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Abstract. Diffusion limits the survival of climate signals on
the water stable isotopes in ice sheets. Diffusive smooth-
ing acts not only on annual signals near the surface, but
also on long-timescale signals at depth as they shorten to
decimetres or centimetres. Short-circuiting of the slow dif-
fusion in crystal grains by fast diffusion along liquid veins
can explain the “excess diffusion” found on some ice-core
isotopic records. But experimental evidence is lacking as to
whether this mechanism operates as theorised; theories of the
short-circuiting also under-explore the role of diffusion along
grain boundaries. The non-uniform patterns of isotopic devi-
ation δ across crystal grains induced by short-circuiting of-
fer a testable prediction of these theories. Here, we extend
the modelling for grain boundaries (and veins) and calcu-
late these patterns for different grain-boundary diffusivities
and thicknesses, temperatures, and vein-water flow veloci-
ties. Two isotopic patterns are shown to prevail in ice of mil-
limetre grain size: (i) an axisymmetric “pole” pattern with
excursions in δ centred on triple junctions, in the case of thin,
low-diffusivity grain boundaries, and (ii) a “spoke” pattern
with excursions around triple junctions showing the impres-
sion of grain boundaries, when these are thick and highly
diffusive. The excursions have widths ∼ 10 %–50 % of the
grain radius and variations in δ ∼ 10−2 to 10−1 times the
bulk isotopic signal for oxygen and deuterium, which set the
minimum measurement capability needed to detect the pat-
terns. We examine how the predicted patterns vary with depth
through a signal wavelength to suggest an experimental pro-
cedure, based on laser ablation mapping, of testing ice-core
samples for these signatures of isotopic short-circuiting. Be-
cause our model accounts for veins and grain boundaries, its
predicted enhancement factor (quantifying the level of excess
diffusion) characterises the bulk-ice isotopic diffusivity more
comprehensively than past studies.

1 Introduction

The water stable isotope records (δ18O, δD) in polar ice cores
contain diverse palaeoclimatic signals. Owing to isotopic dif-
fusion in firn and ice, signals at decimetre and centimetre or
shorter scales experience pronounced smoothing as they de-
scend the ice column. This post-depositional process limits
the integrity and resolution of climatic information at differ-
ent depths. The smoothing rate needs to be known for re-
covering the original (e.g. annual) δ variations at the surface
by “back-diffusing” an isotopic record (Johnsen, 1977), for
reconstructing surface temperatures in the past from spec-
trally derived diffusion lengths (Gkinis et al., 2014), and for
predicting how deep climatic signals of different timescales
survive in an ice core (e.g. Grisart et al., 2022). The last as-
pect, which matters particularly for long records, is of major
interest to the ongoing ice-coring campaigns at Little Dome
C, East Antarctica, which aim to retrieve ice reaching back
≈ 1–1.5 Ma; see the Beyond EPICA – Oldest Ice project web
page (BE-OI, 2017) and the Million Year Ice Core project
web page (MYIC, 2020).

“Excess diffusion” in the ice below the firn is a key con-
cern in this subject. Analysis of the Greenland Ice Core
Project (GRIP) ice core by Johnsen et al. (1997, 2000)
showed that the annual δ18O signals in the Holocene sec-
tion of this core decay ≈ 10–30 times faster than expected
from the self-diffusion rate measured in single ice crystals
(Ramseier, 1967), implying a large enhancement of the bulk-
ice isotopic diffusivity above the monocrystalline diffusivity.
Theories put forward to explain this excess diffusion invoke
short-circuiting – the idea that, in polycrystalline ice, fast dif-
fusion in the network of liquid veins (located at triple junc-
tions) and along grain boundaries bypasses the slow diffusion
within ice grains to cause the enhancement. After Nye (1998)
made pioneering calculations to show that the presence of
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veins causes excess diffusion by short-circuiting, Johnsen
et al. (2000) adapted the firn isotope diffusion model of
Whillans and Grootes (1985) to gauge the separate contribu-
tions of grain boundaries and veins to the mechanism. Later,
Rempel and Wettlaufer (2003) refined Nye’s model to ac-
count for the finite isotopic diffusivity of the vein water; they
calculated the diffusivity enhancement in ice at ≈−32 °C
as a function of signal wavelength, grain size, and vein ra-
dius. In a recent study, Ng (2023) extended the Nye–Rempel–
Wettlaufer framework to show that water flow in the veins
amplifies excess diffusion and that vein-water flow velocities
of ∼ 101–102 m yr−1 yield a 10- to 100-fold enhancement,
able to explain the GRIP findings and sections of ice with
anomalously high diffusion lengths found in the EPICA (Eu-
ropean Project for Ice Coring in Antarctica) Dome C ice core
by Pol et al. (2010) and found in the WAIS (West Antarctic
Ice Sheet) Divide ice core by Jones et al. (2017) – which
these authors interpreted as signs of excess diffusion poten-
tially caused by the short-circuiting mechanism. As pointed
out by Ng (2023), the modulation of isotopic diffusion by
vein-water flow means that the decay of climate signals at
each ice-core site depends on the hydrology and connectivity
of veins down the ice column, as well as the ice temperature,
grain and vein sizes, and recrystallisation processes affecting
these geometries.

Here, we take the modelling of excess diffusion in a new
direction to enable a critical research gap to be addressed.
Besides those records displaying signs of excess diffusion
(accelerated signal decay or anomalous diffusion lengths)
and motivating the theories in the first place, no direct obser-
vations have been made to show that isotopic short-circuiting
actually operates. Independent evidence is needed to ver-
ify the mechanism at the grain scale, for ice-core samples
deemed affected by excess diffusion, and for polycrystalline
ice generally. One way of testing the theories is to compare
their predicted signal smoothing rate against the rate mea-
sured in ice doped with isotopic signals, but the slowness
of diffusion makes such experiments prohibitively long at
low temperature. A different laboratory-based approach, pro-
posed herein, is to analyse ice affected by excess diffusion to
look for the distinct grain-scale isotopic variations which the
theories predict to result from short-circuiting. For instance,
the theories of Nye (1998), Rempel and Wettlaufer (2003),
and Ng (2023) – capturing the isotopic exchange between
veins and ice in the absence of grain boundaries – imply ax-
isymmetric patterns of δ around veins, which may be used
for this purpose. Knowledge of these patterns is a prerequi-
site to testing for short-circuiting this way. It also helps re-
searchers developing techniques of making high-resolution
isotopic measurements on ice, who currently lack informa-
tion on how strong or weak the grain-scale variations in
δ might be. Predicting the variety of isotopic patterns thus
forms the main goal of this paper, although we leave the lab-
oratory testing to future studies.

To simulate realistic patterns, we go beyond Nye (1998),
Johnsen et al. (2000), Rempel and Wettlaufer (2003), and Ng
(2023) by formulating a continuum model that includes grain
boundaries, coupling diffusion across all three components:
ice, veins, and grain boundaries. This integrated model is
necessary, as we wish to test the four theories collectively,
and each of them is missing some elements (e.g. Johnsen et
al. (2000) did not couple together veins and grain boundaries,
whereas the other theories neglected grain boundaries). How-
ever, we mean to examine the short-circuiting conceived in
these theories, so we do not build more sophistication into
the model to account for every conceivable process in poly-
crystalline ice. We are not trying to advance a new theory
to describe isotopic diffusion in the most complete manner
possible.

The model geometry, which remains simplified, allows us
to explore the combined effect of veins and grain boundaries
on the bulk-ice isotopic diffusivity. An outstanding question
in this regard is whether diffusion along grain boundaries
matters in ice with glaciological grain sizes (∼mm). Their
effect on the bulk diffusivity is assumed to be significant in
ultrafine-grained ice with ≈ 10–30 nm sized crystals (Lu et
al., 2009), where grain-boundary surfaces have a high vol-
umetric density (Jones et al., 2017). In contrast, for glacier
ice, a much weaker effect may be suspected based on the
calculations of Johnsen et al. (2000), who estimated that the
grain boundaries in the GRIP Holocene ice (mean grain di-
ameter ≈ 3 mm) need to be unrealistically thick (50 nm) to
explain the observed excess diffusion, even if they are liq-
uid films with the high isotopic diffusivity of water. Studying
this question with a fully coupled model has not been done
before and forms our second goal. We compute the enhance-
ment factor f for ice of millimetre grain size at −32 and
−52 °C (which approximate the upper-column temperatures
at the GRIP and EPICA core sites, respectively) for different
grain-boundary properties and vein-water flow velocities.

Including grain boundaries in the modelling brings chal-
lenges. Most obviously, the grain-boundary thickness c and
grain-boundary diffusivity Db need to be specified, but, as
we will elaborate in Sect. 2, these parameters are not well
constrained. In our calculations, we cover potential scenarios
by experimenting with different assumptions for c and Db
in a sensitivity analysis. Another issue is that the model ge-
ometry does not permit an analytical solution, unlike in the
theories of Nye (1998), Rempel and Wettlaufer (2003), and
Ng (2023). We tackle this by developing a bespoke numerical
solution method.

The paper is organised as follows. Section 2 details our
model formulation and solution method. Section 3 presents
the computed isotopic patterns and enhancement factors for
a range of parameters, including the end-member cases of
thick, diffusive and thin, non-diffusive grain boundaries and
intermediate scenarios. In Sect. 4, we discuss the prospects of
detecting the isotopic signatures of excess diffusion in labo-
ratory measurements on ice, focussing on techniques based
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on laser ablation (LA) sampling (e.g. Malegiannaki et al.,
2023). Readers keen to see the predicted patterns are advised
to turn to Figs. 4–11. Those seeking to compute the diffusiv-
ity enhancement factor for conditions not covered by us can
find our numerical code in the repository linked to the paper.

The importance of testing the theories cannot be under-
stated, and several points are worth emphasising on this
note before we start. Given the idea of querying the short-
circuiting mechanism, we do not claim that the modelled
patterns will necessarily be found – or found at the pre-
dicted amplitudes – during grain-scale testing of ice. And,
while the mechanism has not been experimentally confirmed,
ice-core studies seeking to understand excess diffusion on
specific isotopic records should not automatically invoke it
as if it were firmly established. With those core sections
showing excess diffusion at GRIP, EPICA Dome C, and the
WAIS Divide, their explanation by means of vein or grain-
boundary short-circuiting remains plausible, but tentative,
and the causal factors (e.g. why excess diffusion apparently
occurs in those sections and not others) are unclear. In terms
of probing the origin of excess diffusion at those sites, the
most advanced analyses to date are probably the ones by
Jones et al. (2017) and Ng (2023), who used models of the
enhancement factor to calculate diffusion lengths to inform
hypotheses about the cause. We refer the reader to these stud-
ies for more details on this subject.

2 Mathematical model

2.1 Model geometry

We use the setup in Fig. 1a – adapted from Nye (1998),
Rempel and Wettlaufer (2003) and Ng (2023) – which repre-
sents ice-crystal grains surrounding a vein by a vertical an-
nular cylinder, in a ≤ r ≤ b, where r is the radial coordinate,
a is the vein radius (∼ µm), and b approximates the mean
grain radius (∼mm). The water vein is kept liquid by dis-
solved ionic impurities, which lower the melting point (Mul-
vaney et al., 1988; Nye, 1991; Mader, 1992b). We consider
depth-varying isotopic signals in the bulk ice, with z denot-
ing depth. For a list of mathematical symbols used in this
paper, see Table A1 in the Appendix.

Grain boundaries leading from the vein are modelled as
planes of thickness c(� a) at θ = 0, L, and 2L, where θ
is the azimuth and L= 2π/3. Introducing them makes the
problem non-axisymmetric, but their periodicity means that
it suffices to solve the model in 0≤ θ ≤ L.

