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Abstract. Spatiotemporal snow depth (SD) mapping in the
Indian Western Himalayan (WH) region is essential in many
applications pertaining to hydrology, natural disaster man-
agement, climate, etc. In situ techniques for SD measure-
ment are not sufficient to represent the high spatiotemporal
variability in SD in the WH region. Currently, low-frequency
passive microwave (PMW) remote-sensing-based algorithms
are extensively used to monitor SD at regional and global
scales.

However, fewer PMW SD estimation studies have been
carried out for the WH region to date, which are mainly con-
fined to small subregions of the WH region. In addition, the
majority of the available PMW SD models for WH locations
are developed using limited data and fewer parameters and
therefore cannot be implemented for the entire region. Fur-
ther, these models have not taken the auxiliary parameters
such as location, topography, and snow cover duration (SCD)
into consideration and have poor accuracy (particularly in
deep snow) and coarse spatial resolution.

Considering the high spatiotemporal variability in snow
depth characteristics across the WH region, region-wise mul-
tifactor models are developed for the first time to estimate SD
at a high spatial resolution of 500 m× 500 m for three dif-
ferent WH zones, i.e., Lower Himalayan Zone (LHZ), Mid-
dle Himalayan Zone (MHZ), and Upper Himalayan Zone

(UHZ). Multifrequency brightness temperature (TB) obser-
vations from Advanced Microwave Scanning Radiometer
2 (AMSR2), SCD data, terrain parameters (i.e., elevation,
slope, and ruggedness), and geolocation for the winter pe-
riod (October to March) during 2012–2013 to 2016–2017 are
used for developing the SD models for dry snow conditions.
Different regression approaches (i.e., linear, logarithmic, re-
ciprocal, and power) are used to develop snow depth models,
which are evaluated further to find if any of these models
can address the heterogeneous association between SD ob-
servations and PMW TB. From the results, it is observed
from the analysis that the power regression SD model has
improved accuracy in all WH zones with the low root mean
square error (RMSE) in the MHZ (i.e., 27.21 cm) compared
to the LHZ (32.87 cm) and the UHZ (42.81 cm). The spatial
distribution of model-derived SD is highly affected by SCD,
terrain parameters, and geolocation parameters and has better
SD estimates compared to regional and global products in all
zones. Overall results indicate that the proposed multifactor
SD models have achieved higher accuracy in deep snowpack
(i.e., SD>25 cm) of the WH region compared to previously
developed SD models.
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1 Introduction

Snow is an essential land cover type and an important
cryosphere component. The snow cover encompasses an
aerial extent of approximately 45× 106 km2 in the peak
winter over the Northern Hemisphere (Estilow et al., 2015;
Lemke et al., 2007). Among many cryosphere regions in the
Northern Hemisphere, the Indian Western Himalayan (WH)
region is a unique snow-covered region with a complex to-
pography and high spatiotemporal variability in snow depth
(SD) and diverse land cover types (Singh et al., 2018; Das
and Sarwade, 2008; Thakur et al., 2019; Sharma et al., 2014;
Singh et al., 2016). The WH region comprises three moun-
tain zones, e.g., Lower Himalayan Zone (LHZ), Middle Hi-
malayan Zone (MHZ), and Upper Himalayan Zone (UHZ),
and receives significant snowfall during winter (Dimri and
Dash, 2012; Gurung et al., 2011; Kumar et al., 2019; Sharma
and Ganju, 2000; Singh et al., 2016, 2014). The variation
in snow volume and its melt rate affects the availability of
fresh water for drinking, hydropower, irrigation facilities,
and ecosystem conditions for millions of people residing in
the foothills of WH zones (Singh et al., 2016; Thakur et al.,
2019; Nüsser et al., 2019; Negi et al., 2020; Ahmad, 2020;
Mukherji et al., 2019; Vishwakarma et al., 2022). Further,
the variability in snow characteristics such as SD, density,
and volume and mountainous topography triggers frequent
avalanches in the WH region, which have resulted in more
than 1000 casualties as reported in different studies (Ganju
et al., 2002; McClung, 2016; Gusain et al., 2016). There-
fore, quantifying snow variables, especially SD, is an essen-
tial field of study in the WH region.

Traditionally SD information is acquired using in situ
measurements from snow stakes, snow poles, ground pene-
trating radar, automatic weather stations, etc. (Dong, 2018;
Kinar and Pomeroy, 2015). In situ methods provide accu-
rate SD; however, these techniques have several drawbacks,
such as limited spatial coverage, operational and mainte-
nance constraints under harsh weather and complex terrain
conditions, instrument calibration and malfunctioning issues,
and high logistics and personnel requirements (Kinar and
Pomeroy, 2015; Gusain et al., 2016). In the WH region,
because of the rocky terrain and harsh climatic conditions,
a sparse network of snow monitoring stations is available
(Saraf et al., 1999; Singh et al., 2016; Gusain et al., 2016).
Apart from this, the available SD observations from the
in situ network are spatially and temporally discontinuous
and inadequate for demonstrating the snowpack at a regional
scale, particularly in the high-altitude regions of the WH re-
gion. Spaceborne passive microwave (PMW) remote sens-
ing observations can partially compensate for these limita-
tions and effectively monitor large areas for SD at a com-
paratively low cost under all weather and terrain conditions
(Dietz et al., 2012; Amlien, 2008; Bernier, 1987; Xiao et al.,
2018). Sensitivity to snowpack characteristics, global cover-
age, daily temporal resolution, and availability of an exten-

sive archive of historical data make spaceborne PMW remote
sensing data extensively useful for the retrieval of SD (Dietz
et al., 2012; Tedesco and Narvekar, 2010; Luojus et al., 2021;
Chang et al., 1987).

The historical PMW data and ongoing and planned mis-
sions have paved the way for developing numerous SD in-
version algorithms across the different cryosphere regions of
the earth. Many studies of SD estimation have been carried
out using multifrequency brightness temperature (TB) obser-
vations collected from PMW sensors on board different satel-
lites (Chang et al., 1987; Saraf et al., 1999; Xiao et al., 2018;
Kelly et al., 2005; Takala et al., 2011; Dai et al., 2018; Jiang
et al., 2014; Singh et al., 2012). The volumetric PMW scat-
tering increases while PMW TB decreases with an increase
in SD. The PMW brightness temperature difference (BTD)
of 18 and 36 GHz frequency increases with an increase in
SD up to a specific thickness and then saturates depending
on snowpack conditions (Rango et al., 1979; Chang et al.,
1987; Tedesco and Narvekar, 2010). Hence, many studies of
PMW SD inversion relied on empirical models derived us-
ing BTD between 18 and 36 GHz frequency from TB ob-
servations (Chang et al., 1987; Saraf et al., 1999; Foster et
al., 1997; Kelly et al., 2005, 2003; Das and Sarwade, 2008).
Many of the empirical models for SD are developed by gen-
eralizing the snowpack parameters such as snow density and
grain size (Chang et al., 1987, 1997; Kelly et al., 2003). How-
ever, these parameters dynamically vary with space and time.
As a result, the applicability of many empirical SD models
(Chang et al., 1987; Foster et al., 1997; Aschbacher, 1989)
outside their study region is not good, as evident from several
studies (Dai et al., 2018; Wang et al., 2019, 2020; Saraf et al.,
1999; Xiao et al., 2018). Further, many PMW studies have
shown that the error in estimated SD using TB data varies
with snow conditions (i.e., wetness, grain size, density), land
cover, topography, ground SD, etc. (Dai et al., 2018; Tedesco
and Narvekar, 2010; Tedesco et al., 2010; Kelly et al., 2002;
Yang et al., 2021; Wang et al., 2010; Ansari et al., 2019).
Different combinations of multifrequency PMW TB observa-
tions, snow information (i.e., snow cover fraction, grain size,
density), and auxiliary data such as topographical and land
cover information are used in the PMW-based SD model de-
velopment to account for these limitations (Dai et al., 2018;
Wang et al., 2020, 2019). Many SD modeling approaches
comprising static empirical linear (Chang et al., 1987; Saraf
et al., 1999; Singh et al., 2012) and nonlinear models (Wang
et al., 2020, 2019), dynamic models (Tedesco et al., 2010;
Grippa et al., 2004; Wei et al., 2021), snow emission mod-
els (Dai et al., 2018; Yang et al., 2021), machine learning
algorithms (Xiao et al., 2018; Yang et al., 2020), assimilation
schemes (Kwon et al., 2017; Graf et al., 2006), etc., have
been developed using PMW TB and auxiliary datasets for
different regions.

