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Abstract. A rigorous exploration of the sea ice data assim-
ilation (DA) problem using a framework specifically devel-
oped for rapid, interpretable hypothesis testing is presented.
In many applications, DA is implemented to constrain a mod-
eled estimate of a state with observations. The sea ice DA ap-
plication is complicated by the wide range of spatiotemporal
scales over which key sea ice variables evolve, a variety of
physical bounds on those variables, and the particular con-
struction of modern complex sea ice models. By coupling a
single-column sea ice model (Icepack) to the Data Assim-
ilation Research Testbed (DART) in a series of observing
system simulation experiments (OSSEs), the grid-cell-level
response of a complex sea ice model to a range of ensem-
ble Kalman DA methods designed to address the aforemen-
tioned complications is explored. The impact on the mod-
eled ice thickness distribution and the bounded nature of both
state and prognostic variables in the sea ice model are of par-
ticular interest, as these problems are under-examined. Ex-
plicitly respecting boundedness has little effect in the winter
months, but it correctly accounts for the bounded nature of
the observations, particularly in the summer months when
the prescribed sea ice concentration (SIC) error is large. As-
similating observations representing each of the individual
modeled sea ice thickness categories consistently improves
the analyses across multiple diagnostic variables and sea ice
mean states. These results elucidate many of the positive and
negative results of previous sea ice DA studies, highlight the
many counterintuitive aspects of this particular DA applica-
tion, and motivate better future sea ice analysis products.

1 Introduction

Recent rapid Arctic change has emphasized the influence of
sea ice on the global climate system, our incomplete un-
derstanding of its recent history, and many shortcomings of
current sea ice models. The tide of interest in addressing
these issues is well reflected in the accelerating application
of data assimilation techniques in both sea ice reconstruc-
tion projects (Schweiger et al., 2011; Sakov et al., 2012; Mu
et al., 2018a; Williams et al., 2022) and modeling studies
(Zhang et al., 2021; Korosov et al., 2023). Data assimilation,
or DA, is a set of objective methods through which obser-
vations of a system are blended with a modeled estimate of
that system. Through this blending, DA injects the informa-
tion gained via the observations, which are typically limited
in space and can be intermittent in time, into a model capa-
ble of integrating that information forward in a spatiotem-
porally continuous, physically realistic manner. DA is most
commonly used to obtain accurate initial conditions for nu-
merical weather prediction models, but it can also be de-
ployed in climate studies to reconstruct unobserved variables
by synchronizing observable components of a system with
nature (Brennan and Hakim, 2022) or to infer the correct pa-
rameterization values that should be used in Earth system
models (Zhang et al., 2021). To date, most sea ice DA ap-
plications have employed ensemble Kalman filtering (EnKF)
methods, a family of DA algorithms based on the Kalman fil-
ter (Kalman, 1960; Evensen, 2003; Houtekamer and Zhang,
2016). EnKF methods approximate the application of a true
Kalman filter by sampling the system of interest using model
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ensembles. In practical applications, the adjustments made
by these filters can be considered in four steps, which are
outlined in Fig. 1 (adapted from Anderson, 2022, for a hy-
pothetical adjustment of sea ice concentration, SIC). Firstly,
the model is used to generate an ensemble of forecasts. Sec-
ondly, estimates of the observed quantities (e.g., SIC) are cal-
culated from the model’s state variables (e.g., categorized sea
ice area fraction, Ajc. ,). Thirdly, a version of the Kalman fil-
ter is applied to update the model’s estimates of the observed
quantity. Here, this will be referred to as observation-space
incrementing. Finally, the adjustments made in observation
space are used to determine the corresponding updates ap-
plied to the variables comprising the model state. This step
is hereafter referred to as state-space regression. Together,
observation-space incrementing and state-space regression
are collectively known as filtering. Once filtering is com-
plete, the updated model state is then used to initialize the
next forecast step. All together, this process is referred to as
a DA cycle.

Substantial nuance can arise in the cycling process de-
pending on the characteristics of the system in question. This
makes DA in any Earth system component model an intri-
cate undertaking (and one that is often specifically tailored
to the problem at hand). This is particularly true for sea
ice, as sea ice models and observables unite many distinct
challenges for DA in one system. Firstly, similar to atmo-
spheric variables, such as cloud fraction, sea ice variables
tend to be bounded. For example, ice cannot be negatively
thick; sea ice concentration (the fraction of a model grid cell
covered by ice) cannot fall below zero or exceed one. The
Kalman methods applied to sea ice problems are based on
assumptions that the model ensemble and the observation
error distribution are normal distributions, which linearizes
the filtering process. For system variables that are bounded,
however, the use of normal distributions in the filtering al-
gorithm can produce adjustments during observation-space
incrementing that violate physical bounds (as illustrated in
step 3 of Fig. 1). When these violations are corrected (typ-
ically through a post-processing step), the model ensemble
mean is artificially shifted away from the bound, leading to a
bias in the assimilation analysis. While non-Gaussian ensem-
ble DA methods that avoid the use of normal distributions
have been proposed, their application in high-dimensional
systems has been limited (Riedel and Anderson, 2024; An-
derson, 2010).