In plan view, the cylinder approximates a unit cell centred
upon triple junctions in ice whose structure is idealised as
honeycomb-like (Fig. 1b). In this picture, the radius b reaches
out roughly half-way along each grain boundary or to the
middle of grains; for convenience, we refer to r ≈ b at either
location as the “interior”. As in the theories of Nye (1998),
Rempel and Wettlaufer (2003), and Ng (2023), our extended

model geometry still idealises many aspects of the real sys-
tem: (1) it ignores the detailed vein cross-section, which con-
sists of three convex walls (Nye, 1989; Mader, 1992a; Ng,
2021), although their small length scale implies perturba-
tions only to the local isotopic concentrations near r = a;
(2) veins and grain boundaries are assumed stationary rather
than migrating under recrystallisation processes; and (3) hor-
izontal or near-horizontal veins and grain boundaries are dis-
regarded, so the model does not account for additional short-
circuiting arising from these boundaries, which may distort
the isotopic patterns near them and affect the enhancement
factor. We discuss the last two limitations in Sect. 4.

2.2 Material properties

Prior to modelling signal evolution, we consider the isotopic
diffusivities in the three components (ice, vein water, grain
boundaries) and the grain-boundary thickness and, where rel-
evant, explain values chosen for simulations. All diffusivities
discussed here – referring to molecular diffusion – are appli-
cable to the transport of oxygen and deuterium.

For the isotopic diffusivity in ice or “solid diffusivity” Ds,
we use Ramseier’s (1967) formula for self-diffusion in single
ice crystals:

Ds = 9.1× 10−4 exp

(
−

7.2× 103

T

)
m2 s−1, (1)

in which T denotes temperature in kelvins. For the isotopic
diffusivity in vein water or “liquid diffusivity” Dv, we use
the composite exponential formula:

Dv =
1

1
1.085×10−6 exp

(
−1870
T

) + 1
2.942×107 exp

(
−9474
T

) m2 s−1. (2)

This formula was derived by Ng (2023) by fitting self-
diffusivity data between −12.8 and −60.8 °C, which Xu et
al. (2016) obtained by modelling crystal growth rates mea-
sured in laboratory experiments. Equation (2) is consistent
with the established formula of Gillen et al. (1972) for T
down to −31 °C but covers a greater temperature range. Fig-
ure 2 plots Eqs. (1) and (2). These formulas neither account
for pressure dependence, which should cause only a minor
correction under the glaciostatic overburden in ice sheets
(a few percent on Dv; Prielmeier et al., 1988), nor for the
influence of dissolved impurities, whose characterisation is
presently very limited. Thus,Ds andDv might vary from the
formulas. However, the temperature dependencies shown in
Fig. 2 should be robust, and departures from the formulas
by a few times (e.g. see uncertainty for Ds indicated by Lu
et al. (2009) in their Fig. 8) or even 1 order of magnitude
are much smaller than the diffusivity contrast Dv/Ds ∼ 106,
which governs the qualitative interactions during vein short-
circuiting.

What of the grain-boundary diffusivity Db and thickness
c? The physicochemical influences on these parameters are
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Figure 1. (a) Model geometry for calculating coupled isotopic diffusion in ice, vein, and grain boundaries near a triple junction. (b) Approx-
imate view of what the cell in panel (a) represents in polycrystalline ice with hexagonal grains.

poorly understood across the range of ice-core temperatures
(≈ 0 to −55 °C); their values are uncertain and lack reliable
formulas. Several empirical and theoretical constraints come
to our rescue, as detailed below. But first we sketch more
background on the grain-boundary properties of ice as a step
towards explaining our choices for these parameters.

Grain boundaries are disordered interfaces between crys-
tals. Determining their properties experimentally is difficult
because the microscopic scale concerned often means that a
property can only be inferred from bulk measurements that
mix crystal and grain-boundary effects (e.g. Lu et al., 2007).
In ice, the grain-boundary thickness must be at least several
times the crystal lattice spacing (O–O distance: 0.276 nm;
Hobbs, 1974). It may be higher in the presence of impurities
(Thomson et al., 2013) but is generally expected to depend in
complex ways on impurity type and concentration (Benatov
and Wettlaufer, 2004). Premelting occurs at high tempera-
tures (Dash et al., 2006): that is, grain boundaries thicken and
start to exhibit quasi-liquid behaviour near the melting point
Tm as this is approached from below, at Tm−T = 0 to∼ 10 K.
Grain-boundary premelting in ice has been studied by (i) the-
oretical modelling of the forces and thermodynamics con-
trolling the premelted film thickness (Wettlaufer, 1999; Be-
natov and Wettlaufer, 2004), (ii) laboratory measurements
of the film thickness (Thomson et al., 2013), and (iii) clas-
sical molecular dynamical simulations (e.g. Moreira et al.,
2018). Premelting in ice diminishes beyond a few degrees
below Tm and is expected to be negligible below ∼−10 °C.
For instance, Lu et al. (2007, 2009) argued from experimen-
tal results for Db (reported below) that premelting does not
occur below −2 °C in pure ice, although it starts to occur at
≈−8 °C in ice doped with HCl at 0.04 % by mass (≈ 0.01 M
bulk concentration). On the other hand, the notion of pre-
melted grain boundaries features in the theories of excess
diffusion by Johnsen et al. (2000) and Rempel and Wett-
laufer (2003), even though their analyses considered much
colder ice. Johnsen et al. (2000) in particular referred to the

grain boundaries in ice at T =−32 °C as “supercooled water
films” and took the liquid diffusivity Dv at that temperature
(1.87× 10−10 m2 s−1; blue cross in Fig. 2) to be the grain-
boundary diffusivity Db in calculations. As we will see, this
estimate for Db is probably too high.

The question whether grain boundaries in ice are watery
or more like solid lattice has a bearing on where isotope frac-
tionation (during phase change) is envisaged to occur in the
system – whether at (1) the transition between them and the
crystal lattice within the grain interior or (2) where they meet
veins. If one assumes grain boundaries to be liquid, then frac-
tionation occurs at the liquid–solid phase change at location
1, not at location 2, where there is no phase change. If one
envisages them to be solid, closely resembling crystal lattice,
then fractionation occurs at location 2 and not (or negligibly)
at location 1. In our model, we assume the latter scenario
because our simulations explore temperatures far below the
premelting regime, making the former scenario less plausible
(the fractionation coefficients will be described in Sect. 2.3).
Note, however, that the question is unsettled given the lack
of experimental determination, and fractionation may occur
at both places in reality (e.g. in a hybrid scenario where grain
boundaries have microstructural properties in an intermedi-
ate state between solid and liquid).

We turn to the parameter choices, treating grain-boundary
thickness c first. Information comes from two sources.
Thomson et al. (2013) used optical scattering to measure
c in ice at T ≈−1.5 °C with different dissolved impurity
concentrations (NaCl) and different grain-boundary orienta-
tions. The impurity concentration at grain boundaries was es-
timated from the bulk concentration, as it cannot be measured
directly. They found c from 1 to 8 nm, generally increasing
with impurity level (this factor promotes interfacial molecu-
lar disorder) for different crystal misorientation angles. For
T <−1.5 °C, no experimental measurements of c have been
made so far, but molecular-scale dynamical simulations offer
a handle. Yagasaki et al. (2020) used the TIP4P/Ice model
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Figure 2. Arrhenius plot of the isotopic diffusivities Ds (ice), Dv
(vein water), and Db (grain boundaries). The curves for Ds and Dv
come from Eqs. (1) and (2). The dashed blue curve plots the relation
of Gillen et al. (1972) for Dv. The blue cross locates the diffusivity
used by Johnsen et al. (2000) (Sect. 2.2). The box and whiskers at
−2 °C (bar: likely range; whiskers: maximal range) and the inclined
black line (dashed box: uncertainty range) plot the laboratory-based
estimates for Db of Lu et al. (2007, 2009). The star plots Db at
250 K from molecular dynamical simulation (Yagasaki et al., 2020).
To pose values of Db for modelling at −32 and −52 °C, we extrap-
olate the trend of the results in Lu et al. (2009) to those temperatures
and expand the uncertainty to form two sets of grain-boundary dif-
fusivities (circles; values in Table 2), which we address by using
descriptive labels (grey wording). Grey lines indicate the same sys-
tem of referring to the size of Db at other temperatures.

to study molecular transport at grain boundaries in impurity-
free ice at 250 K (≈−23 °C) and found c ∼ 1 nm under a
variety of conditions. Given these studies, we choose three
values of c for our modelling: 1, 5, and 10 nm (Table 1).
The highest value accounts for the possibility of thick grain
boundaries resulting from high impurity levels.

For the grain-boundary diffusivity Db, we rely on guid-
ance from the experimental results of Lu et al. (2007, 2009),
which are the only results available to date on ice. For T from

Table 1. Grain-boundary thicknesses investigated in our modelling.

Description c (nm)

Thin 1
Intermediate 5
Thick 10

Table 2. Isotopic diffusivities (in m2 s−1) used in our modelling.
At each temperature, we study five values of the grain-boundary
diffusivity, Db.

Description T =−32 °C T =−52 °C

Dv 1.65× 10−10 7.08× 10−12

High 1.5× 10−11 7× 10−13

Medium-high 1.5× 10−12 7× 10−14

Db Medium 1.5× 10−13 7× 10−15

Medium-low 1.5× 10−14 7× 10−16

Low 1.5× 10−15 7× 10−17

Ds 9.83× 10−17 6.60× 10−18

−18 to−1 °C, these authors determined thatDb lies interme-
diate between Ds and Dv, several orders of magnitude from
each of them (Fig. 2). Their experiments measured the inter-
diffusivity Deff of H and D in nanocrystalline sandwiches
of H2O/D2O/H2O ice by monitoring the reaction zones at
the interfaces with thermal desorption spectroscopy, a tech-
nique that ablates the ice with laser and analyses the vapour
composition. They estimatedDb fromDeff by a model inver-
sion based on the Hart–Mortlock equation (Deff as a linear
combination of the component diffusivities, weighted by the
component volume fractions). In their 2007 study, conducted
at −2 °C, their Db estimate spans 3 orders of magnitude, al-
though they suggested a likely range of 1–2 orders (bar and
whiskers in Fig. 2). Their 2009 study extended the measure-
ments of Db down to −18 °C (sloping black line in Fig. 2),
with an uncertainty of 1 order of magnitude on either side,
finding for Db an Arrhenius-type temperature dependence
with an activation energy of ≈ 69 kJ mol−1.

Below−18 °C,Db has not been experimentally measured.
To pose Db at −32 and −52 °C for modelling, we extrap-
olate the estimates of Lu et al. (2009) down the Arrhenius
trend (Fig. 2), assuming the same activation energy andDb to
lie between Ds and Dv at lower temperatures. This approach
finds support in the modelled value of Db at 250 K from Ya-
gasaki et al. (2020) (star in Fig. 2). However, we widen the
uncertainty range of the Lu et al. (2009) estimates by 1 order
of magnitude because (i) the Hart–Mortlock equation crudely
approximates the bulk diffusivity,1 and the version of the

1That the Hart–Mortlock equation may only roughly approxi-
mate the bulk/effective diffusivity in some applications has been
recognised (e.g. Lundy, 1978). Moreover, for the coupled diffusion
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equation used in their inversion ignores the presence of veins,
and (ii) they showed that doping the ice with HCl increased
Deff by ≈ 20 times above the pure-ice value, indicating that
dissolved impurities can raiseDb substantially. Uncertainties
in their inversion from assumptions about the grain-boundary
width are also discussed by Lu et al. (2007). Based on the ex-
trapolation, we choose two sets of five values for Db (circles
in Fig. 2): one set for−32 °C and the other set for−52 °C, as
listed in Table 2. In each set, which span a generous range for
sensitivity analysis, the middle three values of Db represent
direct extrapolations of the laboratory measurements and the
uncertainty range of Lu et al. (2009). The lowest and high-
est values, respectively, mimic the more extreme scenarios
of coupled diffusion near the no-grain-boundary limit and of
high impurity concentration at grain boundaries. For conve-
nience, we refer to the values in each set as low, medium-
low, medium, medium-high, and high (Fig. 2, Table 2). This
descriptive scale for Db is applicable to other temperatures
(grey lines in Fig. 2) on the basis of the assumed trend. We
explore select values of Db and c in this paper, given the im-
practicality of covering a large number of parameter combi-
nations when computing isotopic patterns and enhancement
factors.

