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Abstract. Current climate warming is accelerating mass loss
from glaciers and ice sheets. In Greenland, the rates of mass
changes are now dominated by changes in surface mass bal-
ance (SMB) due to increased surface melting. To improve
the future sea-level rise projections, it is therefore critical to
have an accurate estimate of the SMB, which depends on the
representation of the processes occurring within the snow-
pack. The Explicit Snow (ES) scheme implemented in the
land surface model Organising Carbon and Hydrology In Dy-
namic Ecosystems (ORCHIDEE) has not yet been adapted
to ice-covered areas. Here, we present the preliminary de-
velopments we made to apply the ES model to glaciers and
ice sheets. Our analysis mainly concerns the model’s ability
to represent ablation-related processes. At the regional scale,
our results are compared to the MAR regional atmospheric
model outputs and to MODIS albedo retrievals.

Using different albedo parameterizations, we performed
offline ES simulations forced by the MAR model over the
2000–2019 period. Our results reveal a strong sensitivity of
the modelled SMB components to the albedo parameteriza-
tion. Results inferred with albedo parameters obtained us-
ing a manual tuning approach present very good agreement
with the MAR outputs. Conversely, with the albedo param-
eterization used in the standard ORCHIDEE version, runoff
and sublimation were underestimated. We also tested param-
eters found in a previous data assimilation experiment, cal-
ibrating the ablation processes using MODIS snow albedo.
While these parameters greatly improve the modelled albedo

over the entire ice sheet, they degrade the other model out-
puts compared to those obtained with the manually tuned ap-
proach. This is likely due to the model overfitting to the cal-
ibration albedo dataset without any constraint applied to the
other processes controlling the state of the snowpack. This
underlines the need to perform a “multi-objective” optimiza-
tion using auxiliary observations related to internal snowpack
processes. Although there is still room for further improve-
ments, the developments reported in the present study consti-
tute an important advance in assessing the Greenland SMB
with possible extension to mountain glaciers or the Antarctic
ice sheet.

1 Introduction

Satellite observations reveal that the Greenland ice sheet
(GrIS) has been losing mass for at least 3 decades. Be-
tween 1992 and 2018, the net ice mass loss was estimated
at 3800± 339 Gt, corresponding to a rise in global mean sea
level of 10.6±0.9 mm (The IMBIE team, 2020). Mass loss is
driven by dynamic solid ice discharges (Enderlin et al., 2014)
and by enhanced surface meltwater and runoff (Ryan et al.,
2019). Over the 2000–2008 period, the GrIS mass loss was
equally partitioned between surface and dynamic processes
(van den Broeke et al., 2009). However, recent studies based
on regional climate models and remote-sensing observations
(van den Broeke et al., 2016; Ryan et al., 2019; The IM-
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BIE Team, 2020; Fox-Kemper et al., 2021) show that rates of
mass change are now dominated by changes in surface mass
balance (SMB), defined as the difference between mass gains
(solid and liquid precipitation) and surface ablation processes
(runoff, sublimation, and snow erosion).

Besides directly impacting the global mean sea level, the
GrIS is also an integral part of the Earth system (Fyke et al.,
2018). As such, it is highly sensitive to climate change and in
turn has a strong influence on global climate, notably by re-
leasing fresh water into the ocean, which leads to changes in
the Atlantic meridional overturning circulation (Bakker et al.,
2016; Martin et al., 2022). Surface melting may also induce
changes in the local climate through temperature–elevation
feedback (Edwards et al., 2014; Sellevod et al., 2019) and the
albedo effect (Box et al., 2012; Helsen et al., 2017; Riihelä
et al., 2019). Finally, changes in topography produce modifi-
cations in the local and large-scale atmospheric circulations
(Ridley et al., 2005; Hahn et al., 2020).

To capture this feedback and to reduce the uncertain-
ties in sea-level and climate projections, a key objective of
the climate–ice-sheet modelling community is to incorporate
ice-sheet models in Earth system models (ESMs; Vizcaino,
2014). Such coupled climate–ice-sheet models have mainly
been developed with low-resolution climate models designed
for long-term integrations (Kageyama et al., 2004; Charbit et
al., 2005; Vizcaino et al., 2010; Roche et al., 2014). So far,
only a few groups have met this goal with CMIP-like models
(Vizcaino et al., 2013; Muntjewerf et al., 2020; Smith et al.,
2021). A key challenge in developing such models relates to
the realistic computation of SMB used as a forcing field of
the ice-sheet models.

SMB is highly dependent on the radiative properties of
snow and on the physical processes occurring within the
snowpack (Helsen et al., 2017). At the surface, snow cover
evolves as a function of the surface energy balance and mass
exchanges with the atmosphere. In cold regions, snowmelt
is largely driven by shortwave radiation: because of the high
albedo value of fresh snow (0.80–0.90), a large fraction of
shortwave radiation is reflected to the atmosphere, limiting
the energy available at the surface for melting. Therefore,
snow evolution is strongly dependent on the albedo. The
value of snow albedo decreases when snow is ageing (i.e. in
the absence of a new snowfall event) and with the snow
metamorphism and liquid water content at the ice-sheet sur-
face coming from either rainfall or snow/ice melting. Surface
water may also percolate and refreeze inside the snowpack,
thereby delaying the runoff. The transformation of snow
into ice depends on environmental conditions (e.g. winds,
near-surface temperatures) and internal processes within the
snowpack (e.g. heat conduction and vertical temperature gra-
dient, compaction), which directly influence the grain mi-
crostructure and the snow density. All these processes affect
the SMB of the ice sheet.

There are several ways to compute the SMB. Empirical
approaches such as the positive-degree-day method (Reeh,

1991) have long been used to compute snow and ice melt-
ing from downscaled near-surface temperatures. This kind of
approach requires little in terms of computational resources
and has often been applied to past and future long-term in-
tegrations (Charbit et al., 2008, 2013; Bonelli et al., 2009;
Vizcaino et al., 2010). However, such methods have been cal-
ibrated against the present state of the GrIS, raising the ques-
tion as to whether they can be applied to a different climatic
context from the present-day one, knowing that ablation is
projected to increase (van de Wal, 1996; Bougamont et al.,
2007). Moreover, they are not physically based and cannot
reproduce the diversity of snow processes that directly influ-
ence the SMB. Snow models implemented in general circu-
lation models have long been based on simplified physics.
They are mainly designed to resolve the seasonal and diurnal
variations in heat fluxes but with no representation of inter-
nal processes (Armstrong and Brun, 2008). In contrast, re-
gional climate models developed for polar regions generally
incorporate multiple-layer energy balance snow models with
a fine vertical resolution (e.g. Brun et al., 1992; Lefebre et
al., 2003; Vionnet et al., 2012; Noël et al., 2018) and with
detailed snow physics to simulate a variety of snowpack pro-
cesses. However, due to their high computational cost, they
are not often used in ESMs, despite a few rare exceptions
such as the work of Punge et al. (2012) based on the im-
plementation of a detailed snow model (Brun et al., 1992)
in the atmospheric model LMDZ4 (Hourdin et al., 2006)
or the Community Land Model (CLM), which includes the
snow radiative-transfer scheme SNICAR (Flanner and Zen-
der, 2006) and a snow model simulating a variety of key snow
processes such as the metamorphism (Lawrence et al., 2019;
He et al., 2024).

An alternative approach consists of implementing snow
models of intermediate complexity in the land surface com-
ponents of ESMs (Boone and Etchevers, 2001; Dutra et al.,
2012; Wang et al., 2013; Cullather et al., 2014; Decharme
et al., 2016; Born et al., 2019). These models have a lim-
ited number of layers and are based on simplified represen-
tations of the main processes affecting the SMB changes
but usually do not have any explicit representation of snow
metamorphism. However, they offer a good compromise be-
tween models of high complexity and simplified approaches
or bulk-layer models for coupling with atmospheric models.

The snow module Explicit Snow (referred to hereafter as
ES) implemented in the land surface model ORCHIDEE (Or-
ganising Carbon and Hydrology In Dynamic Ecosystems;
Krinner et al., 2005; Chéruy et al., 2020) of the IPSL-CM
ESM (Boucher et al., 2020) belongs to this third class of
snow models. It has been successfully evaluated against ob-
servations in Col de Porte (French Alps) and in various sites
in northern Eurasia (Wang et al., 2013). However, it has not
yet been adapted to ice-covered areas. As a result, glaciers
are considered bare soil in the current ORCHIDEE version,
and over ice sheets, snow is handled with the atmospheric
component of IPSL-CM in a very simplistic way. Recently,
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we made new developments to apply the ES model to glaciers
and ice sheets, with a special focus on the GrIS. These devel-
opments meet two objectives. The first one is to treat snow-
related processes in IPSL-CM in a more consistent way for
all surface types. The second one is to compute the SMB,
taking the main processes occurring within the snowpack
into account. These developments also constitute a prelim-
inary step for the subsequent use of the computed SMB as
an interface between IPSL-CM and ice-sheet models. In the
following, we will refer to ORCHIDEE-ICE when we mean
the version of ORCHIDEE that includes these new devel-
opments and to ORCHIDEE for the former version of the
model.

In this study, we evaluate the computation of SMB (and
its components) in the ES model. As SMB is strongly depen-
dent on the albedo, we also examine its sensitivity to various
albedo parameterizations. To achieve this, we performed of-
fline ORCHIDEE-ICE simulations and compared our results
against model outputs from the polar-oriented regional at-
mospheric model MARv3.11.4 (Modèle Atmosphérique Ré-
gional; Fettweis et al., 2017) and the MODIS (MODerate
resolution Imaging Spectroradiometer; Hall et al., 1995; Hall
and Riggs, 2016) surface albedo retrievals. The paper is or-
ganized as follows. In Sect. 2, we provide an extensive de-
scription of the main characteristics of the original ES model
as well as changes that have occurred since its early publi-
cation (Wang et al., 2013). The new developments made to
apply ES to the GrIS are also presented in this section. Sec-
tion 3 describes the experimental setup, and Sect. 4 provides
a brief overview of the different datasets used for evaluation.
The results are presented in Sects. 5 and 6 and discussed in
Sect. 7.

2 Model description

2.1 Snow processes in the current ORCHIDEE-AR6
model

ORCHIDEE is the land surface component of the IPSL-
CM Earth system model (Boucher et al., 2020; Chéruy et
al., 2020) mainly developed at the French Institute Pierre
Simon Laplace (IPSL). It computes both water and energy
exchanges (SECHIBA module) between land surfaces and
the atmosphere at a 30 min time step and includes carbon-
related processes (STOMATE module). Within a given grid
cell, land cover is represented as fractions of bare soils and
vegetated areas described in terms of plant functional types
(PFTs). Snow–vegetation interactions are not explicitly rep-
resented, and snow is evenly distributed among the various
PFTs. Soil types are prescribed according to the USDA soil
texture maps (Reynolds et al., 2000). The ORCHIDEE model
can be run in offline mode, driven by atmospheric fields,
or coupled with an atmospheric model. In the former OR-
CHIDEE version used for CMIP5 (Taylor et al., 2012), the

snow scheme over glaciated surfaces was based on the bulk
approach proposed by Chalita and Le Treut (1994). It con-
sisted of a composite soil–snow model accounting for the
thermal and radiative properties of snow cover (i.e. albedo
and its variations with snow ageing). Snow was described
as having a constant density (330 kg m−3), and melting oc-
curred when the temperature exceeded 0 °C. Other processes
such as water percolation and refreezing were ignored, al-
though they directly impact the water budget. This means
that all liquid water coming from melting snow left the snow-
pack as runoff.

