, 2019-08-20, 2019-09-01, 2019-09-13, 2019-09-25, 2019-10-07,
2019-10-19, 2019-10-31, 2019-11-12, 2019-11-24, 2019-12-06, 2019-12-18,
2019-12-30, 2020-01-11, 2020-01-23, 2020-02-04, 2020-02-16, 2020-08-02,
2020-08-14, 2020-08-26, 2020-09-07, 2020-09-19, 2020-10-01, 2020-10-13,
2020-10-25, 2020-11-06, 2020-11-18, 2020-11-30, 2020-12-12, 2020-12-24,
2021-01-05, 2021-01-17, 2021-01-29, 2021-02-10, 2021-02-22, 2021-03-06,
2021-03-18, 2021-03-30
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Table C1. Continued.

Site Satellite Direction Orbit Acquisition timing (yyyy-mm-dd)

Fraser S1B ascending 151 2019-08-09, 2019-08-21, 2019-09-02, 2019-09-14, 2019-09-26, 2019-10-08,
2019-10-20, 2019-11-01, 2019-11-13, 2019-11-25, 2019-12-07, 2019-12-19,
2019-12-31, 2020-01-12, 2020-01-24, 2020-08-03, 2020-08-15, 2020-08-27,
2020-09-08, 2020-09-20, 2020-10-02, 2020-10-14, 2020-10-26, 2020-11-07,
2020-11-19, 2020-12-01, 2020-12-13, 2020-12-25, 2021-01-06, 2021-01-18,
2021-01-30, 2021-02-11, 2021-02-23, 2021-03-07, 2021-03-19, 2021-03-31

LCC S1B ascending 122 2020-08-01, 2020-08-13, 2020-08-25, 2020-09-06, 2020-09-18, 2020-09-30,
2020-10-12, 2020-10-24, 2020-11-05, 2020-11-17, 2020-11-29, 2020-12-11,
2020-12-23, 2021-01-16, 2021-01-28, 2021-02-09, 2021-02-21, 2021-03-05,
2021-03-17, 2021-03-29

LCC S1A descending 100 2020-08-05, 2020-08-17, 2020-08-29, 2020-09-10, 2020-09-22, 2020-10-04,
2020-10-16, 2020-10-28, 2020-11-09, 2020-11-21, 2020-12-03, 2020-12-15,
2020-12-27, 2021-01-08, 2021-01-20, 2021-02-01, 2021-02-13, 2021-02-25,
2021-03-09, 2021-03-21

Mores S1A descending 71 2019-08-09, 2019-08-21, 2019-09-02, 2019-09-14, 2019-09-26, 2019-10-08,
2019-10-20, 2019-11-01, 2019-11-13, 2019-11-25, 2019-12-07, 2019-12-19,
2019-12-31, 2020-01-12, 2020-01-24, 2020-02-05, 2020-02-17, 2020-08-03,
2020-08-15, 2020-08-27, 2020-09-08, 2020-09-20, 2020-10-02, 2020-10-14,
2020-10-26, 2020-11-07, 2020-11-19, 2020-12-01, 2020-12-13, 2020-12-25,
2021-01-06, 2021-01-18, 2021-01-30, 2021-02-11, 2021-02-23, 2021-03-07,
2021-03-19

Mores S1A ascending 93 2019-11-03, 2019-11-15, 2019-11-27, 2019-12-09, 2019-12-21, 2020-01-02,
2020-01-14, 2020-01-26, 2020-02-07, 2020-02-19, 2020-08-05, 2020-08-17,
2020-08-29, 2020-09-10, 2020-09-22, 2020-10-04, 2020-10-16, 2020-10-28,
2020-11-09, 2020-11-21, 2020-12-03, 2020-12-15, 2021-01-08, 2021-02-01,
2021-02-13, 2021-02-25, 2021-03-09, 2021-03-21

Mores S1B descending 71 2019-11-07, 2019-11-19, 2019-12-01, 2019-12-13, 2019-12-25, 2020-01-06,
2020-01-18, 2020-01-30, 2020-02-11, 2020-08-09, 2020-08-21, 2020-09-02,
2020-09-14, 2020-09-26, 2020-10-08, 2020-10-20, 2020-11-01, 2020-11-13,
2020-11-25, 2020-12-07, 2020-12-19, 2020-12-31, 2021-01-12, 2021-01-24,
2021-02-17, 2021-03-01, 2021-03-13, 2021-03-25

Mores S1B ascending 93 2019-08-05, 2019-08-17, 2019-08-29, 2019-09-10, 2019-09-22, 2020-01-20,
2020-02-01, 2020-02-13, 2020-08-11, 2020-08-23, 2020-09-04, 2020-09-16,
2020-09-28, 2020-10-10, 2020-10-22, 2020-11-03, 2020-11-15, 2020-11-27,
2020-12-09, 2020-12-21, 2021-01-02, 2021-01-14, 2021-01-26, 2021-02-07,
2021-02-19, 2021-03-03, 2021-03-15, 2021-03-27
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