That Db is bracketed by Ds and Dv corroborates insights
from classical molecular dynamical simulations. Moreira et
al. (2018) found that, a few degrees below Tm, the simu-
lated molecular transport along premelted grain boundaries
resembles diffusion in glassy systems and is sub-diffusive
in character (with mean-square displacement of molecules
∼ tγ , where t denotes time and γ < 1), reflecting lateral con-
finement of the grain boundaries by the adjacent crystal lat-
tice. The grain boundaries at 250 K simulated by Yagasaki
et al. (2020) structurally resemble low-density liquid water.
Besides estimating a corresponding value for Db, Yagasaki
et al. (2020) studied diffusion along triple junctions, finding
a diffusivity of 3.4Db for them. We cannot adopt this as the
vein diffusivity Dv because their model does not recognise
water-filled veins at triple junctions, whose presence in ice
has been confirmed by optical (Mader, 1992a) and nuclear
magnetic resonance (Brox et al., 2015) methods.

2.3 Continuum formulation

For the system in Fig. 1, let us denote the concentrations of a
trace isotope (18O or D) in the ice, vein, and grain boundaries
by Ns(r,θ,z, t), Nv(z, t), and Nb(r,z, t), respectively, where
t is time. We assume Nv to be independent of r and θ and as-
sume Nb to be uniform across the grain-boundary thickness.

studied here, our results (Sect. 3.2) imply a bulk diffusivity vary-
ing with signal wavelength, not what the Hart–Mortlock equation
would predict.

The concentrations satisfy the conservation equations

∂Ns

∂t
=Ds

(
1
r

∂

∂r

(
r
∂Ns

∂r

)
+

1
r2
∂2Ns

∂θ2 +
∂2Ns

∂z2

)
, (3)

∂Nv

∂t
=Dv

∂2Nv

∂z2 −w
∂Nv

∂z

+
3Ds

πa

L∫
0

∂Ns

∂r

∣∣∣∣
r=a

dθ+
3cDb

πa2
∂Nb

∂r

∣∣∣∣
r=a

, (4)

∂Nb

∂t
=Db

(
∂2Nb

∂r2 +
∂2Nb

∂z2

)
+

2Ds

rc

∂Ns

∂θ

∣∣∣∣
θ=0

, (5)

where w is the vein-water flow velocity in the downward (z-)
direction; other symbols have been introduced. These equa-
tions account for isotopic exchange across the vein wall, be-
tween grain boundaries and vein, and between grain bound-
aries and ice. Respectively, the second-last term in Eq. (4),
the last term in Eq. (5), and the last term in Eq. (4) – which
are source terms in those equations – describe the isotope
fluxes leaving the ice radially and azimuthally and leaving
the grain boundaries radially. The factor 3 sums flux con-
tributions to the vein from all directions. Taylor dispersion
along the vein is ignored, as the corresponding Péclet num-
ber (. 10−1) would only raise the vein liquid diffusivity
by < 0.1 %. We specify the boundary conditions ∂Ns/∂r =

∂Nb/∂r = 0 at r = b (zero gradient in the interior) and antic-
ipate ∂Ns/∂θ = 0 at r = a (because the vein wall at different
azimuths contacts the same vein isotopic concentration). Ro-
tational periodicity implies solution symmetry in 0≤ θ ≤ L
about L/2.

Deriving a model for the isotopic deviation δ follows the
method of Rempel and Wettlaufer (2003). If Ns0, Nv0, and
Nb0 are the number densities of the major isotope (16O or H)
in the three components, then fractionation at the vein wall
and at the vein end of grain boundaries yields αNv/Nv0 =

Ns|r=a/Ns0 =Nb|r=a/Nb0, where α is the fractionation co-
efficient. Following Rempel and Wettlaufer (2003), we as-
sume equilibrium fractionation. Following them also, we will
set α = 1, which seems to be a plausible approximation be-
cause α(18O / 16O) ≈ 1.0029 and α (D /H) ≈ 1.021 at 0 °C
(O’Neil, 1968; Árnason, 1969; Lehmann and Siegenthaler,
1991), but note that the temperature dependence of α in
T < 0 °C for either element is unknown.2 We assume no
fractionation on the side walls of grain boundaries (Sect. 2.2),
so Nb =Ns|θ=0 in r ≥ a. By rewriting Eqs. (4) and (5) in
terms of Ns (with Nv0 ≈Nb0 ≈Ns0 taken as constant), elim-
inating their time derivatives with Eq. (3), and using the def-

2We have not found published values of α (for the liquid–solid
phase change) in T < 0, certainly not at −32 and −52 °C. It is un-
surprising that laboratory measurements of α have not been made
at the strongly depressed melting temperatures specific to the vein
system.
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inition

δ = δ(r,θ,z, t)=
Ns

Ns0
− 1, (6)

we obtain the diffusion equation

∂δ

∂t
=Ds

(
1
r

∂

∂r

(
r
∂δ

∂r

)
+

1
r2
∂2δ

∂θ2 +
∂2δ

∂z2

)
, (7)

with the boundary conditions

∂δ

∂r

∣∣∣∣
r=b

= 0,
∂δ

∂θ

∣∣∣∣
r=a

= 0, (8)

∂2δ

∂r2 −βv
∂2δ

∂z2 +
w

Ds

∂δ

∂z
+

1
a

(
∂δ

∂r
−

3α
π

L∫
0

∂δ

∂r

∣∣∣∣
r=a

dθ

−
3αε
π
(βb+ 1)

∂δ

∂r

∣∣∣∣
r=a,θ=0

)
= 0

at r = a, (9)

1
r

∂δ

∂r
−βb

(
∂2δ

∂r2 +
∂2δ

∂z2

)
+

1
r2
∂2δ

∂θ2 −
2
rc

∂δ

∂θ
= 0

on θ = 0, a ≤ r ≤ b. (10)

The boundary conditions in Eqs. (9) and (10), derived from
Eqs. (4) and (5), encapsulate advection and diffusion along
the vein and diffusion within the grain-boundary planes. The
boundary condition at θ = L is met automatically, given the
solution symmetry. We have introduced the thinness param-
eter

ε =
c

a
(� 1), (11)

which measures the grain-boundary thickness scaled to the
vein radius. The parameters

βv =
Dv

Ds
− 1 and βb =

Db

Ds
− 1 (12)

quantify the diffusivity contrasts of water to ice and grain
boundary to ice, respectively. As noted in Sect. 2.2, typically
βv ∼ 106 (Fig. 2); βb (<βv) is also large, but it depends on
the chosen grain-boundary diffusivity. Note that one cannot
lump all grain-boundary properties into a single parameter
(e.g. the diffusivity–thickness product cDb or ε(βb+ 1)) in
this model.

The partial differential equation problem for δ in Eqs. (7)
to (10) is linear. To quantify signal decay, we study how si-
nusoidal signals of different wavelength λ (or wavenumber
kz = 2π/λ) smooth out in time (Nye, 1998; Rempel and Wet-
tlaufer, 2003; Ng, 2023) by posing the trial solution

δ ∝H(r,θ)exp(−Dsζ t + ikzz), (13)

where ζ = ζR+ iζI is a complex decay-rate parameter. The
enhancement factor measuring the level of excess diffusion

is given by the ratio of the signal decay rateDsζR in Eq. (13)
to the baseline decay rate Dsk

2
z in monocrystalline ice (ice

without grain boundaries and veins). On defining ζR = k
2
z +

k2
r , the enhancement factor is

f = 1+
k2
r

k2
z

. (14)

In Eq. (13), the function H(r,θ)=HR+ iHI determines
the spatial pattern of isotopic signals in three dimensions
(3D). At depth z, Re[H exp(ikzz)] gives their amplitude
across the annular sector 0≤ θ ≤ L, a ≤ r ≤ b, and the
section-mean isotopic signal (ignoring the exponential time
decay factor) is

3
πb2

L∫
0

b∫
a

Re[rH(r,θ)exp(−ikzz)] drdθ. (15)

The sinusoidal signals at different radii and azimuths have
the phase angle φ = tan−1(HI/HR)+kzz−DsζIt . Therefore,
when ζI is non-zero, the signals migrate at the velocity
ζIDs/kz in the z direction.

2.4 Scaled model

When addressing isotopic patterns later, it will be useful to
reference the features on them (e.g. size or radial position) to
the grain radius b. To facilitate this, we non-dimensionalise
the model by letting

r∗ =
r

b
, (16)

at the same time scaling other variables as follows:

z∗ =
z

b
, t∗ =

t

(b2/Ds)
, λ∗ =

λ

b
,

ζ ∗ = b2ζ, [k∗z ,k
∗
r ] = b[kz,kr ]. (17)

The scaled-model equivalent to Eqs. (7) to (10) is then

∂δ

∂t
=

1
r

∂

∂r

(
r
∂δ

∂r

)
+

1
r2
∂2δ

∂θ2 +
∂2δ

∂z2 , (18a)

∂δ/∂r|r=1 = 0, ∂δ/∂θ |r=ξ = 0, (18b)

∂2δ

∂r2 −βv
∂2δ

∂z2 +χ
∂δ

∂z
+

1
ξ

(
∂δ

∂r
−

3α
π

L∫
0

∂δ

∂r

∣∣∣∣
r=ξ

dθ

−
3αε
π
(βb+ 1)

∂δ

∂r

∣∣∣∣
r=ξ,θ=0

)
= 0

at r = ξ, (18c)

1
r

∂δ

∂r
−βb

(
∂2δ

∂r2 +
∂2δ

∂z2

)
+

1
r2
∂2δ

∂θ2 −
2

r(εξ)

∂δ

∂θ
= 0

on θ = 0, (18d)
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where we have dropped the stars for convenience (we work
with dimensionless variables from now on). The parameter

ξ =
a

b
(� 1) (19)

is the dimensionless vein radius (c� a� b in glacier ice
translates to εξ � ξ � 1), and

χ =
wb

Ds
(20)

is a Péclet number measuring the importance of vein-flow-
driven advection relative to solid-state diffusion. The trial so-
lution in Eq. (13) becomes

δ ∝H(r,θ)exp(−ζ t + ikzz), (21)

while Eq. (14) for the enhancement factor f is unchanged
under the scaling.

2.5 Eigenvalue problem

The pattern H(r,θ) for signals of any wavenumber kz re-
mains to be solved. Substituting δ from Eq. (21) into Eq. (18)
leads to

∂2H

∂r2 +
1
r

∂H

∂r
+

1
r2
∂2H

∂θ2 + s
2H = 0, (22)

with the boundary conditions

∂H/∂r|r=1 = 0, ∂H/∂θ |r=ξ = 0, (23)

∂2H

∂r2

∣∣∣∣
r=ξ

+p1H |r=ξ +
1
ξ

(
∂H

∂r

∣∣∣∣
r=ξ

−
p2

L

L∫
0

∂H

∂r

∣∣∣∣
r=ξ

dθ −
p3

L

∂H

∂r

∣∣∣∣
r=ξ,θ=0

)
= 0, (24)

1
r

∂H

∂r

∣∣∣∣
θ=0
−βb

(
∂2H

∂r2

∣∣∣∣
θ=0
− k2

z H |θ=0

)
+

1
r2
∂2H

∂θ2

∣∣∣∣
θ=0
−

2
r(εξ)

∂H

∂θ

∣∣∣∣
θ=0
= 0. (25)

We have defined

s2
= k2

r + iζI (26)

and introduced the parameters

p1 = βvk
2
z + ikzχ, p2 = 2α, p3 = 2αε(βb+ 1). (27)

Equations (24) and (25) may be further simplified by using
Eq. (22) to reduce the number of high-order derivatives; thus,
we find

(p1− s
2)H |r=ξ

=
1
ξL

p2

L∫
0

∂H

∂r

∣∣∣∣
r=ξ

dθ + p3
∂H

∂r

∣∣∣∣
r=ξ,θ=0

 (28)

and

∂2H

∂r2

∣∣∣∣
θ=0
−
βbk

2
z − s

2

βb+ 1
H |θ=0 =

−
2

(βb+ 1)rεξ
∂H

∂θ

∣∣∣∣
θ=0

. (29)

Equations (22), (23), (28), and (29) need to be solved to
determine the isotopic patterns. They constitute a homoge-
neous boundary value problem for H with the eigenvalue
s2, whose real part k2

r leads to the enhancement factor (see
Eqs. 26 and 14) and whose imaginary part ζI is non-zero
if the vein water flows (w, χ 6= 0); thus, vein-water flow
causes the signals to migrate in the same direction, as in
the model of Ng (2023). The slowest-decaying eigenmode
(with minimum Re(s2) > 0) yields the desired pattern, as
the other eigenmodes decay faster, leaving this mode to be
observed in long time. The problem is non-trivial because
of mixed boundary conditions at the vein wall and grain
boundaries. A solution by the separation of variables H =
H1(r)H2(θ) could exploit the periodicity in θ for H2; equiv-
alently, one could take the cosine transform azimuthally (e.g.
√

2/L
∫ L

0 H cos(nθ/L)dθ) and the Hankel transform in the
radial direction. However, we find that an analytic solution
does not seem feasible by these conventional approaches –
a fundamental obstacle being mismatch between the Fourier
kernel of the grain-boundary condition in Eq. (29) and the
Hankel kernel of the differential operator in Eq. (22). We
therefore solve the problem numerically. Readers not inter-
ested in the associated details might skip to the last paragraph
of Sect. 2.6.

