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Abstract. Current global reanalyses show marked discrep-
ancies in snow mass and snow cover extent for the Northern
Hemisphere. Here, benchmark snow datasets are produced
by driving a simple offline snow model, the Brown Temper-
ature Index Model (B-TIM), with temperature and precipi-
tation from three reanalyses. The B-TIM offline snow per-
forms comparably to or better than online (coupled land–
atmosphere) reanalysis snow when evaluated against in situ
snow measurements. Sources of discrepancy in snow clima-
tologies, which are difficult to isolate when comparing online
reanalysis snow products amongst themselves, are partially
elucidated by separately bias-adjusting temperature and pre-
cipitation in the B-TIM. Interannual variability in snow mass
and snow spatial patterns is far more self-consistent amongst
offline B-TIM snow products than amongst online reanaly-
sis snow products, and the self-consistent products are more
similar to in situ observations, as evaluated in a validation
study. Specific artifacts related to temporal inhomogeneity in
snow data assimilation are revealed in the analysis. The B-
TIM, released here as an open-source, self-contained Python
package, provides a simple benchmarking tool for future up-
dates to more sophisticated online and offline snow datasets.

1 Introduction

Terrestrial snow is a highly variable component of the
cryosphere that responds to and feeds back on anthropogenic
global warming via snow albedo (e.g., Betts et al., 2014;
Thackeray et al., 2018). At its maximum, snow covers up
to 50 % of the Northern Hemisphere land surface (Robinson
and Frei, 2000), and it controls a wide range of hydrologi-

cal, ecological, and socio-economic systems (Bokhorst et al.,
2016). Snow variability and trends have been monitored over
several decades (Doesken and Judson, 1997; Mudryk et al.,
2020; Robinson, 1989) with regular reporting, such as in the
annual National Oceanic and Atmospheric Administration
(NOAA) Arctic Report Card. Despite this attention to snow,
there are marked discrepancies in historical snow estimates
from available products, leading to gaps in our understand-
ing of snow across a range of spatial scales, from point to
watershed to hemispheric (Magnusson et al., 2015; Mudryk
et al., 2015). Many factors lead to these discrepancies, mak-
ing it a challenge to identify a single authoritative dataset for
historical snow water equivalent or related variables. Further-
more, the simplest snow models can perform comparably to
the most complex snow models in relation to the available in
situ observations (Boone and Etchevers, 2001; Essery et al.,
2013; Magnusson et al., 2015; Menard et al., 2021). For this
reason, “offline” datasets generated with temperature index
models (TIMs), snow models forced only by air temperature
and precipitation that do not represent coupling of snow to
the land–atmosphere system, are still maintained (e.g., Hock,
2003; Ohmura, 2001; Sturm, 2015; Walter et al., 2005). Re-
cent studies have advocated for the use of multi-product en-
sembles spanning a range of complexities (including offline
snow models, land surface data assimilation systems, and
coupled atmosphere–land reanalysis systems) and a range of
snow schemes from single-layer to multilayer snow modules
embedded inside comprehensive land surface models. These
ensembles can then be used to characterize snow climatol-
ogy and trends (e.g., Mudryk et al., 2024), evaluate new snow
datasets, or quantify uncertainties (Essery, 2015; Kim et al.,
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2021; Mudryk et al., 2015). Methods to evaluate the quality
of potential ensemble members are actively being explored.

In this study, we use an offline TIM to investigate the dis-
crepancies in snow water equivalent (SWE) and snow cover
extent (SCE) in online reanalysis snow products. We use an
updated version of the Brown et al. (2003) TIM, hereafter
called the B-TIM (Brown Temperature Index Model), whose
broad applicability and extensive legacy at Environment and
Climate Change Canada (ECCC) motivate its use. The model
was initially developed to provide a first-guess field for a
gridded snow analysis using forcing from the European Cen-
tre for Medium-range Weather Forecasts (ECMWF) Reanal-
ysis 15 (ERA-15). The snow analysis was used to evalu-
ate global climate model output from AMIP II. Later, using
forcing from numerical weather forecasts to run the B-TIM,
the model was incorporated into the Canadian Meteorologi-
cal Centre’s (CMC’s) daily snow depth analysis (Brown and
Brasnett, 2010). This dataset continues to be used as a vali-
dation product for other studies (Kim et al., 2021; Zhang et
al., 2014). Until recently, the standalone version of the B-
TIM that is internally available at ECCC was coded in For-
tran 77 and forced with temperature and precipitation forc-
ing from ERA-Interim (Dee et al., 2011). The ERA-Interim
version participated in several ensemble studies (e.g., Brown
et al., 2010; Brown and Robinson, 2011; Mortimer et al.,
2020) and provided hemispheric snow mass estimates for
the NOAA Arctic Report Card (2017 edition to 2020 edition;
e.g., Mudryk et al., 2020) but has been superseded by a ver-
sion forced with ERA5. In addition to updated forcing, fol-
lowing ECCC’s push to provide transparent and reproducible
open-source climate assessment tools based on FAIR (find-
able, accessible, interoperable, and reusable) principles (En-
vironment and Climate Change Canada, 2021), we are moti-
vated to release the B-TIM as an open-source code following
updated coding standards.