Despite the significant progress in PMW-based SD esti-
mation, very few studies have been carried out in the In-
dian WH region using PMW data (Singh et al., 2012; Das
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and Sarwade, 2008; Saraf et al., 1999; Singh et al., 2015).
The WH region, being a tropical region, experiences signifi-
cant changes in temperature, leading to frequent melt–freeze
snow events causing snow grain growth, which introduces
errors in the estimation of PMW SD (Singh et al., 2015).
Further, the limited availability of in situ SD observations,
very high SD (i.e., >1 m), and high spatiotemporal variabil-
ity in snowpack characteristics pose numerous constraints for
PMW SD estimation in the WH region. Consequently, no
studies were reported for PMW SD estimation in WH till
1999. For the first time, Saraf et al. (1999) estimated the av-
erage monthly SD using Scanning Multichannel Microwave
Radiometer (SMMR) data on board Nimbus-7 during 1979–
1987 for the Sutlej valley region of Himalaya using the mod-
ified Chang model (Chang et al., 1992). However, the appli-
cability of this model (Saraf et al., 1999; Chang et al., 1992)
over the entire Himalaya cannot be justified as the model is
developed using less in situ data (from 11 stations) where
the stations are not distributed and is not tested outside the
Sutlej basin. Singh and Mishra (2006) have proposed three
empirical models using Advanced Scanning Microwave Ra-
diometer for Earth (AMSR-E) data (horizontally polarized
TB of 18.7 and 36.5 GHz) for SD estimation in the Pir Panjal,
Greater Himalaya, and Karakoram ranges of the WH region.
Following this study, Singh et al. (2007) used different empir-
ical models for SD estimation using multifrequency Special
Sensor Microwave/Imager (SSM/I) data (i.e., TB of 19, 22,
37, and 89 GHz during 1997–2002) over the Patseo region.
However, these studies (Singh and Mishra, 2006; Singh et
al., 2007; Saraf et al., 1999) have not provided any quanti-
tative details about the accuracy of SD estimates and have
not been evaluated using independent SD observations. Das
and Sarwade (2008) used 18.7 and 36.5 GHz horizontally po-
larized data from AMSR-E and modified the coefficients of
Chang et al.’s (1987) model to suit the Indian Himalaya. The
modified model has shown a mean absolute error (MAE) of
20.34 cm in SD estimates but failed to estimate SD above
60 cm. Singh et al. (2012) have developed multiple empir-
ical SD models for three SD classes, i.e., 1 to 5, 5 to 50,
and 50 to 200 cm, in the Pir Panjal, Greater Himalayan, and
Karakoram regions of the WH region using TB data of dif-
ferent frequencies from SSM/I. Their approach (Singh et al.,
2012) has used the scattering index to estimate snow cover
and TB thresholds for identifying the SD class and estimation
of SD. In another study, Singh et al. (2015) developed PMW
SD models for the Dhundi and Patseo regions of Himalaya
using data from ground-based radiometers and in situ obser-
vations. However, SD models were developed using observa-
tions collected from only two field surveys, evaluated using
a single-day observation of AMSR-E TB data, and not tested
spatiotemporally. Recently, Singh et al. (2020) developed an
empirical algorithm for the Patseo region of the MHZ us-
ing Advanced Microwave Scanning Radiometer 2 (AMSR2)
18.7 and 36.5 GHz TB (i.e., during 2012–2016) and in situ
observations. They observed that the estimated SD is very

close to ground data with a root mean square error (RMSE)
of ∼ 16 cm and MAE of ∼ 13.9 cm.

Despite the development of various PMW SD models for
Himalaya in the last 2 decades (1999–2020), there are many
constraints in the spatiotemporal estimation of SD for the
WH region. Many of the previous studies for SD estimation
in the WH region have been carried out specifically for sub-
regions of the WH region, such as the Sutlej basin, Dhundi,
and Patseo. The PMW TB observations are affected by het-
erogeneity in snowpack properties, land cover, topography,
etc. (Trujillo et al., 2007; Wang et al., 2010; Che et al., 2016;
Derksen, 2008; Foster et al., 2005). However, previous stud-
ies (Das and Sarwade, 2008; Saraf et al., 1999; Singh et al.,
2012, 2020, 2007; Singh and Mishra, 2006) have not ac-
counted for the aforementioned variables. Further, the accu-
racy of SD retrievals from these models is also not evaluated
with respect to the varying terrain and snow parameters. The
accuracy of operational PMW SD products available in the
WH region, i.e., AMSR2 SD, has not been evaluated.

Additionally, the AMSR2 SD product and previous PMW
SD models have course resolution and have limitations
on their potential utility in various applications such as
avalanche susceptibility and hydrological modeling, espe-
cially at the regional scale. Considering these research gaps,
in the current study, different linear and nonlinear empirical
models are developed to improve and estimate SD at high
resolution, i.e., 500 m for different WH zones, using a mul-
tifactor approach. In this approach, multifrequency PMW
observations from AMSR2 (during 2012–2019), terrain pa-
rameters, land cover parameters, and the Moderate Reso-
lution Imaging Spectroradiometer (MODIS)-derived snow
cover product are statically correlated with the ground SD
observations for the development and evaluation of the SD
models. The accuracy of PMW multifactor SD models’ es-
timates is compared with previous models and the AMSR2
SD product. Further, in this study, the SD retrieval accuracy
is also analyzed with respect to different auxiliary parame-
ters. The present study has the following three objectives:

– development of multifactor SD models to estimate SD
at high resolution for different WH zones;

– comparison and evaluation of the proposed multifactor
model, previous SD models, and AMSR2 SD products
in different WH zones;

– analysis of multifactor SD retrieval accuracy with re-
spect to selected auxiliary variables (i.e., elevation,
slope, land cover types, and snow cover duration –
SCD).

Following this introduction section (Sect. 1), the current arti-
cle is organized as follows. The topographical and geograph-
ical description of the study area is described in Sect. 2. The
details of the in situ observation network and various remote
sensing datasets used for model development and evalua-
tion are also given in the same section. Following that, the
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methodology used in developing the multifactor model is
presented in Sect. 3. Subsequently, Sect. 4 describes the per-
formance of different multifactor models developed for the
three WH zones, a comparison of the different SD models,
and results from the analysis of multifactor SD model re-
trievals with respect to auxiliary parameters. The discussion
and summary are given in Sects. 5 and 6, respectively.

2 Study area and datasets

The topographic and environmental conditions prevailing in
the WH region are detailed in Sect. 2.1. This study makes use
of in situ data from the snow monitoring network and vari-
ous spaceborne data for the development of SD models for
different WH zones. These datasets along with their sources
are listed in Table 1 and briefly discussed in the following
subsections from 2.2 to 2.7.

2.1 Study area

Himalaya is the largest snow-covered territory outside the
polar regions in the world (Gurung et al., 2011). The present
study encompasses the entire WH region, which is a signif-
icant portion of the Indian Himalaya, situated in the states
of Jammu and Kashmir, Ladakh, and Himachal Pradesh (see
Fig. 1). The WH region extends between longitudes from
73◦15′ to 79◦45′ E and latitudes from 30◦00′ to 39◦ N and
covers an area of 360 866 km2. The WH region is unique
with its perennial snow-covered mountain peaks and sea-
sonal snow-covered valleys. Approximately 65 % of the ter-
rain in the WH region is situated at an altitude of more
than 3000 m a.m.s.l. (above mean sea level) and is under-
lain by extremely steep and rugged mountains. The high-
altitude terrain and mountain topography influence both win-
ter precipitation (caused by western disturbances) and mon-
soon precipitation patterns (Dimri and Dash, 2012). Due to
prevailing topographical and weather conditions in the WH
region, forest cover is present only up to 3000 m a.m.s.l., and
between 3000–4000 m a.m.s.l. thin vegetation consisting of
shrubs and grass is present, whereas above 4000 m a.m.s.l.
altitude, vegetation is not present, and the land cover there
is predominantly comprised of barren land with snow and
ice. The WH region generally receives snow from October to
March; from April onwards, snowmelt generates runoff con-
tributing water to many rivers and streams within the region
(Dimri and Dash, 2012; Sharma et al., 2014).

In this study, three WH zones, i.e., LHZ, MHZ, and UHZ,
defined based on the historical local meteorological and
avalanche occurrence data (Sharma and Ganju, 2000), are
used for developing multifactor SD models. The geomorphic
and climate characteristics of these zones are given in Ta-
ble 2. The three zones differ in regional topographical and
climatic conditions with varying elevations, temperatures,
rainfall, snowfall, etc. The LHZ has a subtropical climate,

Figure 1. (a) Elevation variability in WH zones (i.e., LHZ: Lower
Himalayan Zone; MHZ: Middle Himalayan Zone; UHZ: Upper Hi-
malayan Zone) and DGRE observatory distribution (Note: J&K is
Jammu and Kashmir, HP is Himachal Pradesh).

and the MHZ has a temperate climate, while the UHZ has po-
lar climatic conditions with the presence of permanent snow.
Further, these zones have different timings and intensities
of precipitation. The LHZ has comparatively warmer condi-
tions, with mean monthly temperatures varying between (−3
to 18 ◦C), than the MHZ (−10 to 14 ◦C) and UHZ (−25 to
0 ◦C). As the latitude increase, the amount of precipitation
deceases in the WH region. Negi et al. (2018) reported aver-
age winter precipitation (in terms of snow water equivalent)
of ∼ 804, 549, and 431 mm in the LHZ, MHZ, and UHZ,
respectively, during 1991–2015. Further, the snowpack per-
sistence varies based on the local weather conditions, which
mainly changes with elevation across the three WH zones
(Sharma et al., 2014).

2.2 Ground observatory stations data

In the WH region, the Defence Geoinformatics Research
Establishment (DGRE) (formally known as Snow and
Avalanche Research Establishment) operates and maintains
a network of 43 observatory stations (see Fig. 1) which mea-
sures daily in situ SD twice (i.e., forenoon and afternoon)
along with other meteorological parameters such as temper-
ature and rainfall. Out of total 43 stations, 16 stations are lo-
cated in the LHZ, 13 in the MHZ, and 14 in the UHZ. From
the LHZ, MHZ, and UHZ observatories, elevation varies be-
tween 1652 and 3785 m a.m.s.l., 2440 and 4950 m a.m.s.l.,
and 3960 and 5995 m a.m.s.l., respectively. In this study,
in situ data comprising station name, date, latitude, longi-
tude, and SD for the 43 stations are obtained for the snow
period from 2012–2013 to 2018–2019. The in situ data are
grouped according to the WH zones for the development of
different multifactor SD models. The mean in situ SD of
stations varies between 11 and 256 cm in the LHZ, 23 and
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Table 1. Sources of in situ, remote sensing datasets and their application in the present study.

Data Source Role/applications

In situ snow depth data DGRE Data Centre, Chandigarh, India Development and validation of multi-
factor SD models

AMSR2
brightness temperature
snow depth product

http://gportal.jaxa.jp/ (last access: 26 November 2023) Development, validation, and compari-
son of multifactor SD models

MODIS land cover
data (MCD12Q1)

https://lpdaac.usgs.gov/products/mcd12q1v006/
(last access: 26 November 2023)

Development of SD models

Daily MODIS cloud-
free snow cover product

https://doi.org/
10.1594/PANGAEA.918198 (Muhammad, 2020)

Development of models and model per-
formance analysis

Digital elevation
model

http://srtm.csi.cgiar.org (last access: 21 January 2024) Development and model performance
analysis

Table 2. Geomorphic characteristics of the WH zones.

