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Abstract. Sea ice surface patterns encode more information
than can be represented solely by the ice fraction. The aim
of this paper is thus to establish the importance of using a
broader set of surface characterization metrics and to iden-
tify a minimal set of such metrics that may be useful for rep-
resenting sea ice in Earth system models. Large-eddy simu-
lations of the atmospheric boundary layer over various ide-
alized sea ice patterns, with equivalent ice fractions and av-
erage floe areas, demonstrate that the spatial organization of
ice and water can play a crucial role in determining bound-
ary layer structures. Thus, various methods used to quantify
heterogeneity in categorical lattice-based spatial data, such
as those used in landscape ecology and Geographic Infor-
mation System (GIS) studies, are employed here on a set
of recently declassified high-resolution sea ice surface im-
ages. It is found that, in conjunction with ice fraction, patch
density (representing the fragmentation of the surface), the
splitting index (representing variability in patch size), and
the perimeter–area fractal dimension (representing the tor-
tuosity of the interface) are all required to describe the two-
dimensional pattern exhibited by a sea ice surface. For sur-
faces with anisotropic patterns, the orientation of the surface
relative to the mean wind is also needed. Finally, scaling laws
are derived for these relevant landscape metrics, allowing
for their estimation using aggregated spatial sea ice surface
data at any resolution. The methods used in and the results
gained from this study represent a first step toward devel-
oping further methods for quantifying variability in polar sea
ice surfaces and for parameterizing mixed ice–water surfaces
in coarse geophysical models.

1 Introduction

The polar sea ice surface, a sensitive indicator of global cli-
mate change, exhibits persistent biases in sea ice fraction and
extent in coarse-resolution Earth system models (ESMs) (Liu
et al., 2022; Casagrande et al., 2023; Myksvoll et al., 2023).
Among other factors, these biases result from the inability
of ESMs to resolve fine-scale spatial variability in sea ice
and the resulting exchanges with the ocean below (Ramudu
et al., 2018) and the atmosphere aloft (Bates et al., 2006;
Esau, 2007). The effect of this subgrid-scale sea ice vari-
ability is typically parameterized in climate models using the
ice fraction (fi) as the sole surface composition character-
istic. Usually, either an equivalent homogeneous surface or
mosaic flux aggregation is used (Elvidge et al., 2016; Bou-
Zeid et al., 2020; Elvidge et al., 2021), but both yield an
average flux, weighted by the ice and water fractions, that
is inaccurate as the flux does not account for the impact of
surface heterogeneity on the dynamics of the lower atmo-
sphere and the nonlinear interactions with airflow above the
ice and water (de Vrese et al., 2016; Lüpkes et al., 2012). This
incomplete representation of sea ice surfaces and boundary
layer structures results in errors in the turbulent exchanges of
heat, moisture, and momentum across polar sea ice surfaces
(Nilsson et al., 2001; Bourassa et al., 2013; Taylor et al.,
2018). The dynamics and secondary circulations below the
first vertical grid cell level in climate models are particu-
larly underresolved, and they have a direct impact on air–
surface exchanges; it is thus imperative to understand how
these features influence fluxes (Mahrt, 2000; Essery et al.,
2003; de Vrese et al., 2016). These gaps in representing fine-
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scale dynamics and fluxes propagate to the projection of fu-
ture changes in the Arctic climate system and the resulting
surface energy budget (Persson et al., 2002; Miller et al.,
2017), which may be one reason why climate model ensem-
bles consistently underpredict Arctic sea ice sensitivity to
surface temperature warming. This underprediction has per-
sisted throughout the last three Intergovernmental Panel on
Climate Change (IPCC) model development cycles (Stroeve
et al., 2007; Rosenblum and Eisenman, 2016, 2017; Notz and
Community, 2020). The resulting uncertainty in the ability
of climate models to predict future sea ice evolution hinders
effective action and decision-making; therefore, improving
these models is imperative (Notz and Stroeve, 2018; Doc-
quier and Koenigk, 2021).

The fringe zone that separates densely consolidated sea
ice from the open ocean is known as the marginal ice zone
(MIZ) – see Dumont (2022) for a review of the current state
of MIZ research. In the MIZ, the size and organization of
sea ice floes and water are influenced by winds, sea currents,
waves, and material ice properties (Wang et al., 2016; Ren
et al., 2021; Herman et al., 2021; Hwang and Wang, 2022).
What makes this region unique is that near-surface air tem-
peratures may fall between the surface temperatures of sea
ice and water, resulting in abrupt spatial transitions between
stabilizing and destabilizing surface buoyancy fluxes (Lüp-
kes et al., 2012). Such transitions produce drastically dif-
ferent turbulence-mean-based nonequilibrium dynamics and
timescales (as demonstrated for comparable land–water tran-
sitions by Allouche et al., 2021, 2023b), all of which affect
the surface–atmosphere exchanges between air, water, and
sea ice. The ice fraction (fi) in the MIZ ranges from 15 %
to 80 % (Strong et al., 2017); however, any region of frac-
tured sea ice gives rise to these abrupt transitions. It is pre-
cisely in these regions where the linear-weighted, averaged
approaches described above will be most inadequate and
where surface transitions will play a key role in the dynamics.
Thus, it is important to devise better methods for quantify-
ing the heterogeneity of a surface, characterizing its patterns,
and encoding this information into coarse-resolution ESMs
to better represent the polar environment.

To this end, the complex geometric patterns formed by
sea ice floes need to be analyzed. Larger floes will have a
proportionally greater effect on surface–atmosphere fluxes,
whereas smaller floes, with their more frequent transitions,
will exacerbate the nonlinearity of the exchange processes.
These surface–atmosphere fluxes have a large effect on the
atmospheric boundary layer (ABL) overlaying the marginal
ice zone (MIZ-ABL). As a thought experiment, we can con-
sider an ice–water surface with a very fine checkerboard pat-
tern and a sea ice fraction (fi) of 0.5; this configuration will
lead to statistically homogeneous ice floes that are locally
variable at the surface but effectively homogeneous with re-
spect to the MIZ-ABL, where turbulence rapidly mixes the
floes’ small-scale signatures (Brutsaert, 2005; Mahrt, 2000;
Bou-Zeid et al., 2004). However, two large patches of sea ice

and water (meso-α heterogeneity; see Bou-Zeid et al., 2020),
which also have a sea ice fraction (fi) of 0.5, will gener-
ate significant circulation closer to that of a sea breeze due
to the abrupt transition between the two large, homogeneous
surfaces (Porson et al., 2007; Crosman and Horel, 2010; Al-
louche et al., 2023a). The dynamics and thermodynamics in
this MIZ-ABL system, and the surface exchange therein, will
thus be quite different for these two patterns, even if some
key surface properties, e.g., temperature and roughness, are
identical (Bou-Zeid et al., 2007).

Given the importance of the topic and the challenges
outlined above, previous work has attempted to quantify
the heterogeneity of sea ice surfaces (Wenta and Herman,
2018, 2019; Michaelis et al., 2020; Horvat, 2021; Dumont,
2022), utilizing surface and meteorological properties like
sea ice fraction, geostrophic velocity, lead width, and floe
size distribution. Furthermore, parameterizations for flow
over leads in sea ice have been developed based on non-
eddy-resolving models (Lüpkes et al., 2008; Michaelis et al.,
2021). Michaelis and Lüpkes (2022) also a conducted tur-
bulence parameterizations (based on large-eddy simulation
models) over ensembles of leads, but they used a two-
dimensional ice fraction geometry and a higher ice fraction.
However, the small-scale patterns in the MIZ require broader
and more versatile methods of heterogeneity characteriza-
tion (e.g., Mandelbrot, 1967), especially as the resolution
increases. In addition, the computational grid of even the
highest-resolution weather or climate model cannot resolve
all the spatial features in the MIZ. One thus needs to consider
how to represent unresolved surface characteristics in such
models; these characteristics can be thought of as lattice-
type spatial structures, as defined by Cressie (1993). Obser-
vational data of MIZ ice patterns also have a finite resolution
and are thus comparable to lattice data, allowing for the use
of different metrics specifically defined for lattice surfaces
and offering ways to characterize the heterogeneity patterns
of these polar surfaces. In this paper, we examine approaches
for this quantification that are commonly used in landscape
ecology, a field that has generated a multitude of methods to
study lattice spatial data (Li and Reynolds, 1994, 1995; Pick-
ett and Cadenasso, 1995).