For the CMIP6 exercise (Eyring et al., 2016), the bulk ap-
proach was replaced by the ES snow scheme, which was for-
merly adapted to the ORCHIDEE architecture (Wang et al.,
2013) from a three-layer version of the ISBA-ES scheme (In-
teractions between Soil, Biosphere and Atmosphere-Explicit
Snow scheme; Boone and Etchevers, 2001) developed at the
French National Centre for Meteorological Research. The ES
model is now used in the standard version of ORCHIDEE
(version 2.0 onwards). However, it has not yet been consid-
ered for use over mountainous glaciers, which are treated
as bare soils, nor over ice-sheet areas, which are currently
handled by the LMDZ atmospheric model (Chéruy et al.,
2020) with a very elementary snow scheme (i.e. a single-
layer model, constant albedo, and thermal conductivity).
In this section, we provide an extensive description of the
snow model, including the main differences from the original
ISBA-ES version (Wang et al., 2013). The new developments
accounting for snow processes over ice-covered areas in the
ORCHIDEE model are described in Sect. 2.2.

The ES model represents the snowpack as a one-
dimensional physical system (vertical coordinate z). This
means that all the lateral fluxes of mass and energy are ig-
nored. The original version of this snowpack is discretized
in three layers following the parameterization of Lynch-
Stieglitz (1994), which sets the upper limits for the thick-
ness of the first two layers to 5 and 50 cm respectively. This
ensures the propagation of variations in the diurnal cycle
of temperature and radiation and enables vertical heat and
density gradients, which are assumed to be larger near the
surface, to be resolved correctly. Each layer is described in
terms of snow density, snow age, layer thickness, heat con-
tent, snow temperature, and liquid water content, with the
first three variables being prognostic variables. Changes in
snow mass are determined by the snowfall rate, snow melt-
ing, runoff at the base of the snowpack, and sublimation at
the surface. In the absence of coupling with a dynamic ice-
sheet model, snow mass at the surface of the ice sheet can
be overestimated. Thus, to prevent excessive snow accumu-
lation, we impose a maximum threshold of 3000 kg m−2 be-
yond which snow is artificially removed. An overview of the
organization of the different subroutines of the ES snowpack
model is provided in Fig. 1. The description of the processes
is given in the following subsections, and the list of model
parameters is provided in Table A1 (Appendix A).
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Figure 1. Flowchart of the new Explicit Snow scheme implemented
in the ORCHIDEE-ICE model.

2.1.1 Surface processes

Energy balance

The evolution of the snowpack is primarily driven by the
energy flux at the snow–atmosphere interface. A single en-
ergy balance is computed for all surface types coexisting in
one grid cell. The surface energy flux (Gsurf) available at the
snow–atmosphere interface is computed from the energy bal-
ance equation:

Gsurf = SWnet+LWnet−HL−HS+Hrainfall. (1)

Gsurf is computed positively when it warms the soil. SWnet
and LWnet are the net shortwave and longwave radiation re-
spectively, HL is the latent heat flux, HS is the sensible heat
flux, andHrainfall is the energy released by rainfall (see Eq. 14
in Boone and Etchevers, 2001). Equation (1) is used to com-
pute the surface temperature (Tsurf) of the grid cell at the next

time step and provides the limit condition of the surface tem-
perature at the snow–atmosphere interface for the calculation
of the snow temperature profile.

Above snow-covered surfaces when Tsurf is above the
freezing temperature T0 (273.15 K), the excess energy is first
used to bring the snow temperature to T0. A surface energy
fluxGfreezing associated with the freezing temperature T0 can
be computed using a similar formulation to Eq. (1). The dif-
ference between Gsurf and Gfreezing is converted to an addi-
tional temperature expressed as

T add
snow = Tsurf− T0 =

Gsurf−Gfreezing

Csoil
dt. (2)

Csoil is the surface heat capacity of soil (J m−2 K−1) and is
computed as the sum of heat capacities for snow-covered
and snow-free surfaces (for both non-glaciated and glaciated
areas), weighted by their respective grid cell fractions. For
snow-covered surfaces, the specific heat capacity is defined
as the product of snow density and the specific heat of ice
(2106 J K−1 kg−1). If T add

snow is greater than (or equal to) the
freezing temperature, the energy excess is used for melting
snow, and Gsurf is further set to Gfreezing for energy conser-
vation. If the new Gsurf value is greater than the total heat
content of the snowpack, snow is entirely melted and the
excess energy is transferred to the underlying soil. The en-
ergy released by snowfall is accounted for in the snowpack
scheme to update the snow heat content of the snowpack after
a snowfall event.

Turbulent heat fluxes

The sensible (HS) and latent heat (HL) fluxes computed for
each grid cell are given respectively by

HS = ρairqcdragU (Tsurf− Tair) , (3)
HL = LsρairqcdragU (Qsat−Qair) , (4)

where ρair is the air density, Tsurf and Tatm are the surface
and the 2 m atmospheric temperatures, Qair and Qsat are the
air specific humidity at 2 m and the saturated specific hu-
midity at the surface, Ls is the latent heat of sublimation
(2.8345×106 J kg−1),U is the wind speed at 10 m, and qcdrag
is the drag coefficient computed as a function of the ice
roughness length (z0_ice= 0.001 m) following the Monin–
Obukhov turbulence theory (Monin and Obukhov, 1954) and
the parameterizations of the eddy fluxes proposed by Louis
(1979).

Snow sublimation

The amount of sublimation is simply deduced from the latent
heat flux:

Ssnow =
HL

Ls
. (5)
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Snow cover fraction

The snow cover fraction (Fsnow) is derived from the formula-
tion of Niu and Yang (2007), which has been shown to better
represent the seasonal variation in the relationship between
snow depth (Zsnow) and snow cover fraction thanks to its de-
pendence on snow density:

Fsnow = tanh

 Zsnow

2.5z0g×
(
〈ρsnow〉
ρmin

)m
 , (6)

where 〈ρsnow〉 is the snow density averaged over the total
thickness of the snowpack; ρmin is the minimum snow den-
sity (set to 50 kg m−3), that is, the density of fresh snow; z0g
is the ground roughness length (set to 0.01 m); and m (set to
1.0 in the present study) is an adjustable parameter.

Snow albedo

Compared to the early version presented in Wang et
al. (2013), the albedo scheme has been modified, and snow
albedo is now computed following the formulation of Chalita
and Le Treut (1994):

αsnow = Aaged+Bdec exp
(
−
τsnow

τdec

)
, (7)

where Aaged represents the albedo of a snow-covered surface
after snow ageing (old snow), and Bdec is defined so that the
sum of Aaged and Bdec represents the albedo of fresh snow
(i.e. maximum snow albedo). τdec is the time constant of the
albedo decay and τsnow is the snow age and is parameterized
as follows:

τsnow (t + dt)=
[
τsnow (t)+

(
1−

τsnow

τmax

)
× dt

]
× exp

(
−
Psnow

δc

)
+ fage, (8)

where τmax is the maximum snow age, Psnow is the amount
of snowfall during the time interval dt , and δc is the critical
value of solid precipitation necessary for reducing the snow
age by a factor 1/e. As the ORCHIDEE time step is fixed to
30 min, the snow age is almost zero in a few time steps. In
addition, the low surface air temperatures found in polar re-
gions slow down the metamorphism. This effect is accounted
for with the function fage expressed as

fage =


(
τsnow (t)+

(
1− τsnow

τmax

)
× dt

)
× exp

(
−
Psnow
δc

)
− τsnow (t)

1+ gtemp (Tsurf)

 (9)

gtemp (Tsurf)=

[
max(T0− Tsurf, 0)

ω1

]ω2

, (10)

where ω1 and ω2 are tuning constants. The albedo is com-
puted for the visible and near-infrared spectral bands. How-
ever, to compute the upward shortwave radiation, an arith-
metic mean between the visible and the near-infrared albedo
is considered.

A single energy balance is computed for all surface types,
but the albedo is weighted by the different fractions of PFTs
and glaciated areas and by the snow-covered and snow-free
fractions. As a result, the surface albedo (α) of the grid cell
is computed as the sum of snow-free albedo (αsnow-free) and
snow-covered albedo (αsnow) weighted by the fractional area
of the grid cell covered by snow Fsnow (snow-covered frac-
tion hereafter):

α = Fsnow×αsnow+ (1−Fsnow)×αsnow-free, (11a)

with

αsnow = fice×α
ice
snow+

∑
PFT
fPFT,i ×α

PFT,i
snow (11b)

and

αsnow-free = fice×α
ice
snow-free+

∑
PFT
fPFT,i ×α

PFT,i
snow-free. (11c)

fice and fPFT,i are the grid cell fractions of ice-covered areas
and the ith PFT respectively; αice

snow (αice
snow-free) and αPFT,i

snow

(αPFT,i
snow-free) are the corresponding snow albedo (snow-free

albedo) values.
Over the GrIS, αsnow-free is given by the albedo of bare

ice, prescribed to 0.6 and 0.2 for the visible and near-infrared
wavelengths respectively. At the margins of the GrIS, some
grid points may be only partially covered by snow or ice or
even become totally snow-free during the melting season. It
is therefore important to take these different features into ac-
count to correctly compute the surface albedo of the GrIS.

2.1.2 Internal processes

When snow falls on a snow-free surface, a new snowpack
is generated provided that the ground temperature is below
or equal to the freezing point. The snow mass and the heat
content of the snowfall are initially distributed evenly within
the three layers. The snow density is the same for the three
layers and is given by the density of the snowfall computed
as a function of wind speed and surface air temperature (Pa-
haut, 1976). When snowfall occurs over an existing snow-
pack, fresh snow is added to the upper layer providing that
the snowfall thickness is greater than the critical threshold δc
(see Eq. 8). The snow thickness, density, and heat content are
then modified in this layer. However, as the number of snow
layers is kept fixed, redistribution of mass and heat content
within the layers is required when snow depth changes, but
the total snow mass and heat content are conserved.

Heat conduction

Solar absorption is not accounted for in the snow model. All
incoming solar energy is therefore deposited at the snow sur-
face and distributed to deeper layers through heat conduc-
tion. The heat conduction from the surface to the bottom of
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the snowpack is described by a vertical-diffusion equation re-
lating the temporal evolution of the snow temperature in the
snowpack at depth z and the divergence of the snow heat flux
FC and is solved using an implicit numerical scheme.