Discrepancies in snow from “online” coupled reanaly-
ses arise from many sources, including inconsistencies in
terms of snow data assimilation schemes, underlying snow
and land–surface component model differences, atmospheric
model differences, differences in processes governing the
coupled surface energy balance, and interactions between all
these factors. To highlight one example which we will dis-
cuss in more detail below, while the assimilation of snow
data may improve instantaneous estimates of snow depth,
there is evidence that significant time series discontinuities
may result as contributions to the data stream change (as in
ERA5; Mortimer et al., 2020). Like any offline TIM, the B-
TIM does not assimilate snow data, does not capture surface
energetics, and features no coupling between snow and the
land–atmosphere state. The B-TIM offline snow products,
provided they are suitably validated, can thus isolate the role
of meteorological driving from issues related to data assim-
ilation, model bias, and errors arising from coupling, all of
which can be sources of discrepancy for more sophisticated
snow datasets. In this work, we use a fixed version of the

B-TIM without further calibration or tuning. Therefore, one
parameter set for the model is used, and the results may still
contain model bias. Quantifying this bias for the B-TIM can
be done through the analysis of parameter and error sensi-
tivity (Essery, 2015; Raleigh et al., 2015). However, our aim
is to investigate reanalysis snow biases; each offline snow
product will have the same model bias, whereas the coupled
reanalysis snow does not. Comparing offline snow products
therefore narrows down the sources of discrepancy without
requiring a re-run of the complex snow modelling and data
assimilation process.

We document an updated B-TIM algorithm (Sect. 2),
which we release here as an open-source, self-contained
Python repository. We then use the B-TIM to generate offline
SWE and snow cover extent using temperature and precipita-
tion forcing from the global reanalyses ERA5, JRA-55, and
MERRA-2 for 1980–2020. Through validation with in situ
data, we compare the realism of the offline B-TIM and online
coupled reanalyses (Sect. 3). This study has as its focus hemi-
spheric snow. Even at these large scales and excluding com-
plexities tied to mountain snow modelling, there are discrep-
ancies that should be characterized. For exploration into re-
gional performance, two other studies have been prepared for
publication: Mudryk et al. (2024) and Mortimer et al. (2024).
These include all the datasets discussed here. Mudryk et
al. (2024) evaluate a suite of 23 gridded SWE products,
ranking them by performance and inter-dataset consistency.
Mortimer et al. (2024) present an expanded reference SWE
dataset that combines in situ and airborne SWE measurement
and assess snow dataset performance against that record. The
same in situ data are used for this study. Our main scientific
work here, which is described in Sect. 3, will be to use the B-
TIM to characterize and explain discrepancies amongst on-
line reanalysis snow products’ climatological characteristics
and interannual variabilities. This analysis will include the
use of bias-adjusted temperature and precipitation forcing in
the B-TIM to elucidate sources of discrepancy. We discuss
results and conclusions in Sect. 4.

2 Data and methods

2.1 The B-TIM snow model

The calculations described in this section, which can also be
seen in the schematic in Fig. 1, comprise version 1.0.0 of
the B-TIM (https://doi.org/10.5281/zenodo.10044950; Elias
Chereque et al., 2024). This is the first updated description
in this model’s 2 decades of usage in many publications and
applications. Relative to Brown et al. (2003), we provide up-
dated documentation and changes to some constants, as re-
flected in the code and its parameters. Physical constants and
parameter values can be found in Table S1 in the Supple-
ment. At a given time step, we denote the initial snow depth
and density byDi and ρi. SWEi is the initial time step’s snow
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water equivalent, calculated as SWEi = ρiDi (with units of
kg m−2). All densities have standard units (kg m−3), and
snow depths have units of metres.

2.1.1 Initialization, meteorological driving, and time
stepping

Each simulated snow year is initialized from snow-free con-
ditions on 1 August and runs until the following 31 July; 2 m
temperature and total precipitation (frozen and solid) are the
only inputs to the model. The specific variables we used from
each reanalysis are listed in Table S2. A fixed 20 % precip-
itation reduction is implemented at each model time step as
a general loss parameter – this captures canopy interception,
sublimation, and blowing snow for frozen precipitation. The
variable P represents the reduced precipitation in metres of
water for a given time step and location. The model time
step is 1 h, but less frequent driving data can be handled. If
needed, the model linearly interpolates temperature to hourly
steps and divides accumulated precipitation by the duration
of the driving-data time step in hours.

2.1.2 Determining precipitation phase

At each model time step, the precipitation phase is clas-
sified as snow or rain using a 0 °C threshold. Previous B-
TIM applications allowed mixed precipitation between 0 and
2 °C following a linear relationship for the liquid fraction.
For large-scale studies, there is little advantage to including
mixed precipitation according to the linear relationship as op-
posed to a fixed threshold as both are coarse simplifications
(Jennings and Molotch, 2019). The absence of mixed pre-
cipitation has a minimal impact on the aggregated variables,
though it causes local differences in regions with ephemeral
snow.

2.1.3 Updating snow depth and density

Following Hedstrom and Pomeroy (1998), frozen precipita-
tion during a time step is assigned a “new-snow” density:

ρnew = A+BeT/C T < 0°C, (1)

where T is the air temperature (values of the constants are
listed in Table S1).