Studies in landscape ecology have previously sought an
optimal independent group of metrics for understanding the
heterogeneity of lattice surfaces. Riitters et al. (1995) used
multivariate factor analysis to suggest six groups of metrics,
including image texture, average patch compaction, and av-
erage patch shape. Cushman et al. (2008) used principal com-
ponent analysis to propose seven broad metrics at the land-
scape level, including contagion, large-patch dominance, and
proximity (see Table 9 in the aforementioned study). For the
two-dimensional, binary sea-ice–water surfaces considered
in this study, we chose the variance inflation factor (VIF)
technique to reduce these metrics to a compact set of met-
rics that are weakly dependent on one another, minimizing
information redundancy (Miles, 2014).
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The questions that will be answered in this study are as
follows:

1. Is the sea ice fraction of a MIZ surface, combined with
some measure of average floe area, sufficient to predict
the behavior of the overlying MIZ-ABL?

2. If not, what other surface information in a two-
dimensional, lattice-based spatial pattern is needed to
describe air–sea interactions?

3. How can this surface information be applied to sea
ice surfaces in weather models and ESMs, considering
factors such as availability of information, resolution-
resampling invariance, and ease of understanding?

Section 2 details the methods employed for the idealized and
real-world maps used in this study, including the steps taken
to reduce multicollinearity and determine which landscape
metrics, alongside sea ice fraction, provide additional infor-
mation on the pattern of the sea ice surface. The large-eddy
simulations used are also presented in this section, and a
more complete description is found in Appendix A and B.
Section 3 reports the results of the idealized sea ice surfaces
in the large-eddy simulation, thereby answering the first of
our questions and setting the stage for the remaining ques-
tions. Section 4 presents the results from the 2D surface
analysis, thereby answering the second and third questions,
with additional discussion on principal directions and climate
model implications found in Sect. 5. Section 6 synthesizes
the findings and outlines open questions to guide future in-
vestigations of sea ice heterogeneity.

2 Methods and data

2.1 Large-eddy simulations

Large-eddy simulations (LESs) of the MIZ-ABL were con-
ducted for different idealized configurations of sea ice. LESs
are widely used to model heterogeneous high-Reynolds-
number flows (Baidya Roy, 2002; Bou-Zeid et al., 2004)
in, for example, convective boundary layers (Courault et al.,
2007; Maronga and Raasch, 2013), stable boundary layers
(Huang et al., 2011), and coastlines (Allouche et al., 2023a)
– see Sect. 3.6 of Stoll et al. (2020). This heterogeneous high-
Reynolds-number description aptly applies to the MIZ-ABL.
Unlike direct numerical simulations (DNSs), LESs are able
to attain a Reynolds number (Re) representative of the MIZ-
ABL (∼107) because the smaller turbulent eddies (smaller
than the filter size, which is comparable to the numerical
grid spacing in our simulations) are not explicitly resolved.
However, unlike Reynolds-averaged Navier–Stokes (RANS)
approaches, which encompass all weather and climate mod-
els, LESs directly resolve and capture large turbulent eddies,
the heterogeneity of the surface, advective fluxes, and large-
scale sea ice patterns, making them a computationally and

physically appealing approach for the problem at hand. By
retaining these larger structures, most of the turbulent energy
and fluxes are explicitly resolved, allowing for the investiga-
tion of three-dimensional flow structures that may arise over
these heterogeneous surfaces.

LESs are thus used to model MIZ-ABL flow over
10 km× 10 km patterns of idealized ice–water surfaces,
modulated by a Coriolis force at a latitude (8) of 90° N in
a horizontally periodic domain, yielding a Rossby number
(Ro) of 13.7 (see Fig. 1). We note that simulations using the
same Ro value, even those conducted at lower latitudes with
mean wind speeds, would give similar results – see the di-
mensional analysis of flow over heterogeneous surfaces in
Fogarty and Bou-Zeid (2023a) and Allouche et al. (2023a).
This full domain is smaller than a single grid cell in state-of-
the-art ESMs, underlining why simulated properties of the
MIZ-ABL in ESMs require subgrid-scale (SGS) parameter-
izations. For leads with a width of ∼ 1 km, a grid spacing
of 10–20 m is usually chosen after grid convergence tests
(Lüpkes et al., 2008; Gryschka et al., 2023). Our choice of
a coarser horizontal resolution of 100 m reflects our aim of
zooming out from a typical lead and examining the MIZ as
a whole (which is also reflected in the horizontally periodic
nature of the domain). A finer resolution in our simulations,
while possibly improving the representation of turbulence
and plume dynamics, may sacrifice some of the large scales
and secondary circulations that arise from these heteroge-
neous surfaces, which we aim to capture with a large domain.
The coarse resolution also does not compromise our ability to
answer the first question because, as shown later, the differ-
ences in the dynamics between simulations with identical ice
fractions but different surface patterns are significant and far
exceed any plausible impact resulting from grid resolution.
The simulations in this section are meant to demonstrate the
need for surface analysis, given a constant ice fraction and
an average ice floe area; thus, we do not focus on the quanti-
tative aspects of the output. See Table 1 for all details of the
simulations in this study; more information on the numerical
aspects of our LES is provided in Appendix A.

The bottom-boundary condition for each simulation can
be thought of in terms of categorical lattice-based spatial
data, where each node represents either the ice class or the
water class. An ice node is prescribed a surface tempera-
ture (θi) of 255 K, typical of fall and spring temperatures
in the central Arctic, and a momentum roughness length of
1 mm, while a water node is prescribed a surface temperature
(θw) of 271 K, roughly the freezing point of seawater, and a
roughness length of 1 cm. The heat roughness length is set to
0.1 mm for the entire surface (both ice and water). There is
a very large variability in roughness lengths in Arctic sea ice
simulations (see Lüpkes et al., 2008; Andreas et al., 2010;
Lüpkes et al., 2012; Elvidge et al., 2016; Gryschka et al.,
2023), which reflects the physical differences between calm
and stormy seas, as well as between new, flat ice and old
ice that is deformed and refrozen. However, our choice of
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Table 1. Numerical details of the large-eddy simulation. Time is represented in terms of inertial periods (2π/fc), indicating the timescale
associated with the response of the mean flow. This timescale represents the Coriolis redistribution of energy between u and v (Momen and
Bou-Zeid, 2016).

