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Abstract. Temperature gradient metamorphism in dry snow
is driven by heat and water vapor transfer through snow,
which includes conduction/diffusion processes in both air
and ice phases, as well as sublimation and deposition at the
ice–air interface. The latter processes are driven by the con-
densation coefficient α, a poorly constrained parameter in the
literature. In the present paper, we use an upscaling method
to derive heat and mass transfer models at the snow layer
scale for values of α in the range 10−10 to 1. A transition
α value arises, of the order of 10−4, for typical snow mi-
crostructures (characteristic length ∼ 0.5 mm), such that the
vapor transport is limited by sublimation–deposition below
that value and by diffusion above it. Accordingly, different
macroscopic models with specific domains of validity with
respect to α values are derived. A comprehensive evaluation
of the models is presented by comparison with three experi-
mental datasets, as well as with pore-scale simulations using
a simplified microstructure. The models reproduce the two
main features of the experiments: the non-linear temperature
profiles, with enhanced values in the center of the snow layer,
and the mass transfer, with an abrupt basal mass loss. How-
ever, both features are underestimated overall by the mod-
els when compared to the experimental data. We investigate
possible causes of these discrepancies and suggest potential
improvements for the modeling of heat and mass transport in
dry snow.

1 Introduction

Natural snowpacks are frequently subjected to temperature
gradients induced by meteorological conditions. In the case
of temperature gradient in dry snow, heat and water vapor
are transported through the snowpack by heat conduction
through ice and air and by vapor diffusion in air. These phe-
nomena are coupled by the sublimation–deposition processes
at the ice–air interfaces. In practice, such transfer processes
can be enhanced by natural air convection induced by the
temperature gradient (e.g., Jafari et al., 2022) or by forced
convection generated by the wind at the snowpack surface
(e.g., Albert and McGilvary, 1992; Calonne et al., 2015). For
the sake of simplicity, both types of convection are neglected
in the following. All those processes lead to changes in the
snow microstructure called the temperature gradient meta-
morphism (TGM), which transforms snow into faceted crys-
tals (FC) in the case of moderate gradients and into depth
hoar (DH) for stronger gradients (see Fierz et al., 2009).
Those transformations of the microstructure can sometimes
come along with a redistribution of mass in the snow layer, a
density drop, or even the formation of an air gap at the base of
the snowpack, as observed in the Arctic (e.g., Domine et al.,
2019) or in some cold room experiments (e.g., Kamata and
Sato, 2007; Wiese, 2017; Bouvet et al., 2023). As a result
of changes in microstructure and density, the TGM also in-
duces significant changes in the snow physical and mechan-
ical properties, such as thermal conductivity, vapor diffusiv-
ity, or elastic properties (e.g., Srivastava et al., 2010; Calonne
et al., 2014a; Wautier et al., 2015), affecting the snowpack
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behavior at larger scale. Hence, an accurate representation
of the heat and mass transport processes during the TGM is
key to accurately model the snow cover, as required for many
applications such as avalanche forecasting or climate studies
(Jordan, 1991; Lehning et al., 2002; Vionnet et al., 2012).

Models to describe the heat and mass transfer at the pore
scale, referred to as the micro-scale, have been proposed
(e.g., Flin et al., 2003; Flin and Brzoska, 2008; Kaempfer and
Plapp, 2009; Vetter et al., 2010; Bouvet et al., 2022). Based
on explicit representations of the 3D snow microstructure, of-
ten from X-ray tomography images, simulations at that scale
are usually performed on small snow volumes due to numer-
ical cost limitations. In micro-scale modeling, heat and mass
transfer processes are coupled through interface conditions
that account for the sublimation and deposition processes at
the air–ice interface and involve an interface growth veloc-
ity. In snow physics, the interface growth velocity is classi-
cally given by the Hertz–Knudsen equation and strongly de-
pends on the condensation coefficient α, also called attach-
ment, sticking, deposition, or kinetic coefficient (e.g., Flin
et al., 2003; Libbrecht, 2005; Brzoska et al., 2008; Kaempfer
and Plapp, 2009; Furukawa, 2015; Krol and Löwe, 2016;
Fourteau et al., 2021a; Granger et al., 2021). This coeffi-
cient describes the probability that a water vapor molecule
striking the ice surface will be incorporated into it and that
it theoretically ranges from 0 to 1 for an infinite flat surface
(see, e.g., Libbrecht, 2005; Furukawa, 2015). The analogous
coefficient for sublimation can also be defined but is often as-
sumed equal to the condensation coefficient. At present, the
condensation coefficient is still poorly understood and quan-
tified, notably because of its complex dependencies on tem-
perature, supersaturation (or temperature gradient), and ice
crystalline orientation (see, e.g., Libbrecht, 2021). Estimates
of the condensation coefficient can be found in the literature.
Typical values obtained from single-ice-crystal growth ex-
periments range from 10−4 to 10−1 (see, e.g., Libbrecht and
Rickerby, 2013). Indirect estimates from snow modeling at
the pore scale range from 10−4 to 10−3 (see, e.g., Flin, 2004;
Bouvet et al., 2022).

In the last few decades, several models have been pre-
sented to describe the heat and mass transfer at the scale of
a snow layer, referred to as the macro-scale. At that scale,
the snow microstructure is not explicitly represented, and
simulations can be carried out on entire snowpacks. The
first models assumed saturated vapor conditions in the snow
(e.g., de Quervain, 1963; Anderson, 1976; Powers et al.,
1985). Later, using a phenomenological approach, Albert and
McGilvary (1992) proposed describing the heat and water va-
por transfer through a snowpack subjected to an airflow but
without restricting the water vapor to its saturation value. The
model uses two coupled advection–diffusion equations, in-
cluding a source term arising from phase change at the pore
scale. A similar heat and mass transfer model was analyt-
ically obtained by Calonne et al. (2014b, 2015), using an
upscaling method. In that case, the macroscopic equivalent

modeling was derived from its description at the pore scale
using the homogenization of multiple-scale expansions. This
theoretical method also provides the exact expression of the
effective parameters arising at the macro-scale and the do-
mains of validity of the macroscopic modeling. Two main
effective parameters emerge from the model: (i) the effective
thermal conductivity keff, which depends on the ice and air
conductivity and on the snow microstructure, and (ii) the ef-
fective diffusionDeff, which depends on the vapor molecular
diffusion coefficient and the snow microstructure. The source
term is related to the Hertz–Knudsen equation, which in-
volves the condensation coefficient α. Calonne et al. (2014b)
have shown that this model is valid for interface growth ve-
locities below 3× 10−11 m s−1, which typically corresponds
to slow kinetics.

Other approaches largely rely on the assumption of satu-
rated vapor conditions, which seems valid for faster kinetics
and rather high values of α (e.g., Sturm and Benson, 1997;
Kamata and Sato, 2007; Hansen and Foslien, 2015). Hansen
and Foslien (2015) developed a heat and mass transfer model
using a mixture theory. Assuming that the water vapor is
saturated (based on the value of α = 0.0144 from Delaney
et al. (1964)), the authors derived a unique thermal equation
which yields an apparent thermal conductivity that depends
on the air and ice conductivities, the water vapor diffusivity,
the latent heat of sublimation–deposition, and the tempera-
ture derivative of the Clapeyron equation. A similar formula-
tion of the apparent thermal conductivity was also proposed
by Yosida et al. (1955). Recently, Fourteau et al. (2021b) in-
vestigated the influence of α on the apparent diffusion coef-
ficient in snow. By performing numerical simulations on 3D
images, they showed that this apparent diffusion coefficient
is equal to Deff for α values smaller than ≈ 10−4 and then
increases with increasing α until it reaches a plateau for α
values larger than 10−2, with the value at the plateau smaller
than the molecular diffusion of water vapor in the air. In a
companion paper, Fourteau et al. (2021a) computed from 3D
images the apparent thermal conductivity of snow, assuming
that the water vapor at the ice–air interface is equal to the
water vapor at the saturation point given by the Clapeyron
equation. In this case, they showed that the apparent ther-
mal conductivity is enhanced by the sublimation–deposition
process arising at the pore scale. Their results are consistent
with the model of Moyne et al. (1988) for wet porous media,
based on the same hypothesis at the micro-scale and derived
using the volume averaging method.

Further uses of the abovementioned models, as well as
their implementation in full snow cover models, are lim-
ited by some challenges. One is the difficulty in choosing
between models, as they differ in many ways. They were
derived using different methods; involve different balance
equations and effective parameters; and are valid for differ-
ent, often unclear, domains of validity in terms of α values.
This should be clarified, especially by estimating the α values
for which the assumption of saturated water vapor is theoret-
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ically valid. A second challenge is that none of these models
was thoroughly evaluated to assess their performances. This
might be partly due to the limited number of suited datasets
to compare with. The datasets from the cold-laboratory ex-
periments of Kamata and Sato (2007) and, recently, of Bou-
vet et al. (2023), however, seem appropriate for such compar-
isons, as they provide the time series of the vertical profiles
of snow density and temperature, as well as the forcing con-
ditions to be reproduced in the simulations.

This paper aims (i) to define the heat and mass transport
modeling in dry snow for the full range of α values and (ii) to
evaluate the model’s ability to reproduce natural snow evolu-
tion during the TGM. To this end, first, the homogenization
of multiple-scale expansions is applied to derive the macro-
scopic equivalent modeling of heat and vapor transfer for α
values ranging from 10−10 to 1, following Calonne et al.
(2014b). The physics considered at the pore scale includes
heat conduction, vapor diffusion, and phase change and ne-
glects any transport linked to the curvature effect and con-
vection. The macroscopic models and the involved macro-
scopic properties are compared to the ones from the litera-
ture and are illustrated for simplified snow microstructures.
Second, the derived macroscopic models are evaluated using
three cold-laboratory experiments of TGM from Kamata and
Sato (2007) and Bouvet et al. (2023). The experiments are re-
produced with the macroscopic models, and results between
observations and simulations are analyzed.

2 Derivation of the macroscopic modeling

2.1 Upscaling method

We apply the homogenization technique of multiple-scale ex-
pansions (Bensoussan et al., 1978; Sanchez-Palencia, 1980)
to the physics of heat and vapor transport in dry snow. The
homogenization method allows us to model the local physi-
cal processes in heterogeneous media by an equivalent con-
tinuous macroscopic description if the condition of separa-
tion of scales is satisfied (Bensoussan et al., 1978; Sanchez-
Palencia, 1980; Auriault, 1991; Auriault et al., 2009). This
separation of scales can be expressed as ε = l/L� 1, where
l and L are the characteristic lengths of the heterogeneities at
the pore scale and of the macroscopic sample or excitation,
respectively. This condition implies the existence of a rep-
resentative elementary volume (REV) of size l for both the
material and the excitation. Following the methodology pre-
sented by Auriault (1991), the macroscopic equivalent model
is obtained from the description of the physics at the pore
scale by (i) assuming the medium to be periodic, without the
loss of generality, as the condition ε = l/L� 1 is fulfilled;
(ii) writing the description of the physics at the pore scale
in a dimensionless form; (iii) evaluating the obtained dimen-
sionless numbers with respect to the coefficient of separation
of scale ε; (iv) looking for the unknown fields in the form

Figure 1. Physical phenomena under consideration at the represen-
tative elementary volume (REV) scale.

of asymptotic expansions in powers of ε; and (v) solving the
successive boundary value problems that are obtained after
introducing these expansions in the pore-scale dimensionless
description. The macroscopic equivalent model is obtained
from compatibility conditions that are the necessary condi-
tions for the existence of solutions to the boundary value
problems.

2.2 Physical processes at the pore scale

As in Calonne et al. (2014b), we assume that a snow layer of
the characteristic length L can be represented by a collection
of spatially periodic REVs of the characteristic length l, such
that the coefficient of separation of scale ε = l/L� 1.