Intermediate values for snow depth and density are as-
signed to the model’s single snow layer.

D∗ =Di+P

(
ρw

ρnew

)
(2a)

ρ∗ =
(Diρi + Pρw)

D∗
(2b)

Three densification or melting steps are then applied to
evolve ρ∗ and D∗.

1. Snowmelt is computed at each model time step using
a melt factor, γ (mm w.e. K−1 h−1), which is based on

the intermediate snow layer density, ρ∗. The relation-
ship used to calculate γ is based on Kuusisto (1984):

γ =M1ρ
∗
−M2. (3)

Lower and upper bounds of 4.1× 10−3 and 0.23, re-
spectively, are enforced on γ . Hourly melt, represented
as the change in snow depth 1Dm, follows a standard
temperature index approach:

1Dm =

{
−
(T−Tmelt)

ρ∗
γ,T > Tmelt

0, T ≤ Tmelt,
(4)

where Tmelt =−1 °C is the threshold air temperature
used for snowmelt.

The leading coefficient in Eq. (3), M1, has been halved
relative to Brown et al. (2003) to reduce the rate of
snowmelt during the ablation season. This has been im-
plemented for the CMC snow product.

2. Snowmelt caused by rainfall on the snowpack is com-
puted using

1Dr = −
RρwCw(Tw− Tfreeze)

Lfρ∗
. (5)

Cw is the heat capacity of water (J kg−1 K−1), R is the
total rainfall (m), Tw is the rainfall temperature (°C), ρw
is the density of liquid water, and Lf is the latent heat
of fusion for ice (J kg−1). Rain temperature is taken to
be equal to air temperature, as in Brown et al. (2003),
and the snowpack is assumed to be isothermal and 0 °C,
implying instant melting of the snowpack when it is
warmed.

3. A second intermediate snow depth is computed based
on these first two steps.

D∗∗ =D∗+1Dm+1Dr (6)

Depending on air temperature, one of two possible den-
sification processes is implemented. Both processes ini-
tially affect density (Eqs. 7 and 9), and then snow depth
is adjusted to conserve total water.

Cold. When temperatures are below Tmelt, cold-snow
ageing is implemented as follows:

1ρc = C1
(
SWE∗

)
exp[C3 (Tmelt− Tsnow) ]

exp
[
−C2ρ

∗
]
, T < Tmelt. (7)

SWE∗ is the snow water equivalent (kg m−2, calculated
as the product ρ∗D∗∗). C1 and C2 are empirically de-
rived constants. This formulation was proposed in An-
derson (1976), and the parameters used in the B-TIM
are in the accepted range. Tsnow is the snow tempera-
ture, taken to be equal to air temperature in this step.
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Figure 1. Conceptual overview of the Brown Temperature Index Model (B-TIM). At every time step and location, temperature and precipi-
tation values are used to compute either the density and depth of any new snow or the temperature of any rainfall. The snowpack state (snow
depth and density) is affected by rain melt, melting due to air temperature, and one of two densification processes which cause both depth
and density variables to evolve.

Snowpack density is allowed to vary between 200 and
550 kg m−3. The densification process does not vary
seasonally.

Warm. When temperatures are above −1 °C, the snow-
pack undergoes a warm settling process, which in-
creases the density more rapidly. A maximum density is
first defined with dependence on the intermediate snow
depth:

ρmax =Wmax−
W1

D∗∗

(
1− exp

[
−
D∗∗

W2

])
. (8)

This is then adjusted by the intermediate density:

1ρw =
(
ρmax− ρ

∗
)(

1− e−a1t
)
, T ≥−1°C. (9)

The value of a is such that in, one model time step
(1t = 3600 s), the density difference is adjusted by 1 %
of (ρmax− ρ

∗), which constitutes a change in density of
a few percent for typical values of ρ∗.

The final density is calculated as ρf = ρ
∗
+1ρw, T ≥

−1 °C, else ρf = ρ
∗
+1ρc, and the final depth is cal-

culated after the densification process in the following
manner to conserve water:

Df =D
∗∗

(
ρ∗

ρf

)
. (10)

The final snow depth and density values are carried to
the next model time step, and new meteorological forcing is
read in. The values of the prognostic variables are recorded
at daily frequency and saved in monthly files. Annual total
SWE and maximum SWE are tracked over the model year,
and the values are saved at the end of the run.

2.2 Reanalysis products

In this work, we use three current-generation reanalyses
which produce snow variables for 40 years or more for the
Northern Hemisphere. We use the ECMWF Reanalysis ver-
sion 5 (ERA5) (Dutra et al., 2012; Hersbach et al., 2020),
the second-generation Modern-Era Retrospective analysis
for Research and Applications from the National Aeronau-
tics and Space Administration (MERRA-2) (Gelaro et al.,
2017; Reichle et al., 2017), and the Japanese Meteorologi-
cal Agency’s 55-year Reanalysis (JRA-55) (Kobayashi et al.,
2015). These products differ from one another with respect to
data assimilation schemes, as well as in terms of their com-
ponent atmospheric and land models. All three global reanal-
yses assimilate conventional atmospheric measurements, but
ERA5 and JRA-55 additionally assimilate snow depth obser-
vations and satellite-derived snow extent information.