Secondly, the relationship between variables observed in
the real world and modeled in the sea ice state is not straight-
forward. Sea ice observing systems measure variables such
as SIC or sea ice thickness (SIT). However, SIC and SIT are
diagnostic in modern sea ice models, which typically evolve
through an ice thickness distribution (ITD). The ITD param-
eterizes sub-grid-scale thermodynamic and mechanical pro-
cesses that are strongly dependent on ice thickness (Bitz and
Roe, 2004; Chevallier and Salas-Mélia, 2012) by express-
ing the distribution of ice variables in a grid cell as func-
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tions of the ice thickness. In practice, the ITD describes a
range of thicknesses within each grid cell and discretizes that
range into an arbitrary number of thickness categories. Sea
ice area and volume (and the snow volume atop the sea ice)
are then similarly distributed across the thickness categories
(Thorndike et al., 1975), and the evolutionary equations of
the sea ice model are applied to each category individually.
Observed SIC, SIT, and snow depth (SND) are aggregates
of the “categorized” model variables of ice area (Ajce ), ice
volume (Vice, ), and snow volume (Vipo ), respectively; the
latter three sets of variables represent the sea ice state. Thus,
while estimates of SIC and SIT calculated in step 2 of the
DA cycle are updated during observation-space increment-
ing when SIC or SIT observations are assimilated (step 3),
the updates to the aggregate values are regressed out to each
of the categorized variables during the state-space regression
(step 4). The diagnostic SIC and SIT output at the end of
the process are then reaggregated from the updated catego-
rized state variables; their accuracy relies not only on the di-
rect filter updates on the aggregate quantities but also on the
model ensemble’s relationship between the aggregated quan-
tities and each of the categorized variables in the model state.
Few studies have presented the impact of assimilating SIC or
SIT on each of the model’s categories individually, which
raises the question of how well the process and impact of
assimilating any observation into distribution-based sea ice
models is understood. Recent work by Williams et al. (2022)
documents the first attempt to assimilate an “observed” ice
thickness distribution, rather than just an aggregate observa-
tion, into the sea ice component of a global climate model,
with mixed results.

Both the non-Gaussian, bounded nature of sea ice and the
relationship between aggregate observables and categorized
state variables likely have important ramifications for sea ice
DA, but they remain under-explored. This study presents a
single-column sea ice data assimilation framework that al-
lows for rapid hypothesis testing while also retaining the
thermodynamic physics and ITD of a complex sea ice model.
Within this idealized framework, the impact of using DA al-
gorithms that respect the boundedness of sea ice model vari-
ables and observations is explored, as is the ITD response
of the model when assimilating aggregate versus categorized
area and thickness observations. The remainder of this pa-
per is structured as follows: Sect. 2 provides an overview of
the data assimilation framework and experimental method-
ology, Sect. 3 presents a discussion of the results generated
by a suite of DA experiments targeting boundedness and cat-
egorized observations, Sect. 4 contextualizes this work with
respect to more practical sea ice DA applications, and Sect. 5
provides conclusions.

https://doi.org/10.5194/tc-18-5365-2024



M. M. Wieringa et al.: Non-Gaussian DA in a single-column, multi-category sea ice model 5367

observation space (y) S/IC

0

model state space (x) A, ,

Figure 1. Schematic example of a data assimilation cycle in a sea ice application. A univariate example of a single data assimilation cycle
is presented in four steps. In step 1, an ensemble of sea ice initial conditions (light-blue circles) is forecast forward from time #;. In step 2
(dotted light-blue arrows), the ensemble of sea ice states is translated into an ensemble of observational estimates (blue triangles) using
a forward operator, y = h(x). A continuous distribution, shown by the dashed light-blue line, is fit to the observation estimates and is
compared to an observation, shown as a dark-pink hash on the y axis. The observational error distribution associated with that observation is
shown using the dark-pink curve, and regions of the error distribution that imply nonphysical values are shaded with pink dots. In step 3, the
model’s observational estimates are adjusted by the data assimilation filter, based on the observation value and error distribution. The updated
ensemble of observational estimates is shown using the green triangles. The amount that each ensemble member is adjusted is referred to
as an observation increment (dark-green arrows). The observation increments are then used to determine the state-space increments, or
the amount that the model state variables need to be adjusted to be consistent with the observation increment; this step (represented here
by the dotted light-green arrows) is typically achieved using the linear relationship between observations and state variables to project the
observation increment into model state space. Once the model state has been adjusted, the model is reinitialized to produce the next forecast

from #;.41 (light-green circles to dark-green circles). This figure has been reproduced with alterations from Anderson (2022).

2 Model and methods

The data assimilation framework used in this study couples
the Data Assimilation Research Testbed (DART; Anderson
et al., 2009) to Icepack (version 1.3.1; Hunke et al., 2022),
the column physics package of the CICE sea ice model,
which is widely used as the sea ice component of several
Earth system models. Icepack can be run in a stand-alone
configuration as a sort of single-column model and is re-
viewed in Sect. 2.1. DART is discussed in more depth in
Sect. 2.2. In keeping with naming conventions developed in
coincident work (Riedel et al., 2024), the collective assimila-
tion system is referred to as CICE-SCM-DART. All experi-
ments performed for this study are observing system simula-
tion experiments (OSSEs), which assimilate synthetic obser-
vations derived from a randomly selected (and subsequently
withheld) member of the sea ice ensemble. In each exper-
iment, the randomly selected member represents a known
“true” state against which the efficacy of assimilating obser-
vations of various types and with various uncertainties can
be evaluated. For simplicity, a sea ice quantity produced by
CICE-SCM-DART is hereafter differentiated from the assim-
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ilated synthetic observations using the terms “modeled” and
“observed”, respectively.

2.1 Icepack

Icepack is maintained as the column physics module of
CICE, with consistent thermodynamics, mechanical redis-
tribution, and tracer support. For use in the CICE-SCM-
DART framework, 30 instances of Icepack are forced by
unique atmospheric conditions extracted from randomly se-
lected members of a recent large-ensemble reanalysis prod-
uct (Raeder et al., 2021). Each instance of Icepack uses
the mushy thermodynamics scheme (ktherm = 2) and linear
ITD remapping options (kitd = 1), as well a delta-Eddington
shortwave radiative transfer scheme and the empirical CESM
melt pond scheme. Dynamical forcing to the column is pro-
vided by sea ice deformation rates obtained from the SHEBA
field campaign (Lindsay, 2002). The number of categories
used in the ITD is set to a value of 5. The snow grain ra-
dius parameter (R_snw) is set to a value of —2. This choice,
which is among the default values of R_snw used when CICE
is coupled to an atmospheric model, avoids rapid refreezing
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Figure 2. The FREE ensemble’s three aggregate variables and the state variables from which they are derived. The aggregate variables shown
on the left (a, ¢, and e) (SIC, SIT, and SND) are the area-weighted sums of the categorized state variables (category ice area, ice volume,
and snow volume) on the right (b, d, and f). There are five thickness categories, where category 1 refers to the thinnest ice (0-0.64 m) and
category 5 refers to the thickest ice (4.57 m and thicker). Dark lines indicate the ensemble mean of each variable, whereas lighter shading

represents the ensemble standard deviation around the mean.

