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Abstract. Water depths of supraglacial lakes on the ice
sheets are difficult to monitor continuously due the lakes’
ephemeral nature and inaccessible locations. Supraglacial
lakes have been linked to ice shelf collapse in Antarctica
and accelerated flow of grounded ice in Greenland. How-
ever, the impact of supraglacial lakes on ice dynamics has not
been quantified accurately enough to predict their contribu-
tion to future mass loss and sea level rise. This is largely be-
cause ice-sheet-wide assessments of meltwater volumes rely
on models that are poorly constrained due to a lack of ac-
curate depth measurements. Various recent case studies have
demonstrated that accurate supraglacial lake depths can be
obtained from NASA’s Ice, Cloud and land Elevation Satel-
lite (ICESat-2) ATL03 photon-level data product. ATL03
comprises hundreds of terabytes of unstructured point cloud
data, which has made it challenging to use this bathymetric
capability at scale. Here, we present two new algorithms –
Flat Lake and Underlying Ice Detection (FLUID) and Sur-
face Removal and Robust Fit (SuRRF) – which together pro-
vide a fully automated and scalable method for lake detec-
tion and along-track depth determination from ATL03 data
and establish a framework for its large-scale implementa-
tion using distributed high-throughput computing. We report
FLUID–SuRRF algorithm performance over two regions
known to have significant surface melt – central West Green-
land and the Amery Ice Shelf catchment in East Antarctica
– during two melt seasons. FLUID–SuRRF reveals a total of
1249 ICESat-2 lake segments up to 25 m deep, with more
water during higher-melt years. In the absence of ground-
truth data, manual annotation of test data suggests that our
method reliably detects melt lakes along ICESat-2’s ground
tracks whenever the lake bed is visible or partially visible and

estimates water depths with a mean absolute error < 0.27 m.
These results imply that our proposed framework has the po-
tential to generate a comprehensive data product of accurate
meltwater depths across both ice sheets.

1 Introduction

Earth is warming and both of its ice sheets (Greenland and
Antarctica) are losing mass to the ocean at increasing rates
(Rignot et al., 2011; Smith et al., 2020), leading to sea level
rise. There is growing evidence that some of this retreat is ir-
reversible, thus committing coastal communities to embrac-
ing costly sea level rise adaptation strategies for decades and
centuries to come (DeConto et al., 2021; Garbe et al., 2020;
Gregory et al., 2020; Nordhaus, 2019). To address the re-
sulting societal challenges, policy makers and coastal plan-
ners require accurate and actionable sea level rise projec-
tions (Moon et al., 2020). However, the projected contribu-
tion from the ice sheets is highly uncertain, to the point that
the Sixth Assessment Report of the United Nations Intergov-
ernmental Panel on Climate Change designated it as “deep
uncertainty” (IPCC AR6; Fox-Kemper et al., 2021). Building
confidence in projections of the ice sheets’ contribution to fu-
ture sea level rise requires better mechanistic understanding
of relevant mass balance processes for inclusion in ice sheet
models (Golledge, 2020; Aschwanden et al., 2021). How-
ever, ice-sheet-wide details of many of these processes are
poorly known because they have been under-observed in both
space and time.

Published by Copernicus Publications on behalf of the European Geosciences Union.



5174 P. S. Arndt and H. A. Fricker: Automated supraglacial lake detection and depth retrieval in ICESat-2 data

Supraglacial melting on the ice sheets is one example of
a process which has a potentially important contribution to
future sea level rise projections yet has been under-observed
and is therefore poorly understood. In a warming climate,
supraglacial lakes have the potential to trigger positive feed-
back loops and catastrophic collapse (Gilbert and Kittel,
2021), yet the underlying mechanisms and associated like-
lihoods are vaguely defined due to a lack of high-quality ob-
servations (Arthur et al., 2020a). In particular, models that
attempt to capture the influence of supraglacial hydrology
on ice sheet behavior require accurate estimates of volumes
of pooled surface meltwater as input (Zwally et al., 2002;
Parizek and Alley, 2004; Krawczynski et al., 2009; Robel
and Banwell, 2019). However, there are few direct in situ
observations of supraglacial lake depths (none in Antarctica
and 10 lakes up to 11.5 m deep in Greenland), which leads to
errors in total water volume estimates. This introduces biases
into model inputs for meltwater flow, impacting projections
of future ice sheet evolution (Melling et al., 2024). To ensure
that coupled hydrological–dynamical models accurately rep-
resent the underlying physics, it is important to find a method
to acquire lake depths that are accurate and also spatially and
temporally continuous.

Launched in 2018, NASA’s Ice, Cloud and land Elevation
Satellite (ICESat-2) laser altimeter became the first (and thus
far only) satellite capable of making direct, accurate water
depth measurements from space due to its green light being
able to penetrate water, which allows its sensor to register
the elevation of photons that were reflected from both the
lake surface and the lake bed (Fig. 1; e.g., Fair et al., 2020;
Fricker et al., 2021; Xiao et al., 2023). This allows ICESat-2
to measure water depths up to 41 m under ideal conditions
(very clear water and high bottom reflectivity), with typical
accuracies of about 0.5 m (Dietrich et al., 2024).

While ICESat-2 has the unique capability to make direct
and accurate measurements of water depth from space, its
fundamental limitation is spatial coverage. ICESat-2 data
are limited to discrete, one-dimensional ground tracks that
are coarsely spaced on the Earth’s surface (∼ 9.9 km be-
tween neighboring reference tracks and ∼ 3.3 km between
all neighboring beam pair tracks at 70° N/S) with a rela-
tively long revisit time of 3 months. This means that no
supraglacial lake depth data product derived from ICESat-
2 alone is able to provide samples of all (or even nearly all)
supraglacial lakes on the ice sheets: ICESat-2’s track spac-
ing means that the majority of lakes form in locations that
ICESat-2 ground tracks never sample, and the 3-month re-
turn period means that for a significant number of ground
tracks ICESat-2 never passes over at the time at which melt
lakes are visible. ICESat-2 is also unable to penetrate opti-
cally thick clouds, thus further limiting the amount of data
available for water depth measurements.

While ICESat-2 data alone cannot be used to continu-
ously monitor melt lake volumes, several case studies have
shown that ICESat-2 depth measurements can be used to

constrain parameters in models that estimate lake volumes
from satellite imagery (Datta and Wouters, 2021; Leeuwen,
2023; Lutz et al., 2024). For instance, Datta and Wouters
(2021) demonstrated that it is possible to accurately extrapo-
late depths along ICESat-2’s ground-track segments to the
full lake basins that these segments intersect. To be able
to use ICESat-2 to improve depth estimates of supraglacial
lakes in locations where (and at times when) ICESat-2 mea-
surements are not directly available, it will be necessary to
rely on statistical methods that can generalize the relationship
between water depth and reflectance for a particular passive
optical sensor under a wide variety of conditions and inde-
pendently of the availability training data that are close in
space and time (Hastie et al., 2009). For this to work effec-
tively, the data that are used to train statistical learning mod-
els capable of multiple nonlinear regression for representing
a complex depth–reflectance relationship need to adequately
cover the parameter space defined by the combination of pre-
dictors that are included (Markham and Rakes, 1998; Wang
et al., 2022). Since ICESat-2 observations of melt lakes are
relatively sparse, it is therefore crucial to obtain as many
ICESat-2 depth estimates as possible from different locations
and times (and thus under a wide variety of environmental
conditions) to be able to effectively use ICESat-2 to improve
monitoring of meltwater volumes across the ice sheets. This
suggests that large-scale extraction of accurate supraglacial
lake depths from a wide range of ICESat-2 photon-level data
in combination with concurrent optical satellite imagery can
provide a labeled training dataset enabling the application
of machine learning methods (e.g., Leeuwen, 2023) capable
of generating a well-constrained data-driven model for ice-
sheet-wide lake volume estimation (Melling et al., 2024).

While automated and scalable algorithms for lake de-
tection and depth retrieval in ATL03 photon data have
been proposed (e.g., Datta and Wouters, 2021; Xiao et al.,
2023), in practice no previous ICESat-2 studies have applied
supraglacial lake depth estimation methods to more than a
handful of manually picked lake segments or data granules
or presented a straightforward pathway to large-scale com-
putational implementation across the ATL03 data catalog,
which comprises hundreds of terabytes of unstructured point
cloud data (Neumann et al., 2023b). To address this chal-
lenge, we present a framework for ice-sheet-wide implemen-
tation of our own fully automated and scalable algorithm for
along-track lake segment detection and depth determination
from ICESat-2 data. Here, we present this algorithm, apply
it to two entire drainage basins in Greenland and Antarctica
(Sect. 3.5, Fig. 2) using distributed high-throughput comput-
ing, and demonstrate its performance for two full melt sea-
sons.
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Figure 1. An ICESat-2 ATL03 data segment over a supraglacial lake, showing a particularly strong bathymetric return from the lake bed
(data from ICESat-2 track 406 on 20 July 2021; granule: ATL03_20210720053125_04061205_006_01.h5 – the imagery in the left panel is
a Sentinel-2 scene from the same day: S2B_MSIL2A_20210720T151809_N0301_R068_T27XVG_20210720T175839).

2 Background

2.1 How supraglacial lakes affect ice sheet mass loss

Supraglacial water has different roles in Greenland and
Antarctic ice sheet mass loss processes, largely because of
its different spatial extent on each ice sheet. Across most of
the Greenland ice sheet’s ablation zone, meltwater pools in
supraglacial lakes that extend from the ice margins up to
about 2000 m on the plateau, and lakes are forming further
inland as temperatures increase (Leeson et al., 2015; Ted-
stone and Machguth, 2022). On the Antarctic ice sheet, pool-
ing of surface meltwater in lakes is not as pervasive and is
mostly observed on the floating ice shelves and at low ele-
vations near their grounding zones (Stokes et al., 2019; Corr
et al., 2022), with large regional and interannual variability
(Arthur et al., 2022). Pooling and storage of meltwater in
supraglacial lakes can affect ice sheet mass loss directly or
indirectly in four ways.

1. Surface runoff. Supraglacial lake drainage and trans-
port of water off the ice sheet through surface streams
or englacial pathways contribute to mass loss directly
as surface runoff. This is already a significant compo-
nent of the Greenland ice sheet surface mass balance
(The IMBIE Team, 2020) but has also been observed on
the Antarctic ice sheet (Bell et al., 2017; Warner et al.,
2021; Trusel et al., 2022) and could become more sig-
nificant in a warming future (Kingslake et al., 2017; Bell
et al., 2017). Such runoff also results in surface eleva-

tion lowering, which further increases meltwater pro-
duction by exposing the ice sheet surface to the higher
temperatures found at lower elevations (Levermann and
Winkelmann, 2016; Bell et al., 2018).

2. Surface albedo lowering. Supraglacial lakes lower the
surface albedo, which can further accelerate melting and
result in a temperature increase in the adjacent ice col-
umn (Tedesco et al., 2012; Ryan et al., 2017; Stokes
et al., 2019).

3. Bedrock lubrication. On grounded ice, rapid drainage of
surface lakes by hydrofracture delivers pulses of melt-
water to the base of the ice sheet, which has the po-
tential to lubricate the bedrock and cause acceleration
of ice flow due to enhanced basal sliding. This is a
well-studied phenomenon in Greenland (e.g., Das et al.,
2008; Bartholomew et al., 2010; Tedesco et al., 2013;
Davison et al., 2019; Maier et al., 2023), but recent ob-
servations suggest that this mechanism is also driving
ice flow speed-ups on the Antarctic ice sheet (Tuckett
et al., 2019), where it could become an increasingly im-
portant mechanism as future warming will cause its hy-
drology to become more similar to Greenland’s current
ablation zone (Bell et al., 2018).

4. Ice shelf collapse. In Antarctica, the ponding and drain-
ing of supraglacial lakes can weaken and fracture the
floating ice shelves (Munneke et al., 2014; Banwell and
Macayeal, 2015; Banwell et al., 2019; Lai et al., 2020),
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Figure 2. Study regions for testing the FLUID–SuRRF framework. (a, b) Maps of the two regions chosen for this study: central West
Greenland (CW drainage basin) and the Amery catchment (B-C drainage basin). The black outlines show the boundaries of the regions
which were obtained by thresholding the corresponding ice sheet drainage basins (c, d) by the elevations shown in the legends. The green
lines show ICESat-2 reference ground-track coverage. (c, d) Maps of the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) drainage
basins for Greenland (Mouginot and Rignot, 2019) and Antarctica (Mouginot et al., 2017). Insets show the locations of the two study areas.

which, in extreme cases, has been linked to their col-
lapse by hydrofracture (MacAyeal et al., 2003; Scambos
et al., 2004; Banwell et al., 2013). The resulting loss of
buttressing back-stresses leads to accelerated discharge
of upstream grounded ice into the ocean, which causes
sea level rise (De Angelis and Skvarca, 2003; Scambos
et al., 2004; Rignot et al., 2004; Rott et al., 2018). It has
been hypothesized that these melt-driven hydrofracture
processes could expose marine ice cliffs that are suffi-
ciently tall and weakened to be prone to mechanical fail-
ure, which would trigger buoyancy-driven calving and
could therefore lead to sustained, rapid ice sheet col-
lapse, referred to as marine ice cliff instability (MICI;
Bassis and Walker, 2012; Pollard et al., 2015; DeConto
and Pollard, 2016; Bassis et al., 2021, 2024).