The different techniques used to constrain ERA5 and JRA-
55 SWE using snow cover observations are described below
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in more detail. Additional comparisons of the reanalyses are
documented in Sect. S1 of the Supplement.

Beginning in 2004, ERA5 assimilates the Interactive Mul-
tisensor Snow and Ice Mapping System (IMS) snow cover
product wherever the model first guess indicates snow-free
conditions (de Rosnay et al., 2015). In the IMS snow cover
product, grid cells are either snow-covered or snow-free.
Snow-free observations are treated as observations of 0 cm
snow depth, while observations of full snow cover are treated
as 5 cm of snow depth. These observations, together with
the in situ snow depth measurements, enter the 2D Opti-
mal Interpolation (2D-OI) scheme to update the snow depth.
The inclusion of IMS snow cover in the data stream reduces
the overall snow amounts and is associated with a discon-
tinuity in ERA5 snow (Mortimer et al., 2020). We highlight
this effect through comparison with ERA5Snow, a data prod-
uct produced by an offline run of the ECMWF land model.
ERA5Snow is produced with the same land surface data as-
similation as ERA5, except for the IMS satellite snow prod-
uct (de Rosnay, private access to data). It is distinct from the
offline ERA5-Land product produced by ECMWF.

JRA-55 constrains snow using passive microwave obser-
vations from 1987 to the present, and climatological snow
cover fills any gaps back to 1980. Though the microwave data
processing methods are not fully documented in the peer-
reviewed literature, Kobayashi et al. (2015) say the estimates
of snow cover extent come from comparing brightness tem-
perature at different frequencies (37 and 19 GHz at both hor-
izontal and vertical polarization) to regionally and season-
ally varying thresholds. All the snow is removed from grid
cells where the land surface analysis indicates the presence
of snow and the satellite observations do not. Snow is added
to grid cells where the land surface analysis does not indicate
snow but the satellite observations do. Unlike the fixed rela-
tionship between snow cover and snow depth used in ERA5,
when the algorithm adds snow in JRA-55, it is a variable
snow depth that would reduce land surface temperatures to
freezing if it were to melt. Wherever the satellite and land
surface analyses agree (both report snow-covered conditions
or both report no-snow conditions), no adjustment is made.

2.3 Temperature and precipitation biases

Biases in temperature and precipitation directly impact both
online and offline snow products, and our aim is to sepa-
rately characterize their effects. Briefly comparing temper-
ature and precipitation fields from the three reanalysis prod-
ucts, MERRA-2 exhibits the lowest hemispheric mean land
temperatures for most of the year, and JRA-55 exhibits the
highest (Fig. 2a). In the winter months, the JRA-55 mean
temperature exceeds that of ERA5 by 2.15 K and that of
MERRA-2 by nearly 3 K, with the largest temperature differ-
ence occurring in January. In addition to being the coldest on
average, MERRA-2 has the largest land area capable of sus-
taining snow, diagnosed as regions with T < 0 °C (Fig. 2b).

Figure 2. Climatologies of mean temperature, frozen area, and to-
tal precipitation over Northern Hemisphere land areas, excluding
mountains, computed twice monthly using 14 d windows centred
on the 1st and 15th of each month.

This frozen land area exceeds that of ERA5 by 1 ×106 km2

or more during the shoulder seasons of autumn and spring.
With respect to total precipitation, JRA-55 is about

10 % wetter than the other two products across all months
(Fig. 2c). MERRA-2 and ERA5 agree more closely, with dif-
ferences of just 1 % in autumn and spring. ERA5 is 4 % wet-
ter in the winter, and MERRA-2 is about 6 % wetter in the
summer months. We investigate the roles of these forcing bi-
ases in SWE biases by implementing a simple climatological
bias correction (method is described in Sect. S2).

2.4 Topography, land mask, and regional definitions

Mountain regions are excluded from our analysis us-
ing a mask derived from the Global Earth Topography
and Sea Surface Elevation at 30 arcsec resolution digital el-
evation model (GETASSE30 DEM). Locations in the DEM
with local slopes greater than 2° are defined as mountainous.
After coarsening the slope mask (to 0.25°× 0.25°, the ERA5
resolution), grid cells that are more than 95 % mountainous
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are recorded in a binary mountain mask file which is coars-
ened as needed using a nearest-neighbour algorithm (for the
MERRA-2 or JRA-55 grids).

To define land grid cells, we use the land–sea masks asso-
ciated with each reanalysis. The land fraction is used to scale
grid cell land area when computing total snow mass, which
depends on SWE and land area. When possible, computa-
tions are done on a dataset’s native grid, and conservative
regridding is applied to the SWE data, conserving total snow
mass, before calculating grid-dependent metrics.