Characteristics/ranges Lower Himalaya Middle Himalaya Upper Himalaya

Area (km2) 41 107 73 951 38 441

Elevation 1500–4800 1500–5700 1800–8100

Climate type Subtropical Temperate Polar

Winter snowfall
(from–to)

High
(Dec–Mar)

Moderate
(Oct–Apr)

Scant
(entire year)

Frequency of high-intensity
snowfall events

Occasional Frequent Occasional

Vegetation cover presence Forest: <3000 m a.m.s.l.
Grass: 3000–4000 m a.m.s.l.

Grass: <3000 m a.m.s.l. –

Snowpack persistence
up to

Early spring Spring Summer

136 cm in the MHZ, and 52 and 356 cm in the UHZ during
the study period.

2.3 AMSR2 brightness temperatures data

AMSR2 is a PMW sensor on board the Japanese Aerospace
Exploration Agency’s (JAXA) Global Change Observation
Mission 1st – Water (GCOM-W1) SHIZUKU, launched in
May 2012 (Imaoka et al., 2011). It is a follow-on instrument
to AMSR and AMSR-E sensors and records upwelling mi-
crowave emissions from the earth’s surface in 14 channels
in the form of TB. AMSR2 TB observations are available
in seven frequencies (6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and
89 GHz, hereafter referred to as 6, 7, 10, 18, 23, 36, and
89 GHz) at two polarizations (horizontal and vertical) for as-
cending and descending orbit passes with a temporal reso-
lution of 1 d. The multifrequency TB observations are re-
gridded to 10 km spatial resolution (level-3 product) and are
archived in the JAXA portal (https://gportal.jaxa.jp, last ac-

cess: 21 January 2024). In many locations of the WH region,
the temperatures exceed 0 ◦C from April to September, lead-
ing to snowmelt (Negi et al., 2018; Sharma et al., 2014). The
resulting wet snow can lead to saturation of PMW TB (Dong
et al., 2005; Stiles and Ulaby, 1980; Tedesco et al., 2015), af-
fecting the accuracy of SD estimates from PMW SD models.
Therefore, in this study, the level-3 TB of ascending and de-
scending orbital passes from the AMSR2 sensor are obtained
for the snow/winter period (October to March) from 2012 to
2019 to develop the SD models.

2.4 AMSR2 snow depth product

In this study, the AMSR2 SD products have been down-
loaded from the website https://gportal.jaxa.jp (last access:
21 January 2024) from the snow season (October to March)
from 2012 to 2019. The SD products corresponding to as-
cending (13:30± 15 min) and descending (01:30± 15 min)
passes have been used for comparison with the multifactor
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SD model estimates. The standard AMSR2 SD algorithm pri-
marily uses the daily brightness temperature data for the 10,
18, 23, 36, and 89 GHz frequencies and the surface physical
temperature (T ) data. In the development of the AMSR2 SD
algorithm (Kelly, 2009), the following steps and conditions
have been considered.

– Step 1 – isolate wet and dry snow, non-snow-covered re-
gions. If dry snow is present in any region, it will satisfy
conditions (1) and (2) (move to step 2); otherwise, there
is no snow-covered region, or only wet snow is present.

Tb36H < 245K (1)
Tb36V < 255K (2)

– Step 2 – isolate moderate/deep and shallow snow-
covered areas. If moderate/deep snow is present, it will
satisfy conditions (3) and (4) (move to step 4) (Derksen,
2008); otherwise, shallow snow is present, or there is no
snow-covered area (move to step 3).

Tb10H−Tb36H > 0K (3)
Tb10V−Tb36V > 0K (4)

– Step 3 – identify a shallow snow-covered area. If it satis-
fies condition (Eq. 5), then shallow snow is present, and
a flag of 5.0 cm is set for the SD; otherwise, no snow is
present.

Tb89V < 255K,Tb89H < 265K,Tb23V > Tb89V,

Tb23H > Tb89H, and T < 267K (5)

– Step 4 – estimation of moderate to deep SD using
Eq. (6).

SD=
[

1
log10 (Tb36V−Tb36H)X (Tb10V−Tb36V)

]
+

[
1

log10 (Tb18V−Tb18H)X (Tb10V−Tb18V)

]
(6)

The developed SD algorithm was tested using World Me-
teorological Organization (WMO)-collected SD measure-
ments from 242 and 254 sites around the world during the
2002–2003 and 2003–2004 winter season, respectively. In
this only non-mountain stations with at least 30 d of mea-
sured snow were used in the comparison. In the recent
study conducted over the mountainous terrain of the north-
ern Xinjiang region, China, by Zhang et al. (2017), the
AMSR2 SD products were compared with ground-collected
SD data. They observed RMSEs of 18.5 cm (in AMSR2_A)
and 23.4 cm (in AMSR2_D) up to 30 cm for ground SD.
However, AMSR2 SD products have not been evaluated for
Indian Western Himalayan regions to date.

2.5 SRTM digital elevation model

Topography affects the rate of snow accumulation, ablation,
and redistribution. In the current study, Shuttle Radar To-
pography Mission (SRTM) digital elevation model (DEM)
version 004 data at 90 m spatial resolution are used to ac-
count for the topographic effects in the SD model. The SRTM
DEM for the entire earth is generated using the interfero-
metric synthetic aperture radar method (Farr et al., 2007;
Jarvis et al., 2008) and can be downloaded from the web por-
tal (http://srtm.csi.cgiar.org, last access: 21 January 2024) in
GeoTIFF format. It has a minimum vertical accuracy of 16 m
and RMSE of 9.73 m across the globe (Mukul et al., 2017).
The SRTM DEM data are re-projected to the GCS-WGS-
1984 coordinate reference system and then mosaicked, ex-
tracted, and resampled to 500 m spatial resolution. The ele-
vation varies significantly across different WH ranges. The
LHZ and MHZ have a lower elevated topography than the
UHZ (see Fig. 1).

2.6 Daily MODIS cloud-free snow cover day products

In the WH region, snow cover area (SCA) and snow cover
pixels vary during different months of the year due to
changes in snowfall and snow ablation patterns. The lowest
SCA has been observed during the month of August/Septem-
ber, and maximum SCA was observed during the month
of February/March. Snow cover duration (SCD) depicts the
number of consecutive days snow cover is present for a
given pixel. It provides information regarding the persis-
tence of snowpack and is useful in improving PMW SD es-
timates (Singh et al., 2016; Wang et al., 2019; Dai et al.,
2018). In this study, the daily cloud-free MODIS snow cover
product (i.e., M*D10A1GL06) generated for high-mountain
Asia (Muhammad and Thapa, 2020) at 500 m spatial reso-
lution (https://doi.org/10.1594/PANGAEA.918198, Muham-
mad, 2020) has been used to generate the SCD product for
the study area during the data period. Previously, Sharma
et al. (2014) and Singh et al. (2018) generated and eval-
uated the SCD maps for the snow-covered Indian WH re-
gion. These studies (Sharma et al., 2014; Singh et al., 2018)
revealed a higher average monthly SCD (>80 %) in high-
altitude regions. These studies’ results further emphasize a
strong longitudinal and altitudinal dependence on SCD, snow
cover accumulation, and ablation in the WH region. There-
fore, SCD information can provide valuable insights to im-
prove the SD model. Daily binary snow cover maps prepared
from M*D10A1GL06 are used to identify the snow cover
presence for a given pixel. These binary snow cover maps are
used for computing the SCD information for each day from
1 October of each year to 30 September of the following year
during the study period. In this study, SCD of the WH region
is retrieved only during the study period, i.e., from October
to March for each year.
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2.7 MODIS land cover product

The heterogeneity in land cover significantly impacts the
amount of upwelling PMW radiation, affecting the TB at
different frequencies for a given pixel. The effect of differ-
ent types of land cover in PMW SD retrievals has been in-
vestigated in many studies (Friedl et al., 2002; Yu et al.,
2012; Wang et al., 2016, 2019). In this study, the MODIS
Level 3 yearly land cover product (i.e., MCD12Q1) for
the year 2019 is downloaded from https://ladsweb.modaps.
eosdis.nasa.gov/ (last access: 23 January 2024) at 500 m spa-
tial resolution. MCD12Q1 product depicts land cover in 17
classes as per the International Geosphere–Biosphere Pro-
gram (IGBP) system. These 17 classes are further regrouped
into four categories, i.e., bare land, grass land, forest, and wa-
ter, which account for ∼ 55.9 %, 27.4 %, 16.3 %, and 0.29 %
of the total WH area in 2019, respectively. The reclassified
land cover data have been used along with other datasets for
the development of multifactor SD models for different WH
regions.

3 Methodology

Different steps followed for developing and validating the
multifactor SD model(s) are given in the following subsec-
tions from 3.1 to 3.5. The general outline of the methodology
adopted is shown in Fig. 2.

3.1 Data preprocessing

Different remote sensing datasets comprising PMW TB
(from AMSR2), SRTM DEM, MODIS land cover product,
and MODIS SCD are used in the current study. These prod-
ucts are natively present in different spatial resolutions and
coordinate systems. Hence, all remote sensing datasets are
processed using ArcGIS software to match the spatial extent,
coordinate system, and spatial resolution. The brightness
temperature and SD datasets downloaded from the JAXA
portal use the Northern Hemisphere polar stereographic co-
ordinate system and are present in the HDF5 format. These
are reprojected to the WGS 1984 coordinate system and are
converted to TIFF format with help of the format conversion
tool developed by JAXA. Following that ArcGIS software
is used for resampling the brightness temperature (BT) im-
agery to 500 m. No additional processing is carried out in the
current work as the brightness temperature dataset acquired
from JAXA is the level-3 product. The brightness tempera-
ture from each image for all stations is then retrieved pro-
grammatically using Python. The extracted TB data are used
for calculating the BTD. The BTD is calculated between
lower- and higher-frequency TB observations for each day
during the study period.