∂Tsnow

∂t
=−

1
Csnow

·
∂FC

∂z
(12)

FC =−3s
∂Tsnow

∂z
, (13)

with Csnow (J m−2 K−1), 3s, and Tsnow being the snow heat
capacity, the snow thermal conductivity (W m−1 K−1), and
the snow temperature respectively.

At the snow–atmosphere interface, the boundary condition
is given by the energy balance equation (FC =Gsurf) and is
used in the ORCHIDEE model to compute the surface tem-
perature.

Along with the thermal gradient, a water vapour diffusive
flux takes place from the warmer to the colder parts of the
snowpack, and sublimation or condensation may occur in the
pore spaces depending on the water vapour saturation pres-
sure. This process is particularly significant in the Arctic be-
cause of strong temperature gradients between soils and at-
mosphere, and it is largely responsible for snow metamor-
phism. While it is explicitly accounted for in detailed snow
models, in Explicit Snow, the effect of water vapour diffu-
sion and phase changes is parameterized through the thermal
conductivity (Sun et al., 1999). The effective thermal con-
ductivity (3eff) is thus expressed as the sum of empirical for-
mulations for snow thermal conductivity (3cond) and thermal
conductivity from vapour transport (3vap), with

3icond = aλ+ bλρ
i2

snow (14)

3ivap =

(
aλv +

bλv

cλv + T isnow

)
P0

P
, (15)

where aλ = 0.02 W m−1 K−1, bλ = 2.5×
10−6 W m5 K−1 kg−2 (Anderson, 1976), aλv =

−0.06023 W m−1 K−1, bλv =−2.5425 W m−1, and
cλv =−289.99 K (Yen, 1981). P is the atmospheric
pressure (in hPa) and P0 = 1000 hPa. The superscripts i
denote the ith layer.

Heat content

The heat content is computed using the following equation:

H i
snow =D

i
snow

[
Cv,isnow

(
T isnow− Tf

)
−Lsρ

i
snow

]
+LfρwaterW

i
liq, (16)

where Lf is the latent heat of fusion, and ρwater is the wa-
ter density. H i

snow, W i
liq, Disnow, ρisnow, and Cv,isnow are the heat

and liquid contents, the depth, the density, and the mean vol-
umetric heat capacity (J K−1 m−3) of the ith layer.

After heat redistribution within the snowpack, snow tem-
perature is diagnosed using Eq. (16), assuming no liquid wa-
ter in the snowpack. If the snow temperature exceeds the
freezing point, the liquid content in each layer is then di-
agnosed from the snow temperature and heat content of the
layer, and the temperature is then reset to the freezing point.

Compaction

The total snow depth decreases as density increases. Changes
in density occur as a result of the weight of the overlying
snow layers and under the influence of snow metamorphism.
The local rate of density change in the ith layer is derived
from Anderson (1976):

1
ρisnow

∂ρisnow
∂t
=

σ isnow

ηisnow
(
T isnow, ρ

i
snow

)
+ψ isnow

(
T isnow,ρ

i
snow

)
. (17)

The first term on the right-hand side represents the com-
paction due to snow load, with σ isnow (Pa) being the pressure
of the overlying snow and ηisnow the snow viscosity.

σ isnow = g×M
i
snow,

where g is the gravitational constant (m s−2) and M i
snow the

cumulative snow mass (kg m−2).
The viscosity (in Pa s) is expressed as a function of snow

temperature and density (Mellor, 1964; Kojima, 1967):

ηisnow = η0 exp
[
aη

(
Tf− T

i
snow

)
+ bηρ

i
snow

]
, (18)

with η0 = 3.7× 107 Pa s, aη = 8.1× 10−2 K−1, and bη =

1.8× 10−2 m3 kg−1.
The second term on the right-hand side of Eq. (17) param-

eterizes the effect of metamorphism, which is significant for
newly fallen snow.

ψ isnow = aψ exp
[
−bψ ·

(
Tf− T

i
snow

)
−cψ ·max

(
0, ρisnow− ρψ

)]
(19)

The values of the parameters are the following: aψ =
2.8×10−6 s−1, bψ = 4.2×10−2 K−1, cψ = 460 m3 kg−1, and
ρψ = 150 kg m−3.

In the model, density changes due to compaction are al-
lowed as long as density remains below a threshold, fixed at
750 kg m−3. This value was chosen because compaction be-
comes slower above densities between 550 and 800 kg m−3

due to the progressive disappearance of air spaces between
the snow particles (Maeno and Ebinuma, 1983). A criti-
cal value of 730 kg m−3 has even been proposed by Maeno
(1978). Compaction does not affect the total mass and the
heat content of the snowpack but changes the layer thick-
nesses. The distribution of snow heat within the layers must
therefore be updated using Eq. (16).
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Vertical temperature profile

The snow temperature profile resulting from heat redistribu-
tion is then computed by solving the heat diffusion equation
using an implicit numerical scheme similar to that used for
heat diffusion in the soil. The vertical temperature profile
within the snowpack is expressed as

T 1
snow =

[
λsnow ·Cgr_snow+

(
Tsurf+ T

add
snow

)
1+ λsnow

(
1−Dgr_snow

) ]
(20)

for the first layer and as

T i+1
snow = Cgr_snow+Dgr_snow · T

i
snow (21)

for the deeper layers (i > 1), where λsnow, Cgr_snow and
Dgr_snow are coefficients resulting from the resolution of the
numerical scheme and depend on the snow heat capacity,
thermal conductivity, and characteristics of the vertical dis-
cretization. The numerical scheme is similar to the one pre-
sented in Wang et al. (2016; see appendix A therein) in which
the temperature at the interface between two layers is calcu-
lated as a linear interpolation according to the two nearest
nodes (middle of the layers). Diffusion therefore takes place
downward and upward.

Melting and refreezing processes

If meltwater is produced at the surface, it may remain in
a liquid state in the uppermost layer or penetrate the next
layer, where it can remain or refreeze as long as the max-
imum water-holding capacity is not reached; otherwise, it
penetrates the lower layers.

The evolution of liquid water in each layer is controlled
by the energy available to induce phase changes and by the
maximum water-holding capacity. In the ith layer, the energy
used for melting snow (Eisnow) is expressed as

Eisnow =min
(
Cv,isnowD

i
snow×max

(
0, T isnow− Tf

)
,

max
(

0, Diswe−W
i
liq

)
×Lfρwater

)
, (22)

whereDiswe is the snow water equivalent in the ith layer. The
first term represents the available energy for phase change in
the ith layer, and the second term corresponds to the energy
required to entirely melt the snow mass that has not been
transformed into liquid water. The maximum water-holding
capacity is taken from Anderson (1976):

W i
max =

[
rmin+ (rmax− rmin) ·max

(
0,
ρt− ρ

i
snow

ρt

)]
·
ρisnow
ρw
·Disnow, (23)

with rmin = 0.03, rmax = 0.10, and ρt = 200 kg m−3.

Runoff (Smelt) is computed as the sum of meltwater pro-
duced at the surface and the total liquid water that has perco-
lated down to the bottom layer and that exceeds W bottom

max . It
is thus simply given by

Msnow =

∑
i

Eisnow

Lf
. (24)

At each time step, changes in layer thickness, density, and
liquid water content in each layer are updated, as well as
changes in snow temperature due to melting or refreezing.
In case of complete snow melting, the energy excess that has
not been used for phase changes is used to warm the under-
lying ground.

2.2 New developments

2.2.1 New snow-layering scheme

As mentioned in Sect. 1, snow models of intermediate com-
plexity are a good compromise between detailed snow mod-
els and single-layer models. They are designed to be imple-
mented in ESMs and as such should not require excessive
computational time. Although their vertical resolution is gen-
erally limited to five layers at most (Cristea et al., 2022),
several studies reported that snow models of intermediate
complexity considerably improve the representation of ba-
sic features of the snowpack and reduce biases in surface
temperature when they are compared to single-layer models
(Lynch-Stieglitz, 1994; Boone and Etchevers, 2001; Dutra et
al., 2012; Wang et al., 2013). Despite this good performance,
increasing the number of snow layers (with finer layers near
the surface or near the snow–ice interface) is expected to im-
prove the modelled heat conduction within the snowpack, the
simulated temperature at the snow–ice interface, and subse-
quently the vertical temperature profile in the ice and even-
tually the simulated SMB (Cristea et al., 2022). We therefore
increased the number of snow layers from 3 to 12, following
the layering scheme proposed by Decharme et al. (2016) for
ISBA-ES, in which the new layering scheme is defined as

Disnow =min
(
δi,

Zsnow
12

)
for i ≤ 5 or i ≥ 9

D6
snow = 0.3dr−min

(
0, 0.3dr−D

5
snow

)
D7

snow = 0.4dr+min
(
0, 0.3dr−D

5
snow

)
−min

(
0, 0.3dr−D

9
snow

)
D8

snow = 0.3dr−min
(
0, 0.3dr−D

9
snow

)
dr = Zsnow−

5∑
i=1
Disnow−

12∑
i=9
Disnow

. (25)

The δi values correspond to the maximum widths of the
layers 1 to 5 and 9 to 12 and are fixed to δ1 = 0.01 m,
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δ2 = 0.05 m, δ3 = 0.15 m, δ4 = δ10 = 0.5 m, δ5 = δ9 = 1 m,
δ11 = 0.1 m, and δ12 = 0.02 m. For very thin snowpacks
(Zsnow ≤ Zthin = 0.1 m), each layer has the same thickness
Zthin
12 The layer thicknesses are updated at each time step if

the first two layers (i = 1, 2) or the bottom layer (i = 12)
become too thin

(
less than Disnow = 0.5×min

(
δi,

Zsnow
12

))
or too thick

(
larger than Disnow = 1.5×min

(
δi,

Zsnow
12

))
. In

that case, the snow mass and heat content are redistributed
according to the new layering scheme. Otherwise, the layer
thicknesses at the current time step are kept to their previ-
ous values (i.e. at the previous time step). This allows us to
maintain the density and thermal conductivity of fresh snow
as long as the depth has not changed too much. This enables
the model to work more closely with more complex models
in which new snow layers are associated with a new snowfall
event.

2.2.2 Implementation of ice layers

In the case when the snow mass melts completely, ice melting
occurs if the available energy is sufficient and contributes to
runoff. To account for the presence of ice below the snow lay-
ers, we implemented a new module in ORCHIDEE to com-
pute the heat diffusion and the vertical temperature distribu-
tion in the ice, as well as the potential ice melting. This mod-
ule works in a similar way as the ES model and only accounts
for vertical fluxes. The ice reservoir is discretized into eight
layers whose maximum thicknesses are fixed at 0.01, 0.05,
0.15, 0.5, 1, 5, 10, and 50 m. A finer vertical spacing is im-
posed for the upper layers to better resolve heat conduction
at the snow–ice or atmosphere–ice interface. The large thick-
ness of the bottom layer allows it to have an almost-constant
temperature throughout the year, as has been observed at a
few tens of metres in depth (Patterson, 1994). Ice layers are
only implemented above an icy soil type. If the icy soil is
predominant in a given grid cell, then the entire surface cor-
responding to this grid point will be considered icy.