Domain height (zi ) 1 km
Horizontal domain size (Lx ×Ly ) 10 km× 10 km
Number of grid points (Nx ,Ny ,Nz) (100,100,50)≈ 5× 105 points
Vertical mesh spacing (dz) 20 m
Horizontal mesh spacing (dx, dy) 100 m
Initial potential air temperature (θa,0) See Appendix B (constant profile)
Coriolis parameter (fc) 1.46× 10−4 s−1

Warm-up period Five inertial periods (10π/fc)
Averaging period One inertial period (2π/fc)
Simulation time step 0.05 s
Frequency of statistical sampling 100 time steps

Figure 1. Schematic of the domain setup for the large-eddy simu-
lation. The ice (in gray) has a surface temperature (θ0,i) of 255 K
and a roughness length (z0,i) of 1 mm. The water surface (in blue)
exhibits a θ0,w value of 271 K and a z0,w value of 1 cm. The bottom
boundary represents one of the many cases (Pattern1) illustrated in
Fig. 2.

roughness lengths prioritized keeping constant ratios (which
are the key dimensionless parameters influencing the results;
Fogarty and Bou-Zeid, 2023a; Allouche et al., 2023a) among
simulations to focus on the effect of sea ice patterns. Re-
sults with different values but the same ratios will lead to
almost identical conclusions. In addition, sensitivity analy-
ses (not shown here) indicated that the roughness lengths,
even when their ratios were changed, had a very minor im-
pact on the quantitative results compared to the temperature
contrast, ice fraction, and ice–water patterns. The initial po-
tential air temperature (θa,0), a constant profile, is defined so
that the area-averaged sensible heat flux, as computed by the
Monin–Obukhov surface flux parameterizations, is zero and
thus lies between the ice and water surface temperatures (see
Appendix B for details). The LES-modeled heat flux will,
however, not be zero.

All five patterns (Pattern1 to Pattern5), displayed in Fig. 2,
were simulated. They have a fixed sea ice fraction (fi) of
0.46 and a mean floe area of 11.56×106 m2. The geostrophic
wind (Mg = 2 m s−1) flows from left to right at an angle of
18° relative to the x axis in all simulations. This is expected
to give a surface wind (M0) value that is roughly aligned
with the x axis for homogeneous neutral surfaces due to

Ekman veer (Ghannam and Bou-Zeid, 2021). These simu-
lations are dry runs with no clouds present. The turbulence
field is warmed up for about 60 h, and the statistics are then
Reynolds-averaged over an additional 12 h. A variable with
an overbar denotes averaging over time, which is used as a
surrogate for ensemble Reynolds averaging, and any spatial
averaging over the heterogeneous domain in x and y is indi-
cated by angle brackets.

In addition to the Rossby number and the roughness ratio
discussed earlier, an important dimensionless input parame-
ter in these simulations is the heterogeneity Richardson num-
ber, defined as

Rih =
g

θa,0

θw− θi

M2
g/zi

. (1)

Rih encodes the competition between buoyancy-driven circu-
lations generated by the surface temperature contrast and the
uniform flow resulting from the synoptic forcing (Mg). All
simulations in this study have equivalent inputs of Rih, Ro,
and z0,w/z0,i. Based on previous dimensional analyses and
LESs of flow over heterogeneous surfaces (Omidvar et al.,
2020; Allouche et al., 2023a; Fogarty and Bou-Zeid, 2023a),
matching these dimensionless inputs is required to be able to
focus on the effects of surface sea ice fraction and patterns.

2.2 Ice map data

While the LES utilizes idealized surfaces to examine the
influence of patterns on the MIZ-ABL, examining what
other landscape metrics might be important for surface
characterization necessitates the use of real-world sea ice
maps. The lattice spatial data used in the statistical analysis
(see Sect. 2.3) are derived from recently declassified high-
resolution (1 m) Literal Image Derived Products (LIDPs) in
accordance with national technical means (NTMs), as de-
tailed in Kwok (2014). These images underwent a super-
vised maximum-likelihood classification algorithm, which
assigned each pixel in the original LIDP to either a wa-
ter class or an ice surface class (Fetterer and Untersteiner,

The Cryosphere, 18, 4335–4354, 2024 https://doi.org/10.5194/tc-18-4335-2024



J. Fogarty et al.: How many parameters are needed to represent polar sea ice? 4339

Figure 2. Bird’s-eye view of the five idealized 10 km× 10 km sea ice surfaces created for the large-eddy simulation. The geostrophic wind
(Mg) flows at an angle of 108°, resulting in the near-surface wind (M0) flowing from left to right in all patterns. The results from the LES for
these five patterns are discussed in Sect. 3.

1998; Fetterer et al., 2008). This process converted the high-
resolution LIDPs into categorical lattice-based spatial data,
where each cell represents one of two possible surface types
(ice or water).

These maps, which have a horizontal extent of up to 10 km
by 10 km, comprise the dataset used to calculate the land-
scape metrics. Some of the images did not fully cover this
full extent; thus, in order to retain the real-world sea ice ge-
ometry, we reflected the images onto areas with no data. All
metric calculations and analyses were conducted on these
modified surfaces. The advantage of this high-resolution,
large-extent dataset is that we can analyze how these met-
rics change with grain size. These maps are thus aggregated
from a 1 m resolution to 2 m, 10 m, 50 m, 100 m, 200 m,
500 m, 1 km, and 2 km resolutions; resampling was done us-
ing the nearest-neighbor method from the Python Imaging
Library (PIL). These resolutions cover a range of common
resolutions used in fine large-eddy simulations and numer-
ical weather prediction (NWP) models. Due to the exces-
sive computational-processing time required for the original
1 m resolution data, the highest resolution at which landscape
metrics were calculated was 2 m.

One important caveat of this dataset is that the histogram
illustrating sea ice fraction (fi) is heavily skewed toward
higher sea ice fractions (see Fig. 3). We recognize that this
may lead to bias in the results; however, the analysis meth-

Figure 3. The distribution of fi values in the Fetterer et al. (2008)
ice map dataset.

ods developed here are insensitive to fi and can certainly be
applied to other datasets with more uniform sea ice fraction
distributions in the future. The high resolution provided by
the present dataset remains a key factor in its adoption for the
present study since it allows us to aggregate and track how
landscape metrics change from actual surface states when re-
sampled to a coarser numerical grid.
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2.3 Landscape metric space reduction

FRAGSTATS, a spatial-pattern analysis program, was used
to calculate landscape metrics (McGarigal and Marks, 1995)
based on the lattice spatial data. When given GeoTIFF-
format raster lattice data, FRAGSTATS calculates patch met-
rics, class metrics, and landscape metrics of your choice.
Patch metrics are computed for each individual patch in the
landscape and are thus not relevant for the current study of
sea ice surface patterns. Class metrics are computed for each
patch type (class) in the landscape. In this study, this would
involve calculating metrics for sea ice only and water only.
Although this metric may be useful in other applications of
pattern analysis, in this study, we want to look at the aggre-
gated patterns of sea ice and water combined. Thus, only
landscape metrics were calculated. Sea ice fraction (calcu-
lated as the number of ice cells divided by the total number
of ice and water cells) was calculated using the PIL as it is
the only metric not provided by FRAGSTATS.

This resulted in 22 landscape metrics that focus on the
global patterns of the surface. Many of these landscape met-
rics, however, are correlated with one another; for example,
patch density and mean patch size are proportional to each
other. This is due to the fact that there are limited observa-
tions one can make about a surface (such as the number of
patches, the area of a patch, and the proportion of edge in a
patch) but an infinite number of operations that can be per-
formed on a surface. Therefore, many of these metrics (espe-
cially at the landscape level) simply represent different meth-
ods of aggregating or statistically analyzing these observa-
tions.