Following the BTD calculation, the SRTM DEM prod-
uct is re-projected, mosaicked, and resampled to 500 m spa-
tial resolution. Different terrain parameters, such as slope,

aspect, and surface roughness, are derived from the resam-
pled DEM product. The SCD product is already available in
500 m spatial resolution. Therefore, it is processed only to
match the extent and coordinate reference system (i.e., GCS-
WGS 1984) of other datasets. Following the resolution and
coordinate system matching process, for all DGRE observa-
tory locations, the data from remote sensing products (i.e.,
TB, elevation, slope, ruggedness, geographical locations, and
SCD) are extracted for the winter period from 2012–2013 to
2018–2019. It is known that the forest cover intercepts the
upwelling radiation from the ground underneath the snow-
pack and causes uncertainty in the snow depth estimates of
PMW SD models (Che et al., 2008). Therefore, the forest
cover fraction has been calculated using the MODIS land
cover type product (i.e., MCD12Q1) for a 10 km point buffer
around each observatory site. The retrieved values are used to
minimize the forest cover impact by dividing the brightness
temperature observations by the value of non-forest fraction
(i.e., 1− forest fraction) for a given pixel as suggested by
Foster et al. (1997).

In this study, the forenoon SD observations, descend-
ing pass AMSR2 TB data, terrain parameters (i.e., slope,
aspect, ruggedness), geographical locations, and SCD are
paired based on date and station location. These data are then
checked for discrepancies such as missing values, incorrect
values, and outliers. There are no missing values for AMSR2
TB, SRTM elevation, and SCD observations for the in situ
stations over the WH region. However, samples containing
any other discrepancies are removed. After data preprocess-
ing, a total of ∼ 13 242 samples, with each sample compris-
ing geographical location, TB, terrain parameters, and SCD,
are retained. Using these samples, the data for the 5-year
snow period, i.e., from 2012–2013 to 2016–2017, are used
to develop multifactor SD algorithms for different zones of
the WH region. The remaining 2 years of data of snow pe-
riod, i.e., from 2017–2018 to 2018–2019, is used to compare
and validate the multifactor SD model results.

3.2 Identification of dry snow pixel

Along with snow cover, frozen ground, rainfall, and cold
desert conditions affect the upwelling microwave emission
from the earth’s surface and impact PMW TB recorded by
spaceborne sensors (Ferraro et al., 1996; Grody and Ba-
sist, 1996). Further, wet snow pixels and surface waterbodies
cause PMW absorption and reduce volume scattering from
snow grains (Stiles and Ulaby, 1980). Consequently, the in-
clusion of TB values from these pixels in the development
and evaluation of the model results in large uncertainty in
SD estimates (Tedesco et al., 2015; Dietz et al., 2012; Fos-
ter et al., 2005; Dong et al., 2005). Therefore, before devel-
oping SD algorithms, dry snow pixels must be segregated
from other pixels. Grody and Basist (1996) have developed a
decision tree to identify dry snow pixels from other scatter-
ing pixels using TB of different frequencies. Grody and Ba-
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Figure 2. Flowchart representing the methodology.

sist’s (1996) decision tree makes use of different filters (see
Fig. 3) based on the values of TB observations to separate
snow from non-snow pixels. This study uses multifrequency
AMSR2 TB data with Grody and Basist’s (1996) decision
tree to identify snow pixels.

3.3 Selection of multifactor SD model parameters

Many of the initial PMW SD models have relied on TB from
18 and 36 GHz channels for estimating SD (Chang et al.,
1987; Saraf et al., 1999; Das and Sarwade, 2008; Kelly et al.,
2003; Chang et al., 1997). However, these models have lim-
itations in estimating shallow and deep snowpacks. The sen-
sitivity of PMW TB to SD decreases once the SD reaches a
threshold depth (Wang et al., 2019; Dai et al., 2018; Das and
Sarwade, 2008; Kelly et al., 2003). TB values of higher fre-
quencies (i.e., 36, 89 GHz) saturate before lower frequencies
(i.e., 10, 18 GHz) as SD increases. The lower frequency (i.e.,
10 GHz) has the potential to retrieve deep snow cover, while
the higher frequency (i.e., 89 GHz) can provide shallow snow

information (Kelly et al., 2003). Therefore, the inclusion of
higher frequencies (i.e., 89 GHz) and lower frequencies (i.e.,
10, 23 GHz) is investigated in many studies, which has re-
sulted in improved SD estimates (Kelly et al., 2003; Wang
et al., 2019; X. Xiao et al., 2020; Wei et al., 2021). Hence,
PMW TB values of 10, 18, 23, 36, and 89 GHz are used in
this study. Apart from single-channel SD, 40 combinations of
TB, i.e., BTD of different frequencies and polarizations, are
also considered. Terrain parameters (i.e., elevation, slope, as-
pect, surface roughness), location (latitude, longitude), land
cover, and SCD also affect characteristics of snowpack and
PMW TB (Saydi and Ding, 2020; Sharma et al., 2014; Wang
et al., 2010; Ansari et al., 2019). Thus, overall, 57 parameters
(i.e., TB – 10, BTD – 40, terrain parameters – 4, location –
2, SCD – 1) are considered in the process of SD model de-
velopment. However, of the 57 parameters, it is likely that
some parameters are redundant and do not necessarily add
any value to the model. For example, TB values of 10H
and 10V have a correlation of 0.9, and using both TB10H
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Figure 3. Identification of pure snow pixels from AMSR2 TB using
the decision tree.

and TB10V is not useful and can cause additional problems
due to multicollinearity. Further, the use of a large number
of independent variables leads to a curse of dimensionality,
which poses challenges in model development by decreasing
the model’s interpretability and increasing the computational
time and resources, often leading to overfitting (Velliangiri
et al., 2019; Obaid et al., 2019). These problems can be ad-
dressed by performing optimal parameter selection for model
development (Chandrashekar and Sahin, 2014). Optimal pa-
rameter selection reduces the data dimensionality and elimi-
nates irrelevant data from the original dataset.

This study considers data from the snow period between
2012–2013 and 2016–2017 of the entire WH region for opti-
mal parameter selection. To select the necessary parameters
for the SD model, all 57 parameters are used independently
with in situ SD to develop single-parameter linear regression
models. While developing these models, evaluation is car-
ried out using the leave-one-out cross-validation (LOOCV)
method (Webb et al., 2011) for screening necessary param-
eters. The LOOCV method is widely used by various re-
searchers (Gusain et al., 2016; Joshi et al., 2017; Wang et
al., 2019) to conduct the validation of models and assess
the model’s accuracy. In LOOCV, the observational dataset
is used to create n number of regression models (n is num-
ber of samples). In each of the n models, a different testing

sample is selected, and other observation samples are used
to develop the regression model. The overall performance of
the model is calculated by combining all predictions (for the
omitted samples) from the n models. The accuracy of the
models is calculated using the correlation coefficient (R) and
RMSE. The results of LOOCV from the models developed
with all 57 parameters (see Sect. 4.2) are analyzed to select
the most valuable features for SD model development.

3.4 Development of SD models

This study implements four different regression models (i.e.,
linear, logarithmic, power, and reciprocal) to develop SD
models. Different WH zones, i.e., LHZ, MHZ, and UHZ,
have different topographic, environmental, and snowfall con-
ditions. Hence, in this study, SD models are developed sep-
arately for each WH zone. Data from 2012–2013 to 2016–
2017 are used for the development of the different SD mod-
els. Further, out of 57 parameters, 13 parameters are selected
from the results of the LOOCV evaluation. These 13 param-
eters have a good correlation with in situ SD and are used
in developing the multifactor SD models using four types of
regression. The general form of the four types of regression
models is given in Eqs. (7)–(10).

y = α1x1+α2x2+ . . .+αixi + c, (7)
y = α1 lnx1+α2 lnx2+ . . .+αi lnxi + c, (8)
y = cx

α1
1 x

α2
2 . . . x

αi
i , (9)

y = α1
1
x1
+α2

1
x2
+ . . .+αi

1
xi
+ c, (10)

where y is the ground-observed SD values; x1, x2, . . . , and
xi are the screened parameters; α1, α2, . . . , and αi are the
regression coefficients of the multiparameter models; c is the
offset constant; and i represents the number of parameters.

3.5 Validation of SD model(s)

The multifactor SD models for different WH zones are vali-
dated using temporally independent in situ SD observations
during 2017–2018 and 2018–2019. The accuracy of SD mod-
els’ estimates is evaluated using standard regression metrics,
i.e., R and RMSE. Additionally, the efficacy of the proposed
multifactor SD models is analyzed by comparing the accu-
racy of the multifactor model with regional (Das and Sar-
wade, 2008; Singh et al., 2020) and heritage (Chang et al.,
1987) SD models for different ranges of the WH region. The
SD models of Chang et al. (1987), Das and Sarwade (2008),
and Singh et al. (2020) are given in Eqs. (11), (12), and (13),
respectively.

The comparison is carried out by estimating SD from all
these stated models using the validation data present between
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2017–2018 and 2018–2019.

SDChang et al. (1987) = 1.59× (TB18H−TB36H), (11)
SDDas and Sarwade (2008) = 3.16× (TB18H−TB36H)+ 24.25, (12)
SDSingh et al. (2020) =−7.58× (TB18V−TB36V)+ 233.71, (13)

where TB denotes the brightness temperature values, 18 and
36 indicate the frequency of TB (in GHz), and V and H are
the vertical and horizontal polarization, respectively.

Apart from the aforementioned comparative analysis, a
random sample image from the study area for a single day
(3 February 2019) is taken. Then, the estimated SD over the
selected area using the multifactor SD model(s) is spatially
compared with AMSR2 operational products (see Sect. 4.5).
This spatial comparison helps in understanding how the de-
veloped multifactor SD model(s) differs from the AMSR2
operational SD products in representing SD information over
the WH region. The magnitude of in situ SD, terrain param-
eters, and SCD can significantly affect the accuracy of the
PMW SD model in the study region. Therefore, the accu-
racy of operational AMSR2 SD products and multifactor SD
models with respect to varying ground SD, topographic el-
evation, and SCD is determined in different WH zones (see
Sect. 4.6).