In the absence of a dynamic ice model that transports ice
from the interior of the ice sheet (or glacier) to the edges, the
total ice mass may disappear entirely in the ablation zones,
especially in long-term simulations. To avoid such situations,
ice is considered an infinite reservoir: melting ice contributes
to runoff but, at each time step, the amount of ice melted in
the upper layers is counterbalanced by ice added at the base,
and the layer thicknesses are kept fixed to their initial value.

The vertical distribution of temperature is determined us-
ing the same numerical scheme as that for the snowpack. If
the snow is still present over the icy soil, the temperature in
the top ice layer is given by the temperature of the bottom
snow layer computed using Eq. (21). If the snow has com-

pletely melted, the temperature in the first ice layer is given
by an expression similar to Eq. (20):

T 1
ice =

[
λice ·Cgr_ice+

(
Tsurf+ T

add
snow

)
1+ λice

(
1−Dgr_ice

) ]
. (26)

For the deeper layers, the ice temperature is expressed as fol-
lows:

T i+1
ice = Cgr_ice+Dgr_ice · T

i
ice. (27)

Similarly to the snow coefficients (see Eqs. 20 and 21), λice,
Cgr_ice, and Dgr_ice depend on the vertical discretization and
the thermal properties of the ice. The formulations of the
heat capacity (Cice) and thermal conductivity (3ice) of the
ice have been taken from those used in the GRISLI ice-sheet
model (Yen, 1981) and are given by

Cice = ρice (aci+ bci (Tice− T0)) (28)
3ice = aλi exp(bλi × T0) , (29)

where Tice is the ice temperature, aci = 2115.3 J K−1 kg−1,
bci = 7.79293 J K−2 kg−1, aλi = 6.727 W m−1 K−1, and
bλi =−0.041 K−1.

A major difference between the hydrology of snow and
ice layers lies in the fact that ice is considered an imperme-
able medium. Hence, liquid water coming from melting ice
is treated as running off instantaneously with no possibility
of refreezing. As a result, when the ice temperature is above
the melting point, the energy available for phase change in
the ith ice layer (J m−2) is given by

Eiice = C
i
ice

(
T iice− T0

)
Diice. (30)

Similarly to Smelt (Eq. 24), the total amount of ice melt is
given by

Mice =

∑
i

Eiice

Lf
, (31)

and the runoff is computed as the sum of Msnow and Mice.
Given the fact that snow drift is ignored, the surface mass
balance is computed as

SMB= Psnow+Prain−Msnow−Mice− Ssnow. (32)

2.2.3 Other processes in the new ES model

Another modification made to the ES module concerns
the inclusion of rainwater percolation within the snowpack,
which may refreeze at depth as long as the maximum water-
holding capacity is not exceeded. In case of rain-on-snow
events, we also enhanced the snow ageing by a factor of 2
(fage = fage×2). Although it sounds somewhat arbitrary, we
introduced this parameterization into the model to account
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for the effect of such events on metamorphism and densifi-
cation (Marshall et al., 1999), thereby lowering the albedo
(Yang et al., 2023).

The snow thermal conductivity has been modified to fol-
low a similar formulation to that used in the ISBA-ES model
(Decharme et al., 2016) and the CROCUS model (Vionnet et
al., 2012) and proposed earlier by Yen (1981). Therefore, the
effective thermal conductivity in the ith layer now reads

3ieff =

(
aλv +

bλv

cλv + T isnow

)
P0

P
+3ice

(
ρis
ρw

)1.88

. (33)

The first term on the right-hand side that parameterizes the
water vapour diffusion effects (3ivap) remains unchanged
(see Eq. 15). The second term replaces Eq. (14) used in the
previous ES version (Wang et al., 2013) and corresponds
to the new formulation of the snow thermal conductivity
(3icond). Here, the ice thermal conductivity (3ice) differs
from the value found in Decharme et al. (2016) and is given
by Eq. (29).

Besides the new snow-layering scheme and the changes
mentioned in this section, all the other processes simulated
in the new ES module are treated in the same way as in the
three-layer version.

3 Experimental setup

3.1 Forcing by the regional atmospheric model MAR

The ORCHIDEE-ICE simulations presented in this paper
were driven by the atmospheric outputs of the regional atmo-
spheric model MAR (Fettweis et al., 2017). This approach
was motivated by the fact that MAR was initially developed
for polar regions (Gallée and Schayes, 1994). Moreover, it is
coupled to a land surface scheme, SISVAT (Soil Ice Snow
Vegetation Atmosphere Transfer; De Ridder and Schayes,
1997), that includes a physically based snowpack model de-
rived from the multi-layered snow model CROCUS (Brun et
al., 1989, 1992). As such, MAR has been extensively used
to simulate the present-day climate and surface mass balance
of the GrIS and compares well to reanalyses and available
data of SMB measurements (e.g. Fettweis et al., 2017, 2020;
Franco et al., 2012; Montgomery et al., 2020; Delhasse et
al., 2020). Therefore, the use of atmospheric forcings from
MAR offers a good opportunity to assess the performance of
our snow model at simulating the SMB and ablation-related
processes.

The MAR simulations (1960–2019) were run at a
20 km× 20 km resolution. Here, we use version 3.11.4, iden-
tical to version 3.11.5 for the Greenland ice sheet (Smith et
al., 2023). MAR was forced every 6 h at its lateral boundaries
by the meteorological fields (temperature, humidity, wind,
and pressure) coming from the ERA-40 (1960–1978, Up-
pala et al., 2005) and the ERA-Interim (1979–2019, Dee et

al., 2011) reanalyses from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Sea surface tempera-
tures and sea ice cover, also coming from ECMWF reanaly-
ses, were 6 h prescribed.

3.2 The ORCHIDEE-ICE simulations

The ORCHIDEE-ICE simulations are run at a 30 min time
step with the same spatial resolution as the MAR outputs
(20 km× 20 km). The integration domain covers the whole
of Greenland. ORCHIDEE-ICE is forced every 3 h by the
downward shortwave and longwave radiation, the surface
air temperatures, and the specific humidity (all at 2 m); the
wind speed (at 10 m); the surface pressure; and the precipi-
tation rate (split between rainfall and snowfall). Simulations
are performed over the 1995–2019 period. The first 5 years
(1995 to 1999) are used for the initialization of the snowpack
and are not included in the analysis. However, to obtain rea-
sonable thermal conditions within the ice layers, longer time
integration is required. Thus, we performed a preliminary
spin-up experiment over the same 25 years to infer an initial
vertical temperature profile for the subsequent ORCHIDEE-
ICE simulations.

The name and the characteristics of the different experi-
ments presented in this paper are summarized in Table 1. Us-
ing the experimental design described above, we first ran the
ES model with 3 and 12 snow layers (STD-3L and STD-12L
experiments respectively) to evaluate the added value of the
new layering scheme. These experiments were carried out
with the albedo parameters used in the CMIP6 ORCHIDEE
version (Chéruy et al., 2020) and referred to hereafter as the
standard snow albedo parameters.

Due to the strong sensitivity of the SMB to the albedo,
we also conducted two additional experiments with modified
values of the albedo parameters. In the ASIM-12L experi-
ment, we used the parameters inferred from the approach of
Raoult et al. (2023). This latter was based on a data assimila-
tion experiment using the MODIS retrievals. The main goal
of their study was to optimize the albedo parameters so as to
improve the albedo for the ice sheet as a whole, while giving
an extra weight to the edges where the greatest amount of
runoff is produced. In doing this, they also succeeded in im-
proving the model–data fit between the ORCHIDEE albedo
and MODIS retrievals over the whole GrIS and in reduc-
ing the root-mean-square error (RMSE) by ∼ 25 %. How-
ever, their work was done with a previous version of the
ORCHIDEE-ICE model with only three snow layers and in
which the ice layers were not implemented. Instead, ice was
mimicked by a soil type whose porosity and volumetric wa-
ter content were set to 98 % to simulate soil filled with frozen
water.

The logical follow-up to the work of Raoult et al. (2023)
would have been to apply the optimization algorithm to
the new version of ORCHIDEE-ICE. Since this approach is
highly time-consuming, it has not yet been carried out, but
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it will be the focus of further investigations. Therefore, us-
ing the new ORCHIDEE-ICE model version, we adopted a
manual tuning approach (i.e. trial-and-error method) to ad-
just the albedo parameters (OPT-12L experiment). This pro-
cedure consists in (1) changing the parameter values, the new
value being taken from the range reported in Table 1; (2) run-
ning the model with the new parameter values; (3) evaluat-
ing the model performance (in terms of SMB and its com-
ponents) using statistical criteria (e.g. RMSE between MAR
and ORCHIDEE-ICE); and (4) repeating steps (1) to (3) until
an acceptable calibration is obtained (i.e. acceptable values
of SMB, runoff, refreezing, and sublimation).

Finally, to assess the impact of the climatic fields used
as inputs of ORCHIDEE-ICE, we performed another experi-
ment (ERA5-12L experiment) by forcing the model with the
ERA5 reanalysis (Hersbach et al., 2020) and using the same
albedo parameters as in OPT-12L experiment.

4 Methodology for the model performance evaluation

4.1 Comparison with MAR outputs

Our first objective is to assess the performance of the OR-
CHIDEE ICE model in representing the GrIS SMB. The
period under study spans the 2000–2019 period. As men-
tioned in Sect. 3, MAR has revealed good ability at simu-
lating the SMB of present-day Greenland when compared
to observational data. Therefore, at the scale of the entire
GrIS, our evaluation is made with respect to the MAR out-
puts (Figs. 2a–5a). In all simulations presented in this paper
except ERA5-12L, the forcing fields of the ORCHIDEE-ICE
model are provided by MAR outputs. These include solid
and liquid precipitation, which constitute the accumulation
(and the climatic) component of the SMB. Using the MAR
forcing, our analysis of the ability of ORCHIDEE-ICE to re-
produce ablation processes (runoff and sublimation) is made
easier and is not biased by the use of another forcing.

4.2 Comparison with available data

In this study, we compared the albedo computed in
ORCHIDEE-ICE with satellite-derived estimates of daily
albedo. We used collection 6 from the MOD10A1 product
(Hall et al., 1995) retrieved from the NASA spaceborne sen-
sor MODIS. We chose this product because it has good spa-
tiotemporal coverage over snow-covered areas. It is also one
of the best-performing products in terms of comparison with
in situ data (Urraca et al., 2022, 2023). Moreover, while
studies based on the previous collection, Collection 5, re-
ported deficiencies at latitudes higher than 70° N (Alexander
et al., 2014), substantial improvements have been made to
Collection 6 using all available observations for the acqui-
sition period versus only four observations per day in Col-
lection 5 (https://lpdaac.usgs.gov/products/mcd43d11v006/,
last access: 22 January 2024). As a result, better-quality re-

trievals are obtained at high latitudes despite a slight nega-
tive bias (Urraca et al., 2022). To avoid inaccuracies in re-
trieved data due to the presence of clouds or aircraft con-
densation trails, the MOD10A1 albedo product used in this
study was further processed by Box et al. (2017): data have
been de-noised, gap-filled, corrected for the sun-angle bias,
and validated using daily ground albedo values from the
PROMICE (Programme for Monitoring of the Greenland ice
sheet, Fausto et al., 2021) and GC-net automatic weather sta-
tions (Box et al., 2017).