Incorporating processes through which surface meltwater
ponding affects ice dynamics into ice sheet models can
drastically increase projected future sea level rise (Martin
et al., 2019; Edwards et al., 2021), yet they currently rely
on poorly constrained parameterizations, making projections
highly uncertain (Robel et al., 2019; Pattyn and Morlighem,

2020). This means that there is an urgent need to improve
our understanding of the key underlying physical processes
based on accurate observations (Hanna et al., 2024).

2.2 Observations of supraglacial lake depths

In situ observations of melt lake depths are scarce (e.g.,
Tedesco and Steiner, 2011) due to the challenging logistics
and planning required to collect such data. Supraglacial hy-
drological systems on ice sheets form seasonally in some
of Earth’s most remote and inaccessible locations, and they
can rapidly evolve in complex and unpredictable patterns
(Dirscherl et al., 2020; Gantayat et al., 2023), making sur-
vey planning difficult. Therefore, to obtain ice-sheet-wide
observations of meltwater lake depths for each melt season,
it is necessary to rely on satellite remote sensing techniques
(Moussavi et al., 2016; Melling et al., 2024). Besides ICESat-
2’s novel capability to directly observe water depths from
photon refraction, various methods have been used to indi-
rectly estimate lake depths from satellite data, which all have
different advantages and disadvantages.
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One such method is to apply a radiative transfer equation
(RTE; Philpot, 1987, 1989) to estimate lake depth from op-
tical imagery (Sneed and Hamilton, 2007; Moussavi et al.,
2020; Leeson et al., 2020). This approach has been widely
used since optical imagery provides continuous spatial cover-
age at short temporal intervals and because it is assumed that
its physics-based principles hold everywhere, which makes
it possible to apply it at scale. However, the RTE approach
relies on poorly constrained choices of water attenuation co-
efficients and lake bed albedo and makes simplifying as-
sumptions such as no suspended particulate matter, a homo-
geneous lake bed albedo, no surface disturbances caused by
wind, and a water column with vertically homogeneous opti-
cal properties (Brodskỳ et al., 2022). As a result, it has been
shown that the RTE approach can significantly overestimate
or underestimate lake depths in different environments: in
Fricker et al. (2021) the RTE method underestimated depths
by 30 % to 70 % on the Amery Ice Shelf in East Antarctica,
whereas in Melling et al. (2024) it overestimated depths by
up to 153 % in southwestern Greenland.

Another approach to estimating lake depths is using empir-
ical models derived from regression of in situ depth measure-
ments with optical imagery (e.g., Tedesco and Steiner, 2011;
Legleiter et al., 2014; Pope et al., 2016). However, in situ
measurements of supraglacial lake depths are very sparse,
with (to the best of our knowledge and at the time of writ-
ing) no such data available for Antarctica and data available
for only 10 lakes up to 11.5 m deep on the Greenland ice
sheet between 2005 and 2024: Box and Ski (2007) sampled
two lakes on Jakobshavn Isbræ and Sermeq Avannarleq in
2005, Sneed and Hamilton (2007) sampled one lake on Hel-
heim Glacier in 2008, Tedesco and Steiner (2011) sampled
one lake in central West Greenland, Legleiter et al. (2014)
sampled three supraglacial water bodies on Isunnguata Ser-
mia and Russell Glacier in 2012, and Lutz et al. (2024) sam-
pled three lakes on Zachariæ Isstrøm in 2022. This makes the
observations provided by Lutz et al. (2024) the only in situ
depth data for supraglacial lakes that overlap with the Land-
sat 8 and Sentinel-2 missions. Further, it has been shown that
the relationship between water depth and reflectance values
in optical imagery can vary significantly by geographical re-
gion (Lutz et al., 2024). Thus, the regression coefficients of
these empirical models are limited to the spatial area of the
original in situ measurements, making them impractical for
application on a larger ice-sheet-wide scale.

A third approach is to use digital elevation models (DEMs)
of a lake’s bed topography that were acquired before it filled
or after it drained and then to determine its fill level from im-
agery (Moussavi et al., 2016; Yang et al., 2019b). While this
has the advantage of being independent of the optical prop-
erties of the water column, currently available DEM acquisi-
tions are sporadic and the method cannot account for changes
in the lake bed topography between acquisitions due to, for
example, bottom ablation (Tedesco et al., 2012). Because this
approach requires acquisitions from before a lake fills or af-

ter it drains, it is not suitable for perennial lakes that freeze
over and are buried in winter without draining (Koenig et al.,
2015; Schröder et al., 2020; Leppäranta et al., 2013), and it
cannot be directly applied to lakes on floating ice shelves,
where any filling and draining events result in a hydrostatic
adjustment that bends the ice surface (Scambos et al., 2009;
Warner et al., 2021).

3 Data and methods

We use individual photon data from the ICESat-2 instru-
ment, provided in a data product known as Global Geolo-
cated Photons (ATL03; Sect. 3.1). Our method to extract wa-
ter depths consists of two algorithms that are run consec-
utively on ATL03 data: (1) Flat Lake and Underlying Ice
Detection (FLUID; Sect. 3.2) automatically detects the lo-
cations of supraglacial lakes visible in the point cloud data,
and (2) Surface Removal and Robust Fit (SuRRF; Sect. 3.3)
determines the along-track depth for each detected lake seg-
ment. To automatically compute results for large numbers of
ATL03 data files over extensive geographical regions, we use
the Open Science Grid (OSG) Open Science Pool for dis-
tributed high-throughput computing (Sect. 3.4; OSG, 2006;
Pordes et al., 2007). Figure 3 summarizes the various steps
of this method in a flowchart, and we describe each of them
in more detail below.

3.1 ICESat-2

ICESat-2 was launched in September 2018 and carries the
Advanced Topographic Laser Altimeter System (ATLAS) in-
strument, a photon-counting green-light (532 nm) laser al-
timeter operating at a frequency of 10 kHz, which results in
a 0.7 m along-track resolution (Markus et al., 2017). ATLAS
divides the laser pulse it emits into six beams, forming three
beam pairs, each of which consist of a weak and a strong
beam. The footprint of each beam is about 11 m in diame-
ter on the ground (Magruder et al., 2021a). The six result-
ing ground tracks (GTNXs) are referred to as GT1L, GT1R,
GT2L, GT2R, GT3L, and GT3R, where N refers to the beam
pair from left to right in the direction of flight and X refers to
the left (“L”) or right (“R”) track within each pair (Neumann
et al., 2022). The three track pairs are separated by 3.3 km
on the ground, and the two tracks within a pair are separated
by 90 m each. The ICESat-2 spacecraft can fly in either for-
ward or backward orientation and flips between the two ap-
proximately twice a year (Neumann et al., 2019; Smith et al.,
2019). In forward orientation, ATLAS’s strong beams – num-
bered 1, 3, and 5 – are on the right side of each beam pair in
the direction of flight and point to GTs 3R, 2R, and 1R, re-
spectively. Similarly, after a yaw flip to the backward orienta-
tion, the strong beams are on the left side of each beam pair
and point to GTs 1L, 2L, and 3L. This means that the data
acquired along a particular GTNX can be associated with a
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Figure 3. Flowchart of the FLUID–SuRRF framework for detecting and determining the depths of supraglacial melt lakes in ICESat-2 data
for any melt season over any drainage basin of the Antarctic or Greenland ice sheets. All modules in the blue box can be parallelized for large
quantities of input data granules as a batch of compute jobs on a computer cluster or a platform for distributed high-throughput computing,
such as the OSG Open Science Pool.
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strong or a weak beam, depending on the spacecraft orienta-
tion at the time of data acquisition. The ATLAS receiver uses
photomultiplier tubes (PMTs) designed to detect individual
reflected photons, with 16 independent timing channels for
each strong beam and 4 for each weak beam (Yang et al.,
2019a). The strong beams have 4 times more energy than the
weak beams, resulting in a correspondingly higher count of
laser photons returned per shot.

ICESat-2 repeats its orbit every 91 d, after completing
1387 distinct reference ground tracks (RGTs). Over land ice,
ATLAS routinely points to these RGTs near its nadir to ac-
quire repeat measurements (Magruder et al., 2021b). The
satellite began targeting the planned RGTs in late March
2019, once the on-orbit pointing calibrations were final-
ized and updated in the onboard pointing control systems
(Martino et al., 2019). Consequently, any observations dur-
ing the 2018–2019 Antarctic melt season do not align with
the planned repeat tracks. ICESat-2 was in “safehold” from
26 June through 9 July 2019, which means that no data were
collected during this 14 d period coinciding with the 2019
Greenland melt season.

Over shallow (< 41 m) and non-turbid water bodies, AT-
LAS’s green light is able to pass through the water column,
which means that signal photons can be reflected from both
the flat open-water surface and the lake bed (Fair et al.,
2020; Fricker et al., 2021). Most land ice applications use
the ATL06 data product designed for glacier and ice sheet
surfaces (Smith et al., 2019). However, the ATL06 algorithm
provides only one surface and thus cannot be used to extract
meltwater depths. Also, over melt lakes ATL06 segments in-
consistently track either the water surface or the lake bed, so
the results are ambiguous (Fricker et al., 2021). To overcome
this limitation and track both surfaces, our technique relies on
the elevations of individual photons, which are distributed in
the data product Global Geolocated Photons (ATL03) (Neu-
mann et al., 2023b). To keep the size of each individual
ATL03 data file (or “granule”) manageable, each RGT or-
bit of ICESat-2 data is divided into 14 granule regions (Neu-
mann et al., 2023a). This means that each granule is limited
to approximately 30 min of along-track data and rarely ex-
ceeds 10 GB in size. ATL03 reports geolocated photon at-
tributes such as longitude, latitude, along-track distance, and
height for each individual photon detection event, thus pro-
viding an along-track point cloud of photon locations. Geo-
physical corrections (such as geoid height) are reported at a
20 m along-track segment rate, and parameters related to on-
board data processing (such as telemetry window ranges) are
reported at the 50 Hz (≈ 140 m along-track) “major frame”
rate (Martino et al., 2022b). In an ATL03 point cloud, sig-
nal photons being reflected from both a lake’s water surface
and its lake bed result in characteristic double returns, which
are used by FLUID to detect along-track data segments con-
taining supraglacial lakes and by SuRRF to generate depth
estimates for those lake segments. While the strong beam
data have a higher signal-to-noise ratio, we have designed

our FLUID–SuRRF method to work well with both strong
and weak beams whenever a bathymetric return from the lake
bed is discernible, i.e., for lakes with a visible or partly visi-
ble lake bed.

3.2 Supraglacial lake detection in ATL03: the FLUID
algorithm

The Flat Lake and Underlying Ice Detection (FLUID) algo-
rithm takes an ATL03 granule as input, searches for locations
that contain potential supraglacial lakes with a bathymetric
signal, and then returns along-track segments of the data for
all detections. FLUID exploits two unique characteristics of
supraglacial lake segments in ATL03 data:

1. photons which are reflected back from an open-water
surface cluster around a flat line (Sect. 3.2.1, Fig. 4),
and

2. a bathymetric return signal must present as a sec-
ondary peak in photon density below such a flat surface
(Sect. 3.2.4, Fig. 7).

To search for supraglacial lake segments in ATL03, FLUID
divides the photon data into 140 m along-track segments
aligning with ICESat-2’s major frames and selects those that
satisfy both of the above requirements. Then, adjacent major
frames are iteratively clustered into larger along-track data
segments that likely represent all available ATL03 data for
an entire supraglacial lake (Sect. 3.2.5).

3.2.1 FLUID step 1: identification of flat water surfaces

This step uses the fact that the surface slope of a station-
ary body of open water is close to zero in geopotential co-
ordinates (i.e., using orthometric photon heights), in con-
trast to the surrounding ice sheet or ice shelf, which mostly
have slopes greater than 0.01° (Shen et al., 2022; Fan et al.,
2022). This simple property enables a computationally in-
expensive calculation (a “flatness check”) to be applied to
geoid-corrected ATL03 height data to check for possible can-
didate lake segments.

To perform this flatness check, we apply the ATL03-
provided geoid correction to photon heights and divide the
data from each of ICESat-2’s six ground tracks into approx-
imately 140 m along-track segments aligning with ICESat-
2’s major frames. For each major frame, we bin photon el-
evations in 0.01 m intervals and smooth the resulting his-
togram using a Gaussian filter with a standard deviation of
0.05 m, then normalize it by dividing by its largest value. If
the smoothed histogram has a single peak, we record the el-
evation of this peak hpeak as the surface elevation at which a
flat surface reflector would be located. In the case of a melt
lake segment with a bathymetric return signal, it is possible
that the return from the lake bed is stronger than the sur-
face return. Therefore, if the smoothed histogram has multi-
ple peaks with prominence > 0.1, we choose hpeak from the
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two most prominent peaks and set it to the elevation of the
one located at a higher elevation.