events during the melt season that lead to unreasonably high
summertime sea ice concentrations given the atmospheric
forcing conditions. All other sea ice model parameters are
held at their default values. Each instance of Icepack is also
coupled to a slab ocean; the ocean initial conditions and heat
flux convergence forcing are identical for all 30 members and
are derived from the ocean component output of a fully cou-
pled historical simulation from the Community Earth System
Model (CESM2). Both the ocean and atmosphere data sets
represent grid cells nearest 75.54° N, 174.45°E, a point that
straddles the East Siberian and Chukchi seas and experiences
seasonal sea ice advance and retreat. The use of a seasonal
location for this case study allows us to evaluate the perfor-
mance of data assimilation near the upper and lower bounds
of sea ice concentration.

The ensemble is spun up over a 10-year period during
which the atmospheric conditions cycle continuously over
the year 2011, allowing the sea ice simulations to diverge in
response to atmospheric variability. No assimilation occurs
during this period. Once spin-up is complete, a final year-
long ensemble simulation is produced as a control case for
the assimilation experiments. This simulation, which is also
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free of any assimilation, is hereafter referred to as the FREE
case and is outlined in Fig. 2. Both categorized state variables
(Fig. 2b, d, f) and their diagnosed aggregates (Fig. 2a, c, e)
are shown, as both can be observed and adjusted by assimi-
lation.

2.2 DART

DART is a modular data assimilation framework devel-
oped by the Data Assimilation Research Section at the Na-
tional Science Foundation (NSF) National Center for At-
mospheric Research (NCAR). DART interfaces with many
models that range in complexity from the Lorenz three-
variable chaotic model to the Community Atmosphere
Model (CAMG6), the atmosphere component of the CESM2
climate model. DART implements the four-step cycling ap-
proach outlined in Sect. 1: forecast, conversion to observa-
tion space, observation-space incrementing, and state-space
regression (Fig. 1). DART currently includes 10 filtering al-
gorithms, encompassing variants of the ensemble Kalman fil-
ter (EnKF; Evensen, 2003) and several kernel and particle
filter options. The default filter, the ensemble Kalman adjust-

https://doi.org/10.5194/tc-18-5365-2024
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ment filter (EAKF; Anderson, 2001), implements a square-
root filtering approach that increases the stability and effi-
ciency of assimilating with smaller ensemble sizes compared
with a traditional EnKF. Like most traditional ensemble fil-
tering approaches, the EAKF makes Gaussian assumptions
for the model ensemble and the observation error distribu-
tions.

Recently, Anderson (2022) developed a novel filtering ap-
proach known as the quantile-conserving ensemble filtering
framework (QCEFF). QCEFF alters the process by which the
updated ensemble is sampled from the analytical blend of the
model ensemble distribution and the observation error distri-
bution. As a result, DART users can prescribe non-Gaussian
distributions that may better represent the model ensemble or
observation of interest. For example, in the sea ice problem,
QCEFF allows the user to prescribe distributions that respect
sea ice bounds, a level of detail that cannot be attained by
EAKEF or other Gaussian filters. In this framework the user
can prescribe a distribution for each observable or state vari-
able, as well as being able to differentiate the distribution
used for observation-space incrementing versus state-space
regression; this kind of choice allows the user to tailor the
DA framework to the problem at hand in every step of the
filtering process. When the user prescribes normal distribu-
tions in the QCEFF framework, the solution collapses to the
EAKF.

We employ QCEFF to examine whether explicitly ac-
counting for sea ice boundedness can improve sea ice as-
similation analyses. To do so, we compare four different fil-
tering approaches, outlined in Table 1. These filtering ap-
proaches use varying combinations of normal and piecewise
rank histogram distributions in the observation-space incre-
menting and state-space regression steps of the filter. Piece-
wise rank histogram distributions prescribe no more infor-
mation about the distribution of the sea ice system than can
be gained from the discrete ensemble members themselves
and can capture physical bounds; their use in step 3 of the
DART filtering algorithms and for sea ice applications is dis-
cussed in more detail in Anderson (2022), Riedel and Ander-
son (2024), and Riedel et al. (2024). The use of bounded nor-
mal rank histogram (BNRH) distributions in state-space re-
gression (step 4) of the QCEFF enforces appropriate bounds
by way of a series of transforms in probit and probability
integral space. This aspect of the QCEFF also more deftly
handles nonlinear relationships between observed quantities
and modeled state variables and is addressed in depth for ide-
alized cases in Anderson (2023).

2.3 Experimental setup

All experiments performed for this study follow a perfect-
model observing system simulation experiment (OSSE) pro-
tocol (Zhang et al., 2018; Riedel and Anderson, 2024; Riedel
et al., 2024), a methodology typically used to identify the
impact of assimilating a set of proposed or synthetic obser-
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vations. The use of synthetic observations allows for a close
inspection of DA filter performance given a set of obser-
vations derived from a known state. Here, several different
kinds of synthetic sea ice observations are assimilated using
each of the filter types listed in Table 1. Each experiment
was branched from the end of the ensemble spin-up period,
assimilated observations for a year, and was then compared
to the FREE case. The assimilation experiments presented in
the results are listed in Table 2.

