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S.1 Case A

Taking the order of magnitude of the dimensionless numbers into account,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [H] =O
(
ε2
)
, [WR] =O

(
ε2
)
, the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (S.A.1)

5

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (S.A.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (S.A.3)

T ∗
i = T ∗

a on Γ (S.A.4)10

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = ε2L∗
sgw

∗ ·ni on Γ (S.A.5)

D∗
vgrad

∗ρ∗v ·ni = ε2ρ∗iw
∗ ·ni on Γ (S.A.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in15
dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (S.A.7)

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(S.A.8)

S.1.1 Heat transfer20

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (S.A.1), (S.A.2), (S.A.4), (S.A.5) gives at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (S.A.9)

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (S.A.10)

25

T
∗(0)
i = T ∗(0)

a on Γ (S.A.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = 0 on Γ (S.A.12)
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where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. It can be shown that the obvious solution of the

above boundary value problem is given by:30

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t) (S.A.13)

At the first order, the temperature is independent of the microscopic dimensionless variable y∗, i.e. we have only one tem-
perature field. Taking these results into account, equations (S.A.1), (S.A.2), (S.A.4), and (S.A.5) of order ε give the following
second-order problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.A.14)35

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (S.A.15)

T
∗(1)
i = T ∗(1)

a on Γ (S.A.16)

40

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = 0 on Γ (S.A.17)

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

The solution of the above boundary value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary
function T̃ ∗(1)(x∗, t):

T
∗(1)
i (x∗,y∗, t) = t∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (S.A.18)45

T ∗(1)
a (x∗,y∗, t) = t∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (S.A.19)

where t∗i (y
∗) and t∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (S.A.18) and (S.A.19) in the set (S.A.14)-(S.A.17), these two vectors are solution of the following boundary
value problem, expressed in a compact form as:50

divy∗(k∗i (grady∗t∗i + I)) = 0 in Ωi (S.A.20)

divy∗(k∗a(grady∗t∗a + I)) = 0 in Ωa (S.A.21)

t∗i = t∗a on Γ (S.A.22)55

(k∗i (grady∗t∗i + I)− k∗a(grady∗t∗a + I)) ·ni = 0 on Γ (S.A.23)

1

|Ω|

∫
Ω

(t∗a + t∗i )dΩ= 0 (S.A.24)
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This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by the Eq.60
(S.A.1), (S.A.2), (S.A.4), and (S.A.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.A.25)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (S.A.26)

65

T
∗(2)
i = T ∗(2)

a on Γ (S.A.27)

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = w∗(0)

n on Γ (S.A.28)

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic and w

∗(0)
n is the normal interface velocity due to the

sublimation-deposition process given, at the zero order, by the Hertz-Knudsen equation (S.A.7) and the Clausius Clapeyron’s70
law (S.A.8).

S.1.2 Water vapor transfer

Introducing asymptotic expansions for ρ∗v in the relations (S.A.3) and (S.A.6) gives at the lowest order:

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (S.A.29)

75

D∗
vgrady∗ρ∗(0)v ·ni = 0 on Γ (S.A.30)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. It can be shown (Auriault et al., 2009) that the solution of the above

boundary value problem is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t) (S.A.31)

At the first order, the water vapor density is independent of the microscopic dimensionless variable y∗. Taking these results80
into account, the second-order problem is given by Eq. (S.A.3) and (S.A.6) of order ε, which are:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (S.A.32)

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = 0 on Γ (S.A.33)

where the unknown ρ
∗(1)
v (x∗,y∗, t) is y∗-periodic and the macroscopic gradient gradx∗ρ

∗(0)
v is given. The solution of the85

above boundary value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary function ρ̃
∗(1)
v (x∗, t)

(Auriault et al., 2009):

ρ∗(1)v (x∗,y∗, t) = g∗
v(y

∗) ·gradx∗ρ∗(0)v + ρ̃∗(1)v (x∗, t) (S.A.34)
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where g∗
v(y