The flatness check is based on ratios between photon den-
sities di that we calculate for various elevation bands around
hpeak (Appendix A). As illustrated in the lower panels of
Fig. 4, d0 is the photon density within an elevation band of
±wpeak = 0.1 m around the photon density peak. If a major
frame contains the flat surface of a lake, then most of the
surface signal photons should be contained in this “lake sur-
face elevation band”, making d0 significantly larger than the
photon density in surrounding elevation bands (see Fig. 4b).
d1 and d2 are the photon densities within elevation bands of
width wbuffer = 0.35 m just below and above the lake surface
elevation band, respectively. Due to multiple scattering in the
water column of a lake, we expect that over supraglacial lake
segments the photon density just below the surface (d1) can
take on larger values than the photon density just above the
surface (d2). d3 is the photon density within the entire teleme-
try window except for the lake surface elevation band, and d4
is the photon density between the top of the lake surface el-
evation band and the top of the telemetry window. Over a
lake segment, most of the telemetry window outside the lake
surface elevation band contains only background noise pho-
tons, so we expect that the photon densities d3 and d4 need
to be significantly smaller than the surface photon density
(d0) if the major frame contains a flat lake surface. Since
d3 can still contain photons below the lake surface due to
multiple scattering and a bathymetric signal, we expect that
over supraglacial lake segments d3 can take on larger val-
ues than d4. Based on these assumptions and using a trial-
and-error approach, we defined the following thresholds on
the density ratios that need to hold for a major frame to
pass the flatness check: d0/d1 ≥ 2, d0/d2 ≥ 5, d0/d3 ≥ 10,
and d0/d4 ≥ 100. As part of this trial-and-error approach, we
manually assessed the effects of tweaking the above thresh-
olds on a number of hand-picked granules, which we judged
to be likely representative of various possible environments,
to ensure adequate performance (i.e., granules without sur-
face melt vs. pervasive surface melt, granules with smooth
vs. rough background topography, granules containing ice-
covered and partially ice-covered lakes, granules containing
slush areas, granules containing exposed bedrock, partially
cloudy granules, weak vs. strong beam data, nighttime vs.
daytime acquisitions, etc.). Figure 4a and b illustrate the out-
come of the flatness check for all the major frames within a
short along-track segment of ATL03 data that crosses a par-
tially ice-covered supraglacial lake. Figure 4b and c show ex-
amples of major frames that pass the flatness check and fail
the flatness check, respectively, and illustrate the elevation
bands that were used to calculate photon density ratios.

Since FLUID assesses the flatness of the surface of full
major frames that cover an along-track distance of ∼ 140 m,
lake segments with shorter open-water surfaces are not guar-
anteed to be detected by FLUID. However, lake segments
that are significantly shorter than 140 m are regularly de-

tected by FLUID in practice. This is because the return sig-
nal from flat water surfaces is typically much stronger than
the return signal from the surrounding ice surfaces, which
makes even very short, flat water surfaces dominate the over-
all distribution of photon elevations within a major frame.
The presence of a flat surface within a major frame is a nec-
essary condition for detecting supraglacial bathymetry data,
but it is not sufficient. There are many types of surfaces that
would pass the flatness test but are not supraglacial lake seg-
ments with a bathymetric signal. This includes areas of slush;
frozen-over supraglacial lakes covered in ice and snow; any
areas of sea ice, ocean water, or ice-marginal lakes erro-
neously included in the ice mask used for subsetting data; and
other short along-track sections over firn or glacial ice that
happen to be extremely flat by chance. For example, a lake
may have partial ice cover, which prevents ICESat-2 from
obtaining a bathymetric return (Fig. 4). However, since the
ice cover here appears to be thin and flat, the corresponding
major frames still pass the flatness check despite the absence
of any useful bathymetry data in those segments. This means
that the flatness check presented in this chapter serves as a
preliminary screening method, helping to efficiently narrow
down the number of along-track segments that could poten-
tially contain useful supraglacial bathymetry data. This pro-
cess makes it computationally feasible to determine whether
a bathymetric signal is actually present by performing more
complex operations on only the data that remain after check-
ing for a sufficiently flat surface. The following sections de-
scribe these methods, which are at first only applied to major
frames that passed the initial flatness check.

3.2.2 FLUID step 2: removal of afterpulses

The second step removes artifacts in the ATL03 photon data
known as “afterpulses”, which appear as additional lines be-
low and parallel to the primary surface return, due to the
specifics of the ATLAS sensor (Luthke, 2023; Lu et al., 2021;
Martino et al., 2022a). Afterpulses only become noticeable
when the sensor is nearly or fully saturated, which means
they often appear in ATL03 data over supraglacial lakes be-
cause smooth open-water surfaces (i.e., the surface of station-
ary water bodies that are not affected by wind) can result in
specular reflection. This suggests that the presence of wind
ripples increases the likelihood of detecting a lake segment
with a clear bathymetric signal in ATL03 data by preventing
sensor saturation and afterpulsing (Lu et al., 2019; Tilling
et al., 2020) and also explains why we observe afterpulsing
more frequently near the (more wind-shielded) margins of
melt lakes than over their (more wind-exposed) interior. Fig-
ure 5d–h show an example of an ATL03 data segment over
a supraglacial lake in which these afterpulses are clearly vis-
ible below the flat water surface. There are three different
mechanisms that can cause afterpulses.

1. Dead-time afterpulses appear in saturated pulses due to
the ATLAS receiver channels only being able to regis-
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Figure 4. FLUID “flatness check” applied to every ATL03 major frame for identifying potential supraglacial lake segments. (a) Ground track
of an along-track segment of ATL03 data over the Greenland ice sheet, crossing a partially ice-covered supraglacial lake. (b) Corresponding
along-track photon elevations, with major frame boundaries marked by vertical black lines and flatness check outcomes shown as hatching.
(c, d) Photon density ratios for a passing and a failing segment, respectively (data from ICESat-2 track 216 GT1L on 12 July 2019 and
centered at 68.9370° N, 47.9657° W; granule: ATL03_20190712052659_02160403_006_02.h5, imagery: Sentinel-2 on 13 July 2019).

ter one photon event roughly every 3 ns. If the return
signal is strong enough that all receiver channels regis-
ter photon events during a time span shorter than this
“dead time”, ATLAS cannot register any photons un-
til the receiver channels have recovered. This means
that for saturated pulses, afterpulses can appear in in-
tervals of about 3 ns of photon flight time, equivalent to
∼ 0.45 m of elevation (Lu et al., 2021).

2. Internal reflection afterpulses are found in ATL03 data
around 2.36, 4.27, and 6.59 m below the surface return
(Martino et al., 2022a). These are due to optical reflec-
tions internal to the ATLAS receiver.

3. PMT ionization afterpulses appear as a broad peak
∼ 12–40 m below the surface when pulses are strongly
saturated and cause ionization of the photomultiplier
tubes (PMTs), which triggers false photon detection
events.

Since all of these afterpulses present as secondary peaks in
photon density below the primary surface return, they can
be mistaken for or obscure any real bathymetric signal re-
turns. Therefore, they need to be removed before determining

whether a bathymetric signal is present in the data. ATL03
provides the parameter quality_ph that is designed to
allow users to filter out afterpulses. However, this parame-
ter does not remove most dead-time afterpulses and naively
removes all data more than 2 m below the surface for sat-
urated returns (Neumann et al., 2022). This means that us-
ing the ATL03-provided quality_ph flag is not appropri-
ate when searching for subsurface return signals in saturated
pulses, as it would fail to remove dead-time afterpulses that
could be misidentified as bathymetric signals and could re-
move actual bathymetric signals at depths greater than 2 m
(Fig. 5e). Therefore, we developed an improved afterpulse
removal routine that is tailored to bathymetric applications.

Afterpulse removal

We first estimate the saturation level of each pulse based on
the sensor dead time tdead, which is provided for each beam
in the ATL03 data product. Let nch be the number of re-
ceiver channels, i.e., nch = 4 for weak beams and nch = 16
for strong beams. If the total number of photons in a pulse
nph ≥ nch we can calculate the minimum vertical distance
spanned by any nch photons and denote it by 1h. We then
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Figure 5. FLUID afterpulse removal. (a–c) Histogram of photon elevations in saturated pulses from ICESat-2 melt lake segments relative
to the elevation at which saturation occurred. The secondary peaks that appear below the saturated surface return are afterpulses that are
caused by (a) dead time of the ATLAS sensor, (b) internal reflections in the instrument, and (c) PMT ionization. Note that panels (a), (b),
and (c) have different vertical scales. (d–h) Implementation of FLUID’s afterpulse removal for a short along-track segment of ATL03 data
that crosses a supraglacial lake, with sections of highly saturated (specular) pulses. Known locations of ATLAS afterpulses (a–c) are used to
remove likely afterpulse photons (data from ICESat-2 track 1222 GT2L on 17 June 2019 and centered at 69.0189° N, 49.0444° W; granule:
ATL03_20190617064249_12220303_006_02.h5).

estimate the sensor saturation ratio as rsat = tdeadc/(21h) if
nph ≥ nch and zero otherwise, where c is the speed of light in
a vacuum. This means that for saturated pulses (rsat ≥ 1), all
receiver channels registered a photon within a time frame of
tdead/rsat. For all saturated pulses, we calculate the elevation
of the saturated return, hsat, as the mean elevation of the nch
photons that span 1h.

To determine the typical locations of afterpulses relative
to hsat in saturated pulses, we compiled a dataset of saturated
pulses from melt lake segments using an earlier version of
FLUID (Arndt and Fricker, 2022), which did not include af-
terpulse removal. For each saturated pulse, we subtracted hsat
from the photon elevations and created a histogram of photon
counts weighted by rsat (Fig. 5a–c). The strong peaks in this

histogram correspond to the elevations at which afterpulses
occur relative to the surface. We found that dead-time after-
pulses occurred at four depths: AP(dead)

1 = 0.55 m, AP(dead)
2 =

0.92 m, AP(dead)
3 = 1.50 m, and AP(dead)

4 = 1.85 m. Only the
first two internal reflection afterpulses were strong enough
to significantly contaminate bathymetric data in saturated or
near-saturated pulses at AP(ir)

1 = 2.46 m and AP(ir)
2 = 4.25 m

below the surface. While the third internal reflection after-
pulse is also visible at AP(ir)

3 = 6.52 m, it appears that this
afterpulse is not typically strong enough to be confused with
a bathymetric return signal. The broad peak associated with
PMT ionization around AP(ion)

≈ 29±15 m only became no-
ticeable at the typical length scales of ICESat-2 melt lake
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segments when rsat > 3.5. For such strongly saturated pulses,
we simply discarded any photons > 12 m below the surface.

With the locations of the main afterpulses known, we can
use a simple empirical method to remove afterpulses from
ATL03 data for all major frames that passed the flatness
check and for which at least 100 photons are attributed to
saturated pulses. For each major frame, we follow the above
weighted histogramming procedure and examine the heights
of the seven most prominent peaks; if any of these peaks
align with the relative elevations of the known afterpulses,
we consider it evidence for likely afterpulsing and remove
any photons that belong to saturated pulses in that eleva-
tion band (Fig. 5h). Since this procedure removes photons
in saturated pulses only, true bathymetric signals that overlap
with the elevation of a known afterpulse are still retained as
long as they appear in any unsaturated pulses. However, if all
pulses within an along-track section of the data are saturated,
any true bathymetric signals from a flat lake bed at the ele-
vation of a known afterpulse will be removed from the data
because they are practically indistinguishable from the after-
pulses that we expect to see in the point cloud under such
highly saturated conditions.

While more sophisticated approaches for afterpulse re-
moval are certainly possible, we found that in practice our
purely empirical approach strikes a good balance between
effectively removing enough afterpulse photons to prevent
bathymetric surface fitting methods from considering after-
pulses to be a signal and also retaining enough photons to
prevent removal of actual signal returns whenever it is possi-
ble to discern the two.

3.2.3 FLUID step 3: photon signal confidence
estimation

Once flat “candidate” segments have been identified and af-
terpulses have been removed, the next step is to assign a sig-
nal confidence score to the remaining photons. ATL03 con-
tains many noise photons from various sources, such as so-
lar background noise, atmospheric backscatter, and multiple
scattering in translucent media (Neumann et al., 2019; Yang
et al., 2023). Release 006 of the ATL03 data product provides
two measures that can help discriminate between signal and
noise photons. Over the ice sheets, the signal_conf_ph
parameter gives an estimate of how likely it is that a photon
is part of the land ice surface signal based on slant histogram-
ming (Neumann et al., 2019). This parameter, however, does
not consider the possibility of two distinct reflective surfaces
that are both signals and therefore often labels lake bed re-
turn photons over supraglacial lakes as noise (Fig. 6a). Since
release 006, ATL03 has also included the weight_ph pa-
rameter, which provides a local metric for relative photon
density based on the Yet Another Photon Classifier method
(YAPC; Neumann et al., 2022; Sutterley and Gibbons, 2021).
For each target photon, the YAPC weight calculation is based
on a rectangular window ±3 m in elevation around the pho-

ton location. This can result in sharp photon weight dis-
continuities 3 m above and below highly reflective flat sur-
faces, which are inconsistent with relative local photon den-
sity (Fig. 6b). Due to these drawbacks of the ATL03-provided
parameters, we developed a new density-based method for
photon signal confidence estimation that is more accurate for
ICESat-2 melt lake segments (Fig. 6c). This method is based
on the inverse Euclidean distances between a photon and its
k-nearest neighbors within a search radius that depends on
the background noise rate (Appendix B).

In FLUID, we implement this photon signal probability
estimation using a KD-tree approach for querying nearest
neighbors of photons, applied to individual major frames. To
calculate photon densities within a major frame, we consider
additional photons within a sufficiently wide buffer in along-
track distance to avoid penalizing photons that are near the
major frame margins by not taking into account all their near-
est neighbors. Figure 6c shows the resulting density-based
photon signal probabilities for a supraglacial melt lake seg-
ment on the Amery Ice Shelf.