In what follows, � is the REV domain, �i is the ice do-
main, and �a is the air domain (Fig. 1). The ice grain inter-
face is denoted 0, and ni is the unit’s outward vector of �i.
The subscripts i or a are related to quantities defined in �i
and �a, respectively. As illustrated in Fig. 1, the processes
of heat and mass transport in dry snow considered are (i)
the heat conduction through ice and air; (ii) the water va-
por diffusion in air; and (iii) the sublimation of ice and the
deposition of vapor at the ice grain interface, characterized
by an interface growth velocity (Libbrecht, 2005; Kaempfer
and Plapp, 2009; Barrett et al., 2012), following the Hertz–
Knudsen equation. This latter equation, initially derived to
describe the condensation–evaporation processes at a liquid–
gas interface, is widely used in snow physics and is sup-
ported by a great deal of experimental evidence (e.g., Lib-
brecht, 2005; Kaempfer and Plapp, 2009; Furukawa, 2015;
Libbrecht and Rickerby, 2013; Krol and Löwe, 2016. Air
convection and snow densification are not taken into account
here. Assuming that the properties of air and ice are isotropic,
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these physical processes at the pore scale are described by the
following set of equations:

ρiCi
∂Ti

∂t
− div(kigradTi)= 0 in �i, (1)

ρaCa
∂Ta

∂t
− div(kagradTa)= 0 in �a, (2)

∂ρv

∂t
− div(Dvgradρv)= 0 in �a, (3)

Ti = Ta on 0, (4)
kigradTi ·ni− kagradTa ·ni = Lsgw ·ni on 0, (5)
Dvgradρv ·ni = (ρi− ρv)w ·ni ' ρiw ·ni on 0, (6)

where t is the time (s), T is the temperature (K), k is the ther-
mal conductivity (W m−1 K−1), ρ is the density (kg m−3), C
is the specific heat capacity (J kg−1 K−1), Lsg is the latent
heat of sublimation–deposition (J m−3), w is the interface
growth velocity (m s−1), ρv is the partial density of water
vapor in air (kg m−3), Dv is the water vapor diffusion co-
efficient in air (m2 s−1), and div and grad are the divergence
and gradient operators with respect to the physical space vari-
able X, respectively. At the interface, the heat and mass trans-
fer are coupled through the normal interface growth velocity,
wn = w ·ni, which is given by the Hertz–Knudsen equation,

wn = w ·ni =
1
β

[
ρv− ρvs(Ta)

ρvs(Ta)
− d0K

]
on 0, (7)

such thatwn is positive when the ice grain grows and negative
when it sublimates. β is the interface of the kinetic coefficient
(s m−1), ρvs is the saturation of the water vapor density in air
(kg m−3), d0 is the capillary length (m), andK is the interface
of the mean curvature (m−1). The interface kinetic coefficient
β is linked to the condensation coefficient α by

1
β
= α

ρvs(Ta)

ρi

√
kBTa

2πm
, (8)

where m is the mass of a water molecule (kg), and kB is the
Boltzmann constant equal to 1.38× 10−23 J K−1. As already
mentioned, the condensation coefficient α characterizes the
probability of a water molecule hitting the surface of the solid
to be incorporated to the crystal, or vice versa, and ranges
from 0 to 1. Although this coefficient depends on several pa-
rameters as temperature, supersaturation, and crystalline ori-
entation, we assume that this parameter is constant over the
REV at the first order. The saturation vapor density ρvs at a
given air temperature Ta is given by the Clausius–Clapeyron
law as follows:

ρvs(Ta)= ρ
ref
vs (T

ref)exp
[
Lsgm

ρikB

(
1
T ref −

1
Ta

)]
. (9)

In the current work, we chose the reference values T ref
=

263 K, leading to a ρref
vs (T

ref) value of 2.173× 10−3 kg m−3.
For simplicity, we assume that none of the material proper-
ties (ρ, C, kB, Dv, β, and m) depend on the temperature.

Also, the effect of curvature on the ice interface growth is
considered insignificant compared to the effect of tempera-
ture and is thus neglected. Consequently, using Eq. (8), the
Hertz–Knudsen equation can be rewritten as

wn = w ·ni =
1

βρvs(Ta)
[ρv− ρvs(Ta)]

=
α

ρi
wk(Ta) [ρv− ρvs(Ta)] on 0, (10)

where wk =
√
kBTa/2πm is defined as a kinetic velocity

which depends on the temperature at the ice–air interface.
Taking this result into account, Eqs. (5) and (6) can be rewrit-
ten as

kigradTi ·ni− kagradTa ·ni

= Lsg
α

ρi
wk(Ta) [ρv− ρvs(Ta)]

= Lsg
Dv

ρi
gradρv ·ni on 0, (11)

Dvgradρv ·ni = αwk(Ta) [ρv− ρvs(Ta)] on 0. (12)

2.3 Dimensionless pore-scale description

The next step is the normalization of the above pore-scale
description in Eqs. (1)–(4) and (11)–(12). For that reason, all
the dimensional variables in this description are written such
that each variable ϕ reads ϕ = ϕcϕ

∗, where the subscript c
denotes a characteristic quantity (constant), and the asterisk
superscript denotes a dimensionless variable. Note that the
microscopic length l is chosen as characteristic length, such
that lc = l; i.e., the so-called microscopic point of view is
adopted (Auriault, 1991). The formal dimensionless set of
equations that describes the physics at the pore scale can thus
be written as

[
F Ti

]
ρ∗i C

∗

i
∂T ∗i
∂t∗
− div∗(k∗i grad∗T ∗i )= 0 in �i, (13)[

F Ta

]
ρ∗aC

∗
a
∂T ∗a
∂t∗
− div∗(k∗a gradT ∗a )= 0 in �a, (14)[

F ρa
] ∂ρ∗v
∂t∗
− div∗(D∗vgrad∗ρ∗v )= 0 in �a, (15)

T ∗i = T
∗
a on 0, (16)

[K]k∗i grad∗T ∗i ·ni− k
∗
a grad∗T ∗a ·ni

= [H ]L∗sg
D∗v
ρ∗i

grad∗ρ∗v ·ni on 0, (17)

D∗vgrad∗ρ∗v ·ni = [WR]α∗w∗k
[
ρ∗v − [R]ρ∗vs(T

∗
a )
]

on 0. (18)

This dimensionless description introduces seven dimension-
less numbers that characterize the relative intensity of the
physical processes at the pore scale. These dimensionless
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numbers are defined as[
F Ti

]
=
l2ρicCic

tckic
,

[
F Ta

]
=
l2ρacCac

tckac

,

[
F ρa
]
=

l2

Dvc tc
, [K]=

kic

kac

,

[WR]=
lαcwkc

Dvc

, [R]=
ρvsc(Tac)

ρvc

,

[H ]=
lLsgcwnc

kacTac

, with wnc =
αcwkc

ρic
(ρvc − ρvsc(Tac))

=
Dvcρvc

lρic
. (19)

Dimensionless numbers
[
F Ti
]

and
[
F Ta
]

correspond to the
inverse of the Fourier number in �i and �a, respectively.
They characterize the ratio between the thermal energy stor-
age rate and the heat conduction rate.

[
F
ρ
a
]

is an analogous
inverse Fourier number for the transient water vapor transfer
by diffusion in �a. Dimensionless numbers [K], [R], [H ],
and [WR] are defined at the ice–air interface. [H ] character-
izes the ratio between the heat flux induced by deposition
and sublimation and the heat flux induced by conduction in
the air phase. The above analysis differs slightly from the one
presented in Calonne et al. (2014b). Indeed, two new dimen-
sionless parameters are introduced, [WR] and [R], to better
capture the effect of α on the macroscopic models. Finally,
let us remark that Eq. (18) defined at the ice–air interface
corresponds to a Robin boundary condition, i.e., a weighted
combination of a Dirichlet boundary condition and a Neu-
mann boundary condition. Hence, when [WR] tends towards
zero, Eq. (18) is equivalent to a Neumann boundary condition
(D∗vgrad∗ρ∗v ·ni = 0), whereas when [WR] tends towards in-
finite (or is very large), Eq. (18) is equivalent to a Dirichlet
boundary condition (ρ∗v = ρ

∗
vs(T

∗
a )).

2.4 Estimation of the dimensionless numbers

The next key step is to estimate the above six dimension-
less numbers with respect to the separation of scale pa-
rameter ε = l/L in order to weigh the relative importance
of the physical phenomena coming from the pore-scale de-
scription. In practice, l and L correspond to the order of
magnitude of the typical snow grain size and the thick-
ness of a snow layer, respectively. In what follows, we as-
sumed that l ≈ 5× 10−4 m and L≈ 0.1 m, leading to ε =
5× 10−3. The characteristic value of each variable in the di-
mensionless numbers is summarized in Table 1. These val-
ues were evaluated for a temperature of −10 °C and come
from the literature (Massman, 1998; Kaempfer and Plapp,
2009). According to these characteristic values, it can be
first shown (Calonne et al., 2014b) that the thermal dif-
fusivity in the ice phase Dic = kic/(Cicρic) and in the air

phase Dac = kac/(Cacρac ) are of the same order of magni-
tude as the vapor diffusion coefficient Dvc . Thus, the char-
acteristic time tc associated with these transfers through
the snowpack are of the same order of magnitude, where
tc =O(L2/Dic)=O(L2/Dac)=O(L2/Dvc). Hence, from
Eq. (19), we get

[
F Ti
]
=O

([
F Ta
])
=O

([
F
ρ
a
])
=O(ε2). At

the ice pore interface, from Eq. (19), we have [K]=O (1)
and [R]=O (1). The latter estimation implies that the su-
persaturation σ = (ρv− ρvs)/ρvs varies between −1 and 13,
which is consistent with the range of values classically con-
sidered (Libbrecht and Rickerby, 2013). The dimensionless
number [WR] can be written as

[WR]=
lαcwkc

Dvc

=
l2

Dvc

αcwkc

l
=

τd

τsub/dep
,

where τd = l
2/Dvc is the characteristic time associated with

water vapor diffusion at the pore scale, and τsub/dep =

l/(αcwkc) is the characteristic time associated with the
sublimation–deposition process. This result shows that this
ratio can take different orders of magnitude, depending on
the value of αc. Using the characteristic values given in Ta-
ble 1, this ratio is equal to 1 for a particular value of αc,
which is denoted αT =Dvc/(lwkc)≈ 3× 10−4. This value
decreases when the characteristic length l increases, such that
the values range between 10−3 for small grains (∼ 0.1 mm)
and 10−5 for very large grains (∼ 5 mm). It also depends on
the temperature, but the influence is negligible in the −30 to
0 °C range. The αT value characterizes the transition between
two mechanisms which drive the water vapor transfer at the
pore scale. When τd� τsub/dep, i.e., for αc� αT, the wa-
ter vapor flux is limited by sublimation–deposition processes.
This case is also called the “slow kinetics case” in Fourteau
et al. (2021a). When τd� τsub/dep, i.e., for αc� αT, the wa-
ter vapor transfer is mainly limited by diffusion, which is
called the “fast kinetics case” in Fourteau et al. (2021a). For
intermediate cases, both mechanisms may be in competition.

Estimations of the dimensionless number [H ] are not as
straightforward, as they depend on the intensity of the inter-
face normal growth velocitywnc . When αc is small (typically
smaller than αT), [WR] is also small, and Eq. (18) implies
that 1ρvc has a finite value (O(ρvc)). Thus, this dimension-
less number [H ] can be also written as

[H ]=
lLsgcαcwkcρvc

kacTacρic
.

In that case, it increases when αc increases, and according to
the characteristic values given in Table 1, it is of the same
order as [WR]. For large values of αc (typically larger than
αT), Eq. (18) implies that ρ∗v ≈ ρ

∗
vs(T

∗
a ). As a consequence,

from Eqs. (17) and (19), [H ] can be rewritten as

[H ]=
lLsgcDvcγ (Tac)Tac

lρickacTac

=
LsgcDvcγ (Tac)

ρickac

=
kdifc

kac

,

where γ (Tac)= dρvs(Tac)/dTac is the derivative of the
Clausius–Clapeyron law, and kdifc = LsgcDvcγ (Tac)/ρic can
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Table 1. Characteristic values of the properties evaluated at −10 °C from the literature (Massman, 1998; Kaempfer and Plapp, 2009).

Symbol Description Value

Tic , Tac Temperature of ice, air 263 K
kic Heat conductivity of ice 2.3 W m−1 K−1

kac Heat conductivity of air 0.024 W m−1 K−1

Cic Specific heat capacity of ice 2000 J kg−1 K−1

Cac Specific heat capacity of air 1005 J kg−1 K−1

Lsgc Latent heat of sublimation of ice 2.60× 109 J m−3

Dvc Water vapor diffusion coefficient in air 2.036× 10−5 m2 s−1

ρvc Water vapor density in air 0.002 kg m−3

ρic Ice density 917 kg m−3

ρac Air density 1.335 kg m−3

l Microscopic length 5× 10−4 m
L Macroscopic length 0.1 m

Figure 2. Estimation of the dimensionless number [WR] with respect to α, which leads to several cases of macroscopic modeling to be
considered (cases A to D2). The αT value characterizes the transition between two cases presenting different limiting processes for the water
vapor transfer at the pore scale, so that τd < τsub/dep or τd > τsub/dep, with τd as the characteristic time associated with water vapor diffusion
and τsub/dep as the characteristic time associated with the sublimation–deposition process. αT was estimated based on the characteristic values
given in Table 1.

be seen as an enhancement of the air thermal conductiv-
ity. Using the characteristic values given in Table 1 and the
Clausius–Clapeyron equation, Eq. (9), for large values of αc,
[H ]=O (1). According to the above analysis, several cases
must be considered, depending on the value of the condensa-
tion coefficient αc (Fig. 2).

– Case A is τd =O(ε2τsub/dep), i.e., [WR]=O
(
ε2) and

[H ]=O
(
ε2).

– Case B is τd =O(ετsub/dep), i.e., [WR]=O (ε) and
[H ]=O (ε).