The synthetic observations assimilated (a subset of which
are presented in Fig. 3) are identical across experiments and
are derived from a randomly selected ensemble member of
the FREE case, which is hereafter referred to as TRUTH. To
capture the basic influence of observation instrument and al-
gorithmic errors on sea ice DA, observation error magnitudes
are estimated based on previous work (Zhang et al., 2018;
Riedel et al., 2024) and expressed as a function of the daily
TRUTH value (listed in Table 3). The error magnitude, which
can be thought of as the second moment of a probability dis-
tribution, is then used to determine a prescribed observation
error distribution (OED) centered on the TRUTH estimate
of the observation. Each daily observation is then randomly
sampled from the OED. The resulting observation time series
thus captures reasonable noise around the known TRUTH. In
ensemble Kalman DA studies preceding QCEFF, the OED
was assumed to be a normal distribution around TRUTH val-
ues. Here, the OED is set as a bounded normal distribution,
thereby accounting for the physical realities of sea ice obser-
vations.

Aggregate observation values extracted are SIT and SIC.
The variance of the observation error distribution for each
synthetic SIT observation is a linear function of the true SIT
value on the order of tens of centimeters. Observation error
variance for synthetic SIC observations is a parabolic func-
tion of the true value on the order of 10 % of the grid cell
area. As a result, observation error magnitudes when SIC de-
clines in the summer months can be quite large, implying a
plausible range of observations that may exceed the SIC up-
per bound of one. When used to determine a bounded OED
that does not exceed one, these large errors lead to summer
SIC observations that are biased low relative to TRUTH. The
ramifications of this bias are discussed in Sect. 3 and 3.1.

Synthetic categorized observations are also drawn from
each of the model’s area and volume ITD categories (Aice.n
and Vice n, respectively) and are always assimilated together
(i.e., assimilating Ajce , indicates that each of the five area
categories are assimilated simultaneously). Categorized area
and volume observation error variances are assumed to fol-
low a uniform distribution in each category, weighted by the
total area (and midpoint thickness, in the case of volume ob-
servations) of that category. These errors are therefore gener-
ally less than 10 % of the true category value (Fig. 3).

Because sea ice ensembles perturbed only by differing at-
mospheric conditions (and not by varying model parameters)
are generally under-dispersive with respect to SIC (Zhang

The Cryosphere, 18, 5365-5382, 2024
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Table 1. QCEFF filter components. This table includes the distributions used to represent the model ensemble in observation-space incre-
menting and state-space regression, the observation error distribution associated with each filter, any DART filter equivalents, and relevant

references.
Filter name Obs.-space dist. ~ State-space dist.  Obs.-error dist. DART filter equivalent  References
f1_NORM normal normal bounded normal EAKF Anderson (2001)
f1_BNRH normal BNRH bounded normal  none none
fl101_NORM BNRH normal bounded normal BRHF Riedel et al. (2024)
fl01_BNRH BNRH BNRH bounded normal  none Anderson (2023)
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Figure 3. Synthetic observations extracted from a randomly selected member of the FREE ensemble. The observations assimilated are shown
using gray lines for SIC (a), SIT (b), and category ice area (Ajce,01—Aice,05) in panels (¢)— (g). The TRUTH from which the observations
are generated is shown using the solid red line, while the FREE ensemble mean is shown using the dashed black line. The observation error

standard deviation (1o') is shown as red shading around TRUTH.

et al., 2018; Williams et al., 2022; Riedel and Anderson,
2024), we apply enhanced spatially varying state-space prior
inflation (El Gharamti et al., 2019) in each experiment. While
the benefits of the spatial variation are lost on our application,
the algorithm used implements an inverse gamma function
that enables an increase or decrease in ensemble spread and
outperforms alternative inflation algorithms in some cases
(El Gharamti et al., 2019). The applied inflation uses a damp-
ing factor of 0.9, a lower standard deviation bound of 0.6, and
a maximum per-time-step standard deviation change of 5 %.

Spatial localization is practically uninformative in a
single-column application, but we explore the effect of “cat-
egory localization” in the experiments assimilating Ajce, , Or
Vice.n- Category localization weights the covariance values
between variables in different ITD categories by zero. As a
result, an observation from any of the individual ITD cat-
egories is prevented from updating any state-space variable
that is not also in the same ITD category. In theory, this type

The Cryosphere, 18, 5365-5382, 2024

of localization should limit the effects of potentially spuri-
ous relationships between categories and allow us to more
reasonably treat category error variances as uncorrelated.
Finally, as DA is not guaranteed to respect the physi-
cal bounds of a system, it is common to use some post-
processing method to correct any nonphysical adjustments
made by the filter. DART includes three post-processing op-
tions for sea ice: two mass-aware rescaling approaches and
one rebalancing method that has been adapted from a CICE
internal function (Riedel and Anderson, 2024; the current de-
fault in CICE-SCM-DART). All experiments in Table 2 make
use of this default rebalancing option, which redistributes the
ice fractional coverage in each category to ensure that the
thickness bounds are respected and then calculates consis-
tent ice and snow volumes, salinities, and enthalpies once
the updates have occurred. Each experiment was rerun us-
ing the other two post-processing methods; however, as no

https://doi.org/10.5194/tc-18-5365-2024
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Table 2. Assimilation experiments. Filter refers to the filter type
used (see Table 1); Obs. kind refers to the type of observation assim-
ilated. Observation error estimates associated with each observation
kind are shown in Table 3.