∗) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore scale.
Introducing (S.A.34) in the set (S.A.32)-(S.A.33), this vector is solution of the following boundary value problem, expressed90
in a compact form:

divy∗(D∗
v(grady∗g∗

v + I)) = 0 in Ωa (S.A.35)

D∗
v(grady∗g∗

v + I) ·ni = 0 on Γ (S.A.36)

95

1

|Ω|

∫
Ωa

g∗
vdΩ= 0 (S.A.37)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.
(S.A.3) and (S.A.6) of order ε2:

∂ρ
∗(0)
v

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (S.A.38)

100

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = w∗(0)

n on Γ (S.A.39)

where the unknown ρ
∗(2)
v (x∗,y∗, t) is y∗-periodic and w

∗(0)
n is the normal interface velocity due to the sublimation/deposition

process given, at the zero order, by the Hertz-Knudsen equation (S.A.7) and the Clausius Clapeyron’s law (S.A.8). Taking the
above results into account, we have:

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗(0)

)](
1+ ε

L∗
sgm

∗

ρ∗i k
∗

T
∗(1)
a

(T ∗(0))2
+ ...

)
(S.A.40)105

This relation shows that the asymptotic development of the Clausius-Clapeyron’s law is written:

ρ∗vs(T
∗
a ) = ρ∗(0)vs (x∗, t)+ ερ∗(1)vs (x∗,y∗, t)+ ... (S.A.41)

where the first term ρ
∗(0)
vs , which depends on T ∗(0)(x∗, t) only, is defined as:

ρ∗(0)vs (T ∗(0)) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗(0)

)]
(S.A.42)

The relation (S.A.42) shows that the normal velocity w
∗(0)
n arising in the interface condition (S.A.39) does not depend on y∗.110

From (S.A.7), w∗(0)
n is also written:

w∗(0)
n =

α∗

ρ∗i
w∗

k

[
ρ∗(0)v − ρ∗(0)vs (T ∗(0))

]
(S.A.43)

S.1.3 Macroscopic description

Integrating (S.A.25) over Ωi and (S.A.26) over Ωa, and then using the divergence theorem, the periodicity condition, and the
interface conditions (S.A.28) leads to the first order dimensionless description:115

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(keff∗gradx∗ T ∗(0)) = SSAVL

∗
sgw

∗(0)
n (S.A.44)
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where SSAV = |Γ|/|Ω| is the specific surface area and where (ρC)eff∗ and keff∗ are the dimensionless effective thermal ca-
pacity and the effective dimensionless thermal conductivity, respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (S.A.45)

120

keff∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗t∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗t∗i (y
∗)+ I)dΩ

 (S.A.46)

where ϕ is the porosity. Consequently, integrating (S.A.38) over Ωa, and then using the divergence theorem, the periodicity
condition, and the interface conditions (S.A.39) leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
v

∂t
−divx∗(Deff∗gradx∗ρ∗(0)v ) =−SSAVρ

∗
iw

∗(0)
n (S.A.47)

where Deff∗ is the dimensionless effective diffusion tensor defined as:125

Deff∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ g∗

v(y
∗)+ I)d Ω (S.A.48)

S.2 Case B

Taking into account the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =
O (1) , [H] =O (ε) , [WR] =O (ε), the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (S.B.1)130

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (S.B.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (S.B.3)

135

T ∗
i = T ∗

a on Γ (S.B.4)

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = εL∗
sgw

∗ ·ni on Γ (S.B.5)

D∗
vgrad

∗ρ∗v ·ni = ερ∗iw
∗ ·ni on Γ (S.B.6)140

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in
dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (S.B.7)

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(S.B.8)145
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S.2.1 Heat transfer

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (S.B.1), (S.B.2), (S.B.4), and (S.B.5) gives at the lowest
order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (S.B.9)

150

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (S.B.10)

T
∗(0)
i = T ∗(0)

a on Γ (S.B.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = 0 on Γ (S.B.12)155

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. It can be shown (Auriault et al., 2009) that the

obvious solution of the above boundary value problem is given by:

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t) (S.B.13)