4 Results and analysis

The insights from the analysis of in situ SD observations
in WH zones are reported in Sect. 4.1. Following that, the
results from the LOOCV evaluation of multiple parameters
are given in Sect. 4.2. The outcomes from the accuracy as-
sessment and comparison of different PMW SD estimates
are described in Sect. 4.3 and 4.4, respectively. The spatial
comparison of the high-resolution SD map from the multi-
factor model and AMSR2 products is shown in Sect. 4.5. In
Sect. 4.6, the analysis of multifactor SD model performance
with respect to different parameters is detailed.

4.1 Spatial analysis of the in situ SD observations in
WH ranges

The mean of in situ SD at each of the 43 DGRE stations
is estimated for the winter period (October to March) dur-
ing 2012–2013 to 2018–2019 (see Fig. 4). The results in-
dicate that during the data period, the mean SD values var-
ied between ∼ 11 cm (elevation: 1664 m) and ∼ 256 cm (el-
evation: 3160 m) in the LHZ, ∼ 21 cm (elevation: 3250 m)
and ∼ 136 cm (elevation: 4950 m) in the MHZ, and ∼ 49 cm
(elevation: 3250 m) and ∼ 365 cm (elevation: 5995 m) in the
UHZ. The analysis also demonstrates that out of 43 manual
stations, 4 stations have a mean SD between 11 and 50 cm,
18 stations have a mean SD between 50 and 100 cm, 7 sta-
tions have a mean SD between 100 and 150 cm, 5 stations
have mean SD between 150 and 200 cm, and the remaining 4
have mean SD>200 cm during the data period. Further, it is

Figure 4. Spatial distribution of mean SD in WH zones along
DGRE stations during 2012–2019 (October to March months)
(Note: J&K is Jammu and Kashmir, HP is Himachal Pradesh).

observed that out of nine stations that have a mean SD greater
than 150 cm, five are present in the UHZ.

The overall analysis of in situ SD measurements indicates
the mean and standard deviation (µ± σ ) are observed as
∼ 121.5 cm± 122.5 cm in the LHZ, ∼ 85.9 cm± 83.5 cm in
the MHZ, and 176.6 cm± 208.9 cm in the UHZ. A higher
mean SD is observed in the UHZ compared to the other two
ranges. A total of 95 % of overall SD values in the LHZ are
below 350 cm, with the remaining 5 % having SD between
350 and 650 cm. However, in the MHZ and UHZ, 95 % of to-
tal SD observations are below 200 and 500 cm, respectively,
with the remaining 5 % ranging between 200 and 500 cm and
500 and 2030 cm.

4.2 SD parameters screening and evaluation over the
WH region

The expressions for linear regression models developed with
each parameter and regression metric, i.e., RMSE and R re-
sults obtained from LOOCV analysis, are shown in Table 3.
In terms of geographical location, latitude has a higher cor-
relation (i.e., 0.24) and lower RMSE (97.96 cm) than lon-
gitude. Among the terrain parameters, SCD has the highest
R (i.e., 0.45) and the lowest RMSE (i.e., 90.27 cm) and is
followed by elevation (R = 0.30 and RMSE= 96.12), slope
(R = 0.26 and RMSE= 97.59), and ruggedness (R = 0.25
and RMSE= 97.85), making it highly important for the de-
velopment of multifactor SD models. The SD models built
with TB observations from descending orbital passes have
a relatively higher correlation and lower RMSE than those
from ascending pass TB data when analyzed with in situ SD.
This is mainly because descending orbital passes occur in the
morning time with no melting of snow; however, ascending
orbital passes occur in the afternoon time with substantial
melting of snow in the study area. Therefore, only descend-
ing pass TB observations are used in the study.
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Table 3. Results of LOOCV evaluation for SD models developed using single parameters.

Parameters Independent variable (x) Linear regression model RMSE (cm) R

Geographical location Latitude y = 32x− 1046.81 97.96 0.24
Longitude y = 21x− 1573.72 99.30 0.17

Terrain Elevation y = 0.029x− 45.81 96.12 0.30
Aspect y =−0.16x+ 109.58 99.75 0.14
Slope y =−3.42x+ 119.67 97.59 0.26
Ruggedness y =−0.31x+ 128.15 97.85 0.25

Cloud-free snow
product

SCD y = 1.14x− 19.58 90.27 0.45

Brightness 10H y =−4.5x+ 1210.78 106.28 0.34
temperature 10V y =−5.77x+ 1553.53 105.58 0.36
(ascending data) 18H y =−3.9x+ 1047.89 104.59 0.39

18V y =−4.8x+ 1293.91 103.74 0.40
23H y =−3.59x+ 963.28 105.22 0.37
23V y =−4.13x+ 1109.64 104.65 0.38
36H y =−2.1x+ 587.17 108.81 0.28
36V y =−2.22x+ 620.55 109.08 0.27
89H y =−0.24+ 161.87 113.29 0.03
89V y =−0.08x− 90.99 113.35 0.01

Brightness 10H y =−3.2x+ 858.65 94.28 0.35
temperature 10V y =−4.01x+ 1071.98 93.96 0.36
(descending data) 18H y =−2.76x+ 741.75 93.96 0.36

18V y =−3.4x+ 910.08 93.44 0.38
23H y =−2.67x+ 706.15 94.05 0.36
23V y =−3.05x+ 811.49 93.74 0.37
36H y =−1.78x+ 480.19 96.38 0.29
36V y =−1.9x+ 522.28 96.42 0.29
89H y =−0.58x+ 207.88 100.29 0.10
89V y =−0.45+ 181.84 100.54 0.07

y =SD (cm).

Apart from the single-channel PMW TB, 40 different com-
binations of descending pass orbital BTDs are tested using
linear regression (in the LOOCV approach). The selected
and rejected BTD parameters with their RMSE and R with
the in situ SD are shown in Table 4. The selected parame-
ters have the lowest RMSE and highest correlation, and they
pass the F test at a significance level of 0.001. It is observed
that descending pass BTD models exhibit higher correlation
and accuracy metrics compared to single-channel descend-
ing pass models. From the overall results (R, RMSE), de-
scending pass BTD parameter-based SD models have higher
R (0.24 to 0.39) and lower RMSE (91.63 to 93.92 cm) com-
pared to single-channel TB-based SD models, which have
R values of 0.07 to 0.35 and RMSE values of 93.44 to
100.54 cm. Therefore, different BTD data from descending
passes (see Table 4) are selected instead of single-channel
TB to develop multifactor SD models. Along with the eight
descending BTD parameters (BTD of 10H18H, 10H23H,
18H89V, 36H89V, 36V89V, 23H89V, 10V89V, and 10V23H,
where 10, 18, 23, 36, and 89 represent the frequency (in

GHz), and H and V represent horizontal and vertical po-
larization, respectively), three terrain parameters (elevation,
slope, ruggedness), latitude, and SCD are used to develop
multifactor PMW SD models for the three WH ranges.

4.3 Evaluation and comparison of different multifactor
SD models in WH zones

The details of the developed models are given in Table 5. The
results from the regression analysis indicate multifactor SD
models developed with a power regression approach have a
better fit with the in situ data and outperformed other regres-
sion models with R (RMSE in cm) values of 0.62 (49.17),
0.78 (37.72), and 0.76 (55.12) in the LHZ, MHZ, and UHZ,
respectively.

The developed multifactor models in each WH zone are
evaluated (withR and RMSE metrics) using temporally inde-
pendent data from 2017–2018 to 2018–2019. Comparison of
the four types of multifactor regression models in the LHZ,
MHZ, and UHZ is carried out with the help of the Taylor
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Table 4. BTD SD model (with descending observations) relation with SD and evaluation using LOOCV method.

Serial no. Independent variable (x) Linear regression model RMSE (in cm) R

Selected parameters 1 BTD (36H–89V) y =−2.24x+ 107.05 91.63 0.39
2 BTD (36V–89V) y =−2.16x+ 81 92.24 0.37
3 BTD (10V–23H) y = 4.12x+ 31.05 92.45 0.35
4 BTD (23H–89V) y =−1.78x+ 122.17 92.46 0.36
5 BTD (10V–18V) y = 7.43x+ 52 92.58 0.25
6 BTD (10H–23H) y = 4.12x+ 56 93.78 0.20
7 BTD (10H–18H) y = 5.66x+ 58 93.47 0.21
8 BTD (18H–89V) y =−1.61x+ 122.34 93.92 0.24

Rejected parameters 9 BTD (10H–36H) y = 0.85x+ 70.11 102.20 0.17
10 BTD (10H–89H) y =−0.91x+ 114.15 102.16 0.18
11 BTD (10H–18V) y = 2.84x+ 89.85 102.20 0.17
12 BTD (10H–23V) y = 3.29x+ 78.28 102.15 0.18
13 BTD (10H–36V) y = 0.55x+ 77.67 102.21 0.16
14 BTD (10H–89V) y =−1.15x+ 177.36 102.14 0.19
15 BTD (10V–18H) y = 5.10x+ 30.11 102.04 0.20
16 BTD (10V–36H) y = 1.21x+ 56.24 102.17 0.18
17 BTD (10V–89H) y =−0.66x+ 110.16 102.19 0.17
18 BTD (10V-23V) y = 4.93x+ 44.79 102.03 0.20
19 BTD (10V–36V) y = 1.08x+ 63.64 102.18 0.17
20 BTD (10V–89V) y =−0.92x+ 116.53 102.17 0.18
21 BTD (18H–23H) y = 3.18x+ 77.95 102.19 0.17
22 BTD (18H–36H) y = 0.18x+ 83 102.23 0.16
23 BTD (18H–89H) y =−1.4x+ 122.75 102.09 0.20
24 BTD (18H–23V) y =−3.92x+ 75.13 102.26 0.17
25 BTD (18H–36V) y =−0.51x+ 90.15 102.24 0.16
26 BTD (18V–23H) y = 6.1x+ 32.36 102.08 0.20
27 BTD (18V–36H) y = 0.86x+ 68.45 102.21 0.17
28 BTD (18V–89H) y =−1.14x+ 122.94 102.13 0.19
29 BTD (18V–23V) y = 6.35x+ 61.65 102.13 0.18
30 BTD (18V–36V) y = 0.43x+ 78.64 102.22 0.16
31 BTD (18V–89V) y =−1.4x+ 126.53 102.10 0.20
32 BTD (23H–36H) y =−0.09x+ 86.33 102.23 0.16
33 BTD (23H–89H) y =−1.57x+ 123.73 102.06 0.20
34 BTD (23H–36V) y =−1.16x+ 93.49 102.23 0.17
35 BTD (23V–36H) y = 0.68x+ 74.51 102.22 0.16
36 BTD (23V–89H) y =−1.36x+ 125.26 102.09 0.20
37 BTD (23V–36V) y =−0.07x+ 86.26 102.23 0.16
38 BTD (23V–89V) y =−1.62x+ 126.92 102.06 0.20
39 BTD (36H–89H) y =−2.10x+ 113.67 102.01 0.20
40 BTD (36V–89H) y =−1.91x+ 118.52 102.03 0.19