3.2.4 FLUID step 4: secondary bathymetry peak
detection

To determine which major frames amongst the ones that pass
the flatness check are likely to provide useful bathymetry
data, FLUID checks for secondary peaks in photon density
below the flat surface return. To do so, we divide each major
frame into 10 along-track sub-segments of equal length (i.e.,
about 14 m per sub-segment). For each sub-segment we use
the FLUID photon-level signal probabilities to calculate pho-
ton signal confidence as an empirical smooth function of el-
evation. To determine whether a potential bathymetric signal
is present below the lake surface, we determine the elevation
of the most prominent below-surface peak in this function
for every sub-segment. Based on the along-track locations,
elevations, and prominences of all peaks that were identified
in a given major frame, we define four quality heuristics qi
for different components that we found to affect the overall
quality of the bathymetric return (Appendix C). The qi takes
on values between zero and 1, with higher values implying
a “better” bathymetric signal. We designed the expressions
for the quality heuristics such that q1 penalizes major frames
with smaller numbers of detected subsurface peaks, q2 pe-
nalizes major frames with less prominent peaks, q3 penal-
izes major frames with a very large overall spread of peak
elevations, and q4 penalizes major frames with peak eleva-
tions that do not align along a smooth surface. We then de-
fine the overall bathymetric quality summary qs of a major
frame as the product of the four qi values. We consider the
secondary bathymetric peak in photon density strong and co-
herent enough to pass the bathymetric signal check for any
major frames with qs ≥ 0.1.

We illustrate this procedure for an along-track segment
over central West Greenland that crosses a supraglacial lake
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Figure 6. A comparison between existing ATL03 photon signal confidence estimates and our method for melt lake seg-
ments in FLUID (data from ICESat-2 track 81 GT2L on 2 January 2019 and centered at 72.8859° S, 67.3082° E; granule:
ATL03_20190102184312_00810210_006_02.h5).

with a bathymetric return signal that varies in strength along
the ground track (Fig. 7). In this example, most of the ma-
jor frames that cover the supraglacial lake’s interior pass the
bathymetric signal check, with bathymetric photon density
peaks smoothly tracing the apparent lake bed. However, two
of the major frames within the lake’s interior do not have
a strong enough signal of photons reflected from the lake
bed to pass the bathymetric signal check during this step, in
which FLUID initially considers each major frame in isola-
tion. These two major frames visibly overlap with the loca-
tion of a thin partial ice cover near the lake’s northern shore
(Fig. 7a), which explains why some of the lake bed is oc-
cluded. While such areas where part of the lake bed is oc-
cluded may not pass the bathymetry check, they are later in-
cluded in the data that make up a full ICESat-2 lake segment,
as explained in the next section.

3.2.5 FLUID step 5: along-track aggregation of lake
segments

Given the collection of major frames that individually pass
the bathymetric signal check along a ground track, FLUID
aggregates major frames into clusters, each of which likely
represents a transect of an entire supraglacial lake. To achieve
this, we use an agglomerative clustering scheme based on
two simple assumptions: (i) the water surface elevation
within a single ICESat-2 lake segment should be nearly con-
stant along the ground track, and (ii) a ground track rarely
crosses the same lake in two distinct locations that are sepa-
rated by more than about 1.5 km. At the start of the clustering
process, each major frame that passed the initial bathymet-
ric return check is considered a singleton cluster with a wa-
ter surface elevation hsurf equal to the single major frame’s
surface photon density peak hpeak and major frame start and
end IDs mstart =mend that are both equal to the single major
frame’s ID. This means that a cluster can be expressed as

C(i) =
{
h
(i)
surf, m

(i)
start, m

(i)
end

}
, (1)

where the index i ∈ 1,2, . . .,nclusters is assigned to the ith

cluster when sorting all nclusters clusters by their respective
values of mstart. Since major frame IDs are numbers that
strictly increase with along-track distance, this means that
m
(i)
end <m

(i+1)
start for all clusters. Now, clusters that are adja-

cent to each other in along-track coordinates are compared
in a pairwise fashion. For all uneven numbers i < nclusters, if∣∣∣h(i)surf−h

(i+1)
surf

∣∣∣≤1hmax = 0.1m (2)

and

m
(i+1)
start −m

(i)
end ≤1mmax = 10, (3)

then clusters C(i) and C(i+1) are merged into a new cluster:

C(i
′)
=

{(
h
(i)
surf+h

(i+1)
surf

)
/2, m(i)start, m

(i+1)
end

}
. (4)

Equation (2) states that neighboring clusters are only merged
if their respective lake surface elevations are within 0.1 m
of each other, and Eq. (3) states that neighboring clusters
are further only merged if they are separated by 10 major
frames that did not pass the bathymetry check or fewer (about
1.5 km). This means that if FLUID encounters the unlikely
but possible scenario in which a ground track crosses two
arms of the same lake, which are separated in along-track
distance by more than 10 major frames, then these two cross-
ings are considered to be separate lake segments and returned
as two separate files in the output data rather than being
merged together into one lake segment. If these two condi-
tions do not result in any two clusters being merged, then the
same pairwise comparison is carried out for all even numbers
i < nclusters. After an iteration of merging clusters, the indices
of the remaining n′clusters clusters are reset to 1,2, . . .,n′clusters,
and the same procedure is repeated until no more clusters can
be merged based on the conditions above.

The resulting final clustering is now considered the set of
ICESat-2 supraglacial lake segments that have been found
on each ground track. Note that for simplicity we use the
term “ICESat-2 lake segment” (or simply “lake segment”)
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Figure 7. FLUID’s bathymetric signal check run on every ATL03 major frame that has passed the flatness check. (a) Ground track for an
along-track segment of ATL03 data over the Greenland ice sheet (GrIS), which crosses a supraglacial lake that has a thin partial ice cover near
its northern shore. (b) Corresponding along-track photon elevations and locations of detected bathymetric photon density peaks. The vertical
black lines are the major frame boundaries, and hatching indicates whether major frames passed the bathymetric signal check or not. (c, d)
Bathymetric peak-finding procedure from photon density and associated values of the bathymetric return quality heuristics described in the
text and defined in Appendix C for a passing and a failing major frame, respectively (data from ICESat-2 track 277 GT3R on 16 July 2019
and centered at 68.9062° N, 48.5689° W; granule: ATL03_20190716051841_02770403_006_02.h5, imagery: Sentinel-2 on 16 July 2019).

to refer to any single-ground-track segment of ATL03 data
with visible bathymetry from one supraglacial lake. If mul-
tiple ICESat-2 ground tracks contain data from the same
supraglacial lake, the distinct ground-track segments are still
considered different ICESat-2 lake segments for the purpose
of this algorithm. For example, the two ATL03 profiles ac-
quired by the two neighboring ground tracks of the center
beam pair shown in Fig. 1 would be considered two distinct
lake segments despite ICESat-2 having acquired their un-
derlying data during the same overpass and from the same
supraglacial lake. Since multiple ICESat-2 lake segments
can be associated with the same supraglacial lake, the total
number of unique supraglacial lakes sampled by ICESat-2 is
smaller than the total number of supraglacial lake segments
reported by FLUID–SuRRF (Sect. 4.1, Table 1).

Since every lake segment that was detected this way
is characterized by an along-track range of major frame
IDs [mstart, mend], FLUID extends these ranges outwards
to make sure that no bathymetry data were missed near the
edges of any lake segment. To do so, each lake segment’s

range is extended to include any major frames for which∣∣hpeak−hsurf
∣∣< 0.2 m as long as such major frames exist

within three major frames of the lake segment’s range. At
the end of this process we add another four major frames as
a buffer: two to each side of the lake segment. Since this ex-
pansion of the along-track ranges of lake segments can cre-
ate lake segments that overlap, the set of buffered lake seg-
ments is corrected by separating partially overlapping lake
segments at the midpoint of their along-track overlap and re-
moving any lake segments that are fully contained within an-
other lake segment. We apply FLUID steps 2, 3, and 4 (after-
pulse removal, signal confidence estimation, and bathymet-
ric return check) to all major frames in the buffer (i.e., now
included in the along-track range of a lake segment but not
initially passing the flatness check). The resulting final set of
lake segments across all ground tracks in the input granule is
the output of FLUID.
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3.3 Supraglacial lake depth determination: the SuRRF
algorithm

To estimate the along-track depth for each detected lake
segment, we developed the Surface Removal and Robust
Fit (SuRRF) algorithm, updated from Fricker et al. (2021).
The central idea of SuRRF is to use a robust fitting proce-
dure (Sect. 3.3.1) to first fit a smooth line to all photons re-
turned from the lake surface and the surrounding topography
(Sect. 3.3.2), then remove all photons that are part of the wa-
ter surface and fit another smooth line to the remaining pho-
tons to determine the location of the lake bed (Sect. 3.3.3).
The along-track water depth estimate is the elevation differ-
ence between the fits to the water surface and the lake bed,
corrected for the refractive index for the speed of light in
water (Sect. 3.3.5). In Fig. 8, we illustrate the main steps
of SuRRF using an example from ATL03 along-track data,
which was determined to be a supraglacial lake segment by
FLUID. We summarize the main steps of SuRRF in the fol-
lowing sections.

3.3.1 SuRRF robust fit

In SuRRF steps 1 and 2 (Sect. 3.3.2 and 3.3.3), we use a tai-
lored robust nonparametric regression method to locate the
lake surface and lake bed. The SuRRF robust fit is based
on the locally weighted regression and smoothing scatter-
plot (LOWESS; Cleveland, 1979), which is applied to the
data iteratively, while removing outliers during each itera-
tion to converge to an along-track fit that smoothly tracks
the elevation of the highest photon density. For each evalua-
tion location xfit in along-track coordinates, we fit a locally
weighted nth-degree polynomial regression to the photons
that are at a distance of at most xmax in along-track coor-
dinates. The value of xmax is the minimum distance from xfit
within which there are nph photons i with a nonzero FLUID-
derived signal confidence pi or a minimum along-track fit-
ting window length of xmin, whichever is larger. To achieve
smooth local weighting, the along-track weight of a pho-
ton i at location xi is calculated using the tri-cube weight
function w(x)

i =
(
1− |(xi − xfit)/xmax|

3)3. If the method is
provided with an initial guess for the first iteration, we cal-
culate the residuals ei as the difference between each pho-
ton’s elevation and the linear interpolation of the initial-
guess elevations to each photon’s along-track location. In this
case, we consider only photons whose absolute residuals are
at most hmax and calculate their residual-based weights as
w

(h)
i =

(
1− (|ei |/hmax)

3)3. In absence of an initial guess, we
set w(h)

i = 1 for all photons in the first iteration. The photon
weights that are used for the regression are wi = piw

(x)
i w

(h)
i .

We evaluate the resulting regression model at each fit loca-
tion xfit to obtain an along-track estimate of the fit to the pho-
ton heights. For each consecutive iteration, we calculate the
residuals ei as the difference between each photon’s eleva-

tion and the elevation of the linearly interpolated elevation
fit of the previous iteration. Let σ be the standard deviation
of residuals, weighted by the previous iteration’s weights. To
achieve a robust fit, we now consider only photons whose
absolute residuals are at most nSD standard deviations and
calculate the residual-based weights w(h)

i as defined above
using hmax = nSDσ . We run this nonparametric weighted re-
gression for a number of niter iterations to obtain a smooth
fit that tracks the along-track elevation of the highest photon
density.

3.3.2 SuRRF step 1: lake surface fit

To fit an elevation profile to just the surface of a lake seg-
ment detected with FLUID, we calculate the along-track ex-
tent of photons that belong to the flat lake surface, remove all
photons below the lake surface, and then apply the SuRRF
robust fit to the remaining photons (Fig. 8c). We determine
the extent of the open-water surface by calculating the pho-
ton density within an elevation band of ±0.225 m around the
lake’s surface elevation at 1 m along-track resolution, as well
as the corresponding photon densities within the remaining
telemetry window and within 2 m above the surface elevation
band. We smooth all photon densities using an along-track
Gaussian window with a 15 m standard deviation. We then
consider a location along the ground track to contain a wa-
ter surface if the photon density within the surface elevation
band is at least 10 times as large as the other photon densi-
ties for any continuous along-track section of at least 100 m
in length. Within the resulting estimate of along-track water
extent, we remove all photons that are more than 0.4 m be-
low the lake’s surface elevation from the surface fit by setting
their signal confidence to pi = 0.

To obtain an along-track fit to the lake’s surface and
its surrounding topography, we apply the SuRRF robust fit
(Sect. 3.3.1) to all remaining photons with a signal confi-
dence > 0.5 at evenly spaced locations xfit along the ground
track at 5 m resolution. In this step, we use a linear regres-
sion (n= 1) and run it for niter = 10 iterations, with no initial
guess. We choose xmin = 20 m and let nph decrease linearly
from n

(start)
ph = 300 in the first iteration to n(end)

ph = 100 in the

last iteration. Similarly, we choose n(start)
SD = 10 and n(end)

SD =

4. We illustrate this surface-fitting procedure by showing an
example of a supraglacial lake segment in ATL03 with pho-
tons color-coded by their surface fit weights pi , along with
the detected along-track water surface extent and the final
smooth photon fit to the lake surface and surrounding topog-
raphy (Fig. 8c).
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Figure 8. SuRRF algorithm for determining supraglacial lake depth from an along-track segment of ATL03 data detected
by FLUID (data from ICESat-2 track 277 GT2L on 13 July 2020 and centered at 68.1923° N, 48.5134° W; granule:
ATL03_20200713115804_02770803_006_01.h5).