2.5 In situ validation of SWE datasets

We evaluate the SWE values from (offline) the B-TIM and
(online) reanalysis by comparing them to a combined histor-
ical snow course and airborne gamma-derived SWE dataset.
These data are independent from snow data assimilated in
JRA-55 and ERA5. Snow course observations involve man-
ual measurements of snow depth and density along a pre-
defined transect, with measurements being averaged to ob-
tain a single SWE value for each transect on a specific date
(WMO, 2018). The measurement frequency for snow courses
varies by jurisdiction, ranging from monthly measurements
in Alaska, the western continental US, and most of Finland
to measurements every 5 d during the spring snowmelt pe-
riod in Russia. The Russian network has the highest sam-
pling frequency and is well-distributed across the landscape,
while dense networks with lower sampling frequencies are
found in Finland, the northeastern US, and parts of southern
Canada. Airborne-gamma SWE estimates are calculated by
differencing snow-free and snow-covered measurements af-
ter accounting for background soil moisture. Flights are 15–
20 km long with a 300 m wide footprint. Data are available
for the United States and southern parts of some Canadian
provinces. There is broad consistency between snow courses
and airborne gamma observations (Mortimer et al., 2024),
and so we are confident in using both types of information
together to evaluate the two types of products.

Using the method in Mortimer et al. (2024), reference
SWE data are matched in space and time with the grid-
ded product data. Data are then spatially aggregated and
summarized using bias, unbiased root mean squared er-
ror (uRMSE), and correlation. We compare data pairs for
November through March for all years between 1980 and
2020, aiming to include as many measurements as possi-
ble before the snowmelt period. The validation is performed
on non-mountainous points with non-zero SWE values be-
low 500 mm that are simultaneously available for the refer-
ence data and all the estimates. The latter condition excludes
some snow courses in coastal areas due to differing land, ice,
and/or water masks and is consistent with our snow mass cal-
culations. In this study, there is no spatial aggregation by land
type.

3 Results

We compare snow from global reanalyses (ERA5,
ERA5Snow, MERRA-2, and JRA-55) to snow from
the offline B-TIM runs. The offline snow products are
named BrE5, BrM2, and BrJ55, reflecting the use of distinct
reanalysis meteorology for each version but the same B-TIM
snow model to produce snow. Two of the reanalysis datasets,
ERA5 and ERA5Snow, share the same temperature and
precipitation inputs (“meteorology”). Therefore, there is
only one BrE5 dataset produced. Standardizing through
using a single model means that differences between the
offline B-TIM runs primarily reflect differences in the
forcing data.

3.1 The B-TIM compares well to in situ observations

Comparing modelled snow to in situ observations is one way
to assess the realism and performance of each product. In
general, we find a much broader spread in modelled SWE
for high reference SWE values, showing overall decreasing
model skill with increasing snow depth (Fig. 3a–f). Each
scatterplot contains over 200 000 data points. In some prod-
ucts (JRA-55 and MERRA-2), there is a cluster of points
where the modelled snow is shallow, but the reference SWE
indicates deep snow. The B-TIM products have greater ab-
solute bias than their respective reanalysis products, but they
are of comparable magnitude. When mountain points are in-
cluded, the B-TIM products have lower absolute bias than the
reanalyses (not shown). Low bias does not necessarily mean
good performance as individual positive and negative differ-
ences can cancel each other out. Of the reanalyses, ERA5
and ERA5Snow have the lowest uRMSE and highest corre-
lation compared to the reference values, and so they outper-
form JRA-55 and MERRA-2 overall. The RMSE (calculated
as the bias and uRMSE added in quadrature) of each offline
snow product is less than that of its reanalysis counterpart. By
these measures, all three B-TIM products have comparable
skill to ERA5 and ERA5Snow. Finally, unlike their reanaly-
sis counterparts, BrJ55 and BrM2 do not display the cluster
of false low snow values.

These validation results show two things. First, the of-
fline products capture realistic snow patterns when com-
pared to ground measurements, even in the context of snow
from more complex coupled reanalyses. Second, we see that
snow data assimilation does not guarantee skilful snow mod-
elling by these measures. In particular, ERA5 or ERA5Snow
and JRA-55 are both produced with snow cover data as-
similation (see Sect. 2.2), but while the former two are the
best-performing products, the latter performs poorly (with
high uRMSE and low correlation) and struggles with both
false low snow values and large overestimations relative to
ground truth. MERRA-2 does not assimilate snow data but
also performs moderately according to the comparison met-
rics. Additionally, model complexity does not guarantee skil-
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Figure 3. SWE product validation against snow course and gamma SWE measurements. Panels (a)–(f) consist of scatterplots showing all
valid data pairs (snow course, product) from November to March over 1980–2018. The scatterplots are coloured as heat maps to display the
concentration of data points, which is highest where the colour is red. Summary statistics, including the bias, unbiased root mean squared
error (uRMSE), and correlation, are included in the legend and are summarized in (g)–(i).

ful snow modelling. The offline products generated with the
B-TIM, with neither snow data assimilation nor coupled in-
teractions between snow and the land–atmosphere system,
perform comparably to each other and to the relatively more
complex ERA5 and ERA5Snow, despite differences in the
forcing data.