Case name Filter Obs. kind
SIT_f1_NORM f1_NORM SIT
SIC_f1_NORM fI_NORM SIC
AGR_f1_NORM f1_NORM SIT, SIC
AIC_fI_NORM f1_NORM Aice.n
VIC_f1_NORM fI_NORM Vice.n
CAT_f1_NORM f1_NORM Ajce,n» Vicen
SIT_f1_BNRH f1_BNRH SIT
SIC_f1_BRNH f1_BNRH SIC
AGR_f1_BNRH f1_BNRH SIT, SIC
AIC_f1_BNRH f1_BNRH Aicen
VIC_f1_BNRH f1_BNRH Vice.n
CAT_f1_BNRH f1_BNRH Ajce,n» Vice.n

SIT_f101_NORM
SIC_f101_NORM

f101_NORM  SIT
fl101_NORM  SIC

AGR_f101_NORM  f101_NORM SIT, SIC
AIC_fI0l_NORM  fI0I_NORM  Ajc.,
VIC_f101_NORM  f101_NORM Vi,
CAT_f101_NORM  f101_NORM  Ajce ., Vice.n

SIT_f101_BNRH
SIC_f101_BNRH

f101_BNRH  SIT
fl101_BNRH  SIC

AGR_fI01_BNRH fl01_BNRH SIT, SIC
AIC_fI01_BRNH  fl01_BNRH  Ajc,,
VIC_f101_BNRH  fl101_BNRH Ve,
CAT_f101_BNRH  fI01_BNRH  Ajcen» Vicen

Table 3. Observation error estimates as a function of observation
kind. Obs. kind refers to the type of observation assimilated. Obs.
error refers to the formula used to determine an individual error
estimate for each observation at each time step. a, and v, refer to
the respective area and volume in the nth ITD category; h;, refers
to the midpoint thickness in the same category. kR and Ay, are the
respective upper- and lowermost thickness bounds used to define
the nth ITD category.

Obs. kind Obs. error
SIT osT = 0.1SIT
SIC osIC = —(),S(SIC2 —SIC)
SIT, SIC OSIT> OSIC

2 (hr—hp)?
Aice.n Oa, = (Z:n)z%

)2

Vice,n Oy, = (an)zw

ice,n>» Vice,n Oaq,Ov,
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significant differences resulted, those additional experiments
are not discussed here.

2.4 Evaluative metrics

To evaluate results, the ensemble means of the FREE case
and each experiment (EXP) in Table 2 are compared to
TRUTH using three metrics: mean absolute error (MAE),
root-mean-square error (RMSE), and the coefficient of ef-
ficiency (CE). The presented definitions are generalized such
that EXP and TRUTH may represent the experiment ensem-
ble mean and reference “true” value, respectively, of any
of CICE-SCM’s state or diagnostic variables. In this study,
these metrics are only applied to SIC, SIT, and SND.

MAE measures the average discrepancy between the fore-
cast (FREE or EXP) and TRUTH over the course of the fore-
cast period and is defined as follows:

" |EXP; — TRUTH;
MAE = Z | 1 1 | ,
i

6]

n

where n indicates the number of time steps in the forecast
period. RMSE, defined as

RMSE =

", (EXP; — TRUTH;)?
Z( ) ’ )

- n
also evaluates how the forecast deviates from TRUTH but
additionally provides a sense of whether the average discrep-
ancy tends to include large outliers. The RMSE is therefore
always greater than MAE, but the difference between the two
will be close to zero in a desirable forecast.

The CE (Nash and Sutcliffe, 1970) measures forecast skill
compared to TRUTH by evaluating how efficient the forecast
is as a model of the observed system’s mean and variance. It
is calculated using

> (EXP; — TRUTH;)?

CE=1- 5 3)
o
TRUTH
and lies between —oo and 1. A CE equal to 1 indicates a
perfect match between the forecast and the TRUTH (the nu-
merator in the second term of Eq. 3 is 0), whereas a CE of 0
reflects a forecast that performs only as well as climatologi-
cal prediction (the deviations of the experiment from TRUTH
are equal to the variance of the TRUTH around its mean). A
negative CE indicates that the forecast is not skillful. In gen-
eral, the more positive the CE value, the better the forecast.
To couch results in a generalized framework, differences
in the MAE and RMSE between the EXP forecasts and the
FREE forecast are evaluated using a percent reduction ap-
proach, thereby diagnosing the impact of assimilating obser-
vations relative to forecast with no assimilation. For exam-
ple, percent RMSE reduction (pRMSE) due to assimilating
observations is calculated as
RMSEgrree — RMSEExp

4)
RMSEEREE

pRMSE = 100 x
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Figure 4. Assimilating with unbounded algorithms. The results of using an unbounded filter (f1_NORM) to assimilate SIC (solid teal line),
SIT (solid blue line), or category area observations (solid purple line) are shown for modeled SIC (a), SIT (b), and SND (c). The black line
represents the FREE case (without assimilation), whereas the thin red lines are the randomly selected TRUTH. For the results shown, thick
lines are ensemble means, while shading represents the ensemble standard deviation around the mean. Observations are assimilated at daily

intervals throughout atmospheric forcing year 2011.

Many of the experiments performed for this work have a
high CE, due to the idealized nature of single-column OSSE
experiments. In order to highlight the impact of assimilation,
we choose to quantify this metric as a CE increase (iCE):

In order to understand whether (a) assimilating with dif-
ferent methods and different variables leads to meaningful
adjustments toward TRUTH and (b) any combinations of ob-
servations and filters significantly outperform the others over
the course of the year, statistically significant differences be-
tween the ensemble mean time series of each EXP, FREE,
and TRUTH are diagnosed using Welch’s ¢ test.

3 Results

The results of assimilating observations of SIT, SIC,
and categorized area Ajc, With an unbounded DA filter

The Cryosphere, 18, 5365-5382, 2024

(f1_NORM) are presented in Fig. 4. This case illustrates that
CICE-SCM-DART replicates the results of larger modeling
studies discussed in Sect. 1. Assimilating SIT observations
results in better sea ice analyses year-round than assimilat-
ing SIC observations, which have an impact only during the
summer months when the model ensemble is capable of cap-
turing variations in sea ice cover. In fact, assimilating SIC
observations appears to have a negative impact on modeled
SIC in Fig. 4, although this is because our method for pro-
ducing synthetic SIC observations — which are derived using
a bounded normal OED - generates SIC observations that
are biased low relative to the TRUTH (Fig. 3). This is par-
ticularly true in the summer months when modeled SIC in
TRUTH is comparatively low and the prescribed observation
error variance is large (Table 3).