3.3.3 SuRRF step 2: lake bed fit

To fit an elevation profile to just the lake bed, we remove
all photons that belong to the lake’s water surface and then
again apply the SuRRF robust fit to the remaining photons
(Fig. 8d). In this case, we remove all photons that fall within
the along-track water surface extent that was determined in
the previous step and are located at an elevation of 0.35 m
below the lake’s surface or higher. Note that this imposes a
theoretical minimum depth threshold for detection on lake
segments: ATL03 segments need to exhibit a bottom return
signal at least 0.35 m below the lake surface (or 0.26 m in
refraction-corrected water depth) at their deepest along-track
point to be considered by SuRRF. However, in practice, such
shallow lake segments do not have a discernible bathymetric
signal since typical depth retrieval accuracies for ICESat-2
are on the order of 0.5 m (Dietrich et al., 2024). To provide
the SuRRF robust fit with an initial guess, we combine the lo-
cations of the bathymetric peaks found by FLUID that have
a peak prominence value of at least 0.5 and fall within the
lake’s along-track water extent with locations of the smooth
surface fit from Sect. 3.3.2 that fall outside of the lake’s
along-track water extent. We then smooth the values of the
initial guess using a running mean with a window of five data
points to decrease the influence of any potential outliers. To
decrease the influence of near-surface photons from multiple
scattering, we further reduce the signal confidence values pi
of any photons that are between a lower bound of 1 m above
the initial guess and an upper bound of the lake surface ele-

vation by multiplying them by a factor that linearly decreases
from 1 to zero between the lower and the upper bound. To fit
the lake bed, we apply the SuRRF robust fit (Sect. 3.3.1) to
the same evaluation locations xfit that were used to fit the lake
surface. We use a third-degree polynomial regression (n= 3)
and SuRRF robust fit parameters niter = 20, xmin = 100 m,
n

(start)
SD = 10, n(end)

SD = 3, and hmax = 10 m in the first iteration.

In this step we choose different values for
(
n

(start)
ph , n

(end)
ph

)
depending on ATLAS beam strength: (200, 100) for strong
beam data and (100, 50) for weak beam data. We illustrate
this lake bed fitting procedure by showing photons color-
coded by their lake bed fit weights pi , along with the initial
guess and the final smooth photon fit to the lake bed (Fig. 8d).

Previous studies have hypothesized that ICESat-2-based
depth retrieval algorithms placing the lake bed fit at the
along-track elevation of the highest subsurface photon den-
sity may be biased towards slightly overestimating total wa-
ter depths due to multiple scattering within the water col-
umn (Fricker et al., 2021; Xiao et al., 2023). To address
this, we provide an optional correction, which places the lake
bed fit at a higher elevation where the initial SuRRF lake
bed fit included photons further below the initial lake bed fit
than would be expected from bathymetric signal photons. To
achieve this, we remove any photons located at a vertical dis-
tance below the initial SuRRF lake bed fit by more than the
sum of (1) ICESat-2’s single-photon time-of-flight precision
(∼ 12 cm in ATL03 photon heights or 800 ps; Markus et al.,
2017) and (2) the elevation range within ICESat-2’s footprint
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diameter (∼ 11 m; Magruder et al., 2021a) obtained by pro-
jecting the footprint onto the along-track lake bed topography
estimated by the initial SuRRF lake bed fit. We then reapply
the lake bed fit to the remaining photons as described above,
while supplying the SuRRF robust fit (Sect. 3.3.1) with the
uncorrected SuRRF lake bed fit as the initial guess. Since the
presence or magnitude of this hypothesized overestimation of
water depths cannot be established without any ground-truth
in situ data available along any ICESat-2 lake segments, we
provide this scattering correction for reference only and do
not apply it to the water depths presented in this study. If
such validation data become available in the future, our scat-
tering correction can be tuned to better match observations
and can be readily applied to FLUID–SuRRF output data.

3.3.4 SuRRF step 3: bathymetry signal confidence
estimation

To estimate the signal confidence of the fit to the lake bed,
we calculate the photon density ratio between the lower half
of the interior of the lake and the elevation band within
±n

(end)
SD σ of the last iteration of the lake bed fit for each fit

location xfit± 5 m along the ground track. Here, we consider
the interior of the lake to be the elevation range between the
top of the elevation band of the lake bed fit and the surface
elevation of the lake. For any along-track points for which
there are no lake bed photons or for which the elevation band
of the lake bed fit includes the lake surface, we set the ratio to
1. We then set the bathymetry confidence to 1 minus the den-
sity ratio, clip it to the range [0,1], set it equal to 1 wherever
the lake bed fit is at a higher elevation than the lake surface el-
evation (i.e., wherever the estimated water depth is zero), and
smooth it using an along-track Gaussian filter with a standard
deviation of 10 m. Wherever the elevation range of the inte-
rior of the lake is less than the width of the elevation band of
the lake bed fit, we further decrease the confidence by mul-
tiplying it by the ratio between the two elevation ranges. We
illustrate this bathymetry signal confidence estimation proce-
dure by visualizing both the elevation band of the final lake
bed fit and the interior of the lake and showing the resulting
along-track confidence estimates for the bathymetric return
(Fig. 8e).

3.3.5 SuRRF step 4: water depth calculation

To determine the along-track water depth, we take the differ-
ence between the lake’s surface elevation and the fit to the
lake bed and divide it by the refractive index for the speed
of 532 nm light in 0 °C freshwater (≈ 1.336; Mobley, 1995).
For any locations along the lake segment where the final lake
bed fit (Sect. 3.3.3) returns a higher elevation than the surface
elevation of the lake, we record a water depth of 0 m (i.e.,
no water is present). We do not correct water depths for the
effect of lake bed return geolocation errors caused by refrac-
tion, since ICESat-2 is nadir-pointing to its reference ground

tracks over land ice, making the water depth correction due
to the angle of refraction negligibly small (≈ 0.003 of the to-
tal water depth for the slightly off-nadir-pointing outer beam
pairs, which is about 9 cm for a water depth of 30 m; Par-
rish et al., 2019). Final along-track water depths can be se-
lected by applying a threshold to the bathymetry signal con-
fidence (Sect. 3.3.4). Here, we select a confidence threshold
of 0.5. For the lake segment example shown, this results in
a maximum along-track depth of 6.0 m and gaps in along-
track depth data in locations where no bathymetric return is
evident (Fig. 8f).

3.3.6 SuRRF step 5: lake segment quality estimate

To provide a relative indication of data quality, we provide
an estimate for a summarized quality measure for each lake
segment. Let h(surf)

x and h(bed)
x be the surface and bed fits at

along-track measurement location x. For all x values where
1hx = h

(surf)
x −h

(bed)
x > 0, we calculate a histogram of pho-

ton counts within a 5 m along-track window for 300 eleva-
tion bins that are evenly spaced between h(bed)

x −1hx and
h

(surf)
x +1hx . We then normalize the associated bin eleva-

tions h̃ such that h(bed)
x corresponds to h̃= 0 and h(surf)

x cor-
responds to h̃= 1, and we take the per-bin sum across all
x values. We smooth the resulting elevation-normalized his-
togram using a Gaussian filter with a standard deviation of
three bins and calculate the quality ratio rq as the ratio be-
tween the value at h̃= 0 and the mean of the first quartile of
the lowest values in 0> h̃ > 1.

The “quality ratio” can be considered an along-track aver-
age estimate for the photon density ratio between the lake bed
and the lowest-photon-density part of the interior of the lake.
We classify lake segments with rq ≤ 2 as “zero-quality” lake
segments. Similarly, we classify lake segments with rq > 2
as “high-quality” lake segments, for which we report the lake
segment quality score as rq− 2. This means that a lake seg-
ment is assigned a nonzero quality by SuRRF if the along-
track averaged strength of the return signal from the lake bed
is at least twice as large as the along-track averaged back-
ground noise rate within the interior of the lake. While zero-
quality lake segments might still include a clear bathymetric
return along a small part of their associated along-track ex-
tent, a quality score of zero is meant to indicate that there
may be significant issues with data quality. In the example
shown, this results in SuRRF classifying the given lake seg-
ment as high quality, with a score of 9.0 (Fig. 8f). We show
more examples of FLUID–SuRRF output lake segments and
their associated quality scores in a range from 0.2 to 115.5 in
Figs. 9 and 10 (Sect. 4.1).

3.4 Computational implementation of FLUID–SuRRF

To facilitate large-scale use of FLUID–SuRRF, we imple-
mented the algorithms as a Python routine that can be run
on any ATL03 data granule and developed a framework that
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allows estimating all ICESat-2 lake depths for a given region
of interest and time span. Given a polygonal region of interest
(e.g., a particular glacier, ice shelf, drainage basin, or other
study region) and time span (e.g., a typical melt season), we
use the National Snow and Ice Data Center’s Data Access
and Service API (NSIDC API) (NSIDC, 2021) to search for
a list of all available ATL03 data granules that satisfy the spa-
tiotemporal search parameters. To obtain all desired ICESat-
2 lake depths, we can subset these ATL03 granules to the re-
gion of interest, run FLUID–SuRRF on each subsetted gran-
ule individually, and collect all output melt lake segment and
their associated along-track depth data. This allows for par-
allel processing of data granules.

To apply FLUID–SuRRF to all identified granules in an
efficient, cost-effective, and reproducible manner, we use
the OSG Open Science Pool for distributed high-throughput
computing (dHTC) (OSG, 2006; Pordes et al., 2007). Since
batches of OSG compute jobs run on heterogeneous hard-
ware, we run all jobs in a Singularity container (Kurtzer et al.,
2017) that we designed for use with FLUID–SuRRF. We run
one OSG compute job per ATL03 granule, where each job
receives as input the producer ID of the granule and a shape-
file of the corresponding region of interest. Each job makes a
request to the NSIDC API to subset the specified granule to
the given shapefile and downloads the subsetted granule. The
job then runs FLUID–SuRRF on the downloaded granule for
each of ICESat-2’s six ground tracks and sends back individ-
ual HDF5 files of output water depths for each lake segment
that was detected by FLUID.

Each output file reports water depth estimates at a 5 m
along-track resolution with associated values for longitude,
latitude, along-track distance, bathymetry signal confidence,
elevations of the lake bed, and surface fit to the photon data.
We also include lake segment properties such as surface el-
evation, SuRRF quality score, and various metadata such as
the granule name, beam, time of data acquisition, and center
longitude and latitude. For reference, we add the underlying
ATL03 photon heights and locations with FLUID estimates
of photon signal probability, saturation level, and afterpulse
probability, as well as calculated FLUID parameters at the
major frame rate. In addition to each lake segment’s data file,
we also create an associated “quick look” plot of the pho-
ton data with surface and lake bed fits and the ground track
shown over the closest available cloud-free Landsat 8/9 or
Sentinel-2 imagery (e.g., Figs. 9a–j and 10a–j). The availabil-
ity of these for all returned lake segments makes it possible to
add a final manual quality control step to our method based
on visual inspection of the plots in a custom-made Stream-
lit app. We use this to remove clear false positives from the
output data.

3.5 Study regions and time span

To evaluate the performance of our method, specifically
whether it is able to capture spatial and temporal variabil-

ity while reliably extracting supraglacial lake depths at scale,
we focus on one drainage basin on each of the ice sheets
and compare a high-melt with a low-melt season for each.
For both the Greenland and Antarctic ice sheets, we de-
fine our study regions using the Ice sheet Mass Balance
Inter-comparison Exercise (IMBIE) drainage basins (Fig. 2,
Mouginot et al., 2017; Mouginot and Rignot, 2019). Since
we do not expect significant surface meltwater pooling be-
yond a certain elevation, we apply elevation thresholds to the
drainage basins prior to running FLUID–SuRRF.

In Greenland, we focus on the central west drainage basin
(CW, Fig. 2) and compare ICESat-2 lake depths between the
exceptionally warm 2019 melt season (Tedesco and Fettweis,
2020) and the 2020 melt season, which experienced compar-
atively little surface melt and runoff (Druckenmiller et al.,
2021). During these two summers, central West Greenland
experienced a particularly stark contrast in observed surface
runoff elevation limits, with surface runoff extending to sig-
nificantly higher elevations in 2019 than in 2020 (Tedstone
and Machguth, 2022). For central West Greenland, we use an
elevation threshold of 2000 m based on Zhang et al. (2023),
who reported a mean elevation limit of surface water of
1609 m above sea level in this region during the anomalously
warm 2019 melt season. We apply this threshold based to the
ArcticDEM digital elevation model (Morin et al., 2016).

In Antarctica, we focus on the Amery Ice Shelf and its
surrounding grounded ice catchment (B-C drainage basin,
Fig. 2), which on average experiences more meltwater pool-
ing than any other Antarctic ice shelf. We compare the 2018–
2019 and 2020–2021 melt seasons, which exhibit positive
and negative anomalies in terms of open-water melt extent,
respectively (Tuckett et al., 2022). For the Amery catchment,
we use an elevation threshold of 1000 m based on Tuckett
et al. (2021), who reported > 95 % of lakes at elevations be-
low 500 m in the 2004–2020 time period and only a handful
of small lakes above 1000 m even during high-melt summers.
We apply this threshold based on the Reference Elevation
Model of Antarctica (REMA) digital elevation model (Howat
et al., 2019).

Our two study areas cover latitudes from 68.2 to 72.1° N
in Greenland and latitudes from 68.4 to 74.0° S in Antarc-
tica, meaning that ICESat-2 track spacing is similar over the
two regions: in central West Greenland RGT spacing varies
from ∼ 8.8 km in the north to ∼ 10.8 km in the south; over
the Amery catchment RGT spacing varies from ∼ 7.9 km in
the south to∼ 10.7 km in the north. The total area of the cen-
tral West Greenland study region is about 650000 km2, with
coverage of 50 distinct ICESat-2 reference ground tracks,
and the area of the Amery catchment study region is about
3.5 million km2, with coverage of 74 distinct ICESat-2 ref-
erence ground tracks.