We aggregated the albedo data (500 m× 500 m) onto the
MAR grid to make the comparison between MODIS data
and the ORCHIDEE-ICE outputs. In this study, we used
the albedo data covering the 2000–2017 period because data
for the years 2018 and 2019 were undefined. The resulting
dataset may be used to calibrate the mean ORCHIDEE-ICE
albedo, computed as the mean between the visible (from 0.4
to 0.7 µm) and near-infrared (from 0.7 to 2.5 µm) bands (see
Sect. 2).

As in Fettweis et al. (2020), we also evaluated the mod-
elled SMB using the Machguth et al. (2016) SMB database.
Daily outputs are used here over 2000–2019. Modelled
SMBs were linearly interpolated to the measurement point
location and corrected for the elevation difference between
the MAR native topography at 20 km and the one provided
in the SMB database. This was done using space-varying
SMB–elevation gradients as proposed by Franco et al. (2012)
and Noël et al. (2016). Finally, measurements not included in
the 2000–2019 period and records located outside the 20 km
MAR ice mask are discarded from the evaluation.

4.3 Statistical metrics

To evaluate our model performance, we used statistical met-
rics.

The root-mean-square error (RMSE) has been computed
using the monthly mean variables averaged over 2000–2019
for the SMB and its components and over 2000–2017 for the
albedo. It is defined as

RMSE=

√√√√ 1
N

N∑
i=1

(XOR (i)−XMAR (i) )
2, (34)

where XOR(i) and XMAR(i) represent the ORCHIDEE-ICE
and MAR variables respectively at each grid point i, N is the
number of unmasked grid points (i.e. related only to the ice-
covered area), and i stands for the ith grid point. The RMSE
is a metric widely used to compare different models, but it
has some shortcomings related to the fact that higher weights
are given to larger errors. We there used additional statistical
criteria to provide a more in-depth picture of our analysis.
We computed the spatial RMSE (SRMSE), which gives a
measure of the quadratic difference averaged over time be-
tween values simulated by both models over the entire GrIS
domain and at each time step. Thus, by taking the tempo-
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Table 1. List of the ORCHIDEE-ICE experiments (first column) with values chosen for the different albedo parameters (standard albedo
parameters for STD-3L and STD-12L; optimized albedo parameters inferred from Raoult et al., 2023, for ASIM-12L; and manually tuned
parameters for OPT-12L and ERA-12L). Values in brackets indicate the range of values considered in the manual tuning approach for each
parameter. Bold formatting indicates the parameter values used in the OPT-12L (manual tuning) experiment.

Experiment No. of Aaged Bdec τdec δc ω1 ω2 τmax αice
snow layers [0.50–0.70] [0.10–0.40] [1.0–10.0] [0.2–2.0] [1.0–7.0] [0.5–6.0] [40–60] [0.30–0.50]

STD-3L 3 0.620 0.170 10 0.2 7 4 50 0.400
STD-12L 12 0.620 0.170 10 0.2 7 4 50 0.400
ASIM-12L 12 0.553 0.320 6.911 0.783 3.037 3.974 56.183 0.476
OPT-12L 12 0.580 0.280 2.0 1.0 3 6 54 0.420
ERA-12L 12 0.580 0.280 2.0 1.0 3 6 54 0.420

ral variations in the simulated time series into account, the
spatial RMSE makes it possible to assess the model’s perfor-
mance over both the entire geographical domain and the time
period under consideration. It is computed as follows:

SRMSE=

√√√√ 1
Nt ×N

Nt∑
t=1

N∑
i=1

(
Xi,OR (t)−Xi,MAR (t)

)2
. (35)

Xi,OR (t) and Xi,MAR (t) are respectively the ORCHIDEE-
ICE and MAR variables at each grid point i and each time
step t . Nt is the number of time steps. In contrast to the
RMSE, we used the daily simulated values to compute the
SRMSE.

While the RMSE and SRMSE give an indication of the
magnitude of the absolute difference between both models,
it is also important to calculate the area-weighted average
bias (hereafter, areal-mean bias) of each grid point in or-
der to examine whether the model variables simulated by
ORCHIDEE-ICE are underestimated (negative bias) or over-
estimated (positive bias). This bias (MB) is given by

MB=

N∑
i=1
Ai (XOR (i)−XMAR (i) )

N∑
i=1
Ai

, (36)

where Ai is the surface area of each grid point.
Finally, we also examined the probability density func-

tions (PDFs) and performed a Cramer–von Mises (CVM) test
(Anderson, 1962) to compare the MAR and ORCHIDEE-
ICE distributions of a given variable. The CVM test inte-
grates the quadratic differences between the two models over
the whole distributions (including the tails of the distribu-
tions). In this sense, it is more powerful and more sensitive
to departures from the reference distribution (i.e. MAR) than
the widely used Kolmogorov–Smirnov test (Stephens, 1970),
which is based on the absolute value of the greatest distance
between the two distributions.

5 Results

5.1 Evaluation against MAR for standard albedo
parameters

Figures 2 to 4 display the spatial distribution of runoff, sub-
limation, and refreezing simulated by MAR (Figs. 2a, 3a,
4a) and by ORCHIDEE-ICE in the STD-3L (Figs. 2b, 3b,
4b) and STD-12L (Figs. 2c, 3c, 4c) experiments. The main
runoff areas simulated with MAR are located on the western
edge; however, to some extent, runoff occurs in all periph-
eral areas of the ice sheet (Fig. 2a). Locations of the ablation
zones are well represented in ORCHIDEE-ICE but are lim-
ited to a very narrow band, especially in the STD-3L simula-
tion (Fig. 2b). Increasing the number of snow layers favours
the inland expansion of the ablation areas on the western and
northern margins (Fig. 2c). However, this expansion remains
too restricted compared to MAR (Fig. 2a). In the ablation ar-
eas, differences in the amount of runoff exceed 1.5 mm d−1

(Fig. S1). Integrated over the whole ice sheet (Table 2), the
runoff values computed in the STD-3L (152 Gt yr−1) and
STD-12L (205 Gt yr−1) experiments for the 2000–2019 pe-
riod are respectively 59 % and 45 % lower compared to those
of MAR (375 Gt yr−1). As a consequence of the consider-
ably smaller amount of runoff in ORCHIDEE-ICE and thus
of surface meltwater, refreezing is also much lower (Table 2)
and less extended (Fig. 3a–c) compared to that in MAR. It
can be noted, however, that the disagreement is less pro-
nounced with the STD-12L experiment (Fig. S2), which un-
derlines the benefit of increasing the number of snow layers.

Large differences between MAR and ORCHIDEE-ICE
also arise regarding sublimation (32 and 33 Gt yr−1 in the
STD-3L and STD-12L experiments respectively against
82 Gt yr−1 for the 2000–2019 period in MAR). This feature
concerns the entire ice sheet but is even more striking in
peripheral areas (Figs. 4 and S3). In central Greenland, dif-
ferences are smaller, but ORCHIDEE-ICE simulates a little
condensation (Fig. 4), whereas MAR does not.

The differences in simulated runoff and in sublimation
between MAR and ORCHIDEE-ICE translate into over-
estimated SMB values simulated with ORCHIDEE-ICE
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Figure 2. Spatial distribution of the runoff (in mm d1) averaged over the 2000–2019 period and simulated with MAR (a) and the ORCHIDEE-
ICE model (b–e) using the 3-layer snow scheme and the standard albedo parameters (b), the 12-layer snow scheme and the standard albedo
parameters (c), the 12-layer snow scheme and the albedo parameters optimized using a data assimilation technique (Raoult et al., 2023)
and a previous version of the ORCHIDEE-ICE model (d), and the 12-layer snow scheme and the albedo parameters obtained after manual
tuning (e).

(504 and 450 Gt yr−1 in STD-3L and STD-12L against
286 Gt yr−1 in MAR; see also Figs. 5 and S4). Since inland
regions are dominated by the accumulation signal, which is
provided by the MAR outputs, the SMB anomalies are pri-
marily driven by differences in the ablation components oc-
curring at the edges of the ice sheet and exceed 2 mm d−1 in
most parts of the western and southeastern margins.

An important conclusion that can be drawn from these
results is that the use of a better-resolved snow-layering
scheme (12-layer as opposed to a 3-layer snow scheme) re-
duces the mismatch between MAR and ORCHIDEE-ICE.
This is mainly illustrated by the integrated SMB and runoff
values that are respectively ∼ 35 % lower and ∼ 11 % higher
in STD-12L, translating into reductions in RMSE values
(∼ 19 % and ∼ 17 % for SMB and runoff respectively; see
Table 2), areal mean bias (∼ 25 % and ∼ 24 % respectively),

and, to a lesser extent, of the spatial RMSE (∼ 8 % for both
SMB and runoff). Nevertheless, the differences compared
with MAR are still too large for the model to be used as a
reliable tool to compute the GrIS SMB.

5.2 SMB and runoff for modified albedo parameters

5.2.1 Impact of optimized albedo parameters

As snow is a highly reflective medium, small changes in
albedo may produce large changes in the surface energy bal-
ance and thus in the SMB. In the GrIS interior, there is
generally quite-good agreement between the summer albedo
computed by MAR and the standard ORCHIDEE-ICE sim-
ulations (i.e. STD-3L and STD12-L experiments; Figs. 6b
and c and S5) with slight negative anomalies of less than
0.05. Negative anomalies (∼−0.1) also appear, mainly in
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Table 2. Simulated values of SMB, runoff, sublimation, and refreezing integrated over the entire Greenland ice sheet and averaged over the
2000–2019 period (second column). Evaluation of simulated SMB and SMB components is done with respect to MAR outputs using the
values of the root-mean-square error (third column), areal mean bias (fourth column), and spatial root-mean-square error (fifth column). Bold
formatting refer to the reference (MAR) and manual tuning (OPT-12L) experiments.