While collinearity between two metrics can be easily de-
tected through a correlation matrix, multicollinearity (where
one indicator is a linear combination of two or more other
indicators) is more likely in these types of datasets. It is thus
possible for two or more landscape metrics to jointly define
another metric. An objective and statistical way of reducing
these parameters is thus needed. Here, we chose the variance
inflation factor (VIF),

VIFi =
1

1−R2
i

, (2)

where R2 is the coefficient of determination, which is used
to detect multicollinearity among these heterogeneity param-
eters (see Ibidoja et al., 2023). For each metric (Xi), when
i ∈ [1, . . .,22], the VIF was calculated using a regression
equation,

Xi = α0+αi+1Xi+1+αi+2Xi+2+ . . .+α21X21, (3)

where α0 is a constant. The statsmodels Python library
(Seabold and Perktold, 2010) was used for these computa-
tions. The metric with the largest VIF was then removed from
the dataset as it was not considered important in the quantifi-
cation of sea ice surfaces. All VIFs were then recalculated

for this “reduced” dataset, and the new metric with the high-
est VIF was removed. Through this process, metrics were
removed one by one until all remaining metrics exhibited a
VIF below a predefined cutoff, which was set as VIF< 2.5.
While such a low cutoff may not be necessary in certain prac-
tices of multicollinearity reduction (O’Brien, 2007), the ulti-
mate goal of this technique is to reduce the parameter space.
In other words, for climate modelers, fewer metrics in their
SGS parameterizations result in more practical models.

Each of these metrics, listed in Table C1, can be catego-
rized into one of six metric groups: Area and Edge, Shape,
Core Area, Aggregation, Contrast, and Diversity. The first
four metric groups are important for analyzing sea ice sur-
faces. Area and Edge metrics deal with the size of floes and
the amount of edge they create, while Shape metrics dis-
criminate based on patch morphologies and overall geomet-
ric complexity. Core Area metrics analyze the area within a
patch beyond a specified buffer width. Aggregation metrics
focus on the tendency of patches of similar types to be spa-
tially aggregated or otherwise dispersed across the landscape.

The last two metric groups, Contrast and Diversity, are less
important for the present application to sea ice. Contrast met-
rics refer to the magnitude of difference between adjacent
patch types with respect to a given attribute – in the case
of sea ice surfaces, which only correspond to two classes
(ice and ocean), there is only one contrast between two cate-
gories. Thus, metrics in this group are simply represented by
the contrast of surface temperature and roughness. Diversity
metrics are influenced by the number of patch types present
and the area-weighted distribution of these patch types. In
this case, we only have two types of patches (ice and water),
so the diversity is the same across all maps, and the weighted
distributions of the patches are related to the ice fraction. Fur-
ther information on all of these metric groups can be found
in the FRAGSTATS manual (McGarigal and Marks, 1995).

3 Results: the MIZ-ABL across idealized
configurations

The large-eddy simulation technique detailed in Sect. 2.1
was used to simulate the MIZ-ABL across different config-
urations of sea ice patterns. Figure 4 displays the Reynolds-
averaged and horizontally averaged normalized vertical pro-
files of horizontal wind speed (M = 〈

√
u2+ v2〉), normal-

ized by the geostrophic velocity (Mg); potential air tempera-
ture, normalized by the initial potential air temperature (θa,0);
total heat flux (〈wθ〉), normalized by Mgθa,0; and the total
horizontal stresses (〈uw〉 and 〈vw〉), both normalized byM2

g .
Note that these include both turbulent and dispersive fluxes
that arise over heterogeneous surfaces as a result of the spa-
tial correlation of the mean (time-averaged) fields (Raupach
and Shaw, 1982; Finnigan and Shaw, 2008; Li and Bou-Zeid,
2019). The results clearly display significant differences, un-
derlining the fact that sea ice fraction alone is not a sufficient
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surface metric for describing MIZ-ABL dynamics, even in
these simulations, where the mean floe size was also kept
constant.

In all five simulations, the largest difference occurs be-
tween Pattern4 and Pattern5 (red and purple lines, respec-
tively), which is expected since the geostrophic wind, and
thus the near-surface wind, flows parallel (rather than perpen-
dicular) to the strips of ice (Willingham et al., 2014; Ander-
son et al., 2015; Salesky et al., 2022; Fogarty and Bou-Zeid,
2023a). Although wind direction is not a surface property
of sea ice, its orientation relative to the surface features is
still an important driver that must be taken into consideration
and will be discussed further. All patterns developed a low-
level jet (LLJ), which can be seen in Fig. 4a, although the
LLJs in Pattern1 and Pattern5 are weak (Tetzlaff et al., 2015;
Michaelis et al., 2021). The LLJs seem to strengthen in Pat-
tern2 and Pattern3, likely due to large swaths of ice aligned
with the direction of the geostrophic wind; the unstable–
stable transitions in these ice regions decouple the air from
the surface friction over long, stable ice patches, allowing for
low-level wind acceleration. This mechanism is similar to the
one advanced by Blackadar (1957), which concerned the cre-
ation of a low-level jet via inertial oscillation over time as the
ABL transitioned to a stable regime at sunset. However, in
this case, the oscillation occurs in space, with columns of air
advecting from hot to cold surfaces and decoupling from the
surface. The second-strongest LLJ is in Pattern3 and is likely
caused by the one large ice floe. It persists across all wind di-
rections, and the same can be said for Pattern2. The strongest
LLJ, found in Pattern4, is likely reinforced by secondary cir-
culations (not shown), consisting of streamwise-aligned rolls
driven by the lateral contrast in surface temperature, and by
the fact that the small strips of ocean between the ice floes
are not wide enough to interrupt the circulations. However,
unlike Pattern2 and Pattern3, Pattern4 is highly anisotropic,
meaning that the geostrophic wind direction is more impor-
tant in this case, as evidenced by the fact that Pattern5 has no
LLJ despite being a 90° rotated version of Pattern4.

Each simulation showed an increase in potential temper-
ature of 2.1 %–2.2 %; this warming is consistent with the
large ocean fraction in each of the patterns. Despite initial-
izing the air temperature to produce zero fluxes according to
the Monin–Obukhov flux models, which assume equilibrium
between the air and water above each surface grid cell, the
upward fluxes over warm water are larger than the downward
fluxes over cooler ice. This is due to the effect of advection,
which perturbs the equilibrium.

Major differences are also observed in the total stream-
wise and cross-stream stresses, displayed in Fig. 4d and e,
respectively. Again, Pattern4 and Pattern5 exhibit the great-
est differences from one another due to the geostrophic wind
direction. All simulations show similar negative streamwise
stress in the surface layer, but at higher altitudes in the MIZ-
ABL, the differences between simulations are greater. Above
the LLJ, some of the stresses turn positive, implying an up-

ward transfer of momentum from the LLJ, which explains the
differences that may be observed below the blending height
(Wood and Mason, 1991; Mahrt, 2000; Brunsell et al., 2011).
The cross-stream components of the total momentum flux,
shown in Fig. 4e, are all quite distinct, indicating significant
differences in the Ekman rotation of wind and stress with
height.

To further explain the differences seen in these patterns,
we consider the decomposition of the total flux into its dis-
persive and turbulent contributions. Vertical turbulent heat
flux is denoted as w′θ ′, while vertical turbulent streamwise
and cross-stream stresses are denoted as u′w′ and v′w′, re-
spectively. Dispersive fluxes arise from a time-averaged but
spatially variable mean flow (Raupach and Shaw, 1982; Li
and Bou-Zeid, 2019). Since our Reynolds averaging is per-
formed over time, we can spatially decompose any Reynolds-
averaged variable. For example, the vertical velocity can be
decomposed as follows: w = 〈w〉+w′′, where the brackets
represent spatial averaging (as defined in Sect. 2.1) and the
double prime represents variations in the mean planar fields
in space. We then calculate the local dispersive fluxes, using
vertical heat flux as an example, as follows:

wθ =
(
〈w〉+w′′

)(
〈θ〉+ θ

′′) (4)

= 〈w〉〈θ〉+w′′〈θ〉+ 〈w〉θ
′′
+w′′θ

′′
. (5)

We then spatially average the entirety of Eq. (5) over the hor-
izontal plane to obtain

〈wθ〉 = 〈w′′θ
′′
〉 . (6)

The middle two terms in Eq. (5) are zero due to spatial aver-
aging, since 〈w′′〉 = 0 and 〈θ ′′〉 = 0 by definition; therefore,
these terms have no impact on spatially averaged surface–
atmosphere exchanges. Furthermore, 〈w〉 is assumed to be
very small (unless strong, large-scale subsidence or uplift is
present). In our LES, 〈w〉 must be zero since there cannot
be accumulation or depletion of mass below a given horizon-
tal plane in a periodic domain with an incompressible flow.
Thus, the first term on the right-hand side of Eq. (5) is also
negligible, leaving only one term remaining in Eq. (6). This
term, denoting dispersive flux, is of particular interest as it
represents the coherent spatial correlation of vertical veloc-
ity and potential temperature in regions with consistent sec-
ondary structures, such as consistently warm updrafts, cool
downdrafts, or streamwise rolls.