Note: y =SD (cm).

diagram (see Fig. 5). The R and RMSE (in cm) for the met-
rics of power, linear, logarithmic, and reciprocal models in
different WH zones are given in Fig. 5 and Table 6. The re-
sults from the comparison indicate that in all WH zones, the
multifactor SD model developed using power regression has
exhibited higher accuracy, i.e., better correlation and lower
RMSE compared to the models built using linear, logarith-
mic, and reciprocal regression approaches. Therefore, in each
WH zone, the multifactor SD model from power regression
is used to estimate PMW SD at 500 m spatial resolution.

4.4 Comparative analysis of multifactor and other SD
models in different zones of the WH region

In order to compare the performance of different SD models
in the WH region, the SD values are estimated using differ-
ent models with the help of PMW and other auxiliary data
during the study period (i.e., 2017–2018 to 2018–2019). Dif-
ferent models used in the comparative analysis are the mul-
tifactor SD model(s) from this study, regional SD models of
the WH region (i.e., Das et al., 2008; Singh et al., 2020), and
the heritage SD model provided by Chang et al. (1987). The
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Table 5. Multifactor SD model regression coefficient for WH zones during 2012–2017 (October to March).

WH zones Model type Models R (RMSE)

Lower Himalayan Zone Linear y =−51.16−0.09x1+0.08x2+0.94x3−0.24x4+1.15x5−0.37x6+5.21x7−1.6x8−0.40x9+1.14x10+
0.001x11− 0.45x12− 4.07x13

0.59 (64.14)

Logarithmic y =−528.08− 733.37ln(x1)+ 678.83ln(x2)+ 8.80ln(x3)− 230.65ln(x4)+ 84.84ln(x5)+
19.32ln(x6)−0.82ln(x7)+30.21ln(x8)+22.66ln(x9)−11.51ln(x10)−132.43ln(x11)+12.23ln(x12)−
38.37ln(x13)

0.45 (81.12)

Power y = 4.49× 10−26x10.12
1 x4.93

2 x1.28
3 x−2.29

4 x0.59
5 x−0.25

6 x0.56
7 x−2.79

8 x0.04
9 x0.22

10 x1.70
11 x0.001

12 x−0.68
13 0.62 (49.17)

Reciprocal y = 487.86−5073.85/x1−835884.29/x2−619.77/x3+45566.55/x4−226.44/x5+1.04/x6+2/x7+
24.12/x8+ 0.19/x9− 1.13/x10+ 69.02/x11− 0.37x12− 75.87/x13

0.49 (78.11)

Middle Himalayan Zone Linear y = 1285.89−34.66x1+0.001x2+1.57x3−0.05x4+1.50x5−4.10x6+7.73x7−1.77x8+2.90x9−
1.39x10+ 0.001x11+ 4.70x12− 8.84x13

0.69 (42.04)

Logarithmic y = 2281.76−1364.46ln(x1)+0.24ln(x2)+27.81ln(x3)−35.38ln(x4)+120.18ln(x5)+4.53ln(x6)+
23.03ln(x7)−49.38ln(x8)+15.60ln(x9)+26.05ln(x10)−83.25ln(x11)+28.42ln(x12)−124.63ln(x13)

0.62 (51.11)

Power y = 3.7× 1013x−7.72
1 x0.03

2 x0.03
3 x0.07

4 x1.09
5 x−0.11

6 x0.57
7 x−0.01

8 x0.05
9 x−0.12

10 x−0.73
11 x0.19

12 x−1.51
13 0.78 (37.72)

Reciprocal y =−26.58+4283.25/x1−2060.51/x2+20.08/x3−6150.16/x4−268.45/x5−0.04/x6−0.35/x7+
23.07/x8− 0.19/x9− 0.03/x10+ 2.63/x11− 0.16/x12+ 5.72/x13

0.66 (45.72)

Upper Himalayan Zone Linear y =−3754.98+99.59x1+0.07x2−1.25x3+0.06x4+1.23x5+10.46x6+0.001x7+4.90x8−17.63x9+
19.77x10− 6.58x11+ 6.06x12− 16.11x13

0.74 (58.07)

Logarithmic y =−8280.01+ 4430.22ln(x1)+ 378.71ln(x2)− 102.97ln(x3)+ 68.20ln(x4)+ 116.51ln(x5)+
31.14ln(x6)−6.29ln(x7)−60.95ln(x8)−16.924ln(x9)+42.65ln(x10)−9.88ln(x11)+15.42ln(x12)−
74.45ln(x13)

0.68 (69.08)

Power y = 6.4× 10−53x26.26
1 x2.91

2 x−0.20
3 x0.62

4 x0.64
5 x0.11

6 x−0.18
7 x−0.31

8 x−0.13
9 x0.23

10 x0.10
11 x0.001

12 x0.44
13 0.76 (55.12)

Reciprocal y = 5308.54−170987.89/x1−1378163.61/x2+121.52/x3−5412.19/x4−197.55/x5+0.08/x6+
0.51/x7− 0.45/x8− 0.60/x9+ 1.15/x10− 0.26/x11− 0.09/x12− 63.24/x13

0.33 (59.61)

Note: in Table 5, x1 to x5 are latitude, elevation, slope, ruggedness, and SCD, respectively; x6 to x13 are the BTD of 10H18H, 10H23H, 18H89V, 36H89V, 36V89V, 23H89V, 10V89V, and 10V23H, respectively; V is the
vertical polarization; H is the horizontal polarization; and 10, 18, 23, 36, and 89 are the frequency (in GHz) of the corresponding BT channels.

Table 6. Comparative analysis of multifactor SD models during 2017–2019 for WH zones.

Western Himalayan zones

Lower Himalayan Middle Himalayan Upper Himalayan

Models R RMSE (in cm) R RMSE (in cm) R RMSE (in cm)

Power 0.65 22.7 0.76 19.2 0.89 22.6
Linear 0.64 29 0.68 22.8 0.75 33.5
Logarithmic 0.38 52 0.14 41 0.73 36.9
Reciprocal 0.09 121.3 0.47 26.7 0.61 43.2

estimated SD from each model is compared with in situ SD
observations within the respective WH zones to understand
the accuracy of SD retrievals. Singh et al.’s (2020) model
is proposed only for the MHZ. Therefore, it is not used for
SD estimation in the LHZ and UHZ when doing comparative
analysis.

In the LHZ, both Chang’s model and Das’s model have
poor correlation with in situ SD and have shown RMSEs (R)
of 39.51 (−0.16) and 49.66 (−0.14) (see Fig. 6), whereas
the proposed multifactor SD model has shown a good corre-
lation with RMSE (R) of 32.87 (0.75). In the MHZ, Chang
et al. (1987), Das et al. (2008), and Singh et al. (2020) have
exhibited poor correlation with in situ SD with R values of
0.22, 0.21, and −0.22, respectively, whereas the proposed
multifactor SD model has shown a good correlation with

in situ SD with an R value of 0.65 (see Fig. 6). The RMSE is
observed to be 36.32, 49.82, and 119.79 cm for the Chang
et al. (1987) model, Das et al. (2008) model, and Singh
et al. (2020) model, respectively. The proposed multifactor
SD model has shown good accuracy with a lower RMSE of
27.21 cm compared to other SD models. The SD model pro-
posed by Singh et al. (2020) for the MHZ is developed using
data from a single observatory location. Hence, the Singh et
al. (2020) model cannot represent the spatial variability in
SD and shows significant errors with higher bias.

Similar to the results observed in the LHZ and MHZ, the
Chang et al. (1987) model and Das et al. (2008) model have
shown a poor correlation in the UHZ with R values of 0.18
and 0.19, respectively. In comparison, the multifactor SD
model has shown a good correlation with an R value of 0.67
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Figure 5. Taylor diagram for the evaluation of multifactor SD mod-
els during 2017–2019 for (a) the LHZ, (b) the MHZ, and (c) the
UHZ.

(see Fig. 6). The RMSE values are observed to be 60.95,
51.74, and 42.81 cm for the Chang et al. (1987) model, Das
et al. (2008) model, and proposed multifactor SD model in
the UHZ. Overall results from the comparative analysis indi-
cate that in each WH zone, the multifactor SD model has
higher accuracy with good correlation (i.e., R) and lower
errors when compared with other models. Further, the de-
veloped model has exhibited better accuracy metrics in the
MHZ compared to other WH zones. The mean SDs observed
during the study period (i.e., 2017–2018 to 2018–2019) in
Pir Panjal and UHZ are higher than the mean SD of the MHZ.
Further, the LHZ has a forest canopy which can affect the
PMW TB observations, whereas, in the MHZ, most of the
region is devoid of forest vegetation except for some patchy
grass vegetation. Hence it is expected that an increased error
for SD models in the LHZ and UHZ compared to the MHZ
will be observed.