3.2 Using the B-TIM to assess discrepancies between
reanalysis snow products

3.2.1 Discrepancies in reanalysis snow climatologies
are caused by forcing-data biases

Marked differences appear in the magnitude of total snow
mass and snow-covered area for the products considered
here. Among the online (the B-TIM) datasets, JRA-55
(BrJ55) has the highest peak snow mass, exceeding the max-
imum value of MERRA-2 (BrM2) by about 0.15× 1015 kg
(0.17× 1015 kg) and the maximum value of ERA5 (BrE5) by
0.73× 1015 kg (0.77× 1015 kg), as seen in Fig. 4. The rela-
tive rankings of these products and the biases in the peak
snow mass are closely reproduced by the offline model; since
the offline model can reproduce the biases, we explore the
possibility that they are directly caused by the forcing bi-
ases discussed in Sect. 2.3, which can equally affect both
types of products. We test if these inter-product biases can be
manipulated – in particular, minimized – by bias-correcting
the meteorological fields used to drive the B-TIM. If biases
in mean meteorological conditions are the primary source
of snow bias, a correction toward more similar climatolog-
ical conditions should yield more similar offline modelled

snow. We implement a basic multiplicative correction for
each month using climatological temperature and precipita-
tion conditions (see the Supplement). Then, for each possible
pair (e.g., ERA5 targeting MERRA-2 climatology), three ex-
periments are run: one with adjusted temperature, one with
adjusted precipitation, and one with both variables adjusted.
This yields 18 datasets in addition to the three unadjusted B-
TIM datasets, the three reanalysis datasets, and ERA5Snow.

Comparing the bias-adjusted versions of BrE5 and BrM2
(Fig. 5) indicates that temperature biases are the main driver
for the differences between ERA5 and MERRA-2 snow mass
and snow cover shown in Fig. 4; in the experiments where the
ERA5 and MERRA-2 temperature climatologies are bias-
adjusted, the resulting snow fields are also much more sim-
ilar. Precipitation biases play a smaller role, and correcting
the precipitation modestly decreases the snow mass biases
over the whole season. Snow-covered area is not very sensi-
tive to the precipitation correction, though the best agreement
in both cases comes from rescaling both variables. However,
mean biases in forcing variables do not explain all the dif-
ference in SWE. For the pairs involving JRA-55 (Figs. S1
and S2), the precipitation correction improves the agreement
between a dataset and a chosen target but not at the level ob-
served for the ERA5–MERRA-2 pair; the temperature scal-
ing sometimes degrades the agreement. However, JRA-55 is
several degrees warmer and about 10 % wetter than the other
two reanalyses on average over the region of interest (Fig. 2),
constituting more substantial differences than those that exist
between ERA5 and MERRA-2.
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Figure 4. (a) Snow mass climatology over Northern Hemisphere land, with grid cells exceeding 500 mm capped at 500 mm. (b) Snow-
covered area climatology, calculated using areas of grid cells with more than 4 mm SWE.

To summarize, the B-TIM products (BrE5, BrM2, BrJ55)
retain the relative biases present in the reanalyses. Motivated
by this, we have explored the potential use of bias correc-
tion on the meteorological forcing to elucidate the drivers of
these snow biases or to correct them to the first order. This
approach isolates a subset of drivers and gives insight into
the dominant sources of snow biases but requires more re-
finement to explain biases (see discussion in Sect. 4) more
fully.

3.2.2 The B-TIM versions of SWE fields show
consistency in seasonal cycle and interannual
variability

Aside from JRA-55, which has delayed snow accumulation
but an early peak SWE, all the other datasets agree that the
snow mass maximum occurs within a 2-week period cen-
tred on 15 March. For snow-covered area, all datasets except
MERRA-2 peak during the 14 d period centred on 1 Febru-
ary; the MERRA-2 maximum occurs 2 weeks earlier. Thus,
unlike the reanalyses, the B-TIM products provide more con-
sistent descriptions of key snowpack climatology metrics.

Figure 6 shows the September–October–November (SON)
mean snow mass time series, calculated over land re-
gions from 40–90° N (excluding mountains), with the same
500 mm maximum imposed as before to exclude high
SWE values over isolated grid cells. Figure 7 shows the
December–January–February (DJF) time series of mean
snow mass. In these figures, dashed lines are used for re-
analysis snow, and the solid lines show offline snow. Even
without detrending and removing the mean, it is clear that
the solid lines are highly consistent with each other (for both
continents and both seasons; panels a and c), while there

is much more disagreement between reanalysis products.
This highlights the role that factors other than forcing biases
play in introducing inter-product differences. We quantify the
consistency in the offline–offline and reanalysis–reanalysis
pairs by calculating correlation coefficients after removing
the least-squares linear fit (Fig. 8). Detrending by other meth-
ods yields similar results (e.g., using the Theil–Sen estimator,
which is robust with respect to outliers and shifts to the start
and end of the time series, not shown). Across all regions
and all seasons, the B-TIM products are strongly correlated
with one another (r>0.85), whereas the reanalysis r values
are lower in general and greatly depend on the pair.