For Greenland, we consider the annual melt season to be
the 5-month period between the first day of May and the last
day of September of a given year. Similarly, for Antarctica,
we define the melt season to be the 5-month period between
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the first day of November and the last day of March of the
following year. Based on these spatiotemporal parameters,
we processed a total of 447 ATL03 granules with a total size
of 1.15 TB, amounting to a total along-track distance about
760000 km and comprising 9 billion individual photon loca-
tions.

4 Results and discussion

Using FLUID, we identified a total of 1249 supraglacial
lake segments over our two study areas in the available
ATL03 data during the four melt seasons we considered
(Table 1). We found that FLUID reliably detects potential
supraglacial lake segments, with the number of detected
lake segments varying with the strength of the melt season
and their locations aligning well with imagery-derived melt
extents (Sect. 4.1). Along-track lake depths determined by
SuRRF agree well with manually annotated data, with deeper
lakes in central West Greenland than in the Amery catchment
(Sect. 4.2). Our method is effective for detection and depth
determination of supraglacial lakes over the ice sheets; how-
ever, it is not designed for ICESat-2 bathymetry over other
targets, for which different methods have been developed
(Sect. 4.3). Applying our method at an ice-sheet-wide scale
and combining the results with satellite imagery would make
it possible to develop data-driven models for accurate esti-
mation of the volume of pooled surface meltwater across the
ice sheets at high resolution and with high spatial coverage
(Sect. 4.4).

4.1 FLUID lake detection and accuracy

4.1.1 FLUID lake segment detection

Out of the 1249 supraglacial lake segments that we detected
in the ICESat-2 data analyzed in this study, 500 were lo-
cated in central West Greenland and 749 in the Amery catch-
ment. The number of lake segments that we detected using
FLUID varied with the strength of the melt season (Figs. 9
and 10). Over central West Greenland, we identified 325 lake
segments during the high-melt 2019 boreal summer versus
only 175 during the low-melt 2020 boreal summer. Over the
Amery catchment, we identified 721 lake segments during
the high-melt 2018–2019 austral summer versus only 28 dur-
ing the (very) low-melt 2020–2021 austral summer. To esti-
mate how many unique supraglacial lakes were sampled by
these detected ICESat-2 lake segments during each melt sea-
son, we calculated the maximum surface meltwater extent
for each of the melt seasons independently using Landsat
8 imagery based on the methods detailed in Tuckett et al.
(2021) (blue regions in Figs. 9 and 10). We then matched
each detected ICESat-2 lake segment to a lake basin in these
imagery-based melt extents and counted the number of to-
tal basins that were sampled by at least one ICESat-2 lake
segment (see maps in the Supplement; Arndt and Fricker,

2024c). Over central West Greenland, this resulted in 196
unique supraglacial lakes being sampled by our data in 2019
and 109 lakes in 2020. Over the Amery catchment, FLUID–
SuRRF segments sampled 165 unique melt lakes in 2018–
2019 and 25 lakes in 2020–2021.

Across all the data that we analyzed, FLUID and SuRRF
determined on average 0.12 % of total distance along the
ICESat-2 ground tracks to be meltwater surfaces. During the
high-melt summers this number was 0.22 % and 0.21 % for
central West Greenland and the Amery catchment, respec-
tively. The corresponding numbers for low-melt summers
were 0.088 % and 0.0057 %. SuRRF assigned a nonzero
quality score to 475 of these lake segments, indicating that
they likely contain high-quality bathymetric measurements.
The fraction of nonzero quality lake segments was signifi-
cantly higher for central West Greenland (61 %) than for the
Amery catchment (22.7 %). This is likely because the loca-
tions of supraglacial lake basins on Greenland’s grounded
ice are primarily controlled by bedrock topography (Lamp-
kin and VanderBerg, 2011), which allows well-defined lake
basins to develop in the same locations every year. In con-
trast, lake basins on Antarctica’s floating ice shelves are more
difficult to distinguish from their much flatter surrounding
topography, on which they usually form sporadically and in
different locations each year (Arthur et al., 2022), with exist-
ing basins typically being advected to locations significantly
further downstream from one melt season to the next (Arthur
et al., 2020b). Furthermore, an appreciable portion of melt-
water across Antarctic ice shelves is stored as slush (Dell
et al., 2024), which often appears in ATL03 data with a sur-
face return that is flat enough to look similar to a supraglacial
lake, with large amounts of scattered photons below the sur-
face that can be mistaken for a bathymetric signal.

4.1.2 Accuracy of FLUID lake segment detection

To validate the spatial extents of ICESat-2-derived
supraglacial lake segments, we also used the Landsat-
8-based maximum surface meltwater extents for each of the
melt seasons (blue regions in Figs. 9 and 10). We found a
high correspondence between these estimates: for central
West Greenland, the ground tracks of 97.0 % of high-quality
ICESat-2 lake segments coincided with the Landsat-8-
derived maximum seasonal melt extent. The corresponding
percentage for the Amery catchment was 95.8 %.

Since there are no ground-truth data on water depths avail-
able for any ICESat-2 data over supraglacial lakes, it is nec-
essary to evaluate the performance of our method by manu-
ally examining the data in representative granules. We report
results for ICESat-2 track 81 GT2L on 2 January 2019 over
the Amery catchment, which was also studied in Fricker et al.
(2021) and Xiao et al. (2023). To evaluate whether FLUID
detects all supraglacial lake segments that have bathymet-
ric data in this ATL03 ground track, we manually inspected
the ATL03 data for any evidence of meltwater and deter-
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Table 1. Summary statistics for the ICESat-2 lake segments extracted by FLUID–SuRRF for our regions and melt seasons of interest.

Amery catchment (B-C) Central West Greenland (CW)

Melt season 2018–2019 2020–2021 2019 2020
Amount of surface melt high very low high low
Area of Landsat 8 maximum melt extent (km2) 1872 100 1127 431
Number of total ICESat-2 lake segments 721 28 325 175
Number of unique lakes sampled 385 25 198 114
Number of high-quality lake segments 165 5 196 109
Fraction of high-quality segments (%) 23 18 60 62
Median lake segment depth (m) 1.85 1.48 2.77 3.43
Maximum lake segment depth (m) 10.4 17.3 25.8 15.1

Figure 9. Center maps: FLUID–SuRRF algorithm testing in Greenland. Locations of melt lake segments detected in ATL03 data for the
Greenland ice sheet’s central west drainage basin for melt seasons 2019 and 2020, mapped over the corresponding seasons’ maximum
meltwater extent from Landsat 8. Panels (a)–(j) show examples of the underlying ATL03 photon clouds and water depths calculated by
SuRRF for some of the lake segments shown on the maps. Numbers in the lower right of the panels are SuRRF lake segment quality scores.
Satellite images on the left sides of the panels are from Sentinel-2.
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Figure 10. Center maps: FLUID–SuRRF algorithm testing in Antarctica. Locations of melt lake segments that FLUID detected in ATL03
data for the Antarctic ice sheet’s B-C drainage basin for melt seasons 2019–2020 and 2020–2021, mapped over the corresponding seasons’
maximum meltwater extent from Landsat 8. Panels (a)–(j) show examples of the underlying ATL03 photon clouds and water depths calcu-
lated by SuRRF for some of the lake segments shown on the maps. Numbers in the lower right of the panels are SuRRF lake segment quality
scores. Satellite images on the left sides of the panels are from Sentinel-2.

mined whether any such along-track segment contained a re-
turn signal from a lake bed. Out of 25 along-track segments
with meltwater, we judged that only eight were supraglacial
lake segments with a discernible bathymetric signal. We fur-
ther evaluated whether the ATL03 photon cloud misses any
supraglacial lakes that track 81 GT2L crosses by mapping
it over a mosaic of Sentinel-2 scenes from the same day
(same as used in Fricker et al., 2021). Based on visual inspec-
tion, the ICESat-2 ground track crossed supraglacial lakes
that were clearly distinguishable in the imagery only in the
same eight locations that we had also judged to be lake seg-
ments in the ATL03 data. Most other ICESat-2 segments that
showed evidence of surface water in ATL03 also showed
some evidence of meltwater in the imagery and were asso-
ciated with ice-filled crevasses, narrow melt channels, likely
areas of slush, or melt lakes with an opaque ice cover (for
which depth determination is not possible). FLUID found 16

potential melt lake segments within the same ground track,
which all showed evidence of meltwater, but only the 8 that
we had also manually picked were classified as high-quality
lake segments.

Out of all lake segments that FLUID detected, we deemed
308 to be false positives, many of which showed evidence
of surface water but no distinguishable bathymetric return.
However, we found that lake segments classified by SuRRF
as high-quality contain few false positives, with only 15 such
segments that we manually removed from the data. The ma-
jority (11) of these were due to our study region erroneously
extending past the calving front of the Amery Ice Shelf in
Antarctica, marine-terminating outlet glaciers in Greenland,
or ice-marginal lakes being included in the study region. Of
the remaining four false positives, three were likely due to
random noise and one showed a supraglacial lake but the
data seemed to be affected by a “did not finish major frame”
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data transfer error in the ATLAS photon-counting electron-
ics (Magruder et al., 2024). While testing our algorithm, we
found that false positives may also arise when ICESat-2’s
footprint includes two surfaces at different elevations for a
substantial along-track distance, which is possible when the
ground track passes over a flat calving front or crevasses with
a bottom return at an acute angle. Where the study region
extends past an ice shelf calving front, FLUID–SuRRF can
also falsely classify the bathymetric return of a submerged
“bench” as a supraglacial lake segment (Buck, 2024).

4.2 SuRRF depth retrieval and accuracy

4.2.1 SuRRF: meltwater depths

The meltwater depths determined by SuRRF suggest that
supraglacial lakes in central West Greenland are generally
deeper than those in the Amery catchment: the median of
along-track maximum water depths of lake segments in
Greenland was 3.09 m versus only 1.84 m in Antarctica. Me-
dian lake segment depth in the Amery catchment was greater
during the high-melt season (1.85 m) than it was during the
low-melt season (1.48 m). In contrast, median lake segment
depth in central West Greenland was less during the high-
melt season (2.77 m) than it was during the low-melt sea-
son (3.43 m) (Fig. 11a). We hypothesize that this opposite
behavior is due to different relationships between lake ele-
vations and depths in these regions. A linear regression of
lake segment depth on surface elevation in our data sug-
gests that lake depth decreases with elevation in central West
Greenland (p = 0.12), while it increases with elevation in
the Amery catchment (p = 0.093) (Fig. 11b). In Greenland,
where supraglacial lake basin locations are controlled by
bedrock topography, lakes in a low-melt season are more
likely to form at lower elevations, where repeated filling, bot-
tom ablation, and draining during most prior melt seasons
have resulted in well-defined, deep lake basins (Lampkin and
VanderBerg, 2011; Tedesco et al., 2012). In a high-melt sea-
son, surface melt extends further upwards above the abla-
tion zone, where lake basins are less well-defined, forming
smaller, shallower lakes and slush areas (Glen et al., 2024).
On an Antarctic ice shelf, lakes in a low-melt season are more
likely to form at lower elevations, where the ice is floating
and the surface topography is very flat, resulting in mostly
shallow lakes (Banwell et al., 2014). In a high-melt season,
melt extends further upward of the grounding line where
lakes form in deeper basins that are controlled by the bedrock
topography (similar to lakes in Greenland; Bell et al., 2018),
thus resulting in deeper lakes.

4.2.2 Accuracy of SuRRF depth retrievals and
comparison with alternative methods

For the 16 potential melt lake segments that FLUID identi-
fied in ICESat-2 track 81 GT2L on 2 January 2019 over the

Amery catchment (Sect. 4.1.2; Fricker et al., 2021), SuRRF
assigned a nonzero quality score only to the eight data seg-
ments which we had manually determined to be supraglacial
lake segments with a discernible bathymetric signal. For four
of the lake segments identified in this granule, Fricker et al.
(2021) established manually annotated baseline depth esti-
mates, which were used to assess the performance of auto-
mated algorithms in the absence of any ground-truth data. In
addition to these four lake segments, Melling et al. (2024)
used a similar method to establish manual estimates for five
more segments in southwestern Greenland. We use the man-
ual annotations from both of these method comparison stud-
ies to evaluate SuRRF’s depth estimation performance for all
nine lake segments and to briefly compare SuRRF to other
methods whose results were included in these two compar-
ative studies (Fig. 12). For a detailed comparison between
various ICESat-2 lake depth algorithms (including an earlier
version of SuRRF) and RTE methods, we refer the reader
to Fricker et al. (2021). For in-depth discussions comparing
manually picked ICESat-2 depths to RTE methods, DEM-
based approaches, and empirical methods using in situ data,
we refer the reader to Melling et al. (2024) and Lutz et al.
(2024).