2.6 Numerical method

We use the pseudo-spectral method, employing Chebyshev
collocation in the θ direction to achieve “spectral accuracy”
in approximating the solution (Boyd, 2000; Trefethen, 2000).
Although the angular periodicity suggests using trigonomet-
ric basis functions instead (i.e. Fourier spectral method),
the corresponding approximation lacks spectral accuracy and
converges much more slowly than Chebyshev polynomials,
as H is non-smooth (with discontinuous gradient) across the
grain boundaries. We use the finite-difference approximation
in the radial direction.

The solution on each grain boundary can be written as
G(r)≡H(r,0). This enables us to work with alternative
variables by splitting H into the sum

H(r,θ)= F(r,θ)+G(r), (30)

where the field F represents variations in the ice sector unac-
counted for by G. Usefully, F is zero along the grain bound-
aries and on the vein wall (as ∂H/∂θ = 0 there). The decom-
position converts Eqs. (22) and (23) to the partial differential
equation

Frr +
Fr

r
+
Fθθ

r2 + s
2F =−

(
G′′+

G′

r
+ s2G

)
(31)

The Cryosphere, 18, 4645–4669, 2024 https://doi.org/10.5194/tc-18-4645-2024



F. S. L. Ng: The grain-scale signature of isotopic diffusion in ice 4653

with the homogeneous boundary conditions

Fr |r=1 = 0, F (r,0)= F(r,L)= 0, F (ξ,θ)= 0. (32)

Meanwhile, Eqs. (29) and (28) become the ordinary differ-
ential equation

G′′−
βbk

2
z − s

2

βb+ 1
G=−

2
(βb+ 1)rεξ

Fθ |θ=0, (33)

with boundary conditions at the vein wall and in the grain
interior given by

(p1− s
2)G(ξ)=

1
ξ

p2

L

L∫
0

Fr |r=ξ dθ +
(
p2+

p3

L

)
G′(ξ)

 , (34)

G′(1)= 0. (35)

We have used the prime (subscript) notation to denote or-
dinary (partial) derivatives above. The differential equations
for G and F are coupled via their source terms.

Because the vein short-circuits diffusion in the ice, we ex-
pect the solution to vary rapidly just outside the vein wall and
slowly in the grain interior, notably away from grain bound-
aries. To resolve the variations near r = ξ (vein wall) with
sufficient grid points, without over-introducing grid points in
the interior (which slows numerical computation), we make
a change to the radial variable

R = 1− lnr, i.e., r = e−(R−1). (36)

The interior and the vein wall are located at R = 1 and R =
Rmax = 1− lnξ , respectively (Fig. 3a).

Next, we set up the Chebyshev collocation points

x = cos
(nπ
N

)
, n= 0,1,2. . .,N, (37)

choosing

θ =
L

2
(x+ 1) (38)

such that the interval x = [−1,1] maps onto the angular
range θ = [0,L] of the sector (Fig. 3b, c). With these trans-
formations, the coupled problem for F and G becomes

− e2(R−1)

[
FRR +

(
2
L

)2

Fxx

]
+ e2(R−1) [βbG

′′
+ (βb+ 1)G′

]
−βbk

2
zG

+
4eR−1

(εξ)L
Fx |x=−1 = s

2F, (39a)

boundary conditionsFR|R=1 = 0,

F (R,x =±1)= 0, F (Rmax,x)= 0, (39b)

and

− (βb+ 1)e2(R−1)(G′′+G′)+βbk
2
zG

−
4eR−1

(εξ)L
Fx |x=−1 = s

2G, (40a)

boundary conditions

1
ξ2

p2

2

1∫
−1

FR|R=Rmax dx+
(
p2+

p3

L

)
G′(Rmax)


+p1G(Rmax)= s

2G(Rmax), G′(1)= 0. (40b)

We have written these results with s2 on the right-hand side
to facilitate the eigenvalue calculation.

The method proceeds by discretising the x axis with
the Chebyshev points and the R axis as J equidistant
points (Fig. 3b) and by using the spectral differentiation
matrix of Trefethen (2000; p. 53) and finite differencing
to compute derivatives in these respective directions. With
F zero on three edges of the solution domain, there are
(N − 1)(J − 1) unknowns in Fn,j and J unknowns in Gj
for n= 0,1,2. . .,N and j = 1,2. . .,J . The scheme converts
Eqs. (39) and (40) into a system of linear equations Mv =

s2v, where the solution eigenvector (a column vector)

v = [F1,1 F1,2. . .F1,J−1 F2,1 F2,2. . .F2,J−1 F3,1

F3,2. . .F3,J−1 . . . FN−1,1 FN−1,2. . .FN−1,J−1

G1 G2. . .GJ ]
T (41)

has (N − 1)(J − 1)+ J elements, and M is a sparse-banded
matrix (detailed in Sect. S1 and Fig. S1 in the Supplement).
After using the MATLAB function eig to compute s2 from
M, we find v corresponding to the slowest-decaying eigen-
mode and put Fn,j and Gj back in cylindrical polar coordi-
nates to build the solutionH . Our computation usedN = 100
and J = 201 points, and we checked for numerical conver-
gence and convergence at diminishing grain-boundary thick-
ness c towards the analytic solution of Ng (2023), which de-
scribes the vein-only system without grain boundaries.

All isotopic patterns reported below display H after it has
been regridded at a constant θ spacing by Lagrange interpola-
tion from the Chebyshev grid values, normalised by the value
of H at r = 1, θ = L/2, and copied from 0≤ θ ≤ L into
the other sectors to fill the ice annulus. At r = 1, θ = L/2,
a position which we call the “mid-grain interior”, the verti-
cal sinusoidal signal in δ has maximum amplitude because
diffusion short-circuiting subdues the signal amplitude more
strongly elsewhere, especially near the vein and grain bound-
aries. Consequently, the mid-grain interior signal closely ap-
proximates and has a slightly higher amplitude than the bulk
vertical isotopic signal in Eq. (15) derived through horizon-
tal averaging or, equivalently, the signal measured by ice-
core continuous flow analysis (CFA) (Kaufmann et al., 2008;
Bigler et al., 2011). The normalisation thus puts our pattern
amplitudes in Sect. 3.1 in a dimensionless unit, scaled (ap-
proximately) to the bulk vertical signal. It allows the absolute
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Figure 3. Elements of the mixed spectral–finite difference numerical method. (a) Radial coordinate transformation used to increase spatial
resolution near the vein. (b) Numerical grid for F(R,x). Filled dots indicate solution points; open circles indicate zero boundary values.
(c) The same grid points on the ice domain. Panels (b) and (c) are illustrative; we use many more grid points (N = 100, J = 201) than
shown.

amplitude of the δ variations in the predicted patterns to be
inferred for any bulk-signal amplitude.

3 Results and analysis

We proceed to examine computed isotopic patterns
(Sect. 3.1) and bulk-diffusivity enhancement factors
(Sect. 3.2) for different model parameters. In our model
runs, we set the vein and grain sizes at a = 1 µm and
b = 1 mm and assume the fractionation coefficient α = 1
so that the results can be compared with those of Rempel
and Wettlaufer (2003) and Ng (2023) and applied to either
δ18O or δD. Using precise fractionation coefficients at 0 °C
(≈ 1.0029 for oxygen, ≈ 1.021 for hydrogen; Sect. 2.3)
changes the results numerically in a minor way that does
not alter our qualitative findings. We will report only briefly
on the qualitative effects of changing a and b, which were
examined in more detail by Rempel and Wettlaufer (2003).

There are 30 parameter combinations from the choices
of temperatures T (−32 °C, −52 °C), grain-boundary thick-
nesses c (1, 5, 10 nm; Table 1), and grain-boundary diffu-
sivities Db (Table 2). For each combination, we compute re-
sults for signal wavelengths λ across the range 0.005–0.15 m
and different vein-water flow velocities w in 0–50 m yr−1

when T =−32 °C and 0–5 m yr−1 when T =−52 °C. These
ranges enable study of the enhancement factor f as a func-
tion of λ and w in Sect. 3.2. Note that w at ice-core sites is
unknown and has not been measured (Ng, 2023). We chose
the w ranges here based on flow velocities of ∼ 101 m yr−1

in micrometres-thick veins that Nye and Frank (1973) esti-
mated in their theory of water percolation in ice sheets and
the expectation that blockage or disconnection of the vein
network (e.g. by dust particles) can drastically reduce w.

In Sect. 3.1, we analyse selected runs to highlight the ef-
fect of grain-scale short-circuiting on the isotopic patterns,
focussing on results for λ= 10 cm. This wavelength is cho-
sen for illustration because (i) short signals at λ∼ 10–30 cm
are common in the isotopic records from polar ice cores,
(ii) the shortest surviving signals (despite stronger diffusive

smoothing at smaller λ) are of interest, and (iii) some sig-
nals with λ as short as 10 cm are found in the high-resolution
(5 mm) records from the WAIS Divide (δ18O and δD; Jones
et al., 2017) and the South Pole (δ17O, δ18O, and δD; Steig
et al., 2021). Perusing other ice-core datasets, we do not
find signals at λ≤ 10 cm in the NGRIP δ18O record (Gki-
nis et al., 2014; 5 cm resolution), whereas the GRIP δ18O
record (Johnsen et al., 1997; 55 cm resolution) and EPICA
Dome C δD record (Grisart et al., 2022; 11 cm resolution)
are too coarse for discerning signals at λ≈ 10 cm. However,
the Dye-3 ice core exhibits annual variations in δ18O and δD
as short as a few centimetres (Vinther et al., 2006; down to
≈ 2 cm in their Fig. 6 and ≈ 5 cm in their Fig. 5).

When addressing grain-boundary properties below, we use
the qualitative descriptors for Db and c introduced earlier
(Fig. 2; Tables 1 and 2). Not all parameter combinations will
be analysed for their isotopic patterns, e.g. not the patterns
for medium-low Db, which typically resemble and fall be-
tween the low and medium Db cases. As we shall see, the
more interesting pattern transitions occur as Db varies from
medium to high.