Experiments SMB RMSE Areal mean bias Spatial RMSE
(Gt yr−1) (in mm d−1) (in mm d−1) (in mm d−1)

MAR 286
STD-3L 504 0.976 0.351 3.050
STD-12L 450 0.786 0.264 2.809
ASIM-12L 466 0.706 0.290 2.602
OPT-12L 301 0.464 0.024 2.530
ERA5-12L 352

Experiments Runoff RMSE Areal mean bias Spatial RMSE
(Gt yr−1) (in mm d−1) (in mm d−1) (in mm d−1)

MAR 375
STD-3L 152 1.107 −0.357 3.157
STD-12L 205 0.922 −0.272 2.900
ASIM-12L 217 0.829 −0.254 2.639
OPT-12L 336 0.592 −0.063 2.539
ERA5-12L 273

Experiments Sublimation RMSE Areal mean bias Spatial RMSE
(Gt yr−1) (in mm d−1) (in mm d−1) (in mm d−1)

MAR 82
STD-3L 32 1.000 −0.081 0.200
STD-12L 33 0.096 −0.079 0.203
ASIM-12L 5 0.134 −0.124 0.226
OPT-12L 52 0.077 −0.049 0.274
ERA5-12L 89

Experiments Refreezing RMSE Areal mean bias Spatial RMSE
(Gt yr−1) (in mm d−1) (in mm d−1) (in mm d−1)

MAR 186
STD-3L 72 0.336 −0.183 1.254
STD-12L 104 0.269 −0.131 1.134
ASIM-12L 90 0.313 −0.155 1.182
OPT-12-L 158 0.240 −0.046 1.316
ERA5-12L

the northern part of the ice sheet, but with only a few con-
sequences to surface melting owing to the very cold condi-
tions in this region. However, on the western margin where
most of the melting takes place, larger snow albedo values
are found in ORCHIDEE-ICE. This leads to underestimated
surface temperatures compared to MAR (Fig. 7) and, thus,
to undervalued runoff that may explain some of the discrep-
ancies between MAR and ORCHIDEE-ICE. There are also
differences between the observations provided by MODIS
retrievals and the MAR albedo (Fig. 6a and f), especially in
the northern and southern parts and on the western margin.
On the other hand, the summer albedo computed in the STD-
3L and STD-12L experiments (Fig. 6g and h) is generally too

low in the interior of the ice sheet and too high on the western
margin, with differences from 0.05 to 0.15.

As mentioned in Sect. 3.2, we investigated the sensitivity
of the SMB and its components to the albedo. We first per-
formed an ORCHIDEE-ICE experiment (ASIM-12L) with
the optimized albedo parameters inferred from Raoult et
al. (2023). Figure 6i illustrates how the representation of
the albedo has been improved in the ASIM-12L experiment
compared to STD-12L (Figs. 6h, S5 and S8). Model–data
discrepancies are now reduced, with differences lower than
0.05 except in the northernmost parts of the ice sheet. The
RMSE decreased by ∼ 26 % (Table 3), which is quite con-
sistent with Raoult et al. (2023). The ablation areas are now
better represented (Fig. 2d) due to increased surface temper-
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Figure 3. Same as Fig. 2 but for the simulated refreezing (in mm d−1).

atures (Fig. 7c) as a result of lower albedo values on the west-
ern margin (Fig. 6i).

However, despite the smaller mismatch between modelled
ASIM-12L albedo and MODIS retrievals and the better rep-
resentation of the ablation areas, the simulated amount of
runoff (217 Gt yr−1) integrated over the whole GrIS has only
slightly been improved with respect to STD-12L (Fig. 2d)
and remains quite different from the MAR outputs (Fig. 2a).
In addition, the simulated SMB (466 Gt yr−1) has even been
slightly degraded (Fig. 5a and d) due to negative temperature
anomalies in central Greenland extending to the southern tip
(Fig. 7c), resulting from slightly higher albedo values com-
pared to MAR and MODIS (Fig. 6a, i).

The low performance for the SMB computation in ASIM-
12L is not solely due to a small amount of runoff but also due
to strong negative values of sublimation (i.e. large condensa-
tion) over central Greenland (Fig. 3d) resulting in an aver-
age level of 5 Gt yr−1 over the entire ice sheet compared to
82 Gt yr−1 in MAR (Table 2). In the ASIM-12L experiment,
the albedo in the central GrIS region is slightly higher (up to

0.05) than the albedo retrieved from MODIS (Fig. 6i), while
the albedo computed with MAR is slightly lower (Fig. 6a
and f). This explains why the ASIM-12L surface tempera-
tures are smaller than those simulated with MAR. This can
lead, therefore, to lower saturation pressures that can drop be-
low the dew point and thus produce solid condensation. This
result highlights the key influence of the albedo on surface
processes and, in particular, illustrates how a small departure
from observations may lead to strong biases in sublimation
estimates.

5.2.2 Manual tuning

As mentioned in Sect. 3, we have not yet performed a data
assimilation experiment to calibrate the new 12-layer ES
model, given the computational cost of such an experiment.
Instead, we chose to follow a trial-and-error approach. As
runoff dominates the SMB signal, our primary objective was
to improve the runoff computation by reducing the summer
albedo values in the main ablation areas (i.e. the western mar-
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Figure 4. Same as Fig. 2 but for the simulated sublimation (in mm d−1). Negative values indicate condensation.

Table 3. Albedo RMSE values (second column), areal mean biases (third column), and spatial RMSE (fourth column) with respect to MODIS
(top) and MAR (bottom).

Experiments RMSE Areal mean bias Spatial RMSE
(w.r.t. MODIS) (w.r.t. MODIS) (w.r.t. MODIS)

MAR 0.076 −0.005
STD-3L 0.098 −0.047 0.098
STD-12L 0.097 −0.051 0.097
ASIM-12L 0.072 0.001 0.072
OPT-12L 0.111 −0.008 0.092

Experiments RMSE Areal mean bias Spatial RMSE
(w.r.t. MAR) (w.r.t. MAR) (w.r.t. MAR)

STD-3L 0.055 −0.042 0.055
STD-12L 0.058 −0.047 0.058
ASIM-12L 0.051 0.006 0.040
OPT-12L 0.092 −0.047 0.092
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Figure 5. Spatial distribution of the GrIS SMB simulated with MAR (in mm d−1) and averaged over the 2000–2019 period (a). Differences
in the GrIS surface mass balance between MAR and the ORCHIDEE-ICE model (b–e) with the standard parameter values of the albedo
parameterization and the three-layer snow scheme (b). Panels (c)–(e) correspond to simulations performed with the updated 12-layer snow
scheme for standard values of the albedo parameters (c), optimized values of the albedo parameters (d), and values of the albedo parameters
obtained after manual tuning (e).

gin). Given the number of albedo parameters, several options
are available to achieve this:

– lowering the albedo of aged snow (Aaged) and/or the
albedo of fresh snow (Aaged+Bdec);

– modifying the parameter controlling the decay rate of
snow albedo (τdec);

– increasing snow age by changing the parameters related
to snow ageing, such as the minimum snowfall thick-
ness needed to reset snow age to zero (δc), the tuning
parameters ω1, ω2 (see Eq. 10), and the maximum snow
age (τmax);

– changing the ice albedo (αice) because it can also affect
SMB and runoff computation if the snowpack melts en-
tirely during summer months in some places and gives
rise to bare ice.

Owing to the various influences of the albedo parameters,
we had to find a compromise to lower the albedo in abla-
tion areas and improve the computation of runoff and SMB
while keeping reasonable albedo values in the GrIS interior.
Among the values we tested for each of the parameters, the
set of parameters providing the best agreement with MAR

outputs (for SMB and SMB components) is highlighted in
bold in Table 1 (OPT-12L experiment). Compared to the
ASIM-12L experiment (Figs. 6i, S5, S8), the albedo mis-
match between ORCHIDEE-ICE (OPT-12L experiment) and
MODIS is amplified, especially along the western margin
and in the northern sector, with differences reaching 0.25 and
0.3 respectively (Fig. 6j). Nevertheless, these results were
expected since our manual tuning was designed to increase
the magnitude of the ablation components (especially runoff)
and to decrease the SMB and, therefore, to lower the albedo
values with a direct impact on surface temperatures, hence
surface melting and sublimation.

5.2.3 Impact on SMB components

Using the new set of albedo parameters obtained with the
manual tuning approach, the ablation areas are now much
more extended than those simulated in the STD-12L experi-
ment (Fig. 2c and e). Compared to MAR (Fig. 2a), they are
even wider in the northern part due to increased surface tem-
peratures (Fig. 7d) in response to lower albedo values (up
to −0.25). The total amount of runoff averaged over the
2000–2019 period is now 336 Gt yr−1 (against 375 Gt yr−1

in MAR). For the OPT-12L experiment, the RMSE value
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Figure 6. Left – spatial distribution of the summer (JJA) albedo computed with MAR (a) and MODIS (f) and averaged over the 2000–
2017 period. Right – differences between the albedo computed with ORCHIDEE-ICE and MAR (b–e) and between ORCHIDEE-ICE and
MODIS (g–j) for the 3-layer snow scheme and the standard albedo parameters (b, g), the 12-layer snow scheme and the standard albedo
parameters (c, h), the albedo parameters inferred from a data assimilation technique and using a previous version of the ORCHIDEE-ICE
model (d, i), and the albedo parameters obtained after manual tuning (e, j).
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Figure 7. Spatial distribution of the snow temperature differences
with respect to MAR averaged over the 2000–2019 period (in °C)
simulated for the STD-3L (a), STD-12L (b), ASIM-12L (c), and
OPT-12L (d) experiments.

decreased by ∼ 40 % compared to STD-12L (Table 2). In
the same way, the sublimation (52 Gt yr−1) and refreezing
(158 Gt yr−1) match better with MAR (Table 2). In particular,
condensation over central Greenland has been considerably
reduced, notably with respect to ASIM-12L, but sublimation
is still underestimated along the GrIS edges and in the south-
ern part (Fig. 4e). The increase in refreezing (with respect
to STD-12L and ASIM-12L) in the GrIS interior (Fig. 3e) is
likely linked to lower summer albedo values (Fig. 6e and j)
leading to a smaller amount of melting compensated by re-
freezing. In the main ablation areas, more refreezing is pro-
duced and thus there is better agreement with MAR, although
it is still insufficient.

These results for the SMB components are evidently as-
sociated with an improved representation of the SMB itself
(Fig. 5e), which now reaches 301 Gt yr−1 (286 Gt yr−1 ob-
tained with MAR). Indeed, the RMSE and the spatial RMSE
values have been reduced by ∼ 41 % and 10 % respectively
for the SMB (∼ 28 % and 9 % for the runoff) compared to
the STD-12L experiment (Table 2). An even more striking
result concerns the areal mean bias, which has been lowered
by 1 order of magnitude. These improvements are also il-
lustrated in Fig. 8, which displays the monthly mean values
for each grid point of the SMB components simulated with

ORCHIDEE-ICE as a function of the same MAR variables
(see for example the correlation coefficient for both SMB
and runoff for the OPT-12L experiment). However, our re-
sults are less conclusive for sublimation and refreezing. Al-
though the areal-mean bias and the RMSE values indicate
a better match between the OPT-12L and the MAR simula-
tions, the spatial RMSE values are larger compared to the
three other ORCHIDEE-ICE experiments, suggesting lower
temporal consistency between OPT-12L and MAR. In addi-
tion, the correlation coefficients for sublimation and refreez-
ing are also smaller (Fig. 8). On the other hand, the best over-
laps between the probability density functions in MAR and
the ORCHIDEE-ICE experiments are undoubtedly obtained
for OPT-12L, as shown in Figs. S6–S7 and the scores of the
CVM tests reported in Table S1.