4.5 Spatial comparison of SD from multifactor model
and operational AMSR2 SD products: a case study

The spatial comparison of SD maps from AMSR2 SD prod-
ucts and the multifactor SD model is performed to under-
stand the improvement in the AMSR2 multifactor SD model
over the operational AMSR2 SD products in the WH region.
For this purpose, the SD maps of operational AMSR2 SD
products and the multifactor SD model for WH zones for
3 February 2019 are considered (see Fig. 7). The SD spa-
tial map at 500 m resolution for the WH zones is generated
using the multifactor SD model (see Fig. 7d). The AMSR2

ascending SD product, i.e., AMSR2_A (see Fig. 7b), and de-
scending SD product, i.e., AMSR2_D (see Fig. 7c), of the
same region for the given day at 10 km resolution are also
prepared.

According to MODIS-derived SCA at 500 m resolution
(see Fig. 7a) and DGRE observatories’ in situ SD informa-
tion, this is snow cover with varying thickness on 3 Febru-
ary 2019 in WH zones. However, in both the AMSR2 SD
products, i.e., AMSR2_A and AMSR2_D, the majority of
pixels have zero SD value, resulting in the underestimation
of SD information by AMSR2 products. The maximum SD
values observed in different products are as follows: AMSR2
ascending SD, 58 cm; AMSR2 descending SD, 78 cm; mul-
tifactor SD model, 476 cm. The multifactor SD model shows
high heterogeneity in SD across the selected region in WH
zones compared to AMSR2 SD products. Further, the mul-
tifactor SD model offers good detail about snow cover and
provides SD data in the region at a high resolution of 500 m.

4.6 Comparison of performance of multifactor SD
product with operational AMSR2 SD product

Though regions with higher mean SD (i.e., LHZ, UHZ) have
a higher error than regions with a lower mean SD (i.e.,
MHZ), it is important to assess how the SD products’ ac-
curacy varies with changes in in situ SD. Hence, Sect. 4.6.1
analyzes the operational AMSR2 SD products and AMSR2
multifactor model performances in different SD classes. Fur-
ther, it is also essential to understand how the model’s accu-
racy is affected with respect to different auxiliary parameters,
i.e., topographical and land cover parameters. Therefore, the
model accuracy is evaluated with respect to different topo-
graphical and land cover parameters, and the results are pre-
sented in Sect. 4.6.2.

4.6.1 Analysis of operational AMSR2 SD products and
multifactor SD model in different SD classes

In each WH zone, the AMSR2 SD products and multifactor
SD model estimates are grouped into five SD classes, i.e., 0–
25, 25–50, 50–75, 75–100, and>100 cm based on in situ SD
observations during 2017–2018 to 2018–2019. Along with
the multifactor SD, the operational AMSR2 SD product (i.e.,
from both ascending and descending pass data) is also ana-
lyzed in the SD classes by comparing it with in situ SD ob-
servations. RMSE of each SD class is calculated to evaluate
the accuracy of SD estimates. Other models (i.e., Chang et
al., 1987; Das et al., 2008; and Singh et al., 2020) were not
considered in this analysis as they were not operational SD
models. The effect of variation in ground SD on the accu-
racy of the AMSR2 multifactor SD model and AMSR2 SD
products is shown in Table 7.

The results indicate that the magnitude of RMSE of
AMSR2 SD products and the multifactor SD model in-
creased with an increase in SD. When in situ SD <25 cm,
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Figure 6. Comparison of model-estimated and field-observed SD values in the LHZ (Pir Panjal), MHZ (Greater Himalayan), and UHZ
(Karakoram) during 2012–2019 (October to March).

Figure 7. Spatial map of SD variation on 3 February 2019. (a) MODIS SCA, (b) AMSR2_A SD product map at 10 km, (c) AMSR2_D SD
product map at 10 km, and (d) multifactor SD model map at 500 m.

AMSR2 SD products have shown relatively lower error in
all three zones compared to the developed multifactor SD
model. However, the observed error in this class (i.e., 0–
25 cm) is still large and varies between 11–15 cm in the
AMSR2 SD product and 14–27 cm in the multifactor SD
model across the three zones, whereas for classes with in situ
SD>25 cm, the proposed multifactor SD model has a lower
RMSE than both AMSR2 products in all the zones of the WH
region. This analysis clearly shows that for shallow snow re-
gions in the WH region, operational AMSR2 products can be
used. However, the AMSR2 SD products show a large error
for deep and moderate snow regions. In the WH region, out

of 43 stations, only four stations have a mean SD<25 cm,
and for the remaining stations, the mean in situ SD was more
than 25 cm during the study period. Hence AMSR2 SD prod-
ucts are less useful for spatial monitoring of SD in the WH
region. Though the developed AMSR2 multifactor model has
shown higher error when in situ SD<25 cm, it is more useful
for the WH region as the RMSE is lower when SD>25 cm.

Overall, the multifactor SD model in the MHZ has a low
RMSE compared to the LHZ and UHZ in all SD classes. This
could be due to prevailing dry snow conditions, lower mean
SD, and the absence of forest in this range, which can favor
the PMW SD algorithms to retrieve better SD estimates from
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Table 7. RMSE of operational AMSR2 SD products and the proposed multifactor SD model across different WH zones in different in situ
SD classes.

WH zones Model Snow depth class (in cm)

0–25 25–50 50–75 75–100 >100

Lower Himalayan Zone AMSR2_A 14.60 38.88 62.31 88.63 159.16
AMSR2_D 14.35 35.68 58.65 85.75 152.84
Multifactor SD model 27.64 21.62 37.27 40.48 63.73

Middle Himalayan Zone AMSR2_A 13.67 35.97 61.39 86.34 200.25
AMSR2_D 18.00 33.45 58.59 82.77 193.76
Multifactor SD model 20.99 20.29 27.84 41.95 81.04

Upper Himalayan Zone AMSR2_A 13.23 38.13 61.58 87.84 375.61
AMSR2_D 14.34 36.93 60.19 86.69 372.67
Multifactor SD model 37.12 41.54 38.62 40.12 161.01

PMW TB, whereas higher temperatures, moist snow condi-
tions, forest vegetation in the LHZ, and deep snow conditions
in both the LHZ and UHZ can negatively affect the accuracy
of the AMSR2 multifactor SD model in these regions by af-
fecting the TB observations.

4.6.2 Multifactor model performance analysis with
respect to auxiliary parameters

Among all the factors considered in the AMSR2 multifactor
SD model development, elevation and SCD have good het-
erogeneity across the stations in each WH zone. The other
terrain factors, such as slope and land cover, do not have
much variation and are similar for many of the stations within
a WH zone (see Fig. 8). Though a large variation in land
cover is observed across the entire WH region, in the LHZ the
majority of stations are surrounded by forest cover, whereas
in the MHZ, stations are mainly over grassland and barren
land. The UHZ is devoid of vegetation, and all stations are
present over barren land and glaciers. Thus, the variation in
land cover within a range is not significant. Therefore, in this
section, only the effect of varying elevation and SCD on the
accuracy of SD from the AMSR2 multifactor SD model and
operational AMS2 SD products is evaluated.

Slope and SCD are divided into different classes consid-
ering the overall variation in the WH region. Within these
classes, the SD retrievals from the AMSR2 products and
multifactor model are compared with in situ SD measure-
ments during the winter period between 2017–2018 and
2018–2019. The accuracy of model estimates in each class
is evaluated by calculating RMSE (see Table 8). The RMSE
associated with each station for different factors (i.e., ele-
vation, slope, SCD, and land cover) is depicted in Fig. 8.
The results indicate that in the LHZ and UHZ, with an in-
crease in elevation, RMSE increased for both AMSR2 prod-
ucts and the multifactor model, whereas in the MHZ, there
is no specific trend in the variation in accuracy with respect
to elevation. The RMSE (in cm) variation across all eleva-

tion classes for the multifactor SD model and AMSR2 as-
cending and AMSR2 descending SD products in different
WH regions is as follows: LHZ, 21.38–47.27, 23.05–113.21,
and 18.44–93.72 cm; MHZ, 17.82–54.79, 39.10–107.72, and
37.98–103.38 cm; UHZ, 11.73–126.13, 17.71–188.67, and
19.50–182.12 cm. Though overall RMSE variation is high
across the different elevation classes, both AMSR2 SD prod-
ucts have similar RMSEs for any given elevation class within
each WH zone. However, the multifactor SD model has
lower RMSE than both AMSR2 SD products for elevation
classes across the three WH zones. Other than elevation, the
amount of snowfall and snow conditions vary widely with
SCD across the different WH zones. This can lead to varying
accuracy trends in SD retrievals for a given factor in different
WH zones.

The SD generally increases with an increase in SCD, af-
fecting the PMW SD retrieval from different models. Across
all WH regions, the RMSE values of the AMSR2 ascend-
ing and AMSR2 descending SD products and the multifactor
SD model increased with an increase in SCD. However, the
RMSE of the multifactor SD model is significantly low com-
pared to the AMSR2 SD products in all SCD classes in each
WH zone. The SCD variation at the end of the snow year
(30 September 2013), along with RMSEs in different sta-
tions calculated for the time period, i.e., 2017–2018 to 2018–
2019, is represented in Fig. 8d. The RMSE variation associ-
ated with SCD classes for the multifactor SD model, AMSR2
ascending product, and AMSR2 descending product in dif-
ferent WH ranges are as follows: LHZ, 25.18–61.80, 47.32–
158.11, and 45.47–140.59 cm; MHZ, 19.71–70.92, 33.53–
140.03, and 31.61–137.66 cm; UHZ, 83.40–122.22, 97.63–
205.89, and 92.54–204.15 cm.

5 Discussion

The Indian WH region has the highest mountain peaks in
Asia that separate the plane regions of the Indian subcon-
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Figure 8. Spatial distribution of RMSE of the multifactor SD model for varying (a) elevations, (b) slopes, (c) land cover types, and (d) SCD
among the 43 ground stations.

tinent from the Tibetan Plateau with a mean elevation of
∼ 3116 m a.m.s.l. The discussion about the performance of
SD models and factors affecting the multifactor SD model is
given in Sect. 5.1 and 5.2, respectively.