3.1 Isotopic patterns in 3D

3.1.1 Archetypal patterns at −32 °C: effects of
grain-boundary properties and vein-water flow

Figure 4 shows the predicted patterns at T =−32 °C, λ=
10 cm, and w = 0 for three runs with intermediate (5 nm
thick) grain boundaries having high, medium-high, and
medium diffusivities. They illustrate the change from an ax-
isymmetric “pole” pattern to a “three-spoke” pattern as Db
increases, which is one of our key findings. We use the word
“spoke” as an analogy to the radial elements of a bicycle
wheel; “pole” refers to a central peak without such elements.
In each panel, the colour charts show the dimensionless vari-
ations in δ – i.e.Re[H(r,θ)exp(ikzz)] after normalisation by
H(1,L/2) (Sect. 2.6) – at three depths in the range spanning
1λ. We look down the domain in Fig. 1a and take horizontal
slices of its isotopic deviation, analogous to cuts perpendicu-
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lar to a vertical triple junction in ice. The far-left plot shows
depth profiles of isotopic variations at the mid-grain interior
(r = 1, θ = L/2; black curve), at the grain-boundary interior
(r = 1, θ = 0; blue), and along the vein (red). The first profile
always has unit amplitude under the normalisation; in these
runs, the latter two profiles have amplitudes very slightly less
than 1, so they obscure the first profile when plotted. To em-
phasise where fast changes occur on each pattern, the colour
scale is always fitted to its maximal range of variations, and
we use one of two colour schemes depending on whether δ at
the vein is higher or lower than δ in the interior. Note that the
isotopic signals decay in time following Eqs. (13) and (21)
and that the patterns occur on a background (mean) isotopic
concentration that would first be subtracted when studying
real ice samples.

First, we analyse Fig. 4b (the medium-high diffusivity
run) to explain salient features and how the patterns relate
to the short-circuiting. This solution shows overall what the
axisymmetric theories (Nye, 1998; Rempel and Wettlaufer,
2003; Ng, 2023) predict, with isotopes diffusing radially to-
wards the vein (e.g. at z= z1, z3), up and down along the
vein, and back into ice and radially outwards (z2). As in those
theories, these exchanges bypass solid diffusion in the ice to
cause excess diffusion and accelerate the signal decay – the
computed enhancement factor f is 2.70 (> 1) – and they in-
duce radial variations in δ that are the most rapid immediately
outside the vein. These δ excursions cause the pole (z2) and
reverse-pole (z1, z3) patterns, which respectively reflect the
role of the vein as a source and sink of isotopes in different
horizontal sections in the short-circuiting.

The distinct depth intervals where isotopes diffuse radi-
ally inwards and outwards (identified by where δ in the ice
exceeds δ in the vein and vice versa) are indicated by white
and grey bars on the far-left plot. In each interval, the pat-
terns’ strength (magnitude of horizontal isotopic variations)
varies with depth according to the difference in δ between the
vein and interior, but the patterns themselves hardly change
with depth, except very near the transitions where the differ-
ence in δ between vein and interior changes sign (i.e. transi-
tions between the bars). This near invariance arises because
λ� b so that, away from these transitions, vertical gradients
in δ are much smaller than horizontal gradients in the sys-
tem, and the diffusion problems determining the pattern at
different depths are similar.3 At the transitions, as the vein-
to-interior difference in δ switches sign, the pattern flips from
a pole to a reverse pole or the other way. Movie S1 shows the
complete pattern evolution over 1λ. The stable “archetypal

3Mathematically, λ� b (dimensionally) translates to kz� 1
and p1� 1 in the scaled model of Sect. 2.4 and 2.5 so that Eqs. (22)
to (25) for H approximate a boundary value problem with terms
representing vertical gradients neglected. Near where the isotopic
pattern changes polarity, this approximation breaks down because
H ≈ 0 and those terms become comparable to the radial and az-
imuthal gradients.

patterns” in the white and grey depth intervals are paired,
with the same form but opposite polarity, so hereafter we
write “pole” for both pole and reverse pole. Detailed exami-
nation shows that, within a narrow distance about each tran-
sition, the pattern evolves continuously, with a pole weaken-
ing to zero strength and reversing sign. This behaviour is not
resolved in Movie S1 but can be gauged from its dynamic
colour ranges.

The poles in Fig. 4b are not axisymmetric: they exhibit
deformities reflecting the grain boundaries, whose impres-
sion is faint in this case. In contrast, Fig. 4a (high-diffusivity
run, where Db is 10-fold) shows a much stronger grain-
boundary imprint that causes three-spoke patterns. Here,
the vein plays a similar short-circuiting role as before: the
archetypal patterns again flip where the vein-to-interior dif-
ference in δ switches sign. But isotopes also diffuse from ice
to grain boundaries and along them to the vein (vice versa
at other depths), and diffusion occurs vertically within the
grain boundaries. Fast diffusion along them extends the poles
to form the spokes and cause extra short-circuiting across
the ice sectors, which raises the excess diffusion (f = 3.37).
The 3D isotopic field is more complex than in the run of
Fig. 4b. Azimuthal variations are evident from the spokes,
which indicate difference in δ between the ice interior and
the grain-boundary interior. The strongest azimuthal gradi-
ents occur just outside the vein next to grain boundaries,
so lateral short-circuiting dominates near each ice sector’s
apex. The increased short-circuiting also reduces the vein-to-
interior difference in δ compared to the last run (see colour-
scale numbering).

Going the other way, lowering Db to medium diffusivity
(Fig. 4c) suppresses the grain-boundary imprint and shrinks
the poles, which still show corners but only at tiny radii.
These changes are expected given the diminishing diffusion
along grain boundaries. Although this solution thus closely
approximates the axisymmetric solution of Rempel and Wet-
tlaufer (2003) and Ng (2023), its f value (2.64) is slightly
less than what they found (2.65) for the same conditions in
the absence of grain boundaries; this is also the case if Db is
further reduced to medium-low or low. In other words, as we
increaseDb from the solid diffusivityDs, f decreases before
rising. The initial decrease is due to radial short-circuiting of
the ice near crystal apices by the grain boundaries, which re-
duces the radial gradients in isotopic concentration there and
thus the vein’s short-circuiting effect; we will see more dras-
tic examples of this behaviour shortly (Fig. 6). For the inter-
ested reader, Movies S2 and S3 document the depth-evolving
isotopic patterns in the runs of Fig. 4a and c.

Next, we vary the grain-boundary thickness c. Figure 5
presents archetypal patterns in two runs at −32 °C assum-
ing thick grain boundaries (c = 10 nm) of high and medium-
high diffusivities. Compared to the runs in Fig. 4a and b,
which use the same Db values, these patterns have more de-
veloped grain-boundary imprints and enlarged central excur-
sions, and the associated enhancement factors are higher. As
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Figure 4. Horizontal isotopic patterns computed in three model runs with T =−32 °C, λ= 10 cm, c = 5 nm, w = 0 m yr−1, and Db =
(a) 1.5× 10−11 m2 s−1, (b) 1.5× 10−12 m2 s−1, and (c) 1.5× 10−13 m2 s−1, compiled by sampling the δ variations in the annular domain
of Fig. 1a at three depths (z1, z2, z3). The colour charts reach out to the ice grain radius; the vein at the centre is too small to be visible. One of
two colour schemes is used, depending on whether δ at the vein exceeds δ in the grain interior or vice versa. In each run, the δ variations are
normalised by the value of δ in the mid-grain interior at z= 0 (Sect. 2.6), so the colour-scale numbering and amplitudes are dimensionless.
On the far left, curves show the depth profiles of δ variations at three sites – the vein wall (red), grain-boundary interior (blue), and mid-grain
interior (black) – over a signal wavelength. The curves have very similar amplitudes in these runs, so the red curve overlies the other two.
White and grey bars indicate the distinct depth intervals where the vein-versus-interior difference in δ has the same sign. The enhancement
factors in these runs are f = (a) 3.37, (b) 2.70, and (c) 2.64.

expected, thickening the grain boundaries here has a simi-
lar effect to raisingDb in terms of enhancing grain-boundary
short-circuiting, so the transition from a pole to a three-spoke
pattern occurs at lower diffusivity. We experimented also
with thin grain boundaries (c = 1 nm), finding in this case
that the pole-to-spoke transition shifts to higher diffusivity
instead. The corresponding archetypal patterns will feature
in Fig. 9, described later.

All experiments so far assume no vein-water flow, so their
vertical isotopic variations at different positions (r , θ ) are in
phase (curves in Fig. 4). What if w 6= 0? Figure 6 shows the
results of four runs assuming intermediate and thick grain
boundaries with high and medium-high diffusivities, where
we set w to 5 m yr−1, leaving other parameters unchanged.
Ng (2023) explained that vein-water flow displaces the vein

signal against the interior signal to induce a “shear layer”
of phase-shifted isotopic variations outside the vein wall. In
turn, the shear layer generates strong radial gradients in iso-
topic concentration in the ice near the vein, amplifying the
diffusive isotope exchange between ice and vein to raise the
level of excess diffusion. Figure 6 shows the vein signal dis-
placed in all four runs. Each solution still has two transitions
where the vein-to-interior difference in δ switches sign and
has paired archetypal patterns occupying equal depth inter-
vals, within 1λ. The archetypal patterns closely resemble the
ones found earlier (cf. Figs. 4a–b and 5) because the vein-
flow-induced shear layers cause only subtle changes to them.
Figure 7 depicts the shear layer on a map of φ for the run in
Fig. 6a, showing also the radial transects of H at θ = 0 and
L/2. The non-zero imaginary part of H causes a phase shift
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Figure 5. Archetypal isotopic patterns computed in two model runs
assuming T =−32 °C, λ= 10 cm, c = 10 nm, w = 0 m yr−1, and
Db = (a) 1.5× 10−11 m2 s−1 and (b) 1.5× 10−12 m2 s−1, sam-
pled at the same depths as those in Fig. 4 (z1, z2, and z3) and shown
with the scheme used there. The enhancement factors in these runs
are f = (a) 4.06 and (b) 2.77.

reaching≈−3° by the vein in this run. Unlike in the axisym-
metric theory of Ng (2023), the shear layer here is triangu-
lar (non-circular) in planform due to lateral short-circuiting
by the grain boundaries, so isotopic transport in 3D is com-
plicated by both vein-water flow and the grain boundaries’
presence.

All four experiments in Fig. 6 confirm the amplification
of excess diffusion by w anticipated by Ng’s study: at each
combination of c and Db, f is higher than in the runs where
w = 0 (cf. Figs. 4a–b and 5). Three effects involving the
shear layer are noteworthy. First, Fig. 6 shows that, at fixed
c, f is actually reduced as Db increases from medium-high
to high. This arises from grain-boundary short-circuiting of
the ice-crystal apices, which, in these runs, limits the radial
isotopic gradients of the shear layers so much that the re-
duced exchange between vein and ice offsets the enhanced
exchange between grain boundaries and ice. Specifically, the
higherDb is, the weaker those gradients are atw = 5 m yr−1,
so the lower f is. This behaviour, which is observed in other
runs with vein-water flow (e.g. f values in red in Figs. 9 and
10), will be revisited in Sect. 3.2.

Second, the vertical phase shifts between the vein and
interior signals increase the amplitude difference between
these signals at most depths, thereby strengthening the iso-

topic patterns (e.g. compare the curves in Fig. 6b to those in
Fig. 4b). Vein-water flow thus makes the patterns easier to
detect, even though it affects their form only in minor ways.
Additional runs at w > 5 m yr−1 (not reported) show further
increase in the phase shifts and pattern amplitudes with w.
Note that higher pattern amplitudes also result from shorter
signal wavelength (e.g. Figs. S2 and S3 in Sect. S2, which
show repeats of the runs in Figs. 4 and 6 for λ= 2 cm) or
larger grain size (e.g. Figs. S6 and S7 in Sect. S4, which show
repeats of the same runs for b = 5 mm), but how λ and b af-
fect the anatomy of the 3D isotopic fields will not be analysed
extensively herein.

Third, when w 6= 0, the phase variations cause unusual
patterns to appear in the narrow transitions across which
an archetypal pattern (pole or spoke) evolves into its oppo-
site form. Figure 8 shows examples of these patterns, taken
from the last runs and an extra run at medium Db. They in-
clude “wheels” with notable azimuthal variations mid-way
along grain boundaries (near θ = 0, L, and 2L at r ≈ 1) and
“halos” where isotopic concentration varies with radius non-
monotonically. Although we mention them for completeness,
we expect to find them rarely in measurements because their
small amplitudes likely fall below measurement sensitivity
and the sampling has to be made at precisely the right depth
against the bulk signal.