Despite these encouraging results, it is important to un-
derline that the improved SMB simulation in OPT-12L is
achieved through the albedo reduction, and therefore, to
some extent, comes from error compensation. However, the
reduced albedo also makes it possible to compensate for the
effect of some missing mechanisms, such as the lack of con-
sideration of snow–atmosphere interactions or the absence of
an explicit representation of snow metamorphism, which has
a direct impact on the density profile, the albedo itself, and
the temperature profile.

5.3 Vertical temperature and density profiles

To go a step further and gain a better understanding of the
above results, it is also important to explore the internal pro-
cesses of the snowpack. To achieve this, we chose to fo-
cus on the vertical temperature and density profiles. Figure
9 shows the snow temperatures simulated by ORCHIDEE-
ICE as a function of the MAR snow temperatures at 20cm
and 1m depths in the snowpack. These plots show that the
temperatures simulated in STD-3L, STD-12L, and OPT-12L
behave in approximately the same way as those of MAR.
In the first 20 cm, ORCHIDEE-ICE is slightly warmer than
MAR for temperatures between −30 and −10 °C, despite
a few slightly colder grid points appearing in the range of
−20 to−10 °C. The ASIM-12L experiment presents the best
agreement with MAR, although it has slightly lower temper-
atures. These features directly reflect the behaviour of surface
temperatures (Fig. 7) that strongly influence the upper snow-
pack layers. Another key point arising from these plots is the
very good agreement between MAR and ORCHIDEE-ICE
for temperatures above−10 °C. This suggests that the poten-
tial runoff that could occur in the first tens of centimetres of
the snowpack should not be affected so much.

However, the departure from MAR increases with snow
depth, especially for low temperatures. For example, at 1 m
depth, differences of 3–4 °C are obtained (Fig. 9) and may
exceed 5 °C for deeper levels (not shown). These enhanced
differences from MAR are likely due to a positive feedback
related to the thermal conductivity (see Eq. 33): as snow tem-
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Figure 8. Representation of the simulated SMB (first row), runoff (second row), sublimation (third row), and refreezing (fourth row) simu-
lated with ORCHIDEE-ICE as a function of the same MAR variables: STD-3L (first column), STD-12L (second column), ASIM-12L (third
column), and OPT-12L (fourth column). The different points represent the monthly mean values over the period of 2000–2019 for each of
the grid points. The regression line is displayed in red (R is the regression coefficient), and the line y = x is in black.
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perature increases by 1 °C in a given layer, the thermal con-
ductivity increases by 1 order of magnitude.

As pointed out by Domine et al. (2019), the snow thermal
regime and snow density are strongly coupled. As an exam-
ple, they mentioned the work of Fréville (2015), who showed
that an error of 1 °C in the surface temperature can lead to er-
rors in snow density of 100 kg m−3. Our experiments show
that for a depth of 20 cm, the higher the surface tempera-
ture, the lower the snow density on average (Fig. 10). On
the other hand, in the ASIM-12L experiment, snow temper-
atures are lower compared to the three other ORCHIDEE-
ICE experiments, and snow densities are larger. This con-
tradicts a number of studies (e.g. Kojima, 1967; Anderson,
1976; Mizukami and Perica, 2008), which have shown that
in a warmer snowpack, snow grains become rounded and are
more prone to be compacted more easily, hence leading to
an increase in snow density. However, in our model this pro-
cess cannot be reproduced, as snow metamorphism is only
accounted for through snow ageing. Conversely, in deeper
layers, the model is more effective at densifying (Fig. 10),
in line with the fact that warmer snow becomes more plastic
and compacts more easily. In particular, between 20 cm and
1 m in depth, the RMSE computed between OPT-12L and
MAR has been reduced from 79.63 to 30.22 kg m−3. Beyond
600 kg m−3, the ORCHIDEE-ICE densities are generally be-
low those of MAR because the maximum density is fixed to
750 kg m−3 (see Sect. 2). However, the comparison of our re-
sults on snow density with those of MAR should be viewed
with caution because, to the best of our knowledge, the snow
density simulated by MAR has not been evaluated against
available observations.

5.4 SMB evolution: impact of the climate forcing

The results presented in the previous sections were averaged
over the 2000–2019 period (for SMB and the SMB com-
ponents) and over the 2000–2017 period (for the albedo).
In this section, we present the temporal evolution of the
SMB between the years 2000 and 2019 (Fig. 11). Figure 11
shows that regardless of the ORCHIDEE-ICE experiment
under consideration, the evolution of the yearly integrated
SMB is in accordance with the evolution simulated by the
MAR model. In particular, the years in which extreme melt-
ing events were recorded (such as 2012 and 2019) are per-
fectly well represented (Bennartz et al., 2013; Tedesco and
Fettweis, 2020). As expected, the best agreement with MAR
is obtained for the OPT-12L experiment as a result of the cal-
ibration of the albedo parameters.

When forced by the ERA-5 meteorological fields and us-
ing the manually tuned parameters, ORCHIDEE-ICE sim-
ulates higher SMB values and a lower runoff (Fig. 11 and
Table 2), especially during the first period of the time series
(2000–2008). However, the evolution of the yearly integrated
SMB in the ERA5-12L experiment follows exactly the same
interannual variations as for the OPT-12L experiment forced

with MAR (Fig. 11). This indicates that the surface climate
simulated by MAR is close to that derived from the ERA-5
products. Moreover, in a comparative study of the ERA-5 re-
analyses, Arctic system reanalysis, and MAR performance,
Delhasse et al. (2020) showed that MAR outperforms ERA-
5 for near-surface temperatures when compared to observa-
tions from automatic weather stations. As the surface melt
and thus the SMB largely depend on near-surface tempera-
tures, there is, therefore, a strong interest in using MAR to
force our snow model and to compare its performance to that
of MAR.

In this paper, we have so far limited the comparison of our
results to those of MAR. However, as mentioned in Sect. 4,
we also evaluated the simulated SMB with 353 daily SMB
observations available from the PROMICE database over
the 2000–2019 period (Machguth et al., 2016; Mankoff et
al., 2021a, b). In addition, it is also interesting to evaluate
our model results against observations when ORCHIDEE-
ICE is forced by climatic fields independent from MAR out-
puts. To address this issue, we plotted the modelled SMB
for OPT-12L, ERA5-12L, and MAR for the grid points lo-
cated closest to the observation sites as a function of the
PROMICE SMB measurements (Fig. 12). We also provided
statistical elements for the comparison between MAR, the
five ORCHIDEE-ICE experiments, and the SMB observa-
tions (Table 4). This model–data comparison confirms the
conclusions we reached when evaluating the performance
of our model against MAR outputs, namely the significant
improvement in our results when moving from STD-3L to
OPT-12L. Moreover, although the bias between the OPT-12L
SMB and the observed SMB is twice as high as for MAR, the
model–data correlation is of the same order of magnitude as
for MAR (Table 4).

The ERA5-12L experiment also produces good agreement
with the observations. Despite a lower correlation coefficient
than for MAR and OPT-12L, the mean bias is on the same
order of magnitude as that of MAR, and the RMSE for the
SMB obtained is the lowest for any of the experiments. It is
clear that the SMB simulated in the experiments forced by
MAR is partly driven by the climate simulated by MAR it-
self (for the accumulation component). However, the results
obtained with ERA5-12L clearly show that the behaviour
of our model is consistent regardless of the climate forcing
used. Nevertheless, it should be noted that the resolution of
ORCHIDEE-ICE corresponds to that of the model used as
a forcing. For ERA5-12L, the resolution is about twice as
fine as for the experiments forced by MAR (20 km× 20 km).
Thus, to make our comparison between ERA5-12L, MAR,
and/or OPT-12L more robust, we should have used MAR
with a resolution of 10 km× 10 km. We cannot therefore rule
out that the results for OPT-12L would then have provided a
better comparison with the PROMICE data than ERA5-12L.
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Figure 9. Representation of the ORCHIDEE-ICE simulated snow temperatures at 50 cm (left) and 1 m in depth (right) as a function of the
MAR snow temperatures. The different points represent the monthly mean values over the period of 2000–2019 for each grid point. The
regression line is displayed in red (R is the regression coefficient), and the line y = x is in black.
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Figure 10. Same as Fig. 9 but for snow density.

6 Discussion and concluding remarks

The land surface component of the IPSL ESM used for
CMIP6 included a three-layer snowpack model operating
over continental surfaces. However, this snow scheme was
not adapted to glaciated surfaces, which is a major drawback

and makes it impossible to compute the surface mass balance
over ice sheets or glaciers. The aim of this paper was there-
fore to present the new developments made to adapt the snow
model to ice-covered areas and to document its performance.
Our first step was to calibrate the snow albedo parameteri-
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Figure 11. Evolution of the yearly surface mass balance of the Greenland ice sheet simulated with MAR (orange), ORCHIDEE-ICE forced
by MAR outputs (STD-3L and STD-12L – blue, solid, and dashed lines; OPT-12L – purple line), and ORCHIDEE-ICE forced by the ERA-5
reanalyses (green line).

Figure 12. Simulated SMB in the OPT-12L experiment and in MAR as a function of the observed SMB from the PROMICE network. As
the observed SMB values are not all available over the same time interval, the measurements are given in metres of water equivalent (mWE);
353 observations were available over the 2000–2019 period. Each simulated SMB value corresponds to the grid points located closest to the
observation sites. The red line is the regression line, with R being the correlation coefficient, and the black line indicates the line y = x.

zation over the Greenland ice sheet. In order to have a set
of climate variables covering the whole ice sheet, we chose
to force our model by the atmospheric outputs of the MAR
regional model, which shows very good performance at sim-
ulating the surface climate and thus offers undeniable advan-
tages for the representation of the physical processes related
to snow and ice, in particular surface melting (Delhasse et
al., 2020). We have shown that the ablation-related processes
are highly dependent on the choice of the albedo parameters.
The set of parameters obtained after manual tuning (OPT-

12L experiment) provides good agreement between the SMB
computed in ORCHIDEE-ICE and MAR. However, as out-
lined in Sect. 5.2.3, this improvement is mainly the result
of albedo lowering. The summer albedo computed with this
set of parameters has been degraded compared to MAR and
MODIS and to the albedo computed in the ASIM-12L exper-
iment (based on the MODIS-optimized albedo parameters),
as shown in Table 3 and in Figs. 6i–j, S5, and S8. While the
RMSEs computed between ORCHIDEE-ICE and MAR for
SMB and runoff have been reduced by ∼ 39 % and ∼ 33 %
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Table 4. Comparison of the simulated SMB in MAR, STD-3L,
STD-12L, ASIM-12L, and OPT-12L with the SMB observations
from the PROMICE network. The bias is computed as the average
between modelled and observed SMB for each grid point. Note that
the values of the bias and the RMSE are given in mWE, as the ob-
served SMB values are not all available over the same time interval.