– Case C is τd =O(τsub/dep), i.e., [WR]=O (1) and
[H ]=O (1).

– Case D1 is τd =O(ε−1τsub/dep), i.e., [WR]=O
(
ε−1)

and [H ]=O (1).

– Case D2 is τd =O(ε−2τsub/dep), i.e., [WR]=O
(
ε−2)

and [H ]=O (1).

Cases A and B correspond to 0 6 α� αT, whereas cases D1
and D2 correspond to αT� α 6 1. Case C ensures the tran-
sition between cases B and D1, when α ≈ αT.

2.5 Asymptotic analysis

The next step is to introduce multiple-scale coordinates
(Bensoussan et al., 1978; Sanchez-Palencia, 1980; Auriault,
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1991). The two characteristic lengths L and l introduce
two dimensionless space variables, x∗ = X/L and y∗ = X/l,
where X is the physical space variable. The macroscopic (or
slow) dimensionless space variable x∗ is related to the micro-
scopic (or fast) dimensionless space variable y∗ by x∗ = εy∗.
When l is used as the characteristic length, the dimension-
less derivative operator grad∗ becomes (grady∗+ε gradx∗),
where the subscripts x∗ and y∗ denote the derivatives with re-
spect to the variables x∗ and y∗, respectively. Following the
multiple-scale expansion technique (Bensoussan et al., 1978;
Sanchez-Palencia, 1980; Auriault, 1991), the ice temperature
T ∗i , the air temperature T ∗a , and the water vapor ρ∗v are sought
in the form of the asymptotic expansion of the powers of ε,
as follows:

ϕ∗(x∗,y∗, t)= ϕ∗(0)(x∗,y∗, t)+ εϕ∗(1)(x∗,y∗, t)

+ ε2ϕ∗(2)(x∗,y∗, t)+ . . ., (20)

where ϕ∗ = T ∗i ,T
∗

a ,ρ
∗
v , and the corresponding ϕ∗(i) are peri-

odic functions of period � with respect to the space variable
y∗. Substituting these expansions in the set (13)–(18) gives,
through the identification of identical powers of ε, successive
boundary value problems to be investigated. All the details
concerning this asymptotic analysis are presented in the Sup-
plement. The main results are summarized in the following
section.

2.6 Macroscopic-equivalent descriptions

2.6.1 Case A

Case A corresponds to the model presented in Calonne et al.
(2014b). According to the order of magnitude of the di-
mensionless numbers, and notably [H ]=O

(
ε2) , [WR]=

O
(
ε2), the asymptotic analysis presented in the Supple-

ment (Sect. S1) shows that the heat transfer and the wa-
ter vapor diffusion at the macroscopic scale are described
by Eqs. (S.A.44) and (S.A.47). Returning dimensional vari-
ables, the macroscopic model is written as

(ρC)eff ∂T
(0)

∂t
− div(keffgrad T (0))= SSAVLsgw

(0)
n

=−Lsgφ̇, (21)

φ
∂ρ

(0)
v

∂t
− div(Deffgrad ρ(0)v )=−SSAVρiw

(0)
n = ρiφ̇, (22)

where w
(0)
n is given by the Hertz–Knudsen equation

(Eq. S.A.43) and the Clausius–Clapeyron law (Eq. S.A.42;
see Sect. S1 in the Supplement),

w(0)n =
α

ρi
wk

[
ρ(0)v − ρ

(0)
vs (T

(0))
]
, (23)

ρ(0)vs (T
(0))= ρref

vs exp
[
Lsgm

ρik

(
1
T ref −

1
T (0)

)]
, (24)

and where φ is the porosity and φ̇ its total time derivative.
SSAV = |0|/|�| is the specific surface area per unit vol-
ume, defined as the ice surface area over the snow volume
(in m−1). The SSA can also be defined per unit mass, with
SSAV = SSA× ρi. (ρC)eff is the effective thermal capacity
(Eq. S.A.45), keff is the effective thermal conductivity ten-
sor (Eq. S.A.46), and Deff is the effective diffusion tensor
(Eq. S.A.48). These effective properties are defined as

(ρC)eff
= (1−φ)ρiCi +φρaCa, (25)

keff
=

1
|�|

∫
�a

ka(grad ta+ I)d�+
∫
�i

ki(grad t i+ I)d�

, (26)

Deff
=

1
|�|

∫
�a

Dv(grad gv+ I)d�, (27)

where ta and t i are two periodic vectors. The solution
of the following boundary value problem over the REV
Eqs. (S.A.20)–(S.A.24) is as follows:

div(ki(grad t i+ I))= 0 in �i, (28)
div(ka(grad ta+ I))= 0 in �a, (29)
t i = ta on 0, (30)
(ki(grad t i+ I)− ka(grad ta+ I)) ·ni = 0 on 0, (31)

1
|�|

∫
�

(ta+ t i)d�= 0. (32)

Moreover, gv is a periodic vector solution of the follow-
ing boundary value problem over the REV Eqs. (S.A.35)–
(S.A.37):

div(Dv(grad gv+ I))= 0 in �a, (33)
Dv(grad gv+ I) ·ni = 0 on 0, (34)

1
|�|

∫
�a

gvd�= 0. (35)

In that case, the above macroscopic equivalent description
shows that, at the first order, the heat and water vapor
transfer are described by two equations which are coupled
through a source term proportional to the Hertz–Knudsen
equation (Eq. 23) and the Clausius–Clapeyron law (Eq. 24)
but expressed with respect to the two macroscopic vari-
ables T (0) and ρ

(0)
v . These equations involve two effec-

tive parameters, namely the effective thermal conductivity
keff
= keff(ki,ka,microstructure) and the effective diffusion

Deff
=Deff(Dv,microstructure).

2.6.2 Case B

According to the order of magnitude of the dimensionless
numbers in case B, the asymptotic analysis presented in the
Supplement (Sect. S2) shows that the heat transfer and the
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water vapor diffusion at the macroscopic scale are described
by Eqs. (S.B.29) and (S.B.44). Returning dimensional vari-
ables, the macroscopic model is written as

(ρC)eff ∂T
(0)

∂t
− div(keffgradT (0))=−Lsgφ̇, (36)

φ
∂ρ

(0)
vs

∂t
− div(Deffgradρ(0)vs )= ρiφ̇, (37)

with

ρ(0)v = ρ
(0)
vs (T

(0)), (38)

where (ρC)eff is the effective thermal capacity, keff is the
effective thermal conductivity tensor, and Deff is the effec-
tive diffusion tensor, as defined in case A. The above macro-
scopic equivalent description shows that, at the first order,
the heat and vapor transfer are only driven by the tempera-
ture field, since the water vapor density ρ(0)v = ρ

(0)
vs (T

(0)) is
directly given by the Clausius–Clapeyron law (Eq. 24). Con-
sequently, from Eq. (37), we have the following:

φ̇ =−
1
ρi

(
div(Deffgradρ(0)vs (T

(0)))−φ
∂ρ
(0)
vs
∂t

)

=−
1
ρi

(
div(γ (T (0))DeffgradT (0))−φγ (T (0))

∂T (0)

∂t

)
, (39)

where

γ (T (0))=
dρ(0)vs (T

(0))

dT (0)

= ρref
vs
Lsgm

ρik

1
(T (0))2

exp
[
Lsgm

ρik

(
1
T ref −

1
T (0)

)]
=
Lsgm

ρik

1
(T (0))2

ρ
(0)
vs (T

(0)). (40)

Taking this result into account, the macroscopic heat transfer
equation (Eq. 36) is written as(
(ρC)eff

+φγ (T (0))
Lsg

ρi

)
∂T (0)

∂t
− div(k̃BgradT (0))= 0. (41)

In this latter equation,

k̃B
= keff

+
γ (T (0))Lsg

ρi
Deff, (42)

which appears as an apparent thermal conductivity of the
snow which depends non-linearly on the temperature through
γ (T (0)). Our results show that this is valid if [WR]=O (ε),
i.e., typically for α values ranging from around 2× 10−7 to
2× 10−5. Finally, let us remark that (i) model B can be also
seen as a particular case of model A when ρ(0)v tends towards
ρ
(0)
vs (T

(0)) by increasing α, and (ii) the apparent thermal con-
ductivity of the snow k̃B can also be written as

k̃B
= keff

+
γ (T (0))LsgDv

ρi

Deff

Dv
= keff

+ kdif
Deff

Dv
, (43)

where kdif = γ (T
(0))LsgDv/ρi corresponds to an enhance-

ment of the air thermal conductivity, as defined in Sect. 2.4.
However, in that case, γ (T (0)) depends on the macroscopic
temperature T (0).

2.6.3 Case C

According to the order of magnitude of the dimensionless
numbers in case C, the asymptotic analysis presented in the
Supplement (Sect. S3) shows that the heat transfer and the
water vapor diffusion at the macroscopic scale are described
by Eqs. (S.C.42) and (S.C.47). Returning dimensional vari-
ables, the macroscopic model is written as

(ρC)eff ∂T
(0)

∂t
− div(kCgradT (0))=−Lsgφ̇, (44)

φ
∂ρ

(0)
vs

∂t
− div(DCgradρ(0)vs (T

(0)))= ρiφ̇, (45)

with

ρ(0)v = ρ
(0)
vs (T

(0)), (46)

where (ρC)eff and kC are the dimensionless effective thermal
capacity and the effective dimensionless thermal conductiv-
ity, respectively, and defined as

(ρC)eff
= (1−φ)ρiCi +φρaCa, (47)

kC
=

1
|�|

∫
�a

ka(gradsa+ I)d�+
∫
�i

ki(gradsi+ I)d�

, (48)

where DC is the effective diffusion tensor defined as

DC
=

1
|�|

∫
�a

Dv(grad(d + sa)+ I) d�. (49)

Moreover, si, sa, and d are the periodic vector solutions of
the following coupled boundary value problem in a compact
form (see Sect. S3 and Eqs. S.C.30–S.C.37 in the Supple-
ment):

div(ki(gradsi+ I))= 0 in �i, (50)
div(ka(gradsa+ I))= 0 in �a, (51)
si = sa on 0, (52)

(ki(gradsi+ I)− ka(gradsa+ I)) ·ni

=
Lsg

ρi
αwkγ (T

(0))d on 0, (53)

div(Dv(grad(d + sa)+ I))= 0 in �a, (54)
(grad(d + sa)+ I) ·ni = αwkd on 0, (55)

with

1
|�|

∫
�

(sa+ si)d�= 0, (56)
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1
|�|

∫
0

d d0 = 0. (57)

The vectors si, sa, and d depend on the values of α and the
temperature (notably through γ (T (0))). As for model B, the
macroscopic heat transfer equation (Eq. 44) can also be writ-
ten as(
(ρC)eff

+φγ (T (0))
Lsg

ρi

)
∂T (0)

∂t
− div(k̃CgradT (0))= 0, (58)

where

k̃C
= kC

+
γ (T (0))Lsg

ρi
DC
= kC

+ kdif
DC

Dv
, (59)

which appears as an apparent thermal conductivity of the
snow. In that case kC and DC both depend on ka, ki, kdif,
and α, and we have

k̃C
=

1
|�|

∫
�a

(ka+ kdif)(grad(sa+ d)+ I)d�

+

∫
�i

ki(grad si+ I)d�

 . (60)

This model C is valid for [WR]=O (1), i.e., for ε1/2 <

[WR]< ε−1/2 and thus for α values in the range
(ε1/2Dvc/(lwkc)) < α < (ε

−1/2Dvc/(lwkc)) or, typically,
3× 10−5 < α < 4× 10−3.