The reanalysis JRA-55 snow mass is unique, characterized
by large decadal variations. Positive anomalies are most com-
mon from 1980 to 1994 and from 2010 to 2020, while neg-
ative anomalies occur from 1995 to 2009 (Fig. 7d). These
inconsistencies are not as extreme over Eurasia as JRA-55
captures positive and negative anomalies that are mostly in
agreement with the remaining datasets, but its variations
have the greatest magnitude (e.g., 1991, 2014). The dis-
agreement is substantial in terms of snow mass amount.
Over North America, especially before 1995, the reanaly-
sis JRA-55 dataset has as much as 50 % more snow mass
than the other reanalyses. This behaviour is not present in
BrJ55. Additional comparison with in situ data indicates that
the version of JRA-55 that has less interannual variability
(BrJ55, solid orange) also has a significantly lower RMSE
and higher correlation with the in situ data than the native
JRA-55 (dashed orange; Fig. S3).

We now return to consider the two versions of the ERA5
reanalysis: ERA5 and ERA5Snow (dashed, blue in two
shades, Figs. 6 and 7). The two time series diverge due to
a change in the snow cover extent data assimilation in 2004.
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Figure 5. (a, b) NH snow mass and (c, d) snow cover extent differences for MERRA-2 and ERA5 calculated as original minus target. Each
panel shows the difference between the original and target snow mass climatologies (black), and the coloured lines represent the datasets
generated by adjusting temperature (pink), precipitation (blue), or both (yellow) to the target dataset’s climatology.

The mean difference in DJF snow mass over North Amer-
ica between these two products is 5 times greater after 2004
compared to before 2004 (9× 1013 and 1.8× 1013 kg, re-
spectively) and 3 times greater after 2004 for Eurasia (7.7×
1013 kg compared with 2.4× 1013 kg). This step change is
problematic for trend and correlation assessments, and so we
use ERA5Snow in Fig. 9 below. As an offline product, BrE5
does not display the step change in 2004.

These two examples show that the B-TIM snow datasets
can generate reasonably performing benchmark datasets
which are useful to contrast against native snow data.
The comparison between reanalysis and the offline product
forced with the same meteorology can highlight spurious
variability, as in the case of JRA-55, or can point to temporal
inhomogeneities, as with ERA5.

The consistency found for the offline products extends to
spatial patterns. The time series of the DJF spatial pattern
correlation between dataset pairs is shown in Fig. 9, with
SON values shown in Fig. S4. For both seasons, offline–
offline pairs are the most consistent with each other (with
the highest r values) despite different meteorological forc-

ings. There is also evidence of spatial disagreement between
some of the reanalysis products. Notably, JRA-55 is very dif-
ferent from all the other datasets. This can be seen with the
ERA5Snow–JRA-55 and MERRA-2–JRA-55 pairs (differ-
ent model, different forcing), which have the weakest spa-
tial correlations, or with the BrJ55–JRA-55 pair (different
model, same forcing), which has a much lower correlation
compared to the other same-forcing pairs. We remind the
reader that ERA5Snow is used instead of ERA5 as the re-
analysis snow product with the aim of removing the discon-
tinuity around 2004; the meteorology is the same in both
products so ERA5Snow can be compared to BrE5. The pat-
tern correlations appear to be stable across the 40-year period
for all pairs, although those involving JRA-55 have larger
year-to-year variability. Additionally, reanalysis and offline
versions of JRA-55 snow have low spatial correlation across
all seasons and both continents compared to the ERA5 and
MERRA-2 (Fig. S5). Broadly, reanalysis and offline patterns
are less similar over Eurasia for a given season, and the cor-
relation decreases over the snow year.
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Figure 6. Time series of total snow mass for SON by continent. Lower row has linear trends removed.

4 Discussion and conclusions

We can summarize our key points as follows:

– An updated and more complete description of the B-
TIM offline snow model has been provided for the first
time since 2003, accompanied by an open-source code
release of the model implemented in Python.

– The offline B-TIM snow generated using meteorologi-
cal forcing from three reanalysis products has been val-
idated against an independent set of in situ snow obser-
vations (Sect. 2.5). The offline products perform gener-
ally as well as (online coupled) reanalysis snow. Based
on this result, datasets generated with the B-TIM are
treated as reasonably performing benchmark estimates
of historical snow and are used to investigate discrepan-
cies in reanalysis SWE.

– Compared to online reanalysis snow, the offline B-TIM
snow yields far more consistent interannual variability
for both aggregate and spatially resolved snow metrics.
This suggests the potential utility of the B-TIM as an
offline tool for simplified snow modelling in seasonal to
decadal prediction systems and climate downscaling for
impact analysis.

– Climatological characteristics of the offline B-TIM
snow are generally more consistent with one another
for various measures than reanalysis snow despite dif-
ferences in the meteorological forcing data. Using the
B-TIM with bias-adjusted forcing, climatological SWE
differences between ERA5 and MERRA-2 are found to
primarily come from temperature biases (MERRA-2 is
colder, resulting in more SWE throughout the snow sea-
son). Attribution of discrepancies in terms of JRA-55
with the other two reanalyses is not as straightforward,
as we discuss next.

Offline modelling has allowed us to understand some of
the components contributing to the spread in SWE estimates
across these three reanalyses. In general, nonlinearities in-
herent to snow modelling mean that it is unclear how exactly
meteorological biases will impact modelled SWE fields for
both historical and modelled future snow conditions (Evan
and Eisenman, 2021; Räisänen, 2023; Sospedra-Alfonso and
Merryfield, 2017). Interpreting the causes of SWE differ-
ences is further complicated when comparing products pro-
duced using different snow models and different data assim-
ilation schemes. In this sense, the B-TIM can easily gener-
ate simplified benchmark datasets (no data assimilation and
a single, simple model) alongside more complex products of
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Figure 7. Time series of total snow mass for DJF by continent. Lower row has linear trends removed.