When run on the corresponding ATL03 granules, FLUID
automatically detects all nine lake segments, and the SuRRF
depth estimates track the general shape of the manually out-
lined lake beds well (Fig. 12). This is also demonstrated by
an average Pearson’s correlation coefficient of R = 0.992 for
the nine lake segments examined here, with averages of R =
0.989 for the segments on Amery catchment and R = 0.994
for the segments in southwestern Greenland. SuRRF depth
estimates show an average bias of 0.26 m deeper than the
manually picked values, with a mean absolute error (MAE)
of 0.27 m. This results in SuRRF reporting a total amount
of water that is 10 % larger than the estimate given by the
manual baseline. For the lake segments on the Amery Ice
Shelf, the average bias is 0.29 m and the MAE is 0.29 m.
For the lake segments in southwestern Greenland, the aver-
age bias is 0.23 m and the MAE is 0.24 m. When applying
the correction for multiple scattering (Sect. 3.3.3) to SuRRF
depth estimates, the average bias is reduced to 0.07 m deeper
than the manually picked values, with a mean absolute error
(MAE) of 0.15 m and a Pearson’s correlation coefficient of
R = 0.993. This results in the scattering-corrected version of
SuRRF reporting a total amount of water that is 3 % larger
than the estimate given by the manual baseline.

Based on the nine lake segments that were used to assess
the accuracy of depth estimates, most algorithms (including
SuRRF) seem to estimate slightly greater depths than the
manually picked values (Xiao et al., 2023). When the bathy-
metric returns in the ATL03 point cloud are “fuzzy” the dif-
ference between the manual baseline and SuRRF water depth
estimates tends to become larger. The majority of algorithms
for lake depth retrieval from ATL03 operate on the assump-
tion that the elevation with the locally highest photon den-
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Figure 11. SuRRF lake segment depth statistics for two study regions in high- and low-melt years. (a) Density of maximum lake depth
distributions. The numbers shown are median lake segment depths during the corresponding melt season and study region. (b) Elevation-
binned means of maximum lake segment depths for each season and study region. The dotted lines are the linear fit to all data for the
corresponding study region.

sity corresponds to the elevation of the ice–water interface
at the lake bed, yet most altimetry experts placed the sec-
ondary return signal higher up in the point cloud, where the
photon density first significantly increases below the water
surface (Fricker et al., 2021). We agree that the true location
of the lake bed is likely at a higher elevation than the along-
track elevation of the highest photon density, since multiple
scattering increases the photon density below the elevation
of the lake bed. However, the elevation at which the pho-
ton density first significantly increases represents the high-
est point within ICESat-2’s 11 m footprint and furthermore
tracks the upper bound of ATLAS’s single-photon time-of-
flight uncertainty of 800 ps (Markus et al., 2017), which cor-
responds to about 12 cm in photon height uncertainty. We
therefore believe that the true water depth falls somewhere in
between our (deeper) SuRRF estimates and the (more shal-
low) manual baseline estimates from Fricker et al. (2021) and
Melling et al. (2024). Our scattering correction to SuRRF
depth estimates is an attempt to reconcile this disparity be-
tween depth estimates. However, in the absence of ground-
truth in situ validation data for ICESat-2 lake segments, the
correct magnitude of this correction remains unknown. This
demonstrates an urgent need for in situ meltwater depth data
that can be used to reliably validate the accuracy of ICESat-2
estimates.

Since many lakes on the Greenland ice sheet are transient
and drain late in season (Johansson et al., 2013), it could
be possible to obtain independent ICESat-2-based meltwater
depth estimates by comparing “full vs. empty” repeat-track
measurements along ICESat-2 lake segments before and af-
ter the drainage. However, this approach would suffer from
many of the same drawbacks that affect depth estimation
from DEMs of a lake’s bed topography that were acquired

after it drained (Sect. 2.2), for example the effects of lake-
bottom ablation, surface elevation change from precipitation
and blowing snow deposits, and across-track advection of
surface topographical features. Furthermore, this approach
would not be feasible in Antarctica, where lake drainage is
very rare, in particular on grounded ice. In cases where melt
lake drainage is observed on the floating ice shelves, obtain-
ing water depth from repeat-track elevation change is not
possible due to the advection of surface topography with the
ice flow and post-drainage flexural rebound (Warner et al.,
2021). Due to these complexities, we do not attempt to vali-
date ICESat-2 lake depth measurements using this method.

In addition to SuRRF and manual depth estimates,
Fig. 12a–d show depth estimates for Antarctic lakes that
were reported in Fricker et al. (2021), for the Watta algo-
rithm (based on ICESat-2; Datta and Wouters, 2021), and
for the RTE method applied to the average of Landsat 8’s
red and panchromatic bands (Spergel et al., 2021) and to
Sentinel-2’s red band (Moussavi et al., 2020). Both SuRRF
and Watta track the general shape of lake bed returns in the
ATL03 photon clouds well (Pearson’s correlation coefficients
of R = 0.99 and 0.94, respectively) and largely agree with
manually determined along-track water depths (MAEs of
0.29 and 0.30 m, respectively). In contrast to SuRRF, Watta
appears to have a tendency to overfit where photon density
near the lake bed is high with a large elevation spread, result-
ing in an unreasonably “wiggly” lake bed fit (e.g., Antarctic
lake 1, 500–800 m). SuRRF’s smoother fit under these condi-
tions is likely due to the fact that it utilizes an adaptive kernel
for its robust fit, whose width increases as the number of pho-
tons that narrowly cluster around the previous iteration’s fit
decreases (Sect. 3.3.1). In contrast to SuRRF, Watta also at-
tempts to fit the lake bed across the entire lake basin, even
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Figure 12. Comparison between SuRRF water depth estimates, manually annotated ICESat-2 depths, and results from other methods for
meltwater depth estimation for lakes in Antarctica and Greenland. Panels (a)–(d) show ICESat-2 melt lake segments on the Amery Ice Shelf,
Antarctica, with manual annotations from Fricker et al. (2021). Other meltwater depth estimates that were reported by Fricker et al. (2021) are
shown for the Watta algorithm (based on ICESat-2; Datta and Wouters, 2021) and for the RTE method applied to the average of Landsat 8’s
red and panchromatic bands (Spergel et al., 2021) and to Sentinel-2’s red band (Moussavi et al., 2020). (e–i) ICESat-2 melt lake segments in
southwestern Greenland with manual annotations from Melling et al. (2024). Other meltwater depth estimates that were reported by Melling
et al. (2024) are shown for the RTE method individually applied to Sentinel-2’s red and green bands, as well as estimates from post-drainage
lake bed topography in ArcticDEM (based on Bowling et al., 2019). SuRRF depth estimates are shown only where the estimated bathymetric
signal confidence exceeds 0.5. To align along-track depths with the ATL03 photons (gray dots), the elevations of photons below the water
surface elevation of each lake (dotted black lines) were corrected by dividing their vertical distance from the lake’s surface by the refractive
index for the speed of light in water.

where the lake bed is not visible or indistinguishable from
noise, which can sometimes result in arbitrary, unrealistic
depth estimates (e.g., Antarctic lake 1, around 450 m). Un-
der such conditions SuRRF assigns a low confidence score
to the lake bed fit and discards associated depth estimates to
prevent arbitrary results. However, in some cases this results
in SuRRF discarding depth estimates where Watta appears
to fit the lake bed reasonably well (e.g., Antarctic lake 3,
250–300 m). The RTE approach based on Landsat 8’s red to
panchromatic band average consistently underestimates wa-

ter depths, reporting a total amount of water that is ∼ 73 %
lower than the manual baseline. The RTE approach based on
Sentinel-2’s red band also underestimates water depths and
reports a total amount of water that is 34 % lower than the
manual baseline.

Figure 12e–i also show non-ICESat-2 depth estimates for
Greenland lakes that were reported in Melling et al. (2024)
for the RTE method individually applied to Sentinel-2’s red
and green bands, as well as estimates from post-drainage
lake bed topography in ArcticDEM (based on Bowling et al.,
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2019). The RTE approach based on Sentinel-2’s red band
generally underestimates depths and reports a total amount of
water that is 42 % lower than the manual baseline (similar to
this method’s performance over Antarctic lakes). In contrast,
the RTE approach based on Sentinel-2’s green band generally
overestimates depths and reports a total amount of water that
is 34 % larger than the manual baseline. However, Melling
et al. (2024) also note that when using values of tuneable pa-
rameters that have been commonly used in the literature in
the past (Sneed and Hamilton, 2007; Georgiou et al., 2009;
Pope et al., 2016), the RTE approach for Sentinel-2’s green
band overestimates lake depths even more, which results in
reporting a total amount of water that is 84 % larger the man-
ual baseline, with individual depths being overestimated by
up to 153 %. This implies that RTE-based methods, while
being popular for their simplicity, can potentially result in
highly inaccurate meltwater volume estimates. The depth es-
timates derived from DEMs of emptied lake basins match the
ICESat-2 manual baseline reasonably well and when com-
pared with it underestimate the total amount of water by 6 %
with an MAE of 0.34 m. Since this method’s performance
is comparable to that of ICESat-2-based methods, this im-
plies that DEM-based methods could be used to supplement
ICESat-2 depth measurements for labeling reflectance in pas-
sive optical imagery with supraglacial water depths, at least
on the Greenland ice sheet where melt lakes on grounded ice
drain regularly (Johansson et al., 2013).

4.3 ICESat-2 bathymetry over other targets

Beyond estimating the depth of supraglacial lakes, ICESat-
2’s bathymetric capabilities have been used for various other
applications. Many algorithms employed for depth retrieval
from ATL03 share significant similarities, enabling method
development for ICESat-2-derived bathymetry to benefit
from broader cross-discipline collaboration (Parrish et al.,
2022). Methods similar to FLUID–SuRRF have been used
for satellite-derived nearshore ocean bathymetry (e.g., Par-
rish et al., 2019; Ma et al., 2020; Thomas et al., 2021), es-
timating water depths of inland waters (e.g., Li et al., 2019;
Xu et al., 2020; Jasinski et al., 2023), and tracking the evolu-
tion of melt pond depths on sea ice (e.g., Farrell et al., 2020;
Tilling et al., 2020; Herzfeld et al., 2023; Buckley et al.,
2023). However, there are also notable differences between
bathymetric applications of ICESat-2 in different environ-
ments that have led to the development of specialized ap-
proaches, in particular for their large-scale implementation.
For nearshore and inland bathymetry applications, the loca-
tions of the desired bathymetry estimates are usually known
a priori and the bottom topography is often considered con-
stant, so bathymetric measurements can be accumulated over
time and compared to non-concurrent validation data. In con-
trast, the ephemeral nature of supraglacial lakes on the ice
sheets and melt ponds on sea ice makes it necessary to au-
tomatically detect their locations directly from ATL03 and

makes it more difficult to reliably validate depth estimates.
Our FLUID algorithm addresses this issue for supraglacial
lakes on the ice sheets: it automatically detects the locations
of lakes by relying on the fact that the water surface reflec-
tion over open water presents as a flat line in geoid-corrected
ICESat-2 elevation data, while the surrounding topography
on the ice sheets is almost always sloped. This makes our al-
gorithm efficient over the ice sheets by discarding most non-
lake photon segments in the first flatness check step. How-
ever, it makes our algorithm less suited for detecting lakes on
sea ice, where most segments over the open ocean and thin
sea ice would likely pass the flatness threshold.

4.4 Future studies

Our ICESat-2-derived water depths make up the first com-
prehensive dataset of supraglacial lake depths directly mea-
sured from a satellite. However, these along-track observa-
tions alone are too sparsely spaced in space and time to al-
low for the calculation of lake volumes or the continuous
tracking of meltwater throughout the progression of a melt
season. The large volume and wide variety of data that our
method provides suggest that ICESat-2-based depth mea-
surements obtained from applying FLUID–SuRRF at an ice-
sheet-wide scale could be used to better constrain parameters
in existing methods which estimate meltwater volumes from
high-resolution, spatially continuous satellite imagery. Fur-
thermore, our method could be used to extract pan-ice-sheet
meltwater depths and combine them with concurrent satellite
imagery, thus providing a training dataset that would enable
the development of data-driven models of the relationship
between meltwater depth and satellite imagery reflectances
based on statistical learning methods. Since in the absence
of ground-truth validation data our depth validation efforts
were based on manual annotation of the data, we acknowl-
edge that there may be a small but potentially significant bias
towards overestimating water depths with FLUID–SuRRF.
This highlights an urgent need for ground-truth in situ water
depth measurements of supraglacial lakes that coincide with
ICESat-2 overpasses to enable calibration and validation of
depth estimates.

5 Summary

Supraglacial lakes form seasonally around most of the mar-
gins of the Greenland and Antarctic ice sheets. In a warming
climate, these lakes have the potential to significantly impact
the future stability of both ice sheets through processes that
are not yet understood well enough to be included in models.
To confidently project future sea level rise, better satellite ob-
servations of surface meltwater are needed to enable science
that produces a better mechanistic understanding of how ice
dynamics are impacted by the pooling of surface meltwater in
lakes. Until recently, any available methods used to estimate
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supraglacial lake depth from satellite data have been required
to make strong assumptions and to use poorly constrained pa-
rameters, making it difficult to accurately assess the distribu-
tion of meltwater volumes across ice surfaces. Multiple case
studies have successfully demonstrated that supraglacial lake
depths can now be directly measured from photon refraction
in ICESat-2’s laser altimetry data. However, ICESat-2 data
had not previously been used at scale for this purpose be-
cause the photon-level product comprises hundreds of ter-
abytes of unstructured point cloud data along spatially dis-
crete ground tracks, which makes it difficult to integrate the
data with spatially continuous data in existing workflows.