3.1.2 Pattern continuum at different temperatures

Returning to the archetypal patterns, we summarise and
elaborate on the insights gained so far on them with the
aid of Fig. 9, which puts them in the c–Db parameter
space. The pattern type at −32 °C depends on the relative
amount of vein and grain-boundary short-circuiting. Thin,
non-diffusive grain boundaries give a pole pattern, since the
short-circuiting is done mostly by the vein. The axisym-
metric solution is reproduced at the no-grain-boundary limit
c→ 0 (dimensionlessly, ε→ 0) or when Db→Ds (grain
boundaries with the solid diffusivity; βb→ 0). Thick, dif-
fusive grain boundaries give three-spoke patterns, as they
serve as radial extensions of the vein in the 3D isotopic ex-
change; the higher c orDb is, the more developed the spokes
are. On the pattern continuum, the pole-to-spoke transition
at −32 °C occurs roughly at medium-high Db – higher if the
grain boundary is thinner. Figure 9 also indicates that a 10-
fold increase in c orDb leads to almost the same pattern, sug-
gesting the thickness–diffusivity product entirely determines
the pattern. However, our model analysis (Sect. 2.3) shows
that cDb (or ε(βb+ 1)) is not the sole control; c and Db also
act independently, which is why the 10-fold increases do not
give identical enhancement factors.

How about other temperatures? Calculations at −52 °C
for 10 cm long signals reveal a similar array of archetypal
pole and spoke patterns in the parameter space (Fig. 10; cf.
Fig. 9). Vein-water flow again modifies these patterns slightly
(Fig. S5) but increases their amplitude and detectability
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Figure 6. Archetypal isotopic patterns computed in four runs with T =−32 °C, λ= 10 cm and w = 5 m yr−1 (downward vein-water
flow) and the grain-boundary properties (a) Db = 1.5× 10−11 m2 s−1, c = 5 nm; (b) Db = 1.5× 10−12 m2 s−1, c = 5 nm; (c) Db =
1.5× 10−11 m2 s−1, c = 10 nm; and (d) Db = 1.5× 10−12 m2 s−1, c = 10 nm. The layout of Fig. 4 is used, but only the depths z2 and
z3 are sampled, and we omit the colour range on each pattern, which is defined by the difference between the vertical isotopic profiles
(curves on the far left) for the vein wall (red), grain-boundary interior (blue), and mid-grain interior (black); the black curves are overlain by
the blue curves in these runs. As in Fig. 4, all signal amplitudes are dimensionless. The enhancement factors in these runs are f = (a) 4.56,
(b) 5.96, (c) 4.97, and (d) 5.33.

strongly (we find this at other temperatures). That the pat-
tern arrays for −52 and −32 °C bear a close resemblance is
unsurprising because the diffusivity contrast βb =Db/Ds−1
predominantly determines the pattern at each thickness c and
because our Db values for the two temperatures lie at sim-
ilar distances above the solid-diffusivity curve (Fig. 2) and
convert to similar βb values (Figs. 9 and 10). The liquid dif-
fusivityDv also influences the patterns, but βv varies weakly
with T , as Dv(T ) and Ds(T ) have similar slopes on the Ar-
rhenius plot (Fig. 2). These considerations mean that we can
predict the isotopic pattern at any temperature from Db and
c by calculating βb – or gauging it with Fig. 2 – and consult-
ing the arrays in Figs. 9 and 10. For example, at –42 °C, for
grain boundaries with Db = 10−14 m2 s−1, Eqs. (1) and (12)
give βb ≈ 400, while these T –Db data plot between the grey
lines labelled medium-low and medium in Fig. 2. Both eval-
uations put the grain-boundary diffusivity between medium-
low and medium on our descriptive scale, below the third
row of patterns in Figs. 9 and 10, so we predict a pole pattern
(regardless of the grain-boundary thickness). An interesting
corollary is that isotopic patterns observed in real ice can be
used to infer grain-boundary properties (Sect. 4.1).

Hitherto, we have focussed on using the results at λ=
10 cm to elucidate underlying interactions and pattern con-
trols. For signals of other wavelengths at centimetre and
decimetre scale, we find similar effects of Db and c on the
archetypal patterns; e.g. see Figs. S2 and S3 for results at
λ= 2 cm. The patterns are weakly sensitive to λ for the rea-

son given earlier (footnote 3). When λ� b, as is typical of
isotopic signals in ice sheets, the diffusion problem for δ at
different depths (within a signal wavelength) is similar, dom-
inated by horizontal gradients, with terms representing ver-
tical gradients being negligible. Note that our results in this
section show that a given isotopic pattern does not indicate a
fixed enhancement factor, as it can form under different con-
ditions (T , λ, and Db and c combinations).

3.1.3 On pattern detectability

We end the section with a few remarks related to pattern de-
tection, in preparation for the work in Sect. 4.1. Since the
patterns in Figs. 4 to 10 are based on the normalised H , their
δ variation in absolute terms is given by their dimensionless
amplitude, as shown by the colour scales or the difference
between the vein and grain-interior isotopic profiles, multi-
plied by the true amplitude of the bulk vertical signal. This
scaling conversion applies to both oxygen and deuterium. For
instance, if the bulk signal (in δ18O or δD) is 10 ‰ peak to
peak, then the pattern amplitudes in Fig. 4b, ≈ 0.005–0.007,
translate to δ variations ≈ 0.025 ‰–0.035 ‰, whereas the
much higher pattern amplitudes in the runs with vein-water
flow in Fig. 6b and d, ≈ 0.1, translate to ≈ 0.5‰. Each re-
sult here is an approximation and underestimation because
the bulk signal has a scaled amplitude . 1 (see the end of
Sect. 2.6); we do not quantify the approximation exactly as it
varies with the pattern.
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Figure 7. (a) Map of signal phase angle φ at z= 0 in the exper-
iment of Fig. 6a. Corresponding radial transects of (b, c) the real
and imaginary parts of the normalised solution H and of (d) φ at
z= 0, on θ = 0 (black; i.e. grain boundary) and θ = π/3 (red). The
location lines in panel (a) and the curves in the other panels use the
same colour-coding.

The δ excursions of the patterns reported above have
widths ∼ 10 %–50 % of the grain radius b. Although we do
not study grain-size effects extensively, additional runs show
that this qualitative finding holds at b = 5 mm (Figs. S6–S9);
thus, the δ excursions are dimensionally wider in coarse-
grained ice. However, the pattern forms shift nearer the pole
end of the pole-to-spoke continuum as b increases (Figs. S6–
S9). This is predicted by the scaled model (Sect. 2.4), where
a larger b has no effect on βb (this is the dominant control
on pattern type; Sect. 3.1.2), reduces the dimensionless sig-
nal wavelength (the pattern is only weakly sensitive to this),
raises the Péclet number χ (the flow-induced shear layer does
not strongly alter the pattern; Sect. 3.1.1), and reduces the

Figure 8. Transitory isotopic patterns from (a, b, d) three of the runs
in Fig. 6 (see reference labels there) and (c) a run with T =−32 °C,
λ= 10 cm,w = 5 m yr−1, c = 1 nm, andDb = 1.5×10−13 m2 s−1.
The patterns have low amplitudes because they occur near transi-
tions in z across which the vein-to-interior difference in δ switches
sign. As before, the colour scales are dimensionless.

thinness ξ and εξ of the vein and grain boundaries and thus
their short-circuiting efficiency; this causes the shift.

Finally, surface and thin sections on real ice will often
cross triple junctions at oblique angles to their axes, yield-
ing distorted isotopic patterns for them. Figure 11 exempli-
fies potential outcomes, made by sampling the solutions in
Figs. 4a and 6a–b at tilts of 5, 10, 25, and 50° from the
horizontal (Movies S4–S7 show how they evolve as the az-
imuth of the section normal varies). While this examination
stretches our use of an idealised model geometry, which ig-
nores the irregular shape of real grain boundaries and triple
junctions (e.g. neighbouring junctions in real ice typically
differ in orientation), these examples suggest that poles and
spokes may still have visible impressions at moderate tilt.
Generally, though, on a given section, only some triple junc-
tions have low or moderate tilts; other junctions with high
tilts will have unrecognisable isotopic patterns.

3.2 Enhancement factor in bulk-ice diffusivity

Also of interest is how much the presence of grain bound-
aries affects the enhancement factor f measuring the excess
diffusion (and acceleration of signal smoothing) above the
rate due to monocrystalline diffusion. Here, we study this by
examining the computed surfaces of f as functions of vein-
water flow velocity w and signal wavelength λ.

Ng (2023) reported the surfaces f (w, λ) at T =−32 and
−52 °C for the axisymmetric (vein-only) system when a =
1 µm and b = 1 mm, which we reproduce in Fig. 12a and
e as contour maps. Our computed surfaces accounting for
grain boundaries show the same valley form as these maps,
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Figure 9. Dependence of archetypal patterns on grain-boundary diffusivity Db and thickness c at −32 °C for signals with the wavelength
λ= 10 cm. The key on the right locates the four values of Db as filled black circles on the scheme of Fig. 2. Numbers in green give the
corresponding diffusivity contrasts βb. The isotopic patterns and the enhancement factors f in black are for w = 0. Bracketed in red are the
f values when vein water flows at w = 5 m yr−1, which produces patterns only slightly different from the ones shown (Figs. 6 and S4).

with f increasing with λ and |w|. Thus, vein-water flow
amplifies excess diffusion in our system with grain bound-
aries by an amount independent of whether the flow is up
or down, as in the vein-only system. Our model also pre-
dicts known trends of f against the vein and grain sizes –
f increases with a and decreases with b (Rempel and Wett-
laufer, 2003), which reflects the way these parameters control
the efficiency and density of short-circuiting elements (Ng,
2023). Notably, a larger b increases these elements’ spacing
relative to the signal wavelength and so reduces the short-
circuiting and f towards 1 (no excess diffusion) asymptot-
ically; this dependence is shown in Fig. 4 of Rempel and
Wettlaufer (2003) for the vein-only system. Although we do
not characterise this dependence in our system fully, model
runs at b from 1 to 5 mm in 1 mm increments confirm a sim-
ilar behaviour (Fig. S10, Sect. S4). Furthermore, our sys-
tem exhibits (i) lower f at −52 °C than −32 °C when w = 0
and (ii) stronger modulation of f by w in colder ice (this
is why our experiments at −52 °C use lower vein-flow ve-
locities; e.g. compare the f values in Fig. 10 resulting from
w = 0.5 m yr−1 to those in Fig. 9 from w = 5 m yr−1). These
aspects have been explained by Ng (2023) with scaling argu-
ments that we do not repeat here.

We focus instead on how the surface f (w, λ) deforms
when we introduce grain boundaries and vary their dif-
fusivity. Figure 12b–d and f–h present the results at −32
and −52 °C for intermediate grain boundaries with medium,
medium-high, and high Db. The results are shown as differ-
ence maps 1f (w, λ) referenced to the surfaces in Fig. 12a
and e because we find visualising the changes by comparing
different sets of contours of f more difficult.4 On the differ-
ence maps, the interesting feature is the wedges of negative
1f straddling the w = 0 axis. They indicate reductions in f
caused by grain-boundary diffusion when vein water flows.
The reductions increase in magnitude with Db and λ, oc-
cur at relatively low vein-water velocities in λ& 2.5 cm, and
persist to higher vein-water velocities the longer the signal
is. Between each pair of wedges is a narrow ridge at w ≈ 0
where1f & 0, which matches our finding in Sect. 3.1 that f
typically increases with the degree of grain-boundary short-
circuiting at zero vein flow (e.g. f values in black in Figs. 9
and 10). Outside the wedges, 1f is positive and increases
steeply with |w|.

4Our computed surfaces at low Db differ from Fig. 12a and e
negligibly and could equally serve as the references.
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Figure 10. Dependence of archetypal patterns on Db and c at T =−52 °C and λ= 10 cm. The layout of Fig. 9 is used here. The isotopic
patterns and the enhancement factors f in black are for w = 0. Bracketed in red are the f values for vein-water flow at w = 0.5 m yr−1,
which produces patterns only slightly different from the ones shown (Fig. S5).

Figure 11. Isotopic patterns compiled by sampling several solutions in Figs. 4 and 6 at non-zero tilt from the horizontal (constant z in our
model), with the sampled sections meeting z= z2 at r = 0. The tilt angle, tilt-axis azimuth, and model run are indicated in each case. As
before, the colour scales are dimensionless.