Figure 5 shows the horizontally averaged vertical profiles
of the total, turbulent, and dispersive fluxes of each pattern
with respect to heat flux, streamwise momentum flux, and
cross-stream momentum flux, allowing us to decompose and
analyze the total fluxes shown in Fig. 4c–e. For example, it
is clearer now that the cross-stream components of the to-
tal momentum flux (Fig. 4e) are distinct from one another
due to these dispersive fluxes (dotted green lines). Over these
heterogeneous surfaces, dispersive cross-stream stress domi-
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Figure 4. Normalized vertical profiles of (a) horizontal wind speed, (b) potential air temperature, (c) total heat flux, (d) geostrophic wind
direction (α), (e) total stress in the streamwise direction, and (f) total stress in the cross-stream direction for all five patterns.

nates over its turbulent counterpart in all patterns except Pat-
tern5 (see panels c, f, i, and l in Fig. 5). The magnitudes
of these dispersive fluxes are not equal when the heteroge-
neous surfaces differ from one another. Thus, it is not the
ice fraction or average floe area but the surface pattern itself
that leads to these differences in total cross-stream flux. The
streamwise stresses, on the other hand, seem to balance the
dispersive and turbulent stresses, which are not always of the
same sign (panels e, h, k, and n in Fig. 5). Thus, the dis-
persive components that directly result from the secondary
motions imprinted by the surface pattern on the atmosphere
are also critical here. These secondary circulations can be
seen in the two-dimensional cross sections in the supporting
information.

The total heat flux in all these simulations linearly de-
creases with height, as dictated by the LES setup. As seen
in Fig. 4c, the variations are not as impressive as those con-
cerning the momentum fluxes, but they can still result in a
difference of up to 30 %, especially near the surface. How-
ever, analyzing the left column of Fig. 5 (i.e., panels a, d, g,

j, and m) shows that the relative importance and profiles of
the dispersive and turbulent heat fluxes exhibit more signifi-
cant differences. The various surface patterns seem to lead to
differences in the dispersive fluxes, but in all cases, these are
balanced out by the turbulent fluxes. Nevertheless, in all of
the figures, there is strong variability near the surface in the
dispersive-flux and turbulent-flux profiles. This is partially
due to the shallow internal boundary layers that are created
by the mean flow and the secondary circulations over the
floes, and these differing secondary circulations arise from
differences in the surface patterns. However, one should also
note that the first few points are strongly influenced by the
transition from the wall model to the SGS model in repre-
sentations of resolved turbulence – a persistent challenge in
LESs (Piomelli and Balaras, 2002; Brasseur and Wei, 2010).
Thus, the quantitative details of the results from such regions
should be interpreted with care.

Lastly, analyzing the ratios between dispersive and total
atmospheric vertical fluxes (Table 2) provides insight into
the differences between simulations and allows for compar-
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Figure 5. (a, d, g, j, m) Normalized vertical profiles of total heat flux (wθ ; solid blue line), turbulent heat flux (w′θ ′; dashed orange line),
and dispersive heat flux (wθ ; dotted green line) for each pattern (as shown in Fig. 4). (b, e, h, k, n) Same as in panels (a), (d), (g), (j), and
(m) but for normalized total streamwise stress (uw; solid blue line), turbulent streamwise stress (u′w′; dashed orange line), and dispersive
streamwise stress (ūw̄; dotted green line). (c, f, i, l, o) Same as in panels (a), (d), (g), (j), and (m) but for normalized total cross-stream stress
(vw; solid blue line), turbulent cross-stream stress (v′w′; dashed orange line), and dispersive cross-stream stress (v̄w̄; dotted green line).

isons with other surface types. For example, in Pattern1 and
Pattern2, |v̄w̄|/|vw|> 1, indicating that the dispersive and
turbulent fluxes along the cross-stream axis are in opposite
directions, as seen in the green and orange profiles in Fig. 5c
and f. The ratios in Pattern4 and Pattern5 are also closer
to unity than the other values, which, again, highlights the
differences in secondary circulations due to the sea ice pat-
tern. These values have been observed before – for exam-
ple, over urban or forest canopies (Moltchanov et al., 2015;
Boudreault et al., 2017; Li and Bou-Zeid, 2019).

Overall, these LES results indisputably indicate that ice–
water patterns hold key information on how the MIZ-ABL
interacts with the underlying surface; thus, the rest of the pa-
per is dedicated to characterizing these patterns.

4 Results: statistical analysis

Now that we have established the need for surface charac-
teristics beyond sea ice fraction, we aim to examine the in-
dicators that can be used for this purpose. For each of the
nine resolutions considered, 44 observed sea ice images were
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Table 2. Ratios between dispersive and total atmospheric vertical fluxes.

Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

|wθ |/|wθ | 0.512 0.668 0.697 0.586 0.388
|ūw̄|/|uw| 0.321 0.354 0.250 0.046 0.137
|v̄w̄|/|vw| 1.598 1.101 0.923 0.816 0.365

analyzed. When conducting this analysis at the 2 m resolu-
tion, four metrics (including sea ice fraction) remained af-
ter the VIF elimination process and did not exhibit multi-
collinearity with one another: sea ice fraction (fi), patch den-
sity (PD), the splitting index (SPLIT), and the perimeter–area
fractal dimension (PAFRAC). These remaining metrics were
then categorized into the different metric groups defined in
Sect. 2.3: sea ice fraction is an Area and Edge metric, PD
and SPLIT are both Aggregation metrics, and PAFRAC is
a Shape metric. No metrics remained in the Diversity, Core
Area, or Contrast metric groups. We expected no metrics to
remain in the Contrast metric group since an edge can only
exhibit one contrast for a sea-ice–water surface – however,
this could change if the analysis were conducted with con-
tinuously variable surface temperatures or roughness lengths.
We also did not expect any metrics from the Diversity group
since many metrics, such as evenness or Simpson’s diversity
index, are functions of sea ice fraction. The absence of met-
rics from the Core Area group was not predicted, but it is
likely related to the fact that the Shape group and the Area
and Edge group can collectively represent the Core Area
characteristics.

The first aggregation metric, PD (Riitters et al., 1995; Ší-
mová and Gdulová, 2012), with a VIF of 1.9, represents an
area-normalized number of patches and is described as fol-
lows:

PD=
n

At
, (7)

where PD represents patch density, At represents the total
area of the surface, and n represents the total number of dis-
tinct patches (of either sea ice or water). As the PD of a
sea ice surface increases, one would expect to find more in-
stances of ice–water edges and thus more regions of stable-
to-unstable and unstable-to-stable stratification transitions.
We also note that reducing PD increases the average time
a parcel spends over the stable (or unstable) surface, which
affects how the parcel adjusts to the transition to a new sta-
bility regime. Patch density may also work in tandem with
geostrophic wind direction, as discussed in Sect. 3, since
geostrophic wind flowing in one direction may encounter
more ice–water-edge transitions than in another direction
(see Pattern4 and Pattern5, for example).