To address this challenge, we have proposed a computa-
tional framework that allows users to detect lake segments
and determine their water depths across all available ICESat-
2 data for any desired ice sheet drainage basins and melt
seasons. Using distributed high-throughput computing, this
framework applies the fully automated, two-step FLUID–
SuRRF algorithm to large numbers of ICESat-2 ATL03 pho-
ton data granules in parallel. To test our method, we ap-
plied FLUID–SuRRF to all available ICESat-2 data over two
drainage basins, one on the Antarctic ice sheet and one on the
Greenland ice sheet, for a high-melt and a low-melt summer.
We have demonstrated the following for our method.

1. It reliably detects supraglacial lake segments based on
the flatness of their surface and the presence of a lake
bed return.

2. There is a potential for false positives, but their impact
can be effectively mitigated by filtering for the strength
of the bathymetric signal.

3. Water depth estimates are accurate based on manual val-
idation of the data; however, there is an urgent need for
in situ data for definitive ground truthing.

4. It can be applied at scale by leveraging distributed high-
throughput computing.

5. The resulting data effectively capture spatial and tem-
poral variability in meltwater extent and depth.

Our framework can be used to generate a comprehensive
data product of supraglacial lake depths for Greenland and
Antarctica since the launch of ICESat-2, which would enable
the development of data-driven models of meltwater volumes
in satellite imagery.

Appendix A: Calculation of photon density ratios in
FLUID flatness check

For a given major frame, let lmframe ≈ 140 m be the along-
track length of the major frame, and let P be the set of pho-
tons, with hi denoting the geoid-corrected height of photon

i ∈ P . We calculate the five photon densities used in the flat-
ness check as follows.

d0 =

∑
i∈P

[∣∣hi −hpeak
∣∣≤ wpeak

]
2wpeaklmframe

(A1)

d1 =

∑
i∈P

[
0< hi −hpeak−wpeak ≤ wbuffer

]
wbufferlmframe

(A2)

d2 =

∑
i∈P

[
−wbuffer ≤ hi −hpeak+wpeak < 0

]
wbufferlmframe

(A3)

d3 =

∑
i∈P

[∣∣hi −hpeak
∣∣>wpeak

](
hmax−hmin− 2wpeak

)
lmframe

(A4)

d4 =

∑
i∈P

[
hi −hpeak >wpeak

](
hmax−hpeak−wpeak

)
lmframe

(A5)

Here, wpeak = 0.1 m is the width of the density peak,
wbuffer = 0.35 m is the width of the buffer around the peak,
and hmin and hmax are the bottom and the top of the teleme-
try window, respectively. Here [·] represents Iverson brack-
ets, which evaluate to 1 if the condition inside the brackets is
true and to 0 otherwise.

Appendix B: Calculation of photon signal confidences in
FLUID

Let P be the set of photons within an along-track segment
(e.g., a major frame), and for each photon i ∈ P , let xi and
hi be the along-track distance and elevation, respectively. To
give appropriate relative weights to the two spatial dimen-
sions when calculating photon densities, we need to adjust
the along-track distance by an aspect ratio parameter ra . We
found that for typical supraglacial lake segments, a value of
ra = 30 works well. Denote by x̃ = x/ra the aspect-ratio-
adjusted along-track distance. We now want to express a
photon’s signal confidence as the average of the inverse Eu-
clidean distances between the photon and up to kmax nearest
neighbors within a search radius of rs , where distances are
normalized and clamped to this search radius. Let Ki be the
set of photons including i and its kmax nearest neighbors, i.e.,
Ki ⊆ P such that |Ki | = kmax+ 1 and

di,j ≥ max
n∈Ki

di,n ∀j ∈ P rKi, (B1)

where

di,j =

√(
x̃j − x̃i

)2
+ (hj −hi)2 (B2)

is the aspect-ratio-adjusted Euclidean distance between pho-
tons i and j . Then, the signal probability of photon i is esti-
mated as

pi =
1
kmax

(
kmax−

∑
j∈Ki

(
min(di,j , rs)

rs

)
+ 1

)
. (B3)
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Note that this implies pi ∈ [0,1]. In particular, pi = 0 if pho-
ton i does not have any neighbors within a radius of rs , and
pi would be equal to 1 only for a “perfect photon”, whose lo-
cation coincides exactly with that of kmax other photons. To
effectively discriminate between signal and noise, we need
to choose kmax and rs in a way such that typical background
noise photons are assigned a small target value, which we set
to pnoise = 0.05.

Assuming that a major frame contains only noise photons
and a flat surface with a signal photon spread of wsignal =

0.3 m, we can estimate the aspect-ratio-adjusted mean area
per background photon (i.e., the inverse photon density) as

a =

(
hmax−hmin− 2wsignal

)
lmframe

ra
∑
i∈P

[∣∣hi −hpeak
∣∣>wsignal

] . (B4)

If background noise photons follow a random uniform dis-
tribution, this means that to find an expected k neighbors
around a typical background photon, one would have to
search within a radius of r(k)=

√
a(k+ 1)/π around that

photon. Using the fact that the average inverse distance of a
point in a circle with radius R to its origin is R/3 (Stone,
1991), we can set

rs =
√

3pnoiser(kmax)=

√
3apnoise(kmax+ 1)

π
(B5)

to ensure that pi ≤ pnoise for typical background noise pho-
tons. We found that setting kmax = 15 strikes a good balance
between being sensitive enough to small-scale signals and
being too sensitive to small quantities of noise photons clus-
tering together by random chance.

Appendix C: Calculation of quality heuristics in FLUID
bathymetry check

To detect any potential bathymetric returns in a major frame,
we divide it into nseg = 10 along-track sub-segments of equal
length. For each sub-segment, we calculate the median of
the FLUID photon-level signal probability pi for photons i
within 0.1 m elevation bins, assigning a value of zero when-
ever there are no photons within any bin. This results in
an empirical function that relates signal probability to ele-
vation h, which we here denote by p(h). In addition, we
calculate the analogous function of photon density d(h) as
a simple histogram for 0.01 m elevation bins. Let d ′(h)=
d(h) ∀h :

∣∣h−hpeak
∣∣>wsignal and zero otherwise. Denote

by ·|l a smoothing operator using a Gaussian window with
a standard deviation of l. Now calculate signal confidence as
a function of h as

c(h)= p(h)|lmin
(

d(h)|l

maxhd ′(h)|l
,1
)
, (C1)

where p(h) is linearly interpolated to match the domain of
d(h). Note that this implies p(h) ∈ [0,1] ∀h in the teleme-
try window. To determine whether a potential bathymetric

signal peak is present, we find peaks in c(h). If there are at
least two peaks with prominence ρ ≥ 0.1 and the elevation
of the peak closest to hpeak is found within an elevation dif-
ference of wsignal, then out of the peaks whose elevation is
below hpeak−wsignal the peak with the highest prominence
is considered a potential bathymetric peak. Denote by npeaks
the number of potential bathymetry peaks found in the major
frame, and let hi be the elevation and ρi the prominence of
peak i ∈ [1,2, . . .,npeaks]. We only consider the major frame
to be potentially part of a lake segment if npeaks ≥ 3. In this
case, we define the following heuristics for different compo-
nents that affect the quality of the bathymetric return within
the major frame.

q1 = f
3/2 (C2)

q2 =min
(∑

iρi

npeaks
2(min({2f,1})− 1)+ 1,1

)
(C3)

q3 =min
(

1
log5 (max(1h,1.1))

,1
)

(C4)

q4 =
1

1+ dh
max(1h,0.5nseg)

(C5)

Here, f = npeaks/nseg is the fraction of sub-segments for
which a potential bathymetric peak was detected, 1h=
maxihi−minihi is the elevation spread of the detected peaks,
and

dh =−

nseg−1∑
i=2

[
|hi −hi−1| + |hi+1−hi |

2

max(sgn(hi −hi−1)sgn(hi+1−hi),0)
]
. (C6)

Note that the quality heuristics are qi ∈ [0,1]∀i, with higher
values implying a better bathymetric signal. The expressions
used here were derived by trial and error and designed such
that q1 penalizes major frames with smaller numbers of de-
tected bathymetry peaks, q2 penalizes major frames with
less prominent peaks, q3 penalizes major frames with a very
large overall spread of peak elevations, and q4 penalizes ma-
jor frames with peak elevations that do not align along a
smooth surface. Based on these quality heuristics for the ma-
jor frame, we calculate a quality summary as qs =

∏4
i=1qi

for each major frame.
While the quality heuristics qi were obtained by trial and

error, the starting points for this approach were based on the
following assumptions and observations.

– The starting point for q1 was the idea that major frames
with a smaller number of detected bathymetry peaks are
less likely to have a consistent signal from a lake bed.
The way the equation for q1 is designed, major frames
with a very small fraction of detected bathymetry peaks
(0 % to 30 % of sub-segments) are disproportionately
penalized, since such small numbers of peaks are much
more likely to be noise.
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– The starting point for q2 was the idea that major frames
with less prominent peaks represent either a weak, in-
consistent bathymetric signal or noise. Here, q2 is equal
to the mean prominence of peaks when the fraction of
detected bathymetry peaks f ≤ 0.5. However, for frac-
tions larger than 0.5, the assumption is that the bathy-
metric signal is consistent enough that even smaller
mean peak prominence suggests that the bathymetric
signal is clearly visible.

– The starting point for q3 was the observation that in
most cases supraglacial lake segments with a usable
bathymetric signal have fairly small lake bed slopes.
Therefore, we do not expect the lake bed elevation of a
major frame with a good signal to span a large elevation
range. In contrast, we observed that major frames with
detected potential bathymetric peaks that span a very
large elevation range are often due to noise in the data.
Based on this, we designed the equation for q3 such
that its value drops off once the total elevation range
of detected bathymetry peaks within the major frame
(of length ≈ 140 m) exceeds 5 m. There are, however,
some lake segments with a clear bathymetric signal that
do exhibit a large range of lake bed elevations (often
due to a single burst of noise being detected as a po-
tential bathymetric peak). Therefore, we made sure that
the value for q3 is large enough for major frames to still
pass the bathymetry check if 1h is very large but its
other quality heuristics qi are closer to 1.

– The starting point for q4 was the idea that in most cases
bathymetry peak elevations will align along a smooth
surface in the along-track distance direction rather than
randomly fluctuate (which is usually the case for noise).
Here, we penalize every “direction change” (i.e., wher-
ever a peak has two neighbors and its elevation con-
stitutes a local minimum or maximum). We allow for
random fluctuations of up to 0.5 m per peak detection
without a large penalty, since we observed that a verti-
cal photon spread of up to about this value is quite pos-
sible even for lake segments with a somewhat fuzzy yet
clearly distinguishable return signal from the lake bed.

A figure that illustrates these quality heuristics is available in
the Supplement at https://doi.org/10.5281/zenodo.10901826
(Arndt and Fricker, 2024c).

Code and data availability. The FLUID–SuRRF source code is
freely available at https://doi.org/10.5281/zenodo.10905941 (Arndt
and Fricker, 2024a). To execute this code, users need to cre-
ate a free NASA Earthdata login for ICESat-2 data access. The
source code contains a singularity container in which this ver-
sion of FLUID–SuRRF can be executed. The main Python script
detect_lakes.py can either be run locally on any individual
ATL03 granule or on many granules in parallel on any comput-
ing cluster that supports the specified computing environment or

the use of singularity containers. In this study we present our im-
plementation of FLUID–SuRRF on the OSG Open Science Pool
because it provided us with free computational infrastructure. Due
to funding mandates, free access to the OSG Open Science Pool
is limited to researchers contributing to a US-based project at an
academic, government, or non-profit organization or researchers af-
filiated with any project or institution that operates its own local
access point. This means that to implement FLUID–SuRRF on the
OSG Open Science Pool as described here, you need to have at
least one collaborator on your team to whom these criteria apply.
This collaborator can register your project with OSG on the Open
Science Pool. Then, anyone contributing to the project can register
for an account on OSG Connect to gain access to the Open Sci-
ence Pool. For more information, see https://osg-htc.org/services/
open_science_pool.html (last access: 11 November 2024) and https:
//osg-htc.org/about/organization/ (last access: 11 November 2024
). More information is also included in the README file. The
supraglacial meltwater depth estimates and associated “quick look”
plots for all 1249 lake segments identified in this study are avail-
able at https://zenodo.org/doi/10.5281/zenodo.10901737 (Arndt
and Fricker, 2024b). All data and code needed to reproduce the fig-
ures in this study, as well as supplementary figures, are available
at https://doi.org/10.5281/zenodo.10901826 (Arndt and Fricker,
2024c). ICESat-2 ATL03 data are available at NSIDC (https:
//doi.org/10.5067/ATLAS/ATL03.006, Neumann et al., 2023b).
Sentinel-2 and Landsat imagery was accessed via Google Earth
Engine (Gorelick et al., 2017). Drainage basins for Greenland
are available at DRYAD (https://doi.org/10.7280/D1WT11, Moug-
inot and Rignot, 2019). Drainage basins for Antarctica are avail-
able at NSIDC (https://doi.org/10.5067/AXE4121732AD, Moug-
inot et al., 2017). ArcticDEM mosaics for elevation thresh-
olding are available at https://www.pgc.umn.edu/data/arcticdem/
(https://doi.org/10.7910/DVN/3VDC4W, Porter et al., 2023) and
REMA DEM mosaics are available at https://www.pgc.umn.edu/
data/rema/ (https://doi.org/10.7910/DVN/EBW8UC, Howat et al.,
2022). ICESat-2 ground-track KML files are available at https:
//icesat-2.gsfc.nasa.gov/science/specs (The ICESat-2 Project Sci-
ence Office, 2024).
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