2.6.4 Cases D1 and D2

According to the order of magnitude of the dimension-
less numbers in cases D1 and D2, the asymptotic anal-
ysis presented in the Supplement (Sect. S4) shows that
these two cases lead to the same macroscopic description.
Returning dimensional variables, the macroscopic model
(Eqs. S.D1.41–S.D1.45 or Eqs. S.D2.41–S.D2.45) is written
as

(ρC)eff ∂T
(0)

∂t
− div(kDgradT (0))=−Lsgφ̇, (61)

φ
∂ρ

(0)
vs

∂t
− div(DDgradρ(0)vs )= ρiφ̇, (62)

ρ(0)v = ρ
(0)
vs (T

(0)). (63)

(ρC)eff is the classical dimensionless effective thermal ca-
pacity. The macroscopic thermal conductivity tensor kD and
the macroscopic diffusion tensor DD are defined as

kD
=

1
|�|

∫
�a

ka(grad ra+ I)d�+
∫
�i

ki(grad r i+ I)d�

 , (64)

DD
=

1
|�|

∫
�a

Dv(grad ra+ I)d�, (65)

where ra and r i are two periodic vectors. The solution of
the boundary value problem over the REV Eqs. (S.D1.30)–
(S.D1.34) is as follows:

div(ki(grad r i+ I))= 0 in �i, (66)
div((ka+ kdif)(grad ra+ I))= 0 in �a, (67)
r i = ra on 0, (68)
(ki(grad r i+ I)− (ka+ kdif)(grad ra+ I)) ·ni = 0 on 0,

(69)
1
|�|

∫
�

(ra+ r i)d�= 0. (70)

As for models B and C, the macroscopic heat transfer equa-
tion (Eq. 61) can be also written as(
(ρC)eff

+φγ (T (0))
Lsg

ρi

)
∂T (0)

∂t
− div(k̃DgradT (0))= 0. (71)

In this latter equation,

k̃D
= kD

+
γ (T (0))Lsg

ρi
DD
= kD

+ kdif
DD

Dv
, (72)

which appears as an apparent thermal conductivity of the
snow. In that case, kD and DD both depend on ka, ki, and
kdif, and we have

k̃D
=

1
|�|

∫
�a

(ka+ kdif)(grad ra+ I)d�

+

∫
�i

ki(grad r i+ I)d�

 . (73)

This model D corresponds to the one derived by Moyne et al.
(1988), assuming that ρv = ρvs(T ) is on the interface at the
microscopic scale and using the volume averaging method.
This model is also similar to the one derived by Hansen and
Foslien (2015), assuming that α ≈ 10−2. In that case, we
show that this model is valid for [WR]=O

(
ε−1) or O

(
ε−2),

i.e., typically for α values ranging from around 5× 10−3 to
1.

2.7 Macroscopic equivalent descriptions – synthesis

Figure 3 presents a summary of the four macroscopic models
of heat and vapor transport in dry snow derived above, to-
gether with their domain of validity according to the value of
α. As already mentioned, model A is the one already derived
in Calonne et al. (2014b), whereas model D is equivalent to
the model derived by Moyne et al. (1988) and Hansen and
Foslien (2015).
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Figure 3. Definition of the three different macroscopic models and their domain of validity with respect to α. The value of αT was estimated
based on the characteristic values given in Table 1.

A first important outcome is that the hypothesis ρv =

ρvs(T ), which is often made, appears to be a good approx-
imation for α values larger than 10−6, as seen for mod-
els B, C, and D. The asymptotic analysis shows that in the
range of α [10−6, αT], this approximation is of the order
of O (ε) since ρ(0)v = ρ

(0)
vs
(
T (0)

)
, i.e., σ = (ρv− ρvs)/ρvs ≈

O (ε). In the range [αT, 1], this approximation is of the or-
der of O

(
ε2), since ρ(0)v = ρ

(0)
vs
(
T (0)

)
and ρ(1)v = ρ

(1)
vs
(
T (1)

)
,

i.e., σ ≈O
(
ε2). This result implies that models B, C, and D

can be written in the same form and be reduced to a simple
heat transfer equation. This heat transfer equation involves
an apparent thermal conductivity k̃β , which differs from one
model to another. In contrast, model A does not presume any
assumption about the vapor saturation.

A second point concerns the relative role of the vapor
diffusion and of the sublimation–condensation in the vapor
transport, which directly impacts the model formulation. In
models A and B, the water vapor transfer is mainly limited by
the sublimation–deposition at the ice–air interfaces. Model
A consists of two equations of temperature and vapor den-
sity coupled through source terms that are proportional to α.
Classically, heat and vapor transport are driven by the effec-
tive thermal conductivity of snow keff and the effective vapor
diffusivity of snow Deff, respectively. Both properties depend
on the intrinsic properties of ice and air (ki,ka, and Dv) and

on the snow microstructure. Model B can be seen as a partic-
ular case of model A, assuming that ρv tends towards ρvs(T )

at the macro-scale, leading to a simplification in the form of
one heat transfer equation in which the apparent thermal con-
ductivity k̃B can be easily expressed with respect to keff (ki,
ka, and microstructure) and Deff (Dv, and microstructure).

In contrast, in model D, the water vapor transfer is mainly
limited by the diffusion process at the micro-scale. In that
case, the model consists of a single heat transfer equation
in which α is not involved but instead driven by an appar-
ent thermal conductivity k̃D, which can be expressed with
respect to the macroscopic thermal conductivity kD (ki, ka,
kdif, and microstructure) and to the macroscopic diffusion
DD (Dv, ki, ka, kdif, and microstructure), with the latter ap-
pearing as a thermodiffusion coefficient. Note that these pa-
rameters depend on the air thermal properties ka+ kdif that
are enhanced by the phase change through kdif.

The transition between a diffusion-limited and
sublimation–deposition-limited vapor transport is cap-
tured by model C. This transition appears around a transition
value αT estimated here at 3× 10−4, yet we recall that it
can vary between 10−5 and 10−3, depending on the grain
size and, to a lesser extent, on temperature. Model C is
of the same form as models B and D, but the apparent
thermal conductivity k̃C can be expressed with respect to
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Figure 4. Illustration of the bilayer snowpack problem (a) at the
macroscopic scale and (b) at the scale of a representative elementary
volume (REV).

the macroscopic thermal conductivity kC (ki, ka, kdif, α, and
microstructure) and the macroscopic diffusion DC (Dv, ki,
ka, kdif, α, and microstructure). Unlike the other models,
both macroscopic parameters kC and DC depend on α.
These parameters tend towards keff and Deff when α tends
towards 10−5, thus recovering model B. They also tend
towards kD and DD when α tends towards 1, thus recovering
model D. Consequently, in practice, models A and C are
sufficient to describe the heat and vapor transfer in the whole
range of α (see Sect. 3.3).

3 Application to analytical and numerical cases

In this section, two simple snow microstructures, a bilayer
snowpack and an assemblage of spherical grains and pores,
are first considered to illustrate the influence of the mi-
crostructure and of the parameters taken at the pore scale on
the macroscopic parameters of models A, B, and D (Sect. 3.2
and 3.1).

Then, a simplified 2D snow microstructure is considered
to evaluate the models by comparing simulation results ob-
tained with the pore-scale description and with the macro-
scopic modeling (Sect. 3.3).

3.1 The bilayer snowpack: upper and lower bounds

As a first example, we consider the classical bilayer mate-
rial problem, and the snowpack is seen as a succession of
horizontal layers of pure air and of pure ice, as illustrated
in Fig. 4. In this case, the macroscopic parameters arising
in models A, B, and D can be analytically determined and
constitute the upper and lower bounds of these parameters
for any anisotropic snow microstructure. The boundary value
problems in (Eqs. 33–35), (28–32), and (66–70) have been
solved analytically on the REV (Fig. 4b) in Auriault et al.
(2009). Taking into account those results and using Eqs. (27)
and (26), we have, for models A and B,

Deff
=

(
Deff

11 0
0 0

)
Deff

11 = φDv, (74)

keff
=

(
keff

11 0
0 keff

22

)
keff

11 = φka+ (1−φ)ki,

keff
22 =

kika

(1−φ)ka+φki
. (75)

Thus, it follows that

k̃B
11 = φ(ka+kdif)+(1−φ)ki, k̃B

22 =
kika

(1−φ)ka+φki
. (76)

These results imply that the macroscopic properties
(Deff,keff, and k̃B) of any anisotropic snow verify the fol-
lowing bounds:

0 6Deff 6 φDv, (77)

and

kika

(1−φ)ka+φki
6 keff 6 φka+ (1−φ)ki,

kika

(1−φ)ka+φki
6 k̃B 6 φ(ka+ kdif)

+ (1−φ)ki. (78)

For model D, from Eqs. (65) and (64), we have

DD
=

(
DD

11 0
0 DD

22

)
DD

11 = φDv,

DD
22 = φDv

ki

(1−φ)(ka+ kdif)+φki
, (79)

kD
=

(
kD

11 0
0 kD

22

)
kD

11 = φka+ (1−φ)ki,

kD
22 =

ki(ka+ (1−φ)kdif)

(1−φ)(ka+ kdif)+φki
. (80)

Thus, it follows that

kD
11 = φ(ka+ kdif)+ (1−φ)ki,

kD
22 =

ki(ka+ kdif)

(1−φ)(ka+ kdif)+φki
. (81)

In that case, these results imply that the macroscopic prop-
erties (DD,kD, and k̃D) of any anisotropic snow verify the
following bounds:

φDv 6D
D 6 φDv

ki

(1−φ)(ka+ kdif)+φki
, (82)

and

ki(ka+ (1−φ)kdif)

(1−φ)(ka+ kdif)+φki
6 kD 6 φka+ (1−φ)ki,

ki(ka+ kdif)

(1−φ)(ka+ kdif)+φki
6 k̃D

6 φ(ka+ kdif)+ (1−φ)ki. (83)

The above results show that, as already emphasized
in Calonne et al. (2014b), Moyne et al. (1988), and
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Fourteau et al. (2021b), the bounds in Eqs. (77) and (82) of
both the effective diffusion coefficients Deff and DD are
always smaller than Dv and DD >Deff, whatsoever the α
value. Moreover, according to the definition of Deff (Eq. 74)
and DD (Eq. 79), if a vertical macroscopic temperature gra-
dient is applied along e2, model A (or B) will not predict any
porosity variation along that direction because of the pore
geometry. By contrast, model D, where the sublimation–
deposition process is faster than diffusion, can predict mass
transport along e2, since DD

22 6= 0, and thus a variation in the
porosity along e2.

3.2 Assemblage of spherical grains and pores:
self-consistent estimates

The next analytical model is the self-consistent model
(Bruggeman, 1935; Hill, 1965; Budiansky, 1965; Torquato,
2002). Previous works showed that self-consistent (SC) esti-
mates provide good estimations of the macroscopic proper-
ties of heat and vapor transport in dry snow (Calonne et al.,
2014b, a, 2019). In this model, the snow microstructure is
considered a macroscopically isotropic material made of an
assemblage of spherical inclusions of air or ice. Each type
of inclusion is embedded in a homogeneous equivalent ma-
terial, allowing us to account for the connectivity of both
phases. The equivalent material corresponds to an infinite
matrix for which the effective properties are the unknown
to be calculated. The solution of the equations for an isolated
inclusion then gives an implicit relation which can be solved
for this effective property.

For model A, the SC estimate of the effective thermal con-
ductivity of snow keff

SC and of the effective diffusion coeffi-
cient Deff

SC verify the following implicit relation (Torquato,
2002):

keff
SC =

β +
√
β2+ 8kika

4
with β = ki(3(1−φ)− 1)

+ ka(3φ− 1), (84)

Deff
SC =Dv

(3φ− 1)
2

. (85)

For model B, the SC estimate of the thermal conductivity k̃B
SC

is obtained by replacing the effective properties by their SC
estimates in Eq. (41) and reads

k̃B
SC = k

eff
SC+ kdif

Deff
SC
Dv

. (86)

Finally, for model D, the SC estimate of thermal conductivity
k̃D

SC can be obtained by replacing ka in Eq. (84) with ka+kdif
as follows:

k̃D
SC =

β +
√
β2+ 8ki(ka+ kdif)

4
with β = ki(3(1−φ)− 1)+ (ka+ kdif)(3φ− 1). (87)

For the diffusion coefficient DD
SC, it can be shown that (Au-

riault et al., 2009)

DD
SC = φDv

3k̃D
SC

(ka+ kdif)+ 2k̃D
SC

. (88)

The above SC estimates of the thermal conductivity and dif-
fusion coefficient are presented in Figs. 5 and 6, and the im-
pact of snow porosity and temperature is shown. To do so,
we used the relationships of the thermal conductivity of ice
ki(T ) and of air ka(T ), with the temperature from Huang
et al. (2013) and Haynes (2016), respectively.

For thermal conductivity, the SC estimates keff
SC, k̃B

SC, and
k̃D

SC at a given temperature are similar and follow the clas-
sical exponential evolution with snow porosity. Overall, es-
timates vary between about 0.06 W m−1 K−1 for porosity of
0.5 and 0.01 W m−1 K−1 for porosity of 1 (Fig. 5a, c, and
e). More differences between the estimates can be seen for
the normalized diffusion coefficient. The effective coefficient
Deff

SC/Dv is overall much smaller than DD
SC/Dv and evolves

linearly from 0.25 to 1 when porosity varies from 0.5 to 1
(Fig. 6). In contrast, DD

SC/Dv shows a non-linear evolution
from 0.7 to 1, with values close to 1 for porosity above 0.8.
The non-linearity and the high values ofDD

SC/Dv come from
the contribution of the heat conduction, through k̃D

SC, and of
the latent heat, through kdif. Finally, those estimates are in
good agreement with the computed values from 3D images
of snow in Fourteau et al. (2021a).

Next, we look at the impact of temperature on the proper-
ties. The impact is weaker than the one of porosity and more
complex to understand, as dependencies are multiple. To help
understand, we first break down the dependencies and show
in Fig. 7 how the variables kdif and ka+ kdif and the ther-
mal conductivity of ice ki and air ka evolve with temperature.
When temperature increases from 210 to 273 K, the thermal
conductivity of ice decreases, and the one of air slightly in-
crease, with both evolutions being quasi-linear. Non-linearity
is introduced with the parameter kdif, which increases ex-
ponentially with temperature. Values for this parameter are
small, even smaller than the air thermal conductivity, and are
close to 0 W m−1 K−1 at −60 °C and reach 0.02 W m−1 K−1

at −3 °C. Finally, the term ka+ kdif evolves in the same way
as kdif (non-linear), but the values are increased by ka.