Unlike the unbounded case (Fig. 4), the bounded OED
is appropriately accounted for and the results lie close to
the FREE mean when observations are assimilated with a
fully bounded filter (f101_BNRH) (Fig. 5). From this, we

https://doi.org/10.5194/tc-18-5365-2024
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Figure 5. Assimilating with bounded algorithms. Same as Fig. 4 but for a case in which observations are assimilated using the f{101_BNRH

(fully bounded) filter.

conclude that, while a bounded filter does not overcome the
limited efficacy of assimilating SIC observations, respecting
boundedness in the assimilation does prevent the introduc-
tion of additional bias related to assumptions about the OED.
We also note that assimilating SIC observations with 1/10 of
the error prescribed in Table 3 does shift the resulting mod-
eled SIC closer to TRUTH (not shown), although whether
such small-magnitude errors are reasonable is a separate dis-
cussion left for other work. In contrast, assimilating Ajce
observations performs at least as well as assimilating SIT ob-
servations in the unbounded case, and this will be discussed
in more depth later.

A more succinct comparison of the experiments listed in
Table 2 is presented in Fig. 6. In terms of modeled SIT, we
find that the assimilation of any observation that either ex-
plicitly or implicitly (through categorization in the ice thick-
ness distribution) contains information about ice thickness
reduces MAE by between 70 % and 90 % and improves the
CE score by ~ 0.1, regardless of the filter used. Experiments
assimilating SIT and categorized observations are not signif-
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icantly different from TRUTH, although they are all signifi-
cantly different from the FREE ensemble mean (Fig. 7).

Adjustments to modeled SIC are more variable. The rela-
tive lack of improvement as a result of assimilating SIC com-
pared with SIT is not a novel result (Blockley and Peterson,
2018; Kimmeritz et al., 2018; Mu et al., 2018b; Zhang et al.,
2018; Fiedler et al., 2022; Williams et al., 2022), but a good
confirmation that the grid-cell-level responses investigated
here are reminiscent of sea ice DA studies that use more tra-
ditional ensemble filtering methods and assimilate on larger
grids. For modeled SIT and SND, there is very little varia-
tion in the results as a function of the filter used (Fig. 6). For
modeled SIC, larger pMAE tends to stem from cases using
totally unbounded or totally bounded filtering (f1_NORM or
f101_BNRH, respectively) algorithms or when assimilating
categorized observations.

Finally, modeled SND is degraded by the assimilation of
sea ice observations in all cases, except those which assim-
ilated categorized observations with a totally bounded fil-
ter. Assimilating snow depth observations has been shown
to improve snow estimates in large models, when com-

The Cryosphere, 18, 5365-5382, 2024
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Figure 6. Bias reduction and model efficiency as a function of filter type and observation kind. Percent MAE reduction (pMAE) (a, ¢, and e)
and CE increase (iCE) (b, d, and f) relative to the FREE forecast as a result of assimilating various observation kinds (x axis; see Table 2 for
definitions) with each filtering method (y axis). Results are shown for modeled SIC (a, b), SIT (c,d), and SND (e, f). In general, lighter-toned
colors indicate a more beneficial impact due to assimilation than darker-toned colors. The number values indicate the specific pMAE or iCE

associated with each experiment.

pared with cases in which snow was updated only via post-
processing (Riedel and Anderson, 2024), as well as in a
single-column model when assimilated alongside sea ice ob-
servations (Riedel et al., 2024). In the experiments performed
here, categorized snow (Vsno,,) is a state variable that is up-
dated via regression with the model’s observed quantities,
but no snow observations are assimilated. The general in-

The Cryosphere, 18, 5365-5382, 2024

efficacy of sea ice observations to reduce snow bias likely
derives from an ensemble relationship between sea ice vari-
ables and categorized snow that produces too much late-
winter/early-spring snow on thicker ice and too little on thin-
ner ice (Fig. 8).
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Figure 7. Significant differences between experiments. The significance of deviations between each assimilation experiment, TRUTH, and
the unassimilated FREE ensemble mean are shown. The color gradient represents p values for the statistical difference between each exper-
iment shown on the x axis with respect to each experiment shown on the y axis. The rightmost columns show the p values for differences
from TRUTH and the FREE case. Purple shades indicate a insignificant difference at a p value of 0.05, while green shades indicate that the

two cases in question differ significantly at a p value of 0.05.

3.1 Boundedness

In general, we find that the metrics in Figs. 6 and 7 have
a rather weak dependence on whether or not the filter re-
spects bounds for modeled SIT and SND, especially when
compared to the obvious dependence on the kind of obser-
vation assimilated. There is essentially no dependency high-
lighted by iCE and only minimal variation in pMAE. In terms
of modeled SIC, however, the impact of using a bounded fil-
ter is more apparent (Fig. 9). The use of bounded rank his-
togram distributions in observation-space allows the filter to
correctly infer the bounded nature of the observation error
distribution (which respects the physical upper bound of 1 for
SIC) and its relationship to TRUTH. The adjustments thus
avoid degrading modeled SIC and lead to a positive annual
pMAE (Fig. 6) and reduced bias relative to TRUTH, particu-
larly in the melt season, when SIC observation errors are par-
ticularly large (Figs. 9, 5). The poor performance of the in-
termediary filters (f1_BNRH and f101_NORM) to constrain

https://doi.org/10.5194/tc-18-5365-2024

modeled SIC (Fig. 6) can be attributed to their inability to ad-
just SIC to total ice cover in the winter months (not shown).
The underperformance of the bounded filters with respect
to SIC is likely due to the nature of the model state variables
(categorized ice area, ice volume, and snow volume). Recall
that the values being diagnosed (SIC, SIT, and SND) are cal-
culated from categorized quantities using forward operators,
but they are not themselves state variables. This formulation
leads to an issue with properly constraining modeled SIC. In
the first step of the assimilation, bounds are placed on the
observed quantity, SIC, which is calculated by applying a
forward operator (a simple summation) to the model’s fore-
cast of the category area fractions in the ITD. Observation-
space incrementing respects the bounds prescribed on the ob-
servable. However, in the second step of the assimilation,
the increment calculated between the observation and the
model’s estimate of the observed quantity is mapped back
onto the category-based state variables using regression. This
step also respects boundedness, but it must rely on bounds
prescribed by the user for each of the state variables. The