For the surfaces f (w, λ), these differences mean that
grain-boundary short-circuiting flattens their valley bottom –
reducing f there compared to the vein-only case for signals
longer than ≈ 2.5 cm, while it raises f only at sufficiently
high vein-flow velocities. Because our runs at λ= 10 cm
with vein-water flow (Sect. 3.1) assume values of w inside
the wedges, they predict less excess diffusion and lower f
whenDb is increased (f values in red in Figs. 9 and 10). The
mechanism was explained in Sect. 3.1 through study of the
3D isotopic fields: with vein-water flow, diffusion along grain
boundaries suppresses the flow-induced shear layer by radial
short-circuiting of its concentration gradients. The outcome

thus rests on a competition: at low |w|, this effect overcomes
the enhanced isotopic exchange between ice and vein due to
the shear layer (so f decreases overall); it is out-competed by
the latter at high |w| (whereupon f increases). The wedge
shape arises because the mechanism is more effective for
longer signals, which develop weaker shear layers at a given
w. For completeness, we provide the computed grids of f
in the paper’s repository and show in Fig. S11 a companion
version of Fig. 12 that plots f instead of 1f .

In summary, although short-circuiting by diffusive grain
boundaries leaves a stable three spokes on isotopic patterns
(Sect. 3.1), for decimetre-scale isotopic signals, it increases
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Figure 12. Impact of the presence and diffusivity (Db) of grain boundaries on the level of excess diffusion for different vein-flow velocities
w and signal wavelengths λ at−32 and−52 °C when c = 5 nm. (a, e) Contour maps of enhancement factor f (w, λ) for the vein-only system
without grain boundaries; data from Ng (2023). (b–d) f (w, λ) reported as contour maps of the difference 1f from panel (a) for our system
at −32 °C when the grain boundaries have medium, medium-high, and high diffusivities. (f–h) Ditto for −52 °C but referenced to panel (e).

f only at zero or high vein-water velocities, not at intermedi-
ate velocities. Thus, while the presence of grain boundaries
or veins in glacier ice (b ∼mm) always causes excess dif-
fusion compared to the monocrystal, and while vein-water
flow always increases the level of excess diffusion compared
to no flow, whether more diffusive grain boundaries amplify
the level has a mixed answer. However, this outcome does
not affect the concept of using the grain-scale patterns to di-
agnose isotopic short-circuiting.

4 Discussion

4.1 Detecting isotopic patterns

Our calculations establish isotopic patterns around triple
junctions as an inevitable consequence of excess diffusion
that operates by vein and/or grain boundary short-circuiting.
As highlighted in the Introduction, we propose looking for
this grain-scale prediction in laboratory measurements on ice
to test the Nye–Rempel–Wettlaufer genre of theories. Here
we discuss this matter, drawing on the results in Sect. 3.1.

The crux is whether such tests reveal systematic excur-
sions in δ around veins and grain boundaries like the pre-
dicted archetypal patterns. Also relevant is whether pole or
three-spoke patterns (or both) are found to prevail in natu-
ral ice, but the current level of knowledge about the grain-
boundary properties of ice precludes a clear expectation on
this. Our model predicts a pattern type dependent on grain-
boundary diffusivity and thickness – higher Db and c favour
spokes. In particular, medium-high to highDb in our descrip-

tive range (Fig. 2) is needed for spokes (Figs. 9 and 10; also,
Figs. S2–S3 and S6–S9). This does not necessarily mean that
spokes will rarely be observed, given substantial uncertain-
ties about the extent to which impurities and crystallographic
factors affect Db and c (Sect. 2.2). Also, although the HCl
bulk concentration (≈ 0.01 M) used by Lu et al. (2009) in
their diffusivity measurements to explore the impurity effect
is much higher than the typical concentration of Cl− in ice
cores (∼ 1–10 µM), natural ice contains myriad impurities.
More likely, any detected isotopic patterns might give us a
handle on assessing the grain-boundary properties.

In terms of measurement technique, one based on laser ab-
lation (LA) sampling is promising. Bohleber et al. (2021)
used laser ablation inductively coupled plasma mass spec-
trometry (LA-ICP-MS) to map the elemental abundances
(Na, Mg, Sr) on ice-core surface sections at 35 µm resolu-
tion, gaining new insights into impurity localisation at grain
boundaries; see review by Stoll et al. (2023). Malegiannaki
et al. (2023) have been innovating a system for mapping wa-
ter isotope ratios in ice by coupling LA sampling with cav-
ity ring-down spectroscopy. The resulting isotopic maps will
hopefully have a spatial resolution as good as LA-ICP-MS
and a measurement sensitivity and accuracy in δ18O or δD
sufficient for our proposed tests. On our simulated patterns
at λ= 10 cm, the δ excursions have widths ∼ 10 %–50 % of
the grain radius for b = 1–5 mm (Sects. 3.1.3 and S4) and
amplitudes ≈ 0.005–0.007 of the vertical bulk signal in the
less favourable cases without vein-water flow (Fig. 4); that
is, ≈ 0.01 ‰–0.02 ‰ if the bulk-signal variation is 5 ‰ peak
to peak. This conversion example suggests achieving high
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sensitivity in δ to be the main obstacle for the LA-based tech-
nique to detect the patterns, while the technique should plau-
sibly achieve sub-millimetre spatial resolution. However, as
noted in Sect. 3.1.1 and 3.1.3, the pattern amplitudes are
higher by 1 order of magnitude in those runs with vein-water
flow and still higher at values of w greater than those in
our experiments; they are also higher for larger grain radii
(b > 1 mm) and shorter signals (λ < 10 cm). Moreover, polar
ice cores often exhibit decimetre-scale variations in δD of up
to ∼ 20 ‰–40 ‰, in contrast to several per mil in δ18O, ow-
ing to the different dependencies of δD and δ18O of polar pre-
cipitation on condensation temperature (Dansgaard, 1964).
The conversion example above may thus be conservative,
and, optimistically, we think that a measurement sensitivity
of∼ 0.1 ‰ has the potential of detecting the stronger isotopic
patterns, especially if one targets short, large-amplitude sig-
nals in δD in coarse-grained ice.

For testing ice-core samples with this technique, our find-
ings motivate mapping δ on horizontal sections at different
depths. Figure 13 sketches an experimental design. The bulk
isotopic signal should first be determined – e.g. by contin-
uous flow analysis (CFA) measurements of a vertical strip
– to guide where to make horizontal sections. If w = 0, lo-
cations likely to yield stronger and more detectable isotopic
patterns are the peaks and troughs of the bulk signal because
a vein isotopic profile in phase with the bulk signal leads
to the greatest pattern amplitude at those extrema and pat-
tern extinction at the bulk-signal inflexions (dotted curve in
Fig. 13), where the predicted archetypal patterns switch sign
(Sect. 3.1; Fig. 4). If the ice experienced vein-water flow, then
we expect the vein isotopic signals to be displaced in the di-
rection of w, so the extrema of the bulk signal might give
weaker patterns than elsewhere (e.g. dashed–dotted curve in
Fig. 13; also, Fig. 6). Given the difficulty of constraining w
at ice-core sites (see discussion by Ng, 2023) and other fac-
tors behind the shift (e.g. grain-boundary properties in a sam-
ple), the amount and direction of shift are not known a priori,
so horizontal sections at several places – the bulk-signal ex-
trema and inflexions and intermediate positions – are proba-
bly needed to obtain high-amplitude maps.

The map of δ from each horizontal section is processed
by subtracting its section-mean value to isolate variations for
spotting patterns akin to the predicted ones. If 2D mapping
is not possible, linear transects may be used to detect anoma-
lies in δ across grain boundaries. Whether mapping in 1D
or 2D, obtaining the grain-boundary network independently
by LA-ICP-MS or other measurements is desirable. If mul-
tiple sections could be made, we suggest sampling across
the bulk-signal wavelength to look for the predicted pattern
sign reversal (associated with the depth intervals where iso-
topes diffuse towards and away from veins; Sect. 3.1) and
to characterise how pattern amplitudes vary with depth. For
ice affected by short-circuiting, our model predicts (i) same-
signed patterns on each horizontal section (triple junctions
all showing either higher or lower δ than away from them)

and (ii) pattern amplitudes cycling vertically on half the bulk-
signal wavelength. Indeed, firm evidence for isotopic short-
circuiting includes finding these depth-dependent relation-
ships, besides the archetypal patterns.

On maps of δ yielding successful detection, we expect
to see more varieties of triple-junction patterns than sim-
ple poles and spokes – patterns with different shapes, am-
plitudes (even some with opposite sign), and distortion lev-
els and patterns unlike the archetypes. Reasons include
(i) a non-sinusoidal bulk signal, (ii) anisotropy in the dif-
fusivity Ds within crystals, (iii) curved grain boundaries
and triple-junction angles deviating from 120° in real ice,
(iv) textural variations in real ice (i.e. different vein diam-
eters, grain sizes and shapes, and triple-junction orienta-
tions (Fig. 11) sampled by each section; recall our simu-
lations used fixed a and b), (v) “out-of-plane” effects of
veins and grain boundaries slightly above and below the sec-
tion (discussed later in Sect. 4.2), and (vi) short-circuiting
by subgrain boundaries (Sect. 4.2). Based on the computed
pattern arrays in Figs. 9 and 10, the observed assemblage
of archetypal or near-archetypal patterns may allow us to
gauge the short-circuiting regime: spoke-dominated (pole-
dominated) assemblages would suggest thick, diffusive (thin,
non-diffusive) grain boundaries.

Vertical sections can also be mapped in the experiments.
They will miss most (if not all) vertically oriented triple
junctions and hence not show our predicted patterns, but
out-of-plane effects on them may generate excursions near
triple junctions (Sect. 4.2). Random linear transects across
our computed patterns (e.g. Figs. 4 to 6) suggest that verti-
cal sections will cross some of the δ excursions around grain
boundaries in affected ice samples. Again, our model pre-
dicts their amplitude to vary vertically in unison – not neces-
sarily in phase – with the bulk signal.

For isotopic maps from either vertical sections or a stack
of horizontal sections, a consistent phase relationship found
between the pattern amplitudes and the bulk signal can be
used to infer the direction and relative magnitude of vein-
water flow (or its stagnancy). For an ice-core sample, this
means the value of w experienced when it was in situ in the
ice column.

Which ice-core samples should be tested? High on the list
are those from the Holocene part of the GRIP core (Johnsen
et al., 1997, 2000), ≈ 15–18 ka in the WAIS Divide core
(Jones et al., 2017), and MIS 19 (≈ 3170 m) in the EPICA
Dome C core (Pol et al., 2010), given the interpretation that
they suffered excess diffusion (Sect. 1). Our model suggests
choosing samples carrying bulk δ signals that are short (λ as
low as possible) with high amplitude. However, since diffu-
sion – especially excess diffusion – damps short signals effi-
ciently, ideal samples may be challenging to find, and com-
promise between amplitude and wavelength may be neces-
sary. As pointed out above, coarser-grained ice may show
stronger patterns with wider excursions that are easier to re-
solve; this suggests samples deep in the ice column. There-
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Figure 13. Experimental design for testing ice-core samples for the grain-scale signature of the isotopic short-circuiting causing excess
diffusion. Horizontal sections are expected to show anomalies in δ around triple junctions, whose amplitudes vary with depth in association
with the bulk δ18O or δD signal. Laser ablation measurement is used to map the anomalies, some of them resembling the computed patterns
in Figs. 4–6 and 8–11. If the ice experienced no or negligible vein-water flow (w ≈ 0), the pattern amplitudes are strongest at the peaks
and troughs of the bulk signal, weaken away from these, and are faintest at inflexion points of the bulk signal (dotted curve). If w > 0, the
amplitude variations are shifted vertically (dashed–dotted curve), so the patterns may be weaker near the bulk-signal peaks and troughs than
elsewhere (e.g. Fig. 6). Images right of centre illustrate the polarity and amplitude of the mapped patterns for w = 0. Images on the far right
illustrate how the patterns might look in detail in the case of spokes, on colour scales set to bracket their isotopic variations, after these have
been non-dimensionalised by the bulk-signal amplitude.

fore, samples dated to MIS 19 from EPICA Dome C (where
b ≈ 6 mm; Fig. 8 of Ng (2023)) may be good candidates.
The high vein-water flow velocities (∼ 102 m yr−1) needed
to model the diffusion lengths in that part of the core (Ng,
2023) also favour these samples. Separately, although the in
situ ice temperature and the time span of the bulk signal (e.g.
whether it is annual, centennial, or millennial) do not matter
in these tests for the occurrence of excess diffusion, samples
with high dust or microparticle content are best avoided be-
cause blockage of veins (maybe also grain boundaries) hin-
ders the theorised short-circuiting. We pause with these gen-
eral ideas on sample selection here and leave dedicated con-
siderations to future studies.