Keeping the above considerations in mind, the evolu-
tion of keff

SC, k̃B
SC, and k̃D

SC with temperature is presented in
Fig. 5b, d, and f. For keff

SC, the SC estimates basically follow
a monotonous decrease in the thermal conductivity with in-
creasing temperature. This decrease is less pronounced for
high porosity, and vice versa. These features directly result
from the impact of the evolution of the ice and air thermal
conductivity with temperature. The evolution of k̃B

SC and k̃D
SC

with temperature is more complex as the impact of kdif super-
imposes. They show a non-linear evolution with temperature,
with an evolution similar to keff

SC for the lower temperatures
and transitioning to an exponential increase for the higher
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Figure 5. Evolution of the SC estimates of the thermal conductivities keff
SC, k̃B

SC, and k̃D
SC with respect to porosity at four temperatures (a, c,

e) and with respect to temperature for four porosities (b, d, f). The vertical dotted gray lines indicate the four temperature and porosity values
considered.

temperatures, where the latter is driven by kdif. We see that
this non-linearity is even more important for k̃D

SC than for k̃B
SC,

as kdif appears in the definition of k̃D
SC several times. Finally,

estimates of diffusion coefficient k̃D
SC show a slight influ-

ence of temperature through ki, ka, and kdif and increase with
decreasing temperature, in agreement with Fourteau et al.
(2021a).

3.3 Numerical evaluation on a simplified 2D geometry

We perform a numerical evaluation of the obtained macro-
scopic models on a simplified 2D snow microstructure, as in
Calonne et al. (2014b). We compare simulations of heat and

water vapor transfer in snow obtained with the pore-scale de-
scription and with the macroscopic modeling.

3.3.1 Case study definition

Finite element numerical simulations were performed using
the code from COMSOL Multiphysics software on a 2D ver-
tical snow layer of 10 cm height and 0.5 cm width (Fig. 8).
A constant temperature gradient of 100 or 500 K m−1 was
applied across the layer. Temperatures at the top Ttop and at
the bottom Tbottom are imposed, and Tbottom is kept at 273 K.
For the water vapor conditions at the top and bottom, a null
vapor flux is applied. Symmetry conditions are imposed on
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Figure 6. Evolution of the normalized SC estimates Deff
SC/Dv and

DD
SC/Dv with respect to porosity at different temperatures (solid

lines). Results of the numerical computations of DD
SC/Dv at two

temperatures from Fourteau et al. (2021a) are also shown (symbols).

Figure 7. Evolution of the thermal conductivity with temperature
for ki (Huang et al., 2013), ka (Haynes, 2016), kdif, and ka+ kdif.

the lateral sides of the snow layer. Simulations were run in a
steady state.

At the pore scale, the snow layer consists of 200 periodic
cells of 0.5× 0.5 mm2; each periodic cell (REV) is composed
of an ice grain with a diameter of 0.3 mm surrounded by air,
as shown in Fig. 8. The snow porosity is 0.71, which cor-
responds to a density of 266 kg m−3. The heat and the mass
transfer is described by the set of Eqs. (1)–(12), where Ti, Ta,
and ρv are the unknowns. This set of equations was numer-
ically solved using the material parameter values presented
in Table 1 and for different α values in the range of 10−10

to 1. For the sake of simplicity, the thermal conductivities ki
and ka were kept constant in all the simulations. The chosen
values correspond to a temperature of −10 °C (Table 1).

At the macroscopic scale, the snow layer is seen as a con-
tinuous equivalent medium. The heat and the mass transfer is
described by the homogenized equations Eqs. (21)–(23) for
model A, Eqs. (41) and (37) for model B, Eqs. (58) and (45)
for model C, and Eqs. (71) and (62) for model D, where T (0)

and ρ(0)v are the macroscopic unknowns. These macroscopic

Figure 8. Illustration of the 2D geometry for the pore-scale model-
ing and the macroscopic equivalent modeling.

descriptions involve different parameters and properties de-
fined over the REV, which need to be provided. The poros-
ity and the specific surface area SSAV were equal to 0.71
and 3770 m−1, respectively. The effective properties keff and
Deff were computed over the REV composed of a unique cell
by solving the boundary value problems in Eqs. (33)–(35)
and Eqs. (28)–(32), respectively. Given the symmetry of the
REV, all the tensors involved in the macroscopic descriptions
are isotropic. We found that keff

= 0.04243 W m−1 K−1 and
Deff
= 1.156× 10−5 m2 s−1. The apparent thermal conduc-

tivity k̃B was analytically deduced using Eq. (41). Its value
depends on the temperature through the term kdif(T ). k̃C and
DC were computed over the REV by solving the bound-
ary value problem in Eqs. (50)–(57) at different tempera-
tures by varying the term ka+ kdif(T ) for α values in the
range 10−6 to 1. Finally, k̃D andDD were computed over the
REV by solving the boundary value problem in Eqs. (66)–
(70) at different temperatures in a similar way. In the consid-
ered temperature range, DD is almost constant and equal to
2.01× 10−5 m2 s−1.

Figure 9 presents the evolution of keff, k̃B, and k̃D

with temperature. As expected, k̃B and k̃D evolve non-
linearly with T . To perform the simulations, the com-
puted values of k̃D were fitted by the following relation:
k̃D
= 46.064(T /273)4−156.05(T /273)3+198.7(T /273)2−

112.68(T /273)+ 24.045 (blue line in Fig. 9). Figure 10
shows the evolution of the dimensionless diffusion coeffi-
cientsDeff/Dv,DC/Dv, andDD/Dv and of the macroscopic
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Figure 9. Evolution of the thermal conductivities keff, k̃B, and k̃D

with temperature. For k̃D, the blue dots represent the numerical es-
timates over the REV, and the blue line is the fit.

thermal conductivities keff, kC, and kD with respect to α and
for two temperatures of 270 and 250 K. As expected, only the
parameters of model C (DC/Dv and kC) vary with α and en-
sure a continuous transition between the parameters of model
A (Deff/Dv and keff) and the ones of model D (DD/Dv and
kD). When fitting the numerical estimates, such a transition
can be described by a simple function as follows:

DC(α)−Deff

DD−Deff =
kC(α)− keff

kD− keff =
k̃C(α)− k̃B

k̃D− k̃B
=

Aα

1+Aα
, (89)

where A= 1200 is a constant. This fit is shown with black
lines in Fig. 10. The figure also includes the numerical esti-
mations of the diffusion coefficient on 3D snow microstruc-
tures of different densities from Fourteau et al. (2021b),
which are in good agreement with the proposed function in
Eq. (89).

3.3.2 Comparison between pore-scale and macro-scale
simulations

Results between pore-scale and macro-scale simulations are
compared in terms of temperature, vapor density, and mass
change rate. At the pore scale, the average values of each
variable were taken over the cell and computed as follows:

〈T 〉 =
1
�

∫
�i

Tid�+
∫
�a

Tad�

 ,
〈ρv〉 =

1
�a

∫
�a

ρvd� 〈ρvs(T )〉 =
1
�a

∫
�a

ρvs(Ta)d�,

〈φ̇〉 =
1
�

∫
0

wnd0. (90)

Thus, we compare the vertical profiles of the pore-scale vari-
ables 〈T 〉, 〈ρv〉, 〈ρvs〉, and 〈φ̇〉with the vertical profiles of the
macroscopic variables T (0), ρ(0)v , ρ(0)vs (T

(0)), and φ̇. As the
obtained simulated temperature profiles were close to each
other, to ease the comparison, we also use the temperature

deviation 1T , which represents the deviation of the simu-
lated temperature profile from the linear temperature profile
imposed by Ttop and Tbottom, as illustrated in Fig. 11. In the
same vein, we use the water vapor supersaturation, which
is the difference between the simulated water vapor density
and the saturated water vapor density ρv−ρvs(T ). Figure 12
shows the vertical profiles of 1T , of ρv− ρvs(T ), and of φ̇
from the pore-scale simulations (dots) and the macroscopic
models (lines), considering a temperature gradient of 100 and
500 K m−1. For the pore-scale simulations, values of α from
10−9 to 1 were used. For the macroscopic models, results are
only shown in their domain of validity with respect to α. To
further highlight the impact of α, Fig. 13 presents the evolu-
tion of T , ρ, and ρvs with α for the specific middle cell of
the snow layer, which is here the 100th cell from the bottom
(x = l/2 and y = 100l− l/2). Again, pore-scale simulations
(dots) and the macroscopic models (line) are compared.

We describe first the main features observed in the pore-
scale simulations. All the variables show an impact of the
α value. The temperature deviation 1T is overall mainly
positive (Fig. 12a and b), which reflects the presence of
a heat source by non-conductive processes such as latent
heat from deposition. This temperature deviation increases
with α and with the temperature gradient. This is also re-
flected in the temperature of the middle cell that overall in-
creases with increasing α (Fig. 13a and b). This increase is
not uniform, and two plateaus are observed – one between
10−6 6 α 6 αT and the other one between 10−1 6 α 6 1.
The largest 1T value is reached in the center of the snow
layer and is around 0.4 K at 100 K m−1 and 4 K at 500 K m−1.
Looking at the lower part of the layer, negative 1T values
can be found for α 6 αT ∼ 3× 10−4 and indicate a heat loss
by non-conductive processes such as latent heat from subli-
mation. This feature vanishes for the large temperature gradi-
ent. In terms of water vapor supersaturation ρv− ρvs(T ), we
observe positive values (over-saturation) in the upper part of
the snow layer, values close to zero in the central part (at sat-
uration), and negative values (under-saturation) in the lower
part (Fig. 12c, d). The largest over-saturation and under-
saturation values are shown for low α values when phase
changes are very limited. With increasing α values, values
close to saturation get predominant, and the over-saturation
and under-saturation zones become localized near the top and
bottom, respectively. This is confirmed in Fig. 13c and d,
where ρv ≈ ρvs(T ) for 10−6 6 α 6 1. Similar to the temper-
ature, two plateaus are shown where ρv−ρvs(T ) evolve little
with α. All of these results are consistent with our theoretical
analysis presented in Sect. 2. Last, the vertical profiles of φ̇
are consistent with the ones of supersaturation, showing de-
position in the upper part where the porosity decreases and
sublimation in the lower part where the porosity increases
(Fig. 12e and f). As α increases, those transitions become
sharper and sharper, like a front. For αT 6 α 6 1, most values
become negative, indicating overall deposition in the snow
layer. A sublimation zone is still visible at the bottom of the

https://doi.org/10.5194/tc-18-4285-2024 The Cryosphere, 18, 4285–4313, 2024



4300 L. Bouvet et al.: Multiscale modeling of heat and mass transfer in dry snow

Figure 10. Evolution of the dimensionless diffusion coefficientsDeff/Dv,DC/Dv, andDD/Dv and of the macroscopic thermal conductivi-
ties keff, kC, and kD with respect to α and for two temperatures (270 and 250 K). The black lines represent the proposed function in Eq. (89)
to describe the parameters of model C. Numerical estimates of the diffusion coefficient on 3D snow microstructures of different densities
from Fourteau et al. (2021b) are represented by the dots.

Figure 11. Simplified example of the transition from the x to 1x
notation in a concave (red) and a convex (blue) case.

snow layer, but its thickness is typically of the order of a few
REV or smaller. Finally, as the difference ρv−ρvs is directly
related to the interface growth velocity wn (see Eq. 10), and
as it could be useful to compare it with experimental esti-
mates (e.g., Flin and Brzoska, 2008; Brzoska et al., 2008;
Pinzer et al., 2012; Libbrecht and Rickerby, 2013), we pro-
vide below the mean values of wn computed for the bot-
tom and middle cell of α = 10−6. For 100 K m−1, a value of
5.9× 10−13 m s−1 and of−2.7× 10−11 m s−1 is found in the
middle and bottom cell, respectively. For 500 K m−1, a value
of 4.5× 10−12 m s−1 and of −1.1× 10−10 m s−1 is found in
the middle and bottom cell, respectively.