The Cryosphere, 18, 5365-5382, 2024
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Figure 8. Category-level impact of assimilating with unbounded algorithms. Same as Fig. 4 but for each of the model’s five ice categories
(top row), volume (middle row), and snow volume categories (bottom row). TRUTH (the thin red line) may be difficult to identify in some
panels, as the cases assimilating SIT and Aj¢. ,, (solid blue and purple lines, respectively) lie very close to TRUTH.

only objective bounds that can be placed on each individ-
ual category area fraction are [0, 1], meaning that the regres-
sion of the observation-space increment can update each of
the individual category area fractions to a value anywhere
in that range. However, diagnostic SIC used to evaluate the
forecast is calculated anew from the adjusted category area
fractions; therefore, it is no longer constrained on [0, 1] but
rather on [0, 5]. As such, while the bounded filters respect the
imposed bounds on both observed and state variables as in-
tended (not shown), the dependency of the sea ice model on
the prescribed ITD categories confounds an attempt to truly
respect upper bounds on SIC.

In sum, while the use of bounded assimilation filters does
not produce significantly better or worse results in terms of
the impact on modeled SIT or SND, some improvements are
carried through for modeled SIC. While the full impact of
boundedness in filtering is limited in this study, these filters
could still provide a path to eliminating post-processing if
further infrastructure designed to simultaneously constrain
SIC and categorized area in CICE-SCM-DART was devel-
oped.

The Cryosphere, 18, 5365-5382, 2024

3.2 Category assimilation

More so than constraining the data assimilation with bounded
filters, assimilating the model’s categorized ice thickness dis-
tribution directly improves the results. First, assimilating cat-
egorized area or volume (or both) tends to lead to higher
MAE reductions in modeled SIT and SIC, particularly in the
cases that use either fully bounded or fully unbounded filters
(Fig. 6a, c). Additionally, while modeled SND is found to be
degraded in nearly all cases presented here, categorized ob-
servations assimilated with a fully bounded filter are found
to increase the pMAE by 20 % (Fig. 6e).

There also appears to be evidence that assimilating cat-
egorized observations may consistently constrain the sea ice
state across various mean state grid cell thicknesses. In Fig. 8,
assimilating SIT observations and categorized area observa-
tions perform comparably to constrain a categorized sea ice
state that is relatively thick and thus has a non-negligible
amount of ice in each category, including the thickest. By
comparison, Fig. 10c and d present a case in which the
dynamics forcing is withheld from the model integration,
thereby preventing the buildup of ice in the thickest two
ice categories via mechanical processes (i.e., ridging). In all
other respects, the model configuration is identical to previ-
ous experiments. This leads to an overall thinner mean state

https://doi.org/10.5194/tc-18-5365-2024
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Figure 9. Seasonal impact of using bounded filters when assimilating SIC observations. The normalized probability density functions of the
differences between the EXP mean and TRUTH in each assimilation cycle are shown for modeled SIC (a, b), SIT (¢, d), and SND (e, f), along
with their respective sample medians (dashed vertical lines). The dark-gray distribution in each panel represents the difference between the
FREE ensemble mean and TRUTH as a reference. The differences are divided into the melt season (a, ¢, and e; 1 July—15 September) and
the rest of the year (b, d, and f) and highlight the positive seasonal impact of using bounded algorithms — in the melt season, the distributions
are shifted closer to an EXP-TRUTH difference of zero when a bounded filter is used (yellow lines) than when an unbounded one is used
(pink lines). This effect is most prominent in the melt season months, as the uncertainties associated with the assimilated SIC observations
are largest in these months; thus, the bounded synthetic observations are more biased relative to TRUTH during this period. The bounded

algorithms correct for this appropriately.

in which SIT observations fail to constrain the thick ice cate-
gories. While the erroneous adjustments made in the thickest
two ice categories during assimilation are relatively minimal
compared with the total grid cell mean SIT (note the y axes in
Fig. 10), we observe that they lead to noticeable low biases in
modeled SIC (not shown). Assimilating categorized area ob-
servations appears to avoid this issue entirely (Fig. 10c, d) —
the modeled quantities produced by doing so are consistent
with TRUTH in all categories and total SIC.

At least two potential applications of this result in more
realistic experiments exist. First, in more practical applica-
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tions, the assimilation of categorized variables may avoid in-
troducing small errors in low-concentration ITD categories
that occur when assimilating SIT. This has the potential to
mitigate the overall error propagation of the model during
intervals in which real-world SIT observations are histori-
cally unavailable to constrain the state (i.e., during summer
months). Second, it has been noted in previous work that as-
similating SIT can lead to biases in the sea ice edge (Riedel
and Anderson, 2024), which introduces an incentive to as-
similate SIC as well as SIT, despite the negative impact that
SIC can have on modeled quantities away from the ice edge.

The Cryosphere, 18, 5365-5382, 2024
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Figure 10. Category-level impact of assimilating in a thin versus thick ice state. The model’s two thickest area categories for the standard
case (a and b; THICK) are repeated from Fig. 8. A corresponding experiment in which mechanical ridging is restricted (¢ and d; THIN),
leading to very low concentrations of ice in the thickest ITD categories, is also shown. These results demonstrate that the strength of the
relationship between SIT observations and modeled Ajce ,, breaks down when some categories have very little ice and that this can bias the

modeled SIC result.