The second metric, SPLIT, with a VIF of 1.9, was first
described in Jaeger (2000). It represents the inverse proba-
bility that two randomly chosen points on a map will be in
the same patch, and the corresponding equation is expressed

as follows:

SPLIT=
A2

t∑n
i=1a

2
i

, (8)

where ai is the area of patch i and the index (i) iterates over
all patches. SPLIT has a value of n if there is only one patch
or if all patches are of an equal size. However, generally,
SPLIT has a value greater than n, with lower values indi-
cating a larger variance in patch sizes. Since we already use
PD, the new information provided by SPLIT is specifically
about the variance in patch sizes.

The only Shape metric, PAFRAC, with a VIF of 2.1, is
obtained by regressing each patch’s perimeter (Pi) against
its area (Ai) on a log–log plot, resulting in the following:

A= kP 2/PAFRAC , (9)

where k is a constant and PAFRAC is the perimeter–area
fractal dimension, which measures the tortuosity, or jagged-
ness, of an ice–water interface, similar to any fractal dimen-
sion (Mandelbrot, 1982).

Thus, in addition to sea ice fraction (fi), the three met-
rics that would be useful in describing a sea ice surface are
SPLIT, PD, and PAFRAC. Table 3 details the values of these
metrics for each of the sea ice patterns simulated in Sect. 3.
We observe that SPLIT is invariant to the shape of the floes
as long as the areas of the floes are equivalent (i.e., no vari-
ance), which is why SPLIT remains consistent for all patterns
except Pattern3. This is where PAFRAC proves useful as it
provides three different values among the five ice–water pat-
terns.

For the real ice maps obtained from Arctic images, the
ice fraction varies from 0.19 to 0.99, PD varies from 5.4 to
42.5, SPLIT varies from 1.23 to 4.07, and PAFRAC varies
from 1.338 to 1.726 at a 2 m map resolution. In many cases,
however, numerical simulations also require the resampling
of high-resolution surfaces by increasing the grain (pixel)
size. For example, sea ice maps from reconnaissance satel-
lites may have a resolution of up to 1 m, but this is compu-
tationally impractical for numerical weather models. Large-
eddy simulations of the ABL can have resolutions down to
50 m, while NWP models have resolutions of 2 to 10 km.
Therefore, even with high-resolution data, the aggregation
and resampling of these surface patterns are inevitable in
modeling. Furthermore, considering the operational use of
these metrics, regularly updating these values would likely
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Table 3. Landscape metrics of the simulations conducted in Sect. 3. Note that for maps with a low number of patches (fewer than 10) and/or
simple shapes, the PAFRAC metric may exceed the theoretical range, as observed in Pattern3. However, this does not appear in any of the
real sea ice maps we examine next.

Metric Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

fi 0.462 0.462 0.461 0.462 0.462
Average floe area (m2) 11.56× 106 11.56× 106 11.56× 106 11.56× 106 11.56× 106

SPLIT 2.91 2.91 2.71 2.91 2.91
PD 5× 10−8 5× 10−8 5× 10−8 5× 10−8 5× 10−8

PAFRAC 1.895 1.895 2.035 1.929 1.929

involve multiple satellite products with differing resolutions;
thus, metrics that can be extrapolated/interpolated across dif-
ferent grid cell sizes would allow for consistent computation
when standardized to a single weather model grid cell.

Therefore, it is useful to examine how these chosen met-
rics vary as an image is aggregated to a resolution applica-
ble to numerical weather models (or other numerical models,
such as LESs); an appealing metric would be one that is in-
variant to resolution changes. Sea ice fraction (fi) is a good
example of an invariant indicator, as shown in Fig. 6a, where
it is calculated for all images and then averaged over the cor-
responding resolution. A second-best case would involve a
metric that exhibits a clear scaling law relative to the resolu-
tion, such as the PD depicted in Fig. 6b. In this case, the PD
for the “real” 2 m resolution surface can be extrapolated to
higher resolutions based on power-law scaling, expressed as

m= k1Dq , (10)

wherem is the metric,1 is the map resolution, and k andDq
are the scaling coefficients.

Some metrics, such as SPLIT and PAFRAC, seem to ex-
hibit near-invariant behavior after a certain jump in the reso-
lution. For example, when starting from the 10 m resolution,
SPLIT stays fairly constant as the resolution decreases. There
is also variation in PAFRAC as the resolution decreases from
10 m. This is consistent with results from previous studies
as some landscape metrics exhibit large errors when surfaces
are aggregated to lower resolutions (Moody and Woodcock,
1994, 1995). Given the near-invariant scaling of three of the
four metrics and the predictable power-law scaling of the
fourth, we can proceed with these four metrics since they are
usable (or translatable) across scales.

5 Principal direction of the sea ice patterns

Thus far, we have identified four surface pattern indica-
tors that characterize the MIZ surface: sea ice versus wa-
ter concentration (fi), patch density (PD), variance in the
sizes of patches (SPLIT), and the tortuosity of patch edges
(PAFRAC). However re-examining Pattern4 and Pattern5 in
Fig. 4 raises the question of why these maps show the largest

differences in their respective MIZ-ABLs. Although their ge-
ometric patterns are the same (and thus the four metrics are
identical for the two configurations), the difference in the
geostrophic wind direction results in large differences in the
surface–atmosphere interactions. This suggests that another
important attribute relates to how the surface patterns are ori-
ented relative to the wind. If the surface is isotropic, the wind
angle should be irrelevant, but most water–sea-ice patterns in
the MIZ display a significant degree of anisotropy (Feltham,
2008). Therefore, quantifying the impact of surface orienta-
tion and including it in the set of metrics obtained from the
VIF analysis, as discussed in Sect. 4, may provide additional
information, allowing modelers to parameterize MIZ-ABL
dynamics in global climate models.

We observe that in Pattern4 and Pattern5, the difference in
geostrophic direction is related to the directionality of sea ice
organization. In Pattern4, the wind blows consistently over
an infinitely repeating pattern of sea ice and water at regu-
lar intervals. In Pattern5, the wind blows over much longer
strips of ice and water, even though some sea-ice–water tran-
sitions are present. Any other oblique flow is thus in between
these two parallel and perpendicular regimes. We character-
ize the differences between these regimes by examining the
variance in the surface exposed to the wind. In other words,
Pattern4 exhibits high variance since the surface wind flows
over a maximum of eight ice–water transitions within one
domain length, whereas Pattern5 exhibits low variance since
the wind flows over a maximum of two sea-ice–water tran-
sitions. This then raises the question of how to determine a
principal direction for a more complex surface.

We therefore attempted to characterize this anisotropy by
computing the direction of the eigenvector (the eigendirec-
tion) for the surface with the least amount of variance, re-
sulting in the fewest ice–water transitions possible. This was
done using the scikit-learn Python package, specif-
ically via principal component analysis (PCA) using the
sklearn.decomposition.PCA class (Pedregosa et al.,
2011). This method performs an eigendecomposition of the
covariance matrix of the sea ice map, yielding two orthogonal
eigenvectors. The principal eigendirection points in the di-
rection of minimal variance, as indicated by the longer of the
two arrows in Fig. 7. In other words, the principle or most co-
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Figure 6. Landscape metrics plotted against resolution with respect to (a) sea ice fraction, (b) the splitting index, (c) patch density, and
(d) the fractal dimension. A power law of the form m= k1Dq is fitted to the patch density plot (dashed blue line), but no such power law
applies to the other three metrics.

Table 4. Eigenvector (vi ) angles and eigenvalues (λi ) for principal
eigenvectors (i = 0) and secondary eigenvectors (i = 1), as well as
the percentage of variance (POV) of λ0, corresponding to each map
(Fig. 7a–h). Note that these angles are not traditional meteorological
wind angles but are instead given in Cartesian coordinates; 0° rep-
resents a left-to-right westerly wind, and 90° represents a southerly
wind.