Next we compare the different macroscopic models to
the pore-scale simulations. In both Figs. 12 and Fig. 13,
the comparison shows different behaviors, depending on α.
For α 6 10−5, model A reproduces precisely all the features
shown at the pore scale. Models B and D are independent of
α and provide one estimate of the temperature, and thus the
water vapor density, for all the α values in their domain of va-
lidity. These estimates are only able to reproduce the plateau
values observed in the pore-scale simulations, i.e., temper-
atures for 10−7 6 α 6 10−5 for model B and 10−2 6 α 6 1
for model D (Fig. 13). Model C, which depends on α, allows
us to reproduce the main features shown at the pore scale for

α values in the range 10−5 6 α 6 1. This model predicts1T
values higher than the pore-scale simulations for a given α.
Moreover, models B, C, and D predict only the deposition in
snow, with negative φ̇ values throughout the layer (Fig. 12e
and f). They do not capture the sublimation front at the bot-
tom of the snow layer, in contrast to model A. The mass bal-
ance between sublimation–deposition over the whole snow
layer is not well satisfied; the Dirichlet boundary condition
imposed on the temperature field at the bottom and the top of
the snow cannot ensure that the water vapor flux is null at the
same time since ρv = ρvs(T ). This limitation can explain the
slight differences that we can observe between model C pre-
dictions and the pore-scale simulations. In order to overcome
this limit, specific boundary conditions should be introduced
to allow the description of mass variations near the interfaces.

4 Application to experimental data

This section presents the evaluation of the macroscopic mod-
els A, B, and D, based on observations of natural snow evo-
lution from three cold-laboratory TGM experiments. We first
introduce the experimental data (Sect. 4.1); then we define
the estimates to be taken for the input parameters of the mod-
els (Sect. 4.2); and, finally, we present the simulation results
with the models and their comparison with the experiments
(Sect. 4.3).

4.1 Experimental datasets

We used the datasets provided by Bouvet et al. (2023), con-
sisting of two experiments, referred to as Bouvet A and Bou-
vet B in their paper and hereafter, and the data from Kamata
and Sato (2007), referred to as Kamata. These experiments
provide the required data to evaluate our models, namely the
time series of the vertical profiles of temperature and den-
sity of a snow layer evolving under a temperature gradient
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Figure 12. Vertical profiles of 1T , ρv− ρvs(T ), and φ̇ from the pore-scale simulations (dots) and from the macroscopic models A (grey
lines), B (orange lines), C (magenta lines), and D (blue lines), considering a temperature gradient of 100 and 500 K m−1 and for different
values of α.1T represents the deviation of the temperature profile from a linear temperature profile. Predictions of ρv−ρvs(T ) from models
C and D are not shown in panels (c) and (d), as they are superimposed with the pore-scale simulation results for α = 1 (dotted yellow lines).

in a controlled environment. The main characteristics of the
three experiments are summarized in Table 2. Bouvet A is a
TGM experiment on a 13.5 cm high snow layer for which a
temperature gradient (TG) of 93 K m−1 was applied during
20 d. X-ray tomography was done at regular time intervals
resulting in 9 large 3D images of the whole vertical dimen-
sion of the snow layer at a resolution of 21 µm and 17 small
3D images of the top or bottom part of the layer at a resolu-
tion of 8 µm. For the large images, the first few millimeters

at the base of the layer are lacking, due to the snow sampling
procedure, so no data are available for this area. This exper-
iment also includes monitoring of the temperature profile of
the snow layer, measured using seven Pt100 sensors. Bou-
vet B is a TGM experiment on a 7.7 cm high snow layer for
which a TG of 103 K m−1 was applied during 28 d. Four to-
mography images of the first lower 4.2 cm of the snow layer
are provided at a resolution of 10 µm. For both experiments,
Bouvet A and Bouvet B, the vertical profiles of the snow den-
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Figure 13. Temperature and water vapor density in the middle of the snow layer as a function of α, obtained from the pore-scale simulations
(dots) and from the macroscopic models A (grey lines), B (orange lines), C (magenta lines), and D (blue lines) at 100 and 500 K m−1. The
models are only shown for the α values within their domain of validity. Values of saturation water vapor density ρvs from the pore-scale
simulations and from model A are also presented.

Table 2. Overview of the experimental settings used in the simulations.

Experiment Bouvet A Bouvet B Kamata

Initial density (kg m−3) 210 287 165

Snow layer height (cm) 13.5 7.7 10

Temperature gradient (K m−1) 93 103 530

Snow base temperature (°C) −3.1 −6.5 −12
Snow surface temperature (°C) −15.6 −14.5 −65

Duration (days) 20 28 5.5

sity computed from the 3D images are provided, and a verti-
cal mass redistribution can be analyzed. Finally, the Kamata
experiment is a TGM experiment on a snow layer of 10 cm
height for which an extreme TG of 530 K m−1 was applied
during 5.5 d (133 h). The vertical mass redistribution was es-
timated by measuring snow density for four sections of the
snow layer. For that, the snow layer was separated into verti-
cal compartments of about 2.5 cm height each, using horizon-
tal nylon meshes, which enables water vapor to get through.
Each compartment was weighed at the initial and final stage
of the experiment. In addition, the temperature was recorded
at six vertical locations.

4.2 Effective properties and parameters

Next we study the estimates of the effective properties and
other input parameters required to run models A, B, and
D. For the sake of simplicity, model C is not systematically
shown. For each model, these properties are computed from
the 3D images of snow of the experiment Bouvet A and Bou-
vet B. Those values are then compared to different parame-
terizations from the literature or fitted regressions, and we
select the more suited ones to be used later in the models.
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4.2.1 Model A

Model A involves three effective parameters that are the ef-
fective thermal conductivity keff, the effective vapor diffusiv-
ity Deff, and the SSA (Sect. 2.6.1). These parameters were
estimated in the case of Bouvet A and Bouvet B by numerical
computations on the 3D tomographic images available. The
SSA was computed per unit of mass based on the voxel pro-
jection approach (Flin et al., 2011; Dumont et al., 2021). keff

and Deff were computed with the GeoDict software (Thoe-
men et al., 2008) by solving the boundary value problems
in Eqs. (28)–(32) and Eqs. (33)–(35) on the 3D images and
by applying periodic boundary conditions on the external
boundaries, as described in Calonne et al. (2011, 2014b). Val-
ues of ki and ka at −10 °C were used for the computation of
keff. The obtained 3D tensors of both properties show neg-
ligible non-diagonal terms. In the following, we refer to keff

and Deff as the average of the diagonal terms of the tensors.
Figure 14 presents the results of the image-based compu-

tations of keff, Deff, and SSA for the experiment of Bouvet
A and Bouvet B. To compare them, we show the estimates
of keff and Deff by the SC model presented in Sect. 3.2, the
density-based parameterizations of keff from Calonne et al.
(2011) and Riche and Schneebeli (2013), and a fitted regres-
sion of the SSA values as a function of time, referred as
SSAFit(t), based on a logarithmic function as formerly pro-
posed by Legagneux et al. (2004). For thermal conductiv-
ity, the parameterization of Calonne et al. (2011) is in good
agreement with the image-based computations in both exper-
iments, whereas the parameterization of Riche and Schnee-
beli (2013), which specifically describes the case of depth
hoar, predicts slightly larger values. The SC model largely
underestimates the values, which are about 2 to 4 times
smaller than the image-based computations. For the vapor
diffusion coefficient, the SC model provides overall fair es-
timates, which are slightly overestimated, especially towards
the end of the experiments, as reported for depth hoar and
faceted crystals in Calonne et al. (2014b). For SSA, the fit re-
produces the SSA evolution well for the experiment of Bou-
vet A. For Bouvet B, the SSA does not follow the classic
exponential decrease, but it increases after 7 d and until the
end of the experiment; this increase is specific to hard-depth
hoar formation (Bouvet et al., 2023). This feature is not pre-
dicted by the applied fit, yet it provides fair estimates of the
SSA values.

Given the above considerations, we selected two sets of
parameters to simulate Bouvet A, Bouvet B, and Kamata
with model A, which are summarized in Table 3. In the set
called Calonne, keff is estimated with the parameterization
of Calonne et al. (2011). In the second set called SC, keff

is given by the self-consistent estimates. In both sets, Deff

is estimated with the SC model and the SSA with the loga-
rithmic fit, which is specific for Bouvet A and Bouvet B. In
the case of the Kamata experiment, we cannot test the pro-
posed estimates of keff, Deff, and SSA against reference data

as such data are not available from Kamata and Sato (2007).
The SSA evolution was reproduced based on the logarith-
mic fit from Bouvet A, as both experiments are the closest
in terms of initial snow type, grain size, and density. In the
model evaluation that follows (Sect. 4.3), the Calonne set is
the one used by default to evaluate model A. Results with the
SC set are also presented to illustrate an alternative choice of
parameters, which, although less accurate, allows for consis-
tent and analytically based estimates for all properties.

4.2.2 Models B and D

Models B and D only involve the apparent thermal con-
ductivities of snow k̃B and k̃D, respectively. Estimating k̃B

comes down to estimating keff and Deff, as it is defined as
k̃B
= keff

+kdifD
eff/Dv. For that reason, we use the same es-

timates of keff and Deff selected for model A as described
above. So two sets of input parameters were used for model
B, namely the Calonne set, from which the model’s perfor-
mances are evaluated, and the alternative SC set (Table 3).
Figure 15 presents the evolution of k̃B

Calonne and k̃B
SC with tem-

perature for each experiment, taking the mean snow density
of the experiments (see Table 2). Both estimates show similar
trends but, as in model A, the SC estimate predicts lower val-
ues than when using the parameterization of Calonne et al.
(2011).

For model D, k̃D was computed from the 3D images from
Bouvet A and Bouvet B by solving the boundary problem in
Eqs. (66)–(70) with the GeoDict software. As above, only di-
agonal terms of the tensor were considered, and k̃D refers to
the average value of the diagonal terms. Here, computations
were performed on only one REV from each experiment and
for 10 temperatures ranging from 210 to 273 K. We selected
the image at 14 d for Bouvet A (cropped between 5.8 and
6.7 cm height) and the image at 7 d for Bouvet B (cropped
between 1.7 and 2.5 cm height). To be able to estimate k̃D for
the Kamata experiment, we took a 3D image of snow show-
ing similar characteristics, namely a sample of depth hoar
with a density of 165 kg m−1 from Fourteau et al. (2021a).
Results of the image-based computations are presented in
Fig. 15, as well as estimates from the SC model k̃D

SC pre-
sented in Sect. 3.2. For each experiment, a fit was performed
on the computed data and is referred to as k̃D

Fit in the follow-
ing. Again, the SC estimates for model D capture the trend
but largely underestimate the values. In what follows, simu-
lations were performed using the fitted values k̃D

Fit, referred to
as the Fit set in Table 3, upon which the evaluation of model
D is based. As for the other models, simulations with the SC
estimates k̃D

SC are also presented for the sake of comparison
as they allow for independent and consistent estimates.

4.3 Comparisons between models and experiments

In this section, we compare simulations from models A, B,
and D with the measurements from the three experiments
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Figure 14. Average values of effective conductivity and normalized effective diffusivity as a function of density and SSA as a function of
time, as computed from the tomography images of Bouvet A (symbols; a–c) and Bouvet B (symbols; d–f). The error bars represent the
standard deviation of the parameter along the image height. Comparison with the SC model, classical parameterizations, and fits are shown
(solid lines).

Table 3. Summary of the effective parameters used in the simulations.

Model A
SC set keff

SC, Deff
SC, SSAFit(t)

Calonne set keff
Calonne, Deff

SC, SSAFit(t)

Model B
SC set k̃B

SC = keff
SC+ kdifD

eff
SC/Dv, Deff

SC

Calonne set k̃B
Calonne = keff

Calonne+ kdifD
eff
SC/Dv, Deff

SC

Model C
SC set k̃C

SC(α) and DC
SC(α) from Eq. (89)

Calonne set k̃C
Calonne(α) and DC

Calonne(α) from Eq. (89)

Model D
SC set k̃D

SC, DD
SC

Fit set k̃D
Fit, DD

SC

Bouvet A, Bouvet B, and Kamata. The simulations were
performed with the software COMSOL Multiphysics by re-
solving the homogenized equations on a 1D geometry that
corresponds to the snow layer of the experiments. We used
Eqs. (21)–(22) for model A, Eqs. (41) and (37) for model B,
and Eqs. (71) and (62) for model D. For model A, the bound-
ary conditions in temperature are the top and bottom imposed
temperatures of the experiments. In terms of vapor density,
the conditions correspond to zero flux at the top and bottom.
Additionally, the source term is forced to zero in the simu-
lation nodes where a density of zero is reached. For models
B and D, the boundary conditions are the imposed tempera-
tures. The models were run using the sets of input parameters
described in Table 3 and considering the experimental con-
ditions summarized in Table 2. Comparisons between mea-

surements and simulations are performed based on tempera-
ture and mass change variables.