At the first order, the temperature is independent of the microscopic dimensionless variable y∗, i.e. we have only one tempera-
ture field. Taking these results into account, Eq. (S.B.1), (S.B.2), (S.B.4), and (S.B.5) of order ε give the following second-order160
problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.B.14)

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (S.B.15)

165

T
∗(1)
i = T ∗(1)

a on Γ (S.B.16)

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = L∗
sgw

∗(0)
n on Γ (S.B.17)

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

Moreover, it can be shown that at the first order w∗(0)
n = 0 (see S.B.37). As in the case A, the solution of the above boundary170

value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary function T̃ ∗(1)(x∗, t) (Auriault
et al., 2009):

T
∗(1)
i (x∗,y∗, t) = t∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (S.B.18)

T ∗(1)
a (x∗,y∗, t) = t∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (S.B.19)175
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where t∗i (y
∗) and t∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (S.B.18) and (S.B.19) in the set (S.B.14)-(S.B.17), these two vectors are solution of the following boundary
value problem in a compact form:

divy∗(k∗i (grady∗t∗i + I)) = 0 in Ωi (S.B.20)

180

divy∗(k∗a(grady∗t∗a + I)) = 0 in Ωa (S.B.21)

t∗i = t∗a on Γ (S.B.22)

(k∗i (grady∗t∗i + I)− k∗a(grady∗t∗a + I)) ·ni = 0 on Γ (S.B.23)185

1

|Ω|

∫
Ω

(t∗a + t∗i )dΩ= 0 (S.B.24)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.
(S.B.1), (S.B.2), (S.B.4), and (S.B.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.B.25)190

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (S.B.26)

T
∗(2)
i = T ∗(2)

a on Γ (S.B.27)

195

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = L∗

sgw
∗(1)
n on Γ (S.B.28)

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. Integrating (S.B.25) over Ωi and (S.B.26) over Ωa,

and then using the divergence theorem, the periodicity condition, and the boundary conditions (S.B.28) leads to the first order
dimensionless description:

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(keff∗gradx∗T ∗(0)) =

∫
Γ

L∗
sgw

∗(1)
n dS =−L∗

sgϕ̇ (S.B.29)200

where (ρC)eff∗ and keff∗ are the dimensionless effective thermal capacity and the effective dimensionless thermal conductivity
respectively, defined, as in the Case A, by:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (S.B.30)

keff∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗t∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗t∗i (y
∗)+ I)dΩ

 (S.B.31)205

where ϕ is the porosity.
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S.2.2 Water vapor transfer

Introducing asymptotic expansions for ρ∗v in the relations (S.B.3) and (S.B.6) gives at the lowest order:

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (S.B.32)

210

D∗
vgrady∗ρ∗(0)v ·ni = 0 on Γ (S.B.33)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. It can be shown (Auriault et al., 2009) that the solution of the above

boundary value problem is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t) (S.B.34)

At the first order, the water vapor density is independent of the microscopic dimensionless variable y∗. Taking these results215
into account, the second-order problem is given by Eq. (S.B.3) and (S.B.6) of order ε:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (S.B.35)

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = αwk

[
ρ∗(0)v − ρ∗(0)vs (T ∗(0))

]
on Γ (S.B.36)

where the unknown ρ
∗(1)
v (x∗,y∗, t) is y∗-periodic. Consequently, integrating (S.B.35) over Ωa, and then using the divergence220

theorem, the periodicity condition, the interface conditions (S.B.36) and the result (S.B.34) leads to the first order dimensionless
description:

ρ∗(0)v = ρ∗(0)vs (T ∗(0)) (S.B.37)

Consequently, as in the Case A, the solution of the above boundary value problem (S.B.35) - (S.B.36) appears as a linear
function of the macroscopic gradient gradx∗ρ

∗(0)
vs (T ∗(0)) modulo an arbitrary function ρ̃

∗(1)
v (x∗, t) :225

ρ∗(1)v (x∗,y∗, t) = g∗
v(y

∗) ·gradx∗ρ∗(0)vs (T ∗(0))+ ρ̃∗(1)v (x∗, t) (S.B.38)

where g∗
v(y

∗) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore scale
induced by the macroscopic gradient gradx∗ρ