Map 6 v0 λ0 6 v1 λ1 POV(λ0)

a 41° 3396 311° 3286 0.508
b 69° 4784 339° 2688 0.640
c 229° 3339 319° 3330 0.501
d 0° 3337 90° 3285 0.504
e 50° 3347 320° 3332 0.501
f 209° 3624 299° 2688 0.574
g 269° 3370 359° 3293 0.506
h 102° 3697 12° 3033 0.549

herent mode that best explains the pattern is aligned with the
direction of least variability. The secondary eigendirection is,
by definition, orthogonal to the principal eigenvector. Some
of these eigendirections are intuitive as one can imagine try-
ing to select a geostrophic wind direction that passes over a
minimal number of ice–water edges. The maps in Figs. 7a
and 7g provide two such examples. However, the map in
Fig. 7f, for example, is a bit less intuitive – visual inspec-
tion may suggest that the principle eigendirection should be
aligned from the lower-right corner of the map to the upper-
left corner, but the results indicate a less obvious orientation.

It is hypothesized that, for a fixed sea ice fraction (fi),
geostrophic wind flowing in the principal direction with min-
imal variance will behave more like Pattern5, while the per-
pendicular angle to said principal direction (the secondary
direction) will behave more like Pattern4 – similar to the par-
allel and perpendicular cases in the simulations conducted in
Fogarty and Bou-Zeid (2023a). Nevertheless, further LESs
are needed to elucidate the exact impact of this relative ori-
entation and the other parameters we identified on the MIZ-
ABL.

However, some of these maps exhibit a higher degree of
anisotropy than others, such as Fig. 7c. To measure the de-
gree of anisotropy in these maps, one can look at the percent-
age of variance (POV), defined as

POV(λi)=
λi∑n
i=0λi

, (11)

where λi is an eigenvalue in an n-dimensional matrix. The
POV for a two-dimensional surface (n= 2) thus describes
the amount of variance that can be explained (or recon-
structed) by that eigenvector alone, resulting in the follow-
ing relationship: POV(λ0)+POV(λ1)= 1. In theory, a sea
ice map with a high POV(λ0) value, and thus a low POV(λ1)

value, would be anisotropic since the secondary eigendirec-
tion would account for much more of the variance than the
principal eigendirection, and the surface would thus have a
preferential direction of variability (one would expect Fig. 7g
to have a high POV(λ0) value). Conversely, a map with a low
POV(λ0) value would be fairly isotropic.
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Figure 7. Eight maps from the sea ice dataset, each overlaid with their principal eigendirection (long arrow) and secondary eigendirection
(short arrow), computed via principal component analysis.

By definition, POV(λ0)≥ 0.5 (where POV(λ0)=

POV(λ1)= 0.5 indicates a truly isotropic surface) since
POV(λ0) represents the POV for the principal eigendirec-
tion. However, most of the ratios in these examples lie in the
range of 0.50< POV(λ0) < 0.60, showing little variability
among these maps. Thus, in this small subset of sea ice maps,
examining only POV(λ0) would not provide information on
how much influence the principal eigendirection has.

6 Conclusions

Although stability over an ice- or water-dominated surface
depends on many factors, such as wind direction and poten-
tial air temperature, in the cases where potential air tempera-
ture falls between the surface temperatures of ice and water,
the ice fraction of a sea ice surface can be a fair indicator of
the behavior of the MIZ-ABL. However, this is only the case
when the ice fraction approaches 0.0 (all ocean), leading to
an unstable atmosphere, or 1.0 (all ice), leading to a stable
atmosphere. On the other hand, when fi falls between these

limits (in other words, when the surface flow alternates be-
tween very stable and very unstable), the ice fraction alone
is insufficient to predict the dynamics and thermodynamics
of the MIZ-ABL. Large-eddy simulations conducted for five
different sea ice surfaces, as detailed in Fig. 2, have shown
that surfaces with the same ice fraction, number of floes, and
mean floe size can result in very distinct atmospheric dy-
namics. Differences were observed in horizontal wind speed
(Fig. 4a) and total surface stresses (Figs. 4d–e and 5).

While Fig. 5 shows moderate differences in the total heat
flux, which, in this case, is constrained by the simulation
setup, more significant differences are observed in the dis-
persive and turbulent fluxes that make up this total flux (see
also Table 2). The total, turbulent, and dispersive fluxes of the
streamwise and cross-stream momenta are even more sensi-
tive to surface patterns. These dispersive fluxes have been
shown to drive many of the differences and are thus non-
negligible in climate models (Margairaz et al., 2020; Fogarty
and Bou-Zeid, 2023a; Lu et al., 2023).
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To understand what other information can be obtained
from a two-dimensional, binary lattice surface, we exam-
ined 44 spatial metrics traditionally used in the field of land-
scape ecology since knowing the cover fraction (ice frac-
tion) and the number and median area of the floes is not
enough to able to fully describe the ice–water–atmosphere
physics. These 44 additional spatial metrics were applied to
LIDPs of real-world satellite sea ice imagery to determine
which metrics were important, and the variance inflation fac-
tor was used to detect and remove any multicollinearity in
this dataset. The remaining metric set included the following
metrics: ice fraction, patch density (representing the number
of sea ice floes and, thus, their mean size in a given area),
the splitting index (representing variance in floe sizes), and
the perimeter–area fractal dimension (representing edge tor-
tuosity). We also proposed using the surface eigendirection
relative to the mean wind direction to characterize the influ-
ence of surface anisotropy and its interaction with the wind
direction.

The resulting set of five metrics, including eigendirection,
is useful for describing a two-dimensional surface. However,
based on the VIF analysis, it also represents a minimal set of
indicators needed to describe such a surface since these met-
rics contain distinct and important information. Nevertheless,
the development of practical parameterizations for sea ice
and the MIZ-ABL will ultimately need to include additional
considerations, including the ease of obtaining these param-
eters for modeling applications, the computing time needed
to calculate these surface metrics dynamically versus that
needed to resolve surface features when running an ESM,
and the availability of easier-to-compute surrogate metrics.

The first step in answering this broad question is to in-
vestigate to what degree these other metrics affect the MIZ-
ABL compared to the first-order effect of ice fraction on
the MIZ-ABL. In other words, given a specific ice fraction,
how will changing any of the metrics in the resulting set
affect the overlying MIZ-ABL? While this study addressed
this question for idealized surfaces and established the rel-
evance of these parameters under certain conditions, deter-
mining which parameters will be critical for real ice maps
– and understanding their frequency and impact – requires
additional simulations, and a follow-up to this study is un-
derway (see Fogarty et al., 2024). More turbulence-resolving
numerical simulations of real ice surfaces are thus needed.

Another crucial step in answering this question involves
figuring out how one would go about creating an accurate
parameterization based on available external grid cell vari-
ables; the resources needed to answer this question may be
extensive, especially considering that, in this age of machine
learning, high-resolution synthetic satellite imagery is gen-
erated more frequently (see Au-Boehm et al., 2024). Even
more large-eddy simulations over real sea ice maps, beyond
what has been discussed here, are imperative for answering
this question. Lastly, this open question also requires us to
look at how to incorporate the resulting metrics and eigendi-

rections into these climate models. This includes examining
(i) how the geostrophic wind (at certain principal directions)
interacts with the resulting metric set, (ii) other possible met-
rics of anisotropy, and (iii) how a sea ice model in an ESM
can provide the data needed to capture the heterogeneity of
the sea ice surface, as well as other questions that remain
unanswered at this time.