The consistency resulting from assimilating categorized ob-
servations in multiple ice states, including regimes in which
the ice state is skewed to one end of the ITD, suggests a bet-
ter solution for constraining the sea ice state everywhere in
the Arctic.

4 Discussion

This work reinforces the results of previous studies that as-
similating SIT observations generally improves sea ice anal-
yses over assimilating SIC observations alone. In these ex-
periments, assimilating SIT followed by SIC leads to com-
parable but slightly degraded modeled quantities when com-
pared to just assimilating SIT, which implies that, for this en-
semble and mean state, there is very little benefit to assimilat-
ing SIC observations, especially outside the boreal summer
season. This finding, which applies to SIC analyses as well
as SIT, may be due, in part, to the fact that we have generated
spread in our ensemble using only variable atmospheric forc-
ing and that the ensemble is under-dispersive with respect to

The Cryosphere, 18, 5365-5382, 2024

SIC for much of the year. It is worth noting, however, that
assimilating SIT still improves modeled SIC in this under-
dispersive SIC scenario.

An emergent finding of this work is the positive impact
of assimilating the categorized state (the ITD). Assimilating
categorized area and volume estimates reduces the MAE and
increases the CE on par with assimilating SIT observations,
improving the model’s estimates of SIC and SIT at the cate-
gory level, even when some categories contain very little ice.
Assimilating categorized observations also reduces the fore-
cast error beyond that of assimilating aggregate observations
(Figs. 4, 8), although this is likely related at least to the fact
that the categorized observation errors can be quite small (see
Sect. 2).

The application of a series of bounded filtering algorithms
is novel to sea ice data assimilation and has highlighted
the complexities of assimilating observations into a cate-
gorized distribution model such as CICE-SCM. The some-
times negligible or even detrimental impact of bounded algo-
rithms on modeled sea ice quantities indicates a need to fur-
ther tailor the CICE-SCM-DART interface such that the fil-

https://doi.org/10.5194/tc-18-5365-2024
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Figure 11. Percentage of DA cycles requiring SIC post-processing. For each type of observation assimilated with the four filters (f1_NORM,
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values of aggregate SIC is shown. Note that the percentage of post-processing when assimilating SIC is artificially small, as those observations
do not lead to substantial adjustments from the FREE mean except in the summertime, when the grid cell aggregate SIC is decidedly lower

than the upper bound (no post-processing occurs during this time).

ters constrain categorized variables and SIC simultaneously.
Bounded algorithms eliminate any need for post-processing
of Vice.n, SIT, or Vo, (not shown). However, for modeled
SIC, we find that bounded algorithms result in a small frac-
tion of the adjustments made requiring SIC post-processing
(Fig. 11). Note that assimilating categorized observations re-
duces post-processing requirements compared with assimi-
lating aggregate observations, likely because the categorized
observations are closer in nature to the model’s state vari-
ables.

While the broad strokes of these results are expected to
carry over to assimilating real-world observations, the details
are likely to vary under replication in larger models, where
dynamic exchange between grid cells imbues additional in-
formation into the observation—state relationships and intro-
duces the need for localization in the data assimilation frame-
work. We also acknowledge that the bounded filtering algo-
rithms employed in this work depend on piecewise distribu-
tions that are a function of the model ensemble and are rela-
tively uninformed otherwise. DART provides the opportunity
to use alternative distributions that may qualitatively shift the
results. Finally, the work presented here avoids the role of
various forms of model error that are present in operational
data assimilation, where the observations and evolution be-
tween them are unlikely to be correctly captured by forward
operators and model physics. Therefore, at the very least, the
magnitude of error reductions in sea ice analyses presented
may overestimate what will be achievable in more practical
applications.
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5 Conclusions

We have interrogated, in detail, the grid-cell-level response
of a complex sea ice model to the assimilation of various
kinds of sea ice observations, including SIT, SIC, and cate-
gorized area and volume, and found that SIT and categorized
observations most accurately constrain the ensemble mean
forecast in both category ITD state variables and diagnos-
tic grid cell mean SIT and SIC; categorized observations are
the only observations that perform consistently well across
two different grid cell mean thickness states. Two key issues
in the application of bounded data assimilation algorithms
to the sea ice problem are identified. First, an approach to
appropriately constrain categorized area and total SIC simul-
taneously is still needed. Secondly, a true understanding of
where and why assimilation improves (or degrades) model
estimates of the sea ice state depends on how well the model
ensemble captures natural covariance relationships between
observables and state variables on a grid cell scale. Quantifi-
cation of these relationships requires a targeted study, which
is absent from previous literature. Although observational
records are short, we believe that significant progress could
be made in understanding the local covariance relationships
between SIC and SIT with current in situ and remote-sensing
products. Future work will attempt to address the first issue
and diagnose the second. Assuming that the ensemble is rea-
sonably realistic in terms of the relationship between vari-
ables, the findings presented here are expected to be quali-
tatively consistent in larger grid models and more practical
assimilation experiments.
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Figure A1. RMSE reduction as a function of filter type and observa-
tion kind. Same as Fig. 6 but for percent RMSE reduction (pRMSE).
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Code and data availability. All code used in the study can be found
on GitHub. The CICES single-column model is available from
the CICE Consortium at https://github.com/CICE-Consortium/
CICE (Hunke et al., 2022). The Data Assimilation Research
Testbed is maintained by DAReS and hosted at https://github.com/
NCAR/DART (UCAR/NSF NCAR/CISL/DAReS, 2024). The ver-
sion of DART used for this study was forked to https:/github.
com/mollymwieringa/DART (last access: 27 September 2024).
The Python scripts and Jupyter notebooks used to configure,
run, and evaluate the experiments in this study have been
collected in a separate GitHub repository (https://github.com/
mollymwieringa/cice-scm-da, last access: 4 September 2023) and
Zenodo (https://doi.org/10.5281/zenodo.8310112, Wieringa, 2023);
the post-processed experiment data used to produce the figures are
available from the authors upon request.
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