Figure 8. (a) Correlation coefficients for the B-TIM dataset pairs. Individual values are shown with black points, and the mean is represented
by the height of the bar to summarize the group. Similar information is shown in (b) for the reanalysis dataset pairs.

interest. Here, we have attempted to attribute climatological
SWE biases to climatological meteorological biases by ad-
justing each of the two forcing variables and calculating the
effect on the SWE. We have taken advantage of the B-TIM’s
speed, which has allowed us to perform many cross-tests.

Future work should continue developing the B-TIM
through systematic testing of parameter values. For exam-

ple, the spatial variability and sensitivity of the model to the
20 % precipitation loss have not recently been characterized.
This type of work is possible due to the recent increases in
the availability and quality of in situ SWE, snow depth, and
snow density information (Vionnet et al., 2021) for valida-
tion. Forcing biases and parameter changes both strongly in-
fluence modelled snow (Cho et al., 2022; Essery, 2015; Gün-
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Figure 9. Spatial correlations for DJF calculated between pairs of datasets with the same meteorology (a) and between pairs of similar type
(b) (either offline–offline or reanalysis–reanalysis).

ther et al., 2019; Menard et al., 2021), and they should be
characterized for the B-TIM. However, offline modelling can
broadly be seen as a tool to investigate snow biases in prod-
ucts where additional simulations are not feasible, as is the
case for reanalysis.

The simple bias adjustment methodology we use requires
more refinement to fully explain the biases. Large differences
between a dataset and a chosen target may make the multi-
plicative scaling less suitable, for example, by changing the
input variable distributions significantly. Additionally, other
aspects that are not captured in mean conditions can influ-
ence SWE in models, such as the nature of the diurnal cycle
in temperature and the distribution of precipitation intensity
and/or duration (or a combination of the two). Multiplicative
rescaling can affect these aspects when adjusting a dataset
to a chosen target, with the greatest impact coming from ad-
justing both driving variables at once. These effects are most
relevant at the shoulder seasons and for areas with ephemeral
snow.

Using reference in situ data and inter-dataset consistency
arguments, we have shown that terrestrial SWE taken directly
from the JRA-55 reanalysis is problematic and should not be
used for climate analysis. Unlike the BrJ55 product, which
performs comparably to the BrE5 and BrM2 products, the re-
analysis JRA-55 terrestrial snow product is the least accurate
with respect to the in situ validation. Furthermore, the inter-
annual variability of the JRA-55 snow mass anomaly time
series (Figs. 5 and 6) and corresponding SWE field patterns
(Fig. 7) differ greatly from all the other datasets. The strong
performance of BrJ55 suggests that the problem with JRA-55

snow arises from the JRA-55 snow model and data assimila-
tion.

Snow is a critical component of the climate system, influ-
encing a range of environmental and societal processes. Ac-
curate snow modelling is needed for applications that require
a long time series (e.g., trend analysis) and the best instanta-
neous estimates of SWE (e.g., numerical weather prediction).
Here, we have demonstrated the value of a simple model like
the B-TIM in helping us assess new products against self-
consistent benchmarks as they are released. These consider-
ations will continue to be important as we look ahead to the
next generation of global reanalyses, including the JMA Re-
analysis for Three Quarters of a Century, which is now avail-
able (JRA-3Q; Kosaka et al., 2024), and ERA6 (Balsamo et
al., 2023).

Code and data availability. ERA5 data were retrieved
from the Copernicus Climate Data Store (single levels:
https://doi.org/10.24381/cds.adbb2d47; Hersbach et al.,
2023). ERA5Snow data are available on request from
patricia.rosnay@ecmwf.int. JRA-55 data were retrieved
from the NCAR Research Data Archive (all collections:
https://doi.org/10.5065/D6HH6H41; Japan Meteorological
Agency/Japan, 2023). MERRA-2 data were retrieved from the
Goddard Space Flight Center Distributed Active Archive Center
(GSFC DAAC).

The description of the combined snow reference dataset is in
Mortimer et al. (2024).

Processed output from the B-TIM runs and reanaly-
sis data, required to reproduce the figures, is archived at
https://doi.org/10.5683/SP3/IV6SVJ (Elias Chereque, 2024a).

The Cryosphere, 18, 4955–4969, 2024 https://doi.org/10.5194/tc-18-4955-2024

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5065/D6HH6H41
https://doi.org/10.5683/SP3/IV6SVJ


A. Elias Chereque et al.: A simple snow temperature index model exposes discrepancies 4967

Snow output modelled by the B-TIM with all three
forcings is also archived at the following links: BrE5 –
https://doi.org/10.5683/SP3/HHIRBU (Elias Chereque, 2024b),
BrM2 – https://doi.org/10.5683/SP3/C5I5HN (Elias Chereque,
2024c), and BrJ55 – https://doi.org/10.5683/SP3/X5QJ3P (Elias
Chereque, 2024d).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-18-4955-2024-supplement.
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