It is equally important to test ice-core samples apparently
unaffected by excess diffusion. Together with the (purport-
edly) affected samples, they may help us understand the ori-
gin and pattern of occurrence of excess diffusion in indi-
vidual or multiple cores. From the perspective of the Nye–
Rempel–Wettlaufer framework, which includes the model
of Ng (2023) and our present model, it is puzzling why
excess diffusion occurs in a patchy manner in ice cores.
All three cores mentioned above have depth intervals where
the signal decay rate or diffusion length can be explained
with monocrystalline diffusivity without excess diffusion
(Johnsen et al., 2000; Pol et al., 2010; Jones et al., 2017).

Yet the short-circuiting theories always predict f > 1 be-
cause veins and grain boundaries are always present. One
possibility is that blocked or disconnected veins prevent ex-
cess diffusion on some intervals, whereas, on other intervals,
dissolved impurities migrate to grain boundaries (e.g. Bohle-
ber et al., 2021) and then to the veins, thickening them to
turn on excess diffusion. A study that tests both unaffected
and affected samples for grain-scale isotopic short-circuiting
and maps their impurities simultaneously (with LA-ICP-MS)
might shed light on the enigma.

Artificial ice samples can also be tested. Manufacturing
these with bulk isotopic signals may be non-trivial, and the
long time for isotopic patterns to stabilise seems impractical
(the timescale b2/Ds in Eq. (17) gives 16, 27, and 78 years at
−5,−10, and−20 °C, respectively, for b = 1 mm and longer
for higher b) and may limit insights to the transient stages of
short-circuiting.

4.2 Model limitations and extensions

Real isotopic patterns at the grain scale will be more varied
and complex than predicted because our model geometry is
idealised: its cell-like regularity (Fig. 1) ignores grain size
and shape variations, for instance (Sect. 4.1). Before finish-

The Cryosphere, 18, 4645–4669, 2024 https://doi.org/10.5194/tc-18-4645-2024



F. S. L. Ng: The grain-scale signature of isotopic diffusion in ice 4665

ing, we consider several important limitations of the model
in this respect.

First, the true geometry has many non-vertical veins and
grain boundaries. To gauge their effects, one might try to add
horizontal veins and grain boundaries to the model geome-
try. Ice with grain size b ∼ 1 mm will have many such el-
ements in one λ (if λ is several centimetres to decimetres).
Spaced at intervals ∼ b, they extend the diffusion pathways
laterally from our system. We expect the associated δ excur-
sions, which modify the isotopic field near these elements,
to be thin vertically, just as the radial (azimuthal) excursions
around veins (grain boundaries) in our current model are thin.
Between the new excursions, the field should resemble the
one computed by us. Therefore, on a given horizontal sec-
tion, we should still find triple-junction patterns in δ, like the
predicted ones, for neighbouring grains crossed by the sec-
tion near their waist (thick excursions from high c and Db
might distort these patterns). However, grains crossed near
their top and bottom will show strongly affected patterns,
as their sampled junctions and boundaries lie near or within
the new excursions. Consequently, real maps of δ will show
out-of-plane distortion due to horizontal and sub-horizontal
veins and grain boundaries above and below the section. The
impact of the (sub-) horizontal elements on the level of ex-
cess diffusion is harder to predict. They may increase the
isotopic exchange between veins and ice to raise f overall
or short-circuit the vertical system sufficiently to reduce f
(we infer this possibility from Sect. 3.2, where we saw dif-
fusion along grain boundaries weakening the flow-induced
shear layer around veins).

Second, veins and grain boundaries in the real system are
generally not stationary but migrate continually. Their 3D
motion will cause lopsided or asymmetric isotopic patterns.
Modelling the outcome requires quantifying the relative rates
of isotopic field evolution and this motion, accounting for
the statistical distribution of vein and grain-boundary veloci-
ties and impurity factors, which lies beyond the scope of this
paper.

Third, small-angle boundaries within crystals, i.e. sub-
grain boundaries, may act as short-circuiting pathways that
distort the isotopic patterns. In their experiments on ice with
gaseous HCl, Dominé et al. (1994) and Thibert and Dom-
iné (1997) interpreted measured depth profiles of the HCl
concentration in single crystals for fast HCl diffusion along
these defects, using this to explain the high value and high
scatter of apparent diffusivities in their samples. Dominé et
al. (1994) estimated the HCl diffusivity along the small-angle
boundaries (accounting for segregation of HCl there) at−5 to
−15 °C to be ∼ 107 times greater than the “true” HCl diffu-
sivity in the crystal lattice away from the defects, which the
two studies estimated to be probably around 10−16 m2 s−1

at −5 to −35 °C. Consequently, one could conjecture fast
diffusion of oxygen and deuterium isotopes along the same
defects, which would extend the short-circuiting network of
grain boundaries and veins into crystals. Its impact on excess

diffusion and the isotopic patterns would presumably depend
on the density of small-angle boundaries. In exploring such
conjecture, a key question is how well the findings for HCl
translate to water self-diffusion, and one way to investigate
this is to repeat the experiments on water stable isotopes in-
stead of HCl.

Studies using the enhancement factor f from our model
to simulate signal evolution and diffusion-length profiles in
ice cores should bear in mind the above limitations, which
apply equally to the short-circuiting theories of Nye (1998),
Johnsen et al. (2000), Rempel and Wettlaufer (2003), and
Ng (2023). In terms of building more realism and sophisti-
cation upon these theories, we are near the end of the road
with using simple analytical models to capture the coupled
diffusion across ice, veins, and grain boundaries. Looking
forward, overcoming the limitations in the mathematical de-
scription seems challenging and may require approximate
approaches (e.g. using multiscale or homogenisation meth-
ods to derive bulk diffusivity) or direct numerical simulation
tracking complex mobile interfaces.

5 Conclusions

If vein and grain-boundary short-circuiting is responsible for
excess diffusion in ice, then isotopic imprints similar to our
computed archetypal pole and spoke patterns will occur at
the grain scale. The δ excursion of each imprint reflects iso-
topic exchange between ice and the short-circuiting path-
ways, its polarity showing whether the pathways act as a sink
or source of isotopes for the crystal lattice. For ice with mil-
limetre grain size, our model predicts excursions ∼ 10 %–
50 % of the grain radius – thus, at least 0.1 mm wide, with
δ variations whose amplitude is proportional to the bulk iso-
topic signal and ranges from ∼ 10−2 to 10−1 times its am-
plitude. Mapping the isotopic patterns probably requires a
minimum instrumental sensitivity of∼ 0.1 ‰ and spatial res-
olution of a few tens of micrometres or better. Pattern de-
tectability is improved in ice that carries short bulk signals
with high amplitude, has higher mean grain size, and expe-
rienced vein-water flow in the ice column, as these factors
promote stronger excursions.

These predictions motivate testing ice for these signa-
tures of excess diffusion and the short-circuiting mechanism
by mapping their isotopic concentration at high resolution.
Given ongoing development of laser ablation measurement
techniques, we outlined a scheme for conducting the tests on
2D sections of ice from ice cores, with thoughts on sample
selection (Sect. 4.1; Fig. 13). The proposed tests are indepen-
dent from known ways of inferring excess diffusion from the
signal decay rates or estimated diffusion lengths on ice-core
isotope profiles, which can diagnose its occurrence but not
its underlying mechanism.

Our modelling elucidates the controls on the isotopic sig-
natures. Although the isotopic diffusivity (Db) and thickness
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(c) of grain boundaries in ice are poorly constrained, our
results show that thin, non-diffusive grain boundaries yield
pole patterns, whereas thick, diffusive grain boundaries yield
spoke patterns. Figures 9 and 10 show the predicted contin-
uum of pattern types in the c–Db parameter space, which can
be used with the observed patterns in an ice sample to infer
its grain-boundary properties. The grain-boundary diffusiv-
ity affects the pattern via the parameter βb =Db/Ds− 1, in
which Db and the monocrystalline diffusivity Ds both de-
pend on temperature (Fig. 2). Our results also revise cur-
rent estimates of the enhancement factor f quantifying ex-
cess diffusion above Ds. For the full system with veins and
grain boundaries, vein-water flow amplifies excess diffusion
and increases f , as in the vein-only system (Ng, 2023). The
presence of grain boundaries can increase or reduce f com-
pared to the vein-only system, depending on the vein-water
flow velocity w; f is increased at sufficiently high w for
decimetre-scale or shorter signals (Sect. 3.2). The model pre-
dicts polycrystalline ice always to exhibit some excess diffu-
sion (f > 1) unless the veins are blocked by solid particles
or disconnected.

In future extensions, it may be possible to use the assem-
blage of grain-scale isotopic patterns in ice samples to quan-
tify their level of excess diffusion and constrain their vein
and grain-boundary properties. The proposed tests and this
avenue will help us understand why excess diffusion occurs
on some parts of ice cores and not others.
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Appendix A

Table A1. Variables and parameters in our mathematical model.

Symbol Description (square brackets indicate values used in our calculations)

a Liquid-vein radius [1 µm]
b Mean grain radius [1 mm]
c Grain-boundary thickness (see Table 1 for values)
Db Grain-boundary (isotopic) diffusivity (see Table 2 for values)
Ds Isotopic diffusivity in ice or “solid diffusivity”; Eq. (1)
Dv Isotopic diffusivity in vein water or “liquid diffusivity”; Eq. (2)
f Enhancement factor in isotopic diffusion rate
F(r , θ) A part of the function H in the numerical method (Sect. 2.6)
G(r) Radial function representing variation in H along grain boundaries
H(r , θ) Complex function encapsulating the isotopic pattern
J Number of numerical grid points in the radial direction
kz Signal wavenumber (= 2π/λ)
kr Parameter linked to wavenumber in the signal decay calculation (Eq. 14)
L = 2π/3, the angle between grain boundaries
M Sparse-banded matrix in the numerical method (Sect. 2.6)
N Number of numerical grid points in the azimuthal direction
Ns, Nv, Nb Concentrations of trace isotope (18O or D) in ice, vein, and grain boundaries
Ns0, Nv0, Nb0 Concentrations of major isotope (16O or H) in ice, vein, and grain boundaries
p1, p2, p3 Parameters used in the calculation of Sect. 2.5
r Radial coordinate
R Transformed radial variable
Rmax Vein wall position in the transformed radial variable
s Square root of the eigenvalue s2 in the problem for H (Sect. 2.5)
t Time
T Temperature
v Eigenvector in the numerical solution
w Vein-water flow velocity (values in 0–50 m yr−1 used in experiments)
x Chebyshev collocation point positions in the spectral method
z Depth
α Fractionation coefficient, ≈ 1 (see Sect. 2.3 for information)
βb Diffusivity contrast of grain boundary to ice (=Db/Ds− 1)
βv Diffusivity contrast of water to ice (=Dv/Ds− 1)
δ Isotopic deviation
ε Dimensionless grain-boundary thickness (= c/a)
ζ Complex decay-rate parameter
θ Azimuthal coordinate
λ Signal wavelength (= 2π/kz)
ξ Dimensionless vein radius or dimensionless radial position of vein wall (= a/b)
φ Phase angle of isotopic signal in the z direction
χ Péclet number (ratio of vein-flow advection to monocrystalline diffusion)
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