Appendix A: Details of the large-eddy simulation

In this study, incompressible filtered Navier–Stokes equa-
tions (along with a Boussinesq approximation for the mean
state) and a heat budget are solved for a horizontally periodic
flow, where a variable with a tilde represents a quantity fil-
tered via the numerical grid spacing (1). The equations are
expressed as follows:

∂ũi

∂xi
= 0 , (A1)
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+ ũj

∂θ̃

∂xj
=−

∂qj

∂xj
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The equations above use the Einstein summation rule, where
i represents the free index and j represents the repeated in-
dex. Moreover, ui represents the velocity vector; xi repre-
sents the position vector; p represents modified pressure (see
Bou-Zeid et al., 2005, for details); θ represents the potential
temperature;θr and θ̂ represent the Boussinesq reference (the
planar mean in our calculations) and the perturbation from
said reference for potential temperature, respectively; ρr rep-
resents the reference mean density corresponding to θr; and
Fi represents the main flow-driving force (a synoptic pres-
sure gradient). The Coriolis force is represented by the third
term on the right-hand side of Eq. (A2), where fc is the Cori-
olis parameter and εij3 represents the Levi-Civita symbol.
Buoyancy is represented by the fourth term on the right-hand
side of Eq. (A2), where δij represents the Kronecker delta.

An overbar denotes averaging over time, which is used as
a surrogate for ensemble Reynolds averaging, while spatial
averaging over the heterogeneous domain (in both x and y)
is denoted by angle brackets. The subgrid-scale stress (τij =
ũiuj − ũi ũj ) and buoyancy flux (qj = ũj θ− ũj θ̃ ), which re-
sult from the filtering, are modeled using a scale-dependent
Lagrangian dynamic model (Bou-Zeid et al., 2005) with a
constant subgrid-scale Prandtl number (Pr) of 0.4. As noted
before, the numerical grid serves as the inherent filter of the
model, but any explicit filtering needed to compute the dy-
namic Smagorinsky constant (cs) is done at scales of 21 and
41 (21 for the local wall model); for these computations, a
sharp spectral cutoff filter is used. This model was validated
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by Bou-Zeid et al. (2005) for boundary layer flows over both
homogeneous and heterogeneous terrain by reproducing ex-
perimental velocity and stress profiles obtained by Bradley
(1968) following a change in surface roughness. It was fur-
ther validated for urban flows (Tseng et al., 2006; Li et al.,
2016), as well as for both stable and unstable boundary lay-
ers (Kleissl et al., 2006; Kumar et al., 2006; Huang and Bou-
Zeid, 2013). Therefore, the ability of this model to success-
fully capture the impacts of stability and spatial transitions in
surface properties was not tested further in this paper.

The LES employs boundary conditions that are periodic
in the horizontal direction, with zero vertical velocity at the
top and bottom of the domain, as well as a stress-free top
lid (∂zui = 0, where i = 1,2) with zero heat flux. These con-
ditions mimic a very strong top inversion and are adequate
for our setup since the top of the domain is not stably strat-
ified, eliminating the need for a sponge layer that prevents
wave reflection. This allows for the surface characteristics to
be isolated from zi and the inversion strength. The indices
(i = 1,2,3) represent the x, y, and z directions, oriented
along the streamwise, cross-stream, and vertical directions,
respectively. At the bottom of the domain, the surface stress
and heat flux are computed by a wall model based on a local
law-of-the-wall formulation (Bou-Zeid et al., 2005), incorpo-
rating a Monin–Obukhov buoyancy correction. Numerically,
a pseudo-spectral approach is employed in the horizontal
direction, and an explicit second-order centered-difference
scheme is used in the vertical direction. Time advancement
is carried out using the fully explicit second-order Adams–
Bashforth scheme. Dealiasing of the convective terms is per-
formed using the “3/2 rule” (Orszag, 1971). Pressure is com-
puted from a Poisson equation obtained by taking the diver-
gence of the momentum equation and applying the incom-
pressibility assumption.

Appendix B: Temperature initialization

The initial potential temperature was chosen so that the mean
heat flux over the entire domain was zero; in other words, the
heat flux going into the ice was equal in magnitude to the
heat flux coming from the water, based on the area fraction
of the domain (in this case, the ice fraction). Thus, the initial
potential air temperature of the large-eddy simulation was
chosen to ensure that the ice-fraction-weighted heat flux over
the ice (fiHi) was equivalent to the water-fraction-weighted
heat flux over the ocean (fwHw), resulting in the following
equation:

−fiHi = fwHw , (B1)

where fi+ fw = 1. Monin–Obukhov flux profile relations
were used to express the surface fluxes as follows:

θi− θa =
Hi

κu∗,iρcp

[
ln
( z

z0h,i

)
−9s

( z
Li

)]
, (B2)

θw− θa =
Hw

κu∗,wρcp

[
ln
( z

z0h,w

)
−9u

( z

Lw

)]
, (B3)

where θa represents the bulk potential air temperature; θi rep-
resents the temperature of the ice surface; θw represents the
temperature of the ocean surface; κ ≈ 0.4 represents the von
Kármán constant; u∗,i and u∗,w represent the friction veloc-
ities of the ice and water surfaces, respectively; ρ represents
the density of air; cp represents the specific heat of air; z
represents the height near the surface (taken at z= 50 m);
z0h,i and z0h,w represent the scalar roughness lengths of the
ice and water surfaces, respectively; Li and Lw represent
the Obukhov lengths over the ice and water surfaces, re-
spectively; and 9s and 9u represent the stable and unstable
correction functions, respectively, as described in Brutsaert
(2005). These Obukhov lengths are defined as

Li =
−u3
∗,iρcp

Hiκ(g/θa)
, (B4)

Lw =
−u3
∗,wρcp

Hwκ(g/θa)
, (B5)

where the values of Hi and Hw in these equations are taken
as first-order estimates obtained by rearranging Eqs. (B2) and
(B3) without the stability functions (i.e., assuming a neutral
atmosphere). Hi and Hw are given as

Hi = (θi− θa)κu∗,i

(
ln

z

z0h,i

)−1
, (B6)

Hw = (θw− θa)κu∗,w

(
ln

z

z0h,w

)−1
. (B7)

This allows one to derive a function by substituting Eqs. (B2)
and (B3) into Eq. (B1), resulting in a function that can
be solved for θa via a numerical root-finding approach. Of
course, this is only a first guess for initializing the LES,
which will then dynamically create its potential air temper-
ature field during the warm-up period. As noted in the main
text, the actual domain-averaged heat flux in the LES will not
be zero.

Appendix C: Landscape quantification metrics

Table C1 lists the landscape metrics used in the VIF analysis
conducted in Sect. 4. For more information on each individ-
ual metric (apart from ice fraction), consult the FRAGSTATS
manual (McGarigal and Marks, 1995).
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Table C1. All landscape metrics used in the VIF analysis conducted in Sect. 4.

Ice fraction Edge density Interspersion and juxtaposition index
Number of patches Landscape shape index Patch cohesion index
Patch density Perimeter–area fractal dimension Landscape division index
Largest-patch index Contagion index Effective mesh size
Total edge Percentage of like adjacencies Splitting index
Modified Simpson’s evenness index Aggregation index Shannon’s diversity index
Simpson’s diversity index Modified Simpson’s diversity index Shannon’s evenness index
Simpson’s evenness index

Code and data availability. A dataset containing the simulation re-
sults for the five patterns and the FRAGSTATS output for the sea ice
maps are publicly available at https://doi.org/10.34770/5x2y-5485
(Fogarty and Bou-Zeid, 2023b). FRAGSTATS is publicly available
for download at https://doi.org/10.2737/PNW-GTR-351 (McGari-
gal and Marks, 1995), and the preprocessed sea ice maps are avail-
able at https://doi.org/10.7265/N5PK0D32 (Fetterer et al., 2008).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-18-4335-2024-supplement.
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