Experiments Bias (mWE) Correlation RMSE (mWE)

MAR 0.14 0.86 0.82
STD-3L 0.94 0.67 1.70
STD-12L 0.68 0.73 1.43
ASIM-12L 0.74 0.75 1.33
OPT-12L 0.30 0.78 1.13
ERA5-12L 0.17 0.65 1.07

respectively from ASIM-12L to OPT-12L, the RMSE for
albedo has increased by 47 % (Table 3). The mismatch be-
tween MODIS retrievals and the OPT-12L albedo is mainly
observed in the northernmost part of the ice sheet and, to a
lesser extent, on the western edge.

A more objective method would have been to perform
a data assimilation experiment similar to the one pre-
sented in Raoult et al. (2023) using the new version of the
ORCHIDEE-ICE model. However, albedo is not the only
important parameter governing the snowpack evolution. The
albedo parameters inferred from the Raoult et al. (2023) opti-
mization greatly improve the representation of the albedo but
degrade the other model outputs compared to those obtained
with the manually tuned albedo parameters. This is most
likely because their optimization overfits the albedo retrievals
without applying constraints to other processes, strongly im-
pacting the SMB components and controlling the state of the
snowpack (e.g. snow compaction, snow density, snow viscos-
ity). This supports the recommendation for a multi-objective
optimization using not only albedo data but also vertical tem-
perature and density profiles, as well as SMB observations.
Since this type of approach is highly time-consuming, it has
not yet been undertaken but could be the objective of a future
study.

However, the reduction in albedo in the current
ORCHIDEE-ICE version can compensate for missing pro-
cesses. For example, snow drift, transmission of solar radia-
tion, or the effect of light-absorbing particles on the albedo
are ignored. Metamorphism is not explicitly represented, al-
though its effect on the albedo and the vertical density profile
are accounted for (albeit in a crude manner) through the snow
ageing function fage (Eq. 7) and the ψsnow function (Eq. 17)
respectively.

In the GrIS, snow erosion has often been considered a
second-order component of mass loss in ablation areas com-
pared to meltwater. However, in the ice-sheet interior, subli-
mation and snow erosion are dominant processes in remov-
ing mass from the surface and may have, therefore, a signifi-
cant impact on SMB (van Angelen et al., 2011).

Taking into account the transmission of solar radiation
within the snowpack can lead to a warming of the inter-
nal layers, with higher temperatures near the surface and
lower temperatures at depth due to the exponential decrease
in heat transfer. This results in a temperature gradient that
influences the metamorphism of snow grains and thus ac-
celerates densification (Colbeck, 1983). We showed that the
ORCHIDEE-ICE temperatures inside the snowpack were
higher than those simulated by the MAR model. A likely
hypothesis to explain this behaviour relies on the reduction
in albedo, which leads to excessively high surface temper-
atures. However, it is important to note that heat transfer
can promote snow melting, which in turn can percolate at
depth and refreeze, affecting both the runoff and the vertical
structure of the snowpack through changes in density (Col-
beck, 1983). Quantifying all these processes requires, there-
fore, the proper representation of solar absorption, which is
itself strongly dependent on snow optical properties (Warren,
1982) and, therefore, on snow grain size (Libois et al., 2013).
Since metamorphism is not explicitly represented in the
model, we assumed that representing solar absorption was
not a priority in our modelling approach, even if this choice
is debatable. However, in the near future, a more sophisti-
cated albedo scheme based on a radiative-transfer model ac-
counting for light-absorbing particles and snow grain size
(Kokhanovsky and Zege, 2004) will be implemented in the
ORCHIDEE-ICE model. This will allow us to represent the
backward- and forward-scattering processes as well as light
absorption.

In addition, there are also structural deficiencies related to
the fact that in ORCHIDEE-ICE, a single energy balance is
computed in one grid cell. This is detrimental for the albedo
computation, especially at the edges of the ice sheet where
several surface types may coexist in a 20 km× 20 km mesh.
However, the implementation of a multi-tile energy balance
is currently under development.

Finally, as our simulations have been run in offline mode,
the snow feedback onto the atmosphere has not been taken
into account, in contrast to the MAR model that is fully cou-
pled to a snow scheme derived from CROCUS (Brun et al.,
1989, 1992). Ignoring snow–atmosphere feedback may po-
tentially lead to biases related to surface processes and to
an improper representation of the energy and humidity flux
exchanges at the snow–atmosphere interface. For example,
forcing our model with the atmospheric temperature at 2 m
derived from the fully coupled MAR simulation could lead
to an underestimation of the energy available at the snow–
atmosphere interface, resulting in less snowmelt compared
to what is simulated in coupled mode. However, our manual
tuning approach aims to limit the potential underestimation
of the surface meltwater production. Conversely, any poten-
tial bias in the MAR forcing may also affect our results (Di-
etrich et al., 2024). To overcome this problem, it would have
been interesting to force ORCHIDEE-ICE with meteorologi-
cal fields recorded at the automatic weather stations. This has
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not been done in this study because the meteorological fields
required to force ORCHIDEE-ICE were not all available at
the PROMICE stations and because our first objective was to
obtain a reasonable estimate of the SMB and its components
at the scale of the entire GrIS.

Despite the potential improvements that could still be
made to ORCHIDEE-ICE to enhance the model’s perfor-
mance, the developments presented in this paper represent a
major step forward. Indeed, they now allow the ice-sheet sur-
faces to be handled by the land surface model, consistently
with all the other surface types, and not by the atmospheric
component of the IPSL model (LMDZ) as was the case up to
now. In addition, the new snow model can now be applied
to the continental glaciers, replacing the very crude snow
scheme used previously. Our developments enable us to pro-
vide a reasonable estimate of the surface mass balance of the
Greenland ice sheet, in very good agreement with that simu-
lated by the MAR model, which was used as a reference in
this study. These developments constitute a first step towards
the full coupling between the IPSL global climate model and
ice-sheet models.
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Appendix A

Table A1. List of variables used in ORCHIDEE-ICE and related to snowpack and ice processes.

Symbol Variable Units Value/Range

α Surface albedo of the grid cell
αsnow Albedo of a snow-covered surface
αsnow-free Albedo of a snow-free surface
αice Ice albedo
δc Snowfall thickness necessary to reset the snow age to zero kg m−2 s−1

ηsnow Snow viscosity Pa s
η0 Snow viscosity parameter Pa s 3.7× 107

3snow (3ice) Snow (ice) thermal conductivity W m−1 K−1

3eff =3snow Effective snow thermal conductivity W m−1 K−1

3cond Snow thermal conductivity related to heat conduction W m−1 K−1

3vap Snow thermal conductivity due to vapour diffusion and phase changes W m−1 K−1

λsnow Integration coefficient for snow thermal profile numerical scheme
λice Integration coefficient for ice thermal profile numerical scheme
ρsnow Snow density kg m−3 917
ρice Ice density kg m−3

ρwater Water density Kg m−3 1000
ρair Air density kg m−3

ρt Parameter of the maximum water-holding capacity kg m−3 200
ρψ Parameter for the effect of metamorphism on the snow density kg m−3 150
σ isnow Pressure of the snow load over the ith layer Pa
τsnow Snow age d
τdec Time constant of the albedo decay d
τmax Maximum snow age d
ω1, ω2 Tuning constants for snow albedo
Aaged Snow albedo of old snow
Ai Surface area of the ith grid point m2

aη Snow viscosity parameter K−1 8.1× 10−2

aψ Parameter for the effect of metamorphism s−1 2.8× 10−6

aλ Parameter for snow thermal conductivity W m−1 K−1 0.02
aλv Parameter of snow thermal conductivity from vapour transport W m−1 K−1

−0.06023
aci Parameter of heat capacity of the ice J K−1 kg−1 2115.3
aλi Parameter of ice thermal conductivity W m−1 K−1 6.627
Bdec Decay rate of snow albedo
bη Snow viscosity parameter m3 kg−1 1.8× 10−2

bψ Parameter for the effect of metamorphism K−1 4.2× 10−2

bλ Parameter of snow thermal conductivity W m5 K−1 kg−2 2.5× 10−6

bλv Parameter of snow thermal conductivity from vapour transport W m−1
−2.5425

bci Parameter of heat capacity of the ice J K−2 kg−1 7.79293
bλi Parameter of ice thermal conductivity K−1

−0.041
cψ Parameter for the effect of metamorphism m3 kg−1 460
cλv Parameter of snow thermal conductivity from vapour transport K −289.99
Csoil Surface heat capacity of soil J m−2 K−1

Csnow Snow heat capacity J m−2 K−1

Cvsnow, (Cice) Snow (ice) volumetric heat capacity J m−3 K−1

Cgr_snow, Dgr_snow Integration coefficients for snow thermal profile numerical scheme
Cgr_ice, Dgr_ice Integration coefficients for ice thermal profile numerical scheme
Disnow Depth of the ith snow layer m
Dilwe Snow water equivalent in the ith snow layer m
Diice Depth of the ith ice layer m
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Table A1. Continued.

Symbol Variable Units Value/Range

dt ORCHIDEE time step s 1800
Eisnow (E

i
ice) Energy available to induce phase changes in the snowpack (in the ice) W m−2 s−1

FC Heat conductive flux W m−2

fage Snow age function
Gsnow Surface energy flux over snow-covered areas W m−2

Gsurf Surface energy flux W m−2

H Sensible heat flux W m−2

H isnow Heat content in the ith snow layer W m−2 s−1

Hrainfall Heat release from rainfall W m−2

LE Latent heat flux W m−2

Ls Latent heat of sublimation J kg−1 2.8345× 106

Lf Latent heat of fusion J kg−1 333.7
LWnet Net longwave radiation W m−2

Msnow (Mice) Total amount of snow (ice) melt at each time step kg m−2 s−1

N Number of unmasked grid points over the entire Greenland ice-covered area
Nt Number of daily time steps over the years 2000–2019
P Atmospheric pressure hPa
P0 Reference pressure hPa 1000
Psnow Snowfall amount during the time step dt kg m−2 s−1

Prain Rainfall amount during the time step dt kg m−2 s−1

Qair Air specific humidity at 2 m –
Qsat Saturated specific humidity at 2 m –
qcdrag Transfer coefficient –
rmin Parameter of the maximum water-holding capacity 0.03
rmax Parameter of the maximum water-holding capacity 0.10
SCF Snow cover fraction –
Ssnow Snow sublimation kg m−2 s−1

SMB Surface mass balance kg m−2 s−1

SWnet Net shortwave radiation W m−2

Tair Surface air temperature at 2 m K
Tsoil Surface temperature K
T0 Freezing temperature K 273.15
T add

snow Snow temperature adjustment K
Tsnow (Tice) Snow (ice) temperature K
U Wind speed at 10 m m s−1

W i
liq Liquid content in the ith snow layer m

W i
max Maximum water-holding capacity of the ith snow layer m
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