4.3.1 Temperature

Figure 16 presents the measured and simulated vertical pro-
files of 1T with models A, B, and D for the three experi-
ments, taking different α values from 10−9 to 10−4 for model
A. The1T values analyzed here are the ones computed at the
beginning of the experiments when the temperature gradient
is well established but before the formation of the air gap.
Overall, profiles of 1T have similar shapes as the ones sim-
ulated on the simplified 2D microstructure (Sect. 3.3), de-
scribing right-headed curves indicating that processes apart
from heat conduction, such as phase change, occur and re-
sult in a heat source in the snow layer. In the center part of
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Figure 15. The thermal conductivity estimates for model B (k̃B
SC and k̃B

Calonne) and for model D (k̃D
SC and k̃D

Fit) are presented as a function
of temperatures (solid and dotted lines). The parameters are presented for the Bouvet A, Bouvet B, and Kamata experiments, and the green
areas represent the temperature ranges of each experiment. The computed values on 3D images used to derive k̃D

Fit are shown by blue dots.
For Bouvet A, k̃D

Fit(T )= 5.4485× 10−9
× T 4

− 4.8119× 10−6
× T 3

+ 1.5965× 10−3
× T 2

− 2.3581× 10−1
× T + 1.3195. For Bouvet

B, k̃D
Fit(T )= 6.0212× 10−9

× T 4
− 5.2974× 10−6

× T 3
+ 1.7523× 10−3

× T 2
− 2.5868× 10−1

× T + 14.6338. For Kamata, k̃D
Fit(T )=

5.1386× 10−9
× T 4

− 4.5612× 10−6
× T 3

+ 1.5206× 10−3
× T 2

− 2.2553× 10−1
× T + 12.6279.

the layer, a maximum deviation of 1.15 K was measured in
the Bouvet A experiment and of 5.9 K in the Kamata experi-
ment. The negative1T value in the upper part of the layer in
Bouvet A is attributed to the temperature sensor uncertainty
(Bouvet et al., 2023).

Looking at the models, the main observation is that they all
underestimate1T . In more detail, model A predicts negative
1T in the lower part of the snowpack and is positive other-
wise, reflecting a heat sink attributed to more sublimation in
the lower part and a heat source attributed to more deposi-
tion in the rest of the layer. With increasing α, the positive
values of1T increase, and the negative ones tends to vanish,
so that the shape of the simulated curve becomes closer to the
experimental one. The maximum 1T predicted by model A
is reached for the highest α = 10−4 and is of 0.11 K for Bou-
vet A and of 0.49 K for Kamata, which corresponds only to
10 % and 8 % of the experimental value, respectively.

Models B and D show a unique 1T profile valid over
their domain of validity, namely 10−6 6 α 6 αT and αT 6
α 6 1, respectively. The profile shape is in agreement with
the measurements, showing only positive values throughout
the layer. 1T values of model B correspond to the upper
limit of model A. Model D is the closest to the experimen-
tal data. Still, values are largely underestimated and reach
at most 0.29 K (25 % of the experimental data) for Bouvet
A and 1.4 K (23 % of the experimental data) for Kamata. In
both models B and D, slightly better results are found when
using the SC set of input parameters, even though it corre-
sponds to underestimated estimates, as seen in Sect. 4.2. This
better agreement with the SC estimate is somehow artificial
and comes from the fact that the lower values of k̃B

SC and
k̃D

SC, compared to k̃B
Calonne and k̃D

Fit, respectively, lead to re-
duced overall heat conduction through snow and allow for
higher 1T , as well as the fact that the SC estimates allow
for a slightly higher sensitivity (steeper slope) of the thermal

conductivity to temperature in the temperature range of the
considered experiments (see the green areas in Fig. 15). A
final interesting point is the strong impact of the density on
1T , which can be seen by comparing simulations of Bou-
vet A and Bouvet B for which temperature gradients were
very close, but snow density was 210 and 287 kg m−3, re-
spectively. For the same temperature gradient, the higher the
snow density, the higher the heat conduction through snow
and the lower the 1T . For example, in lighter snow (Bou-
vet A), a maximum 1T of 0.29 K is predicted by model D
against 0.06 K for the denser snow (Bouvet B).

4.3.2 Mass change

Next, we evaluate the models regarding mass changes across
the vertical dimension of the snow layer. We look at the verti-
cal density profile of snow, as well as the height of the air gap
formed at the base of the layer at the end of the experiments,
caused by an upward mass transfer during the TGM. For
model A, the air gap height is defined as the highest height
value at which the density is zero. For models B, C, and D,
the vertical profile of density cannot be evaluated because
they only predict deposition and thus density increase, due to
the boundary condition issue already described in Sect. 3.3.
Still, to allow for a comparison with measurements, we de-
rived a rough estimate of the air gap by considering that all
the mass gained in the snow layer over the whole experiment
duration is balanced by a mass loss localized at the very bot-
tom of the snow layer, leading to a sharp air gap described
as
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Figure 16. Vertical steady-state profiles of 1T simulated with model A, with α ranging from 10−9 to 10−4, and with models B and D for
the Bouvet A, Bouvet B, and Kamata experiments. Simulations using the Calonne set (solid lines) are shown for model A, and simulations
using both Calonne (solid lines) and SC sets (dashed lines) are shown for models B and D. The experimental profiles are shown with dashed
black lines for Bouvet A and Kamata.

hair gap =H
φ̇ texp

(φ̇ texp+φinit− 1)
,

with φ̇ =
1
H

H∫
0

φ̇(z)dz

=−
1
H

H∫
0

1
ρi

∂

∂z

(
∂Dρ

(0)
vs (T )

∂z

)
dz, (91)

with hair gap as the height of the air gap (m), H as the total
height of the snow layer (m), φinit as the initial porosity (–),
and texp as the total duration of the experiment (s) (Table 2).
D is the diffusivity coefficient and corresponds to Deff

SC for
model B and DD

SC for model D. For model C, D corresponds
toDC(α) using Eq. (89). The air gap for model C can also be
directly calculated using only the air gap values of models B
and D and a fitting function similar to Eq. (89),

hC
air gap−h

B
air gap

hD
air gap−h

B
air gap

=
Aα

1+Aα
, (92)

with A= 1200.
Figure 17 shows the vertical profile of the density and the

height of the air gap simulated and measured in Bouvet A,
Bouvet B, and Kamata at the end of the experiments. The
Bouvet B and Kamata experiments report a mass loss in the
lower part of the snow layer. In Bouvet B, it results in the
formation of an air gap of 2.7 mm height at the layer base
or the point at which the snow density drops from about
290 to 0 kg m−3 within a few millimeters (Fig. 17b). In Ka-
mata, the initial uniform density profile around 165 kg m−3

evolved and at the final stage showed a density of 152 kg m−3

at the bottom of the layer which is lower than elsewhere,
where density is around 170 kg m−3 (Fig. 17c). So only a
decrease in density at the base was observed and not an air
gap. However, this might have been prevented by the verti-
cal resolution of the density measurement of 2.5 cm in Ka-
mata, at which point the detection of a millimeter-scale air
gap is not possible. To provide an estimation of the height
of the potential air gap, we converted the density decrease in
the first 2.5 cm at the bottom into a air gap. This would lead
to a 2.6 mm height air gap, similar to the one measured for
Bouvet B for a much lower temperature gradient. Finally, as
already mentioned, the experiment of Bouvet A does not in-
clude the first millimeters at the base of the snow layer, so a
comparison with the simulations is not possible.

Looking at the experiments Bouvet A and Bouvet B, a first
description of model A is given, with α ranging from 10−9

to 10−5. The model predicts similar mass transport for both
experiments; there is a mass gain in the upper part of the
layer and a mass loss in the lower part, with the latter feature
being consistent with the measurements. In more detail, and
as for temperature, the impact of α is clearly shown. For the
lowest α value of 10−9, the density profile is almost linear,
so the mass redistribution is even throughout the layer. As α
increases, the area of mass loss and mass gain becomes more
localized near the base and top of the layer, and the density
transitions become sharper. From α = 10−6 and above, an
air gap is simulated with density values reaching 0 kg m−3

at the bottom. The air gap closest to the experiments is ob-
tained with the highest α = 10−5 and reaches 2.3 mm height
for Bouvet A and 1.65 mm for Bouvet B, which corresponds
fairly well to the measured air gap, yet is slightly underesti-
mated (75 %) (Fig. 17d and e). Approximations of the air gap
for models B and D are close to the ones simulated by model
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Figure 17. (a, b, c) Density profiles from the macroscopic models and from the experimental data for the final stage of the Bouvet A, Bouvet
B, and Kamata experiments. Results of model A are provided for α values from 10−5 to 10−9 and for the parameter set Calonne. The height
of the air gaps derived for models B and D are shown with horizontal bars in the insets with an enlarged portion of the graph. Results of
model B are provided for the SC set (dashed orange lines) and the Calonne set (solid orange lines). Results of model D are provided for the
SC set (dashed blue lines) and the Fit set (solid blue lines). (d, e, f) Air gap height at the final stage of the experiments as a function of α,
simulated with models A, B, C, and D using the parameter sets of SC, Calonne, and Fit. For model C, the air gap calculated with Eq. (92) is
also shown with black lines.

A so that all of the models seem to underestimate the air gap.
For Bouvet B, an air gap of 1.7 mm is estimated for model D
(63 % of the experimental air gap) and of 1.1 mm for model
B (41 % of the experimental air gap). Finally, for all of the
models, using the alternative SC set of input parameters (Ta-
ble 3) has little impact on the air gap and leads mostly to a
slight reduction in height (dashed lines in Fig. 17).

Simulations of the Kamata experiment with model A dif-
fer from the ones of Bouvet A and Bouvet B. Indeed, a mass
gain is not predicted in the upper part of the snow layer but
instead in a zone right above the mass loss region. This is
particularly visible for α = 10−5, where the air gap, located
in the first 2.1 mm, is directly surmounted by the densest part
of the snow layer, located around 4 mm, with a density reach-
ing 175 kg m−3. Simulations seem to show that the mass re-
distribution in the Kamata experiment occurs mostly in the
lower part of the snow layer, which might be due to the im-

pact of temperature on the simulated heat and mass trans-
port processes so that they are reduced in the very cold upper
part (−65 °C). This effect of temperature can also be seen
in the φ̇ simulations on the simplified microstructure for the
temperature gradient of 500 K m−1 for which the imposed
temperature conditions were close to the ones of Kamata, as
presented in Fig. 12f. Considering that this effect applies in
reality, it would imply that the final density measured in Ka-
mata in the first 2.5 cm at the bottom is the result of both the
mass loss and mass gain and thus that the above estimation of
an air gap of 2.6 mm might be an underestimation. Compar-
isons of air gaps for the Kamata experiment should be looked
at with the above consideration in mind. When averaging the
simulated density values of model A over a 2.5 cm step, as
done in the measurements, a value of 158 kg m−3 is found
for the first 2.5 cm, in agreement with the measured one of
152 kg m−3. Coming back to the air gap comparisons, model
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A predicts the air gap estimated for the Kamata experiment
well when the highest α value is considered. At α = 10−5,
the simulated air gap is 2 mm; again, this close to the esti-
mated one of 2.6 mm despite being underestimated (77 %).
Unlike for Bouvet A and Bouvet B, models B and D stand
out from model A, and their approximations of the air gap are
significantly larger at between 3 mm and 4 mm. They would
thus predict a larger air gap than the one observed in the ex-
periment, which is up to twice the height.

5 Discussion

5.1 Modeling heat and mass transfer with models A, B,
C, or D

In the present work, macroscopic models for heat and mass
transfer in dry snow have been derived by homogenization
from the physics at the pore scale for different values of the
condensation coefficient α in the range [10−10, 1]. The lat-
ter was assumed to be constant in the whole modeled snow
layer. The Robin boundary equation for the water vapor at
the ice–air interface allowed us to define a transition value
αT, which equals ≈ 3× 10−4 for a typical snow grain size
of around 0.5 mm that characterizes the transition between
the two main mechanisms driving the water vapor transfer
through the snowpack, namely diffusion and sublimation–
deposition. The homogenization process allowed us (i) to
retrieve three different models already proposed in the lit-
erature (Calonne et al., 2014b; Hansen and Foslien, 2015;
Moyne et al., 1988); to specify their domains of validity ac-
cording to the α values; and (ii) to show that the hypothesis
ρv = ρvs(T ), which is often made, is a good approximation
for α values larger than 10−6.

At the macroscopic scale, model A (Calonne et al., 2014b),
valid for α values in the range [10−10, 10−5], is described by
two coupled equations, with one for the temperature field and
one for the water vapor field. They are coupled by a source
term that reflects the sublimation–deposition process and de-
pends on α. In this model, the induced porosity variation in
the snow layer can be easily computed. In the case of models
B, C, and D (Moyne et al., 1988; Hansen and Foslien, 2015),
the physics at the macro-scale is driven by the temperature
field only as ρv = ρvs(T ). Because the models only solve
the temperature field, it is not as straightforward to access
the porosity variation. In our case, both models do not sat-
isfy mass conservation and predict only the deposition over
the whole snow layer and also the sublimation front occur-
ring at the bottom of the snow layer, as seen in the compar-
ison between pore-scale and macroscopic-scale simulations
(Fig. 12). In the future, a more reliable boundary condition,
such as a Stefan boundary condition, should be introduced to
better describe the evolution of the sublimation front.