5.1 SD models’ performance

Four multifactor SD models are developed for each WH
zone using different regression approaches (i.e., linear, log-
arithmic, reciprocal, and power). These models are com-
pared with regional SD models, Chang’s SD model, and op-
erational AMSR2 SD products. The overall analysis of the
results indicates that the power-regression-based multifac-
tor SD model has higher accuracy compared to other mul-
tifactor SD models, regional approaches, Chang’s model,
and AMSR2 SD products in all WH regions. However,
AMSR2 SD products have shown comparable to better ac-
curacy (i.e., similar to the multifactor SD model) under shal-
low snow conditions (SD<25 cm). Nevertheless, once SD
exceeds 25 cm, the performance of AMSR2 SD products de-
clined considerably (see Table 8). Further, AMSR2 SD prod-
ucts have a large amount of missing data over the WH re-
gion, highlighting its poor utility for various regional appli-
cations. The regression modeling approach attempts to find
a better fit by optimizing the loss function, i.e., mean error.
Over the WH region, the majority of the observations have
SD>25 cm. Therefore, understandably the model estimates
are better in higher-SD regions compared to shallow-SD re-
gions.

The proposed model has an overall positive bias with over-
estimated SD values for shallower SD and underestimation
in the case of higher-SD observations. The bias for the LHZ,

MHZ, and UHZ for the proposed model is 4.5, 2, and 6.3 cm,
respectively, whereas the bias for the legacy model and other
regional models is considerably higher with significant over-
estimates in the lower depth values and underestimates in
higher-depth regions. Further, it must be emphasized that
these models have very poor correlation with the in situ snow
depth and the SD estimates mainly confined in a range irre-
spective of the magnitude of the ground snow depth observa-
tion values.

In general, with an increase in SD, the accuracy of mul-
tifactor models declined in all WH zones. However, the ac-
curacy of developed multifactor SD models is distinct for a
given SD class in different WH zones. This is because the
spatial distribution of snowfall and snow characteristics (i.e.,
SD, snow wetness, density) are not uniform at different geo-
graphic locations of observatories distributed across the three
WH zones. The SD model developed in the MHZ has shown
better accuracy metrics than those developed for the LHZ and
UHZ.

The topographical parameters in the WH region play a vi-
tal role in affecting the local climate as well as snow dis-
tribution. The inherent weakness of PMW TB in capturing
deeper snowpack thickness is overcome to a certain extent
by considering SCD in model development. Thus, the over-
all improved performance of the multifactor model over the
previously developed models and AMSR2 products can be
attributed to the consideration of topographical parameters
and SCD in the model development. Further, a combination
of multiple lower- and higher-frequency TBs is considered in
the model for capturing both deeper and shallower snowpack
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thickness. Different factors affecting the performance of the
multifactor SD model are discussed in Sect. 5.2.

5.2 Factors affecting the performance of multifactor
SD model

A total of 57 parameters comprising multifrequency PMW
TB, BTD, terrain parameters, and SCD are screened using
LOOCV to determine the suitable factors to develop the
PMW multifactor SD model. Finally, the SD algorithm is de-
veloped only using the selected parameters, i.e., geograph-
ical location parameters (latitude), terrain parameters (ele-
vation, slope, and ruggedness), SCD, and BTDs (36H89V,
36V89V, 10V23H, 23H89V, 10V18V, 10H23H, 10H18H,
and 18H89V). In the present study, different combinations
of frequencies in vertical and horizontal polarization have
been used to estimate shallow to deep snow across different
zones of the WH region. Only descending pass PMW ob-
servations are employed in this study to avoid the problems
pertaining to wet snow, which is more prominent during the
ascending pass. Among the different factors (i.e., other than
PMW data) evaluated using LOOCV, SCD has shown a rel-
atively strong correlation (i.e., R = 0.45) with in situ SD ob-
servations. Higher SCD generally indicates longer snow per-
sistence which leads to an increase in snow accumulation,
whereas shorter SCD indicates the absence/melt of snow,
which leads to lower SD.

Apart from SCD, terrain parameters, i.e., elevation and
slope, have an impact on the spatial distribution of SD within
an area (Saydi and Ding, 2020; Trujillo et al., 2007; Sharma
et al., 2014) and have shown a moderately better correlation
with in situ SD with R values of 0.30 and 0.26, respectively
(see Table 3). Further, the topographic conditions can affect
the reallocation of PMW radiation due to variations in the di-
rection of polarization and local incidence angles (You et al.,
2011), altering the TB values. The higher-elevation regions
(i.e., UHZ) of the Western Himalaya experience cold condi-
tions, which aids snow in accumulating. Therefore, the snow-
fall is preserved for most of the winter in higher mountain
areas of the MHZ and UHZ, leading to higher SD in these
regions. The accuracy of PMW SD models varies with the
magnitude of in situ SD, as evident from the current study,
as well as from many previous studies (X. Xiao et al., 2020;
L. Xiao et al., 2020; Dai et al., 2018). However, there are
many other factors (such as land cover, snow wetness, and
grain size) that can affect the accuracy of SD retrievals (Dong
et al., 2005; Foster et al., 2005; Tedesco et al., 2010; Kur-
vonen and Hallikainen, 1997; Ansari et al., 2019). Notably,
the land cover and snow conditions are considerably differ-
ent from one range to another in the WH region. Therefore,
for any given parameter (such as SCD, elevation, and slope),
the accuracy trend of multifactor SD model estimates is not
uniform when compared between different zones. The LHZ
has forest vegetation, higher temperature, and higher mean
SD (compared to Greater Himalaya). These conditions nega-

tively affect the accuracy of the SD estimates from the PMW
multifactor SD model compared to the estimates observed
in the MHZ, whereas, in the MHZ, the absence of forest
cover, relatively low mean SD (compared to both the LHZ
and UHZ), and stable snow conditions result in relatively
better conditions for SD estimation using PMW data. There-
fore, compared to other ranges, the multifactor SD model has
shown improved accuracy in the MHZ, whereas, in the UHZ,
higher SD is present due to which the PMW signal saturates;
hence larger errors in SD are observed for the multifactor
SD model in this region. Thus, location (i.e., latitude), land
cover, elevation, SCD, and magnitude of in situ SD play a
vital role in the accuracy of multifactor SD model estimates
in the WH region.

The developed model has shown improved performance
compared to other tested approaches in the WH region. How-
ever, the transferability of the multifactor model to other re-
gions, specifically mountainous regions, is uncertain. This is
due to the fact that the relationship of SD with topographi-
cal conditions and SCD can potentially change in the other
regions. The proposed multifactor model coefficients attempt
to improve SD estimates as per prevailing snow conditions in
the WH region. Understanding the influence of topographi-
cal conditions, snow persistency, and snowpack dynamics is
essential for using the model outside the WH region.

6 Summary and conclusions

The contrasting climate and snow conditions prevailing in
WH zones present new challenges regarding accurate SD re-
trievals using PMW remote sensing. The limited access to
in situ SD data, rugged topography, and inclement weather
resulted in fewer SD studies over the WH region. In the
mountainous region, the topography parameters, i.e., eleva-
tion and slope, affect the snow precipitation and its persis-
tence.

In this study, different regression approaches (i.e., linear,
logarithmic, reciprocal, and power) are used for developing
the multifactor SD models using multifrequency AMSR2 TB
observations and auxiliary parameters (such as terrain (ele-
vation, slope), location, and SCD) to estimate SD at 500 m
spatial resolution in each WH zone. The overall results indi-
cate that power regression performed better than other tested
approaches in all zones. Further, the results of the multi-
factor model from power regression are evaluated by com-
paring the SD estimates with ground SD, other SD prod-
ucts, and PMW models. The results indicate that under deep
snow (>25 cm) conditions, the developed multifactor model
has shown higher accuracy than the AMSR2 operational SD
product and other SD models. However, the accuracy of SD
from the multifactor model is affected by variations in auxil-
iary parameters such as SCD and elevation. With an increase
in SCD, the SD increased in each WH zone. Additionally,
the RMSE associated with SD also increased alongside SCD
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and SD in each WH zone. The MHZ has stable snow con-
ditions with relatively less thick snowpack. Therefore, the
multifactor SD model in this region has shown improved ac-
curacy for a given SD class compared to other WH zones.
Overall, the proposed multifactor SD models for WH zones
have demonstrated substantial improvement in estimating SD
compared to the operational AMSR2 SD product; the her-
itage SD model, i.e., Chang’s model; and previous models
developed within WH zones.

Though the multifactor SD model has outperformed other
models and products, there is still scope for improving PMW
SD estimates in the WH region. The multifactor model is ap-
plicable only to dry snow conditions. However, in the WH
region even during the peak winter a substantial area is cov-
ered by wet snow. This constrains the utility of the mul-
tifactor model for these regions. The developed model(s)
has shown poor performance compared to AMSR2 prod-
ucts when SD<25 cm. This can be possibly attributed to wet
snow conditions prevailing in the early winter, i.e., when SD
will be shallow. Further, the inclusion of snowpack charac-
teristics such as snow grain size, wetness, and density data
during the model development can improve the accuracy of
SD estimates. The available in situ SD observations are very
limited considering the high spatiotemporal variability in SD
in this region. Therefore, there is an immediate need to ex-
pand the in situ network of monitoring stations and field-
based studies to determine first-hand knowledge of snowpack
information in the WH region. The brightness temperature
datasets used in this work are resampled to 500 m. Instead of
resampling, downscaling the TB can be tested for further im-
provement in the model. It is also worthwhile to investigate
how downscaling the TB to different resolutions will impact
the model performance. Recently, different machine learn-
ing models are extensively used for modeling SD in many
studies (Tedesco et al., 2004; Liang et al., 2015; Tanniru and
Ramsankaran, 2023). The potential of such machine learning
approaches can be investigated for improving the SD estima-
tion.
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