According to their definition, models B and D do not de-
pend on α and are able to describe the observed plateaus in

a limited range of α. These two models can be seen as par-
ticular cases of models A and C. Consequently, in practice,
models A and C, which depend on α, are sufficient to de-
scribe the macroscopic heat and mass transfer through the
snowpack for α values in the range 10−10 to 1. Let us remark
that model C requires solving a fully coupled problem at the
REV scale in order to determine the effective parameters.

5.2 On the comparisons between simulations and
measurements

5.2.1 Summary of the models’ evaluation

When comparing experiments and simulations with the three
models, it appears that they are able to reproduce the main
features of the heat and mass transport during the TGM, in-
cluding the non-linear temperature profile and, for model A,
the upward vapor transport with, eventually, the formation
of a millimeter-scale basal air gap. However, a major dis-
crepancy lies in the fact that temperature values are under-
estimated by all the models. More precisely, the heat source
inducing the non-linearity in the temperature profile seems
underestimated. The best predictions of the temperature de-
viation 1T are obtained by model D and correspond to only
about 25 % of the experimental data, translating into temper-
ature differences of around 1 and 5 K for the Bouvet A and
Kamata experiments, respectively. To a much lesser extent,
upward vapor transport seems slightly underestimated, and
the heights of the basal air gaps simulated by model A cor-
respond to about 75 % of the experimental ones, leading to
small differences in height of 1 and 0.6 mm for the Bouvet B
and Kamata experiments, respectively. Similar conclusions
can be drawn for models B and D, based on rough approx-
imations of the air gap. Possible causes of the differences
between experiments and simulations are explored in the fol-
lowing.

5.2.2 Uncertainties in the experimental data

Temperature measurements in Bouvet A were performed
with Pt100 sensors with an accuracy of ±0.2 °C (Bouvet
et al., 2023). Copper Constantan thermocouples were used
in the experiment of Kamata and Sato (2007) and are known
to be very stable at low temperatures, with an accuracy of
±0.5 °C. In both cases, these uncertainties are smaller than
the discrepancies between the measured and modeled 1T .
For density, the experimental setup of Bouvet B ensures pre-
cise monitoring of the mass change over time by tomography
(Bouvet et al., 2023). Air gaps similar to the one in Bouvet
B were reported by Wiese (2017) during temperature gradi-
ent experiments. For the Kamata experiment, the reliability
of the compartment method is less obvious, and the vertical
resolution of 2.5 cm is rather poor to assess the presence of
an air gap.
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5.2.3 Uncertainties in the numerical simulation input

The macroscopic modeling of heat and mass transport in dry
snow relies on the effective parameters of keff, Deff, and the
SSA for model A; on k̃B for model B; and on k̃D for model
D. For thermal conductivity, the different estimates used in
the simulations are overall in good agreement with the values
computed from the experimental 3D images. A possible way
to improve could be to account for the anisotropy of the prop-
erty so that there is, e.g., an enhanced thermal conductivity in
the vertical direction, as observed for snow evolving under a
high TGM (e.g., Calonne et al., 2011). However, an increase
in the thermal conductivity of models A, B, and D leads to a
decrease in both the temperature deviation and air gap height
and thus a degradation in the model performance, as illus-
trated in Fig. 16. Concerning the vapor diffusion coefficient,
the SC models were used in the simulations, which provide
slightly overestimated estimates. However, improving these
estimates, through taking lower values of the diffusion coef-
ficient, leads to a decrease in both temperature deviation and
air gap height, which, again, degrades the model results. To
illustrate this behavior in the case of model A, by lowering
the SC estimate of Deff by 10 %, a 1T of 0.096 K and an
air gap of 1.17 mm is simulated for α = 10−5, compared to
0.102 K and 2.3 mm with the initial value. Finally, potential
errors in the SSA parameter would affect the source term of
model A and would only translate in small variations in α.
To conclude, the uncertainties linked to the estimation of the
effective parameters cannot be responsible for the reported
differences between experiments and simulations.

5.2.4 Models limitations and potential improvements

As the points raised above do not seem sufficient to explain
the model errors, a plausible cause remains to be investi-
gated and is the definition of the model itself, i.e., the def-
inition of the physics at the pore scale considered for the ho-
mogenization. A first element concerns the source terms in
model A, which are derived from the Hertz–Knudsen equa-
tion and rely on a condensation coefficient α (Eq. 7). Here,
this coefficient was taken to be constant and uniform over
the snow layer and considered equal for both condensation
and sublimation. In their review, Persad and Ward (2016) ex-
plore the expressions of the evaporation coefficient and of
the condensation coefficient in the Hertz–Knudsen equation
for the water–air interface. They conclude that most errors
come from assuming the evaporation and condensation coef-
ficients to be equal and assuming thermal equilibrium across
the liquid–vapor interface (Eq. 4 in this study). Moreover, as
mentioned in the Introduction, the condensation parameter α
depends on many parameters, such as the vapor supersatura-
tion, which can lead to a non-linear expression of the Hertz–
Knudsen equation. Hence, refining the Hertz–Knudsen equa-
tion could add non-linearity in the source terms of model
A, which could enhance the contribution of latent heat and

thus increase the temperature deviation 1T , which would
improve the model’s prediction.

Another point is that the natural convection was not taken
into account at the pore scale. This process was, however,
hypothesized to be key for heat and mass transport of snow
under strong temperature gradients, such as Arctic and sub-
Arctic ones (e.g., Sturm and Johnson, 1991; Domine et al.,
2018). To include natural convection, fluxes of temperature
(JT) and water vapor (Jρv ) should be expressed at the pore
scale as follows:

JT =− kagradTa+ ρaCavaTa in �a,

and Jρv =− Dvgradρv+ vaρv in �a, (93)

with va as the air velocity. A numerical study was recently
presented by Jafari et al. (2022) using a macroscopic model
similar to model A. They show that the occurrence and inten-
sity of natural convection in snow depends on the Rayleigh
number, which is defined as

Ra=
ρaβTg(Tbottom− Ttop)HK

((µakeff)/(ρaCa))
, (94)

where H is the height of the snow layer, K is the snow
permeability, g = 9.81 m s−2 is the gravity, µa = 17.29×
10−6 Pa s is the air viscosity, and βT = 0.0036 K−1 is the
thermal expansion coefficient. Their simulations indicate
that, for Ra> 50 and H > 25 cm, the natural convection
could generate an upward air flux from the warmer region
to the colder one, and vice versa. We estimated the Rayleigh
number for the three experiments used in this study. Using
the values in Tables 1 and 2, and using the parameteriza-
tion of Calonne et al. (2012) for the snow permeability, the
Rayleigh number is typically 0.15, 0.02, and 0.85 for the
experiments Bouvet A, Bouvet B and Kamata, respectively.
These values are much smaller than the threshold value pre-
sented by Jafari et al. (2022), which would indicate that nat-
ural convection is negligible in our cases. Moreover, Ka-
mata et al. (1999) present a symmetric TGM experiment with
warmer conditions at the base and top of the snow layer and
colder conditions imposed in the middle using a cold plate.
The snow layer was thus under a positive TG in one part
and under a negative TG in the other part, with both having
the same intensity. The temperature profiles were recorded
in both parts of the snow layer and show similar non-linear
curves in both cases, although natural convection could only
occur in the bottom area, where the temperature conditions
are unstable. The authors conclude that natural convection
does not seem to impact their temperature fields. This would
be consistent with the small Rayleigh number that we esti-
mated to be 0.16 for this experiment.

Finally, the cross-coupling effects between the tempera-
ture and water vapor density, such as the Soret and Dufour
effects, were not considered in the physics at the pore scale.
The effect of the vapor density gradient on the heat flux,
called the Dufour effect, is characterized by the thermodiffu-
sion coefficient DTv, and the effect of temperature gradient
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on the vapor density flux, called the Soret effect, is charac-
terized by the thermodiffusion coefficient DvT. Taking these
effects into account, the temperature and water vapor flux can
be expressed as follows:

JT =− kagradTa−D
Tvgradρv in �a,

and Jρv =− Dvgradρv−D
vTgradTa in �a. (95)

For porous media, the Dufour effect is neglected in most
cases, whereas the Soret effect is often taken into account
(e.g., Davarzani et al., 2010; Häussling Löwgren et al., 2020)
and can be measured using the Soret coefficient defined as
ST =D

vT/Dv. This coefficient is positive when the heavi-
est species in the pore space move toward the colder regions
and is negative when they move toward the warmer regions.
However, this coefficient could change sign when the tem-
perature is lowered (Caldwell, 1973; Chapman and Cowling,
1990). When the temperature is positive, the Soret coefficient
for water vapor is supposed to be positive. To the best of
our knowledge, there are no data concerning this coefficient
when temperature is negative. The Soret effect can be eas-
ily introduced in pore-scale simulations in the case of the
2D simplified microstructure as presented in Sect. 3.3. By
doing so, we found that negative ST coefficients lead to an
increase the simulated temperature deviation 1T , and vice
versa. For example, for α = 0.1 and a temperature gradient
of 500 K m−1, a maximum value of1T of 6.5, 4.2, and 2.8 K
is simulated for ST equal to −2× 10−4, 0, and 2× 10−4, re-
spectively. The Soret effect can also be introduced in model
D, by replacing ka+kdiff with ka+kdiff+STDvLsg/ρi. Using
the self-consistent estimate of thermal conductivity (Eq. 87)
and for values of ST at−2× 10−4, 0, and 2× 10−4, the max-
imum simulated values of1T for the Kamata experiment are
6.3, 3.1, and 1.95 K, respectively, whereas the experimental
value is around 6 K. A negative Soret coefficient seems thus
suitable to improve the temperature simulations and better
describe the experimental data. However, the influence of the
Soret effect on the air gap is not straightforward, as it seems
to induce a downward movement of vapor molecules and is
thus opposed to the formation of a basal air gap. These pre-
liminary results show that the introduction of such coupling
effects (Soret and/or Dufour) between the temperature and
the water vapor density in the modeling of heat and water va-
por transfer in snowpacks is interesting and that future work
would be needed to investigate such a hypothesis.

6 Conclusion

This paper presents the definition and evaluation of the
equivalent macroscopic modeling of heat and mass transport
during the TGM in dry snow. First, we applied the homog-
enization process to retrieve the macroscopic models valid
for condensation coefficients α ranging from 10−10 to 1. We
showed that, at a transition value αT ≈ 3× 10−4, the mod-

eling changes from vapor transport limited by sublimation–
deposition (models A and B) to vapor transport limited by
diffusion (model D). The homogenization process allowed
us to retrieve different models proposed in the literature
(Calonne et al., 2014b; Hansen and Foslien, 2015; Moyne
et al., 1988) and to clarify their domains of validity according
to the value of α. Models A and C are sufficient to describe
the heat and mass transfer in the whole range of α values be-
tween 10−10 and 1. For α values between 10−10 and 10−5,
model A consists of two equations of temperature and water
vapor density coupled through the source terms, which are
proportional to the Hertz–Knudsen equation and therefore to
α. This model does not presume any assumption on the satu-
ration of the vapor density. For α values between 10−5 and 1,
model C consists of one temperature equation which involves
α, since the hypothesis ρv = ρvs(T ), which is often made, is
valid in that range. Concerning the two other models, model
B can be seen as a particular case of model A for α values in
the range from 10−7 to 10−5, whereas model D can be seen
as a particular case of model C for α values in the range from
10−3 to 1.

In the second part of the paper, we evaluated the homog-
enized models A, B, C, and D by comparison with three
laboratory experiments of the TGM of snow (Kamata and
Sato, 2007; Bouvet et al., 2023), as well as by a numerical
evaluation for a 2D simplified microstructure. Evaluations
were performed based on the temperature and density pro-
files of snow and, more precisely, on the ability to reproduce
two main features reported in the TGM experiments, namely
the non-linear concave-shaped temperature profile, charac-
terized by the temperature deviation from a linear gradient
1T , and the upward vapor transport leading to a mass loss
or an air gap at the base of the snow layer. We showed that
(i) the four models allow the reproduction of the shape of
the temperature profile, but the values were largely underes-
timated, with the best prediction being obtained with model
D and corresponding only to 25 % of the temperature differ-
ence observed in the experimental data. This major discrep-
ancy highlights that a process that contributes to heat up the
layer is not well captured, if at all; (ii) model A allows us to
reproduce the upward vapor transport and the formation of a
millimeter-scale basal air gap, with the best result being ob-
tained for the highest α value of 10−5; and (iii) models B and
D (and also C) do not allow the reproduction of mass trans-
port as they predict only the mass gain in the snow layer and
as they do not satisfy mass conservation in the present case.
Potential improvements were suggested and include the re-
fining or enrichment of the physics at the pore scale consid-
ered to derive the models, such as questioning the expression
of the Hertz–Knudsen equation or the role of the Soret and/or
Dufour effects, as well as improving the boundary conditions
to allow for realistic mass transport for models B, C, and D.
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