∗(0)
vs (T ∗(0)). Introducing (S.B.38) in the set (S.B.35)-(S.B.36), this vector is

solution of the following boundary value problem in a compact form:

divy∗(D∗
v(grady∗g∗

v + I)) = 0 in Ωa (S.B.39)230

D∗
v(grady∗g∗

v + I) ·ni = 0 on Γ (S.B.40)

1

|Ω|

∫
Ωa

g∗
vdΩ= 0 (S.B.41)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.235
(S.B.3) and (S.B.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωi (S.B.42)
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D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(1)
n on Γ (S.B.43)

where the unknowns ρ∗(2)v (x∗,y∗, t) is y∗-periodic and w
∗(1)
n is the normal interface velocity due to the sublimation/deposition240

process at the first order. Consequently, integrating (S.B.42) over Ωa, and then using the divergence theorem, the periodicity
condition, and the boundary conditions (S.B.43) leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(Deff∗gradx∗ρ∗(0)vs (T ∗(0))) =

∫
Γ

ρ∗iw
∗(1)
n dS = ρ∗i ϕ̇ (S.B.44)

where Deff∗ is the classical dimensionless effective diffusion tensor defined as (see Case A):

Deff∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ g∗

v(y
∗)+ I)d Ω (S.B.45)245

S.3 Case C

Taking into account the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =
O (1) , [H] =O (1) , [WR] =O (1), the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (S.C.1)

250

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (S.C.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (S.C.3)

T ∗
i = T ∗

a on Γ (S.C.4)255

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (S.C.5)

D∗
vgrad

∗ρ∗v ·ni = ρ∗iw
∗ ·ni on Γ (S.C.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in260
dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (S.C.7)

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(S.C.8)
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S.3.1 Heat and water vapor transfer at the first order265

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (S.C.1), (S.C.2), (S.C.4), and (S.C.5) gives at the lowest
order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (S.C.9)

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (S.C.10)270

T
∗(0)
i = T ∗(0)

a on Γ (S.C.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni =
L∗
sg

ρ∗i
D∗

vgrady∗ρ∗(0)v ·ni on Γ (S.C.12)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. Introducing asymptotic expansions for ρ∗v in the275

relations (S.C.3) and (S.C.6) gives at the lowest order:

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (S.C.13)

D∗
vgrady∗ρ∗(0)v ·ni = α∗w∗

k

[
ρ∗(0)v − ρ∗(0)vs (T ∗(0))

]
on Γ (S.C.14)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. Consequently, integrating (S.C.13) over Ωa, and then using the divergence280

theorem, the periodicity condition, the interface conditions (S.C.14) leads to:∫
Γ

(ρ∗(0)v − ρ∗(0)vs )dΓ = 0 (S.C.15)

Taking this result into account, the solution of the above boundary value problem is given by:

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t) (S.C.16)

and285

ρ∗(0)v = ρ∗(0)v (x∗, t) = ρ∗(0)vs (T ∗(0)) (S.C.17)

At the first order, the temperature and the the water vapor density are independent of the microscopic dimensionless variable
y∗, i.e. we have only one temperature field.

S.3.2 Heat and water vapor transfer at the second order

Taking these results into account, Eq. (S.C.1), (S.C.2), (S.C.4), and (S.C.5) of order ε give the following second-order problem:290

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.C.18)

10



divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (S.C.19)

295

T
∗(1)
i = T ∗(1)

a on Γ (S.C.20)

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = (S.C.21)

L∗
sg

ρ∗i
D∗

v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni on Γ300

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

The second-order problem for the water vapor is given by Eq. (S.C.3) and (S.C.6) of order ε:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (S.C.22)

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = α∗w∗

k

[
ρ∗(1)v − ρ∗(1)vs

]
on Γ (S.C.23)305

where the unknowns ρ∗(1)v (x∗,y∗, t) is y∗-periodic. Consequently, integrating (S.C.22) over Ωa, and then using the divergence
theorem, the periodicity condition, the boundary conditions (S.C.23) leads to:∫
Γ

(ρ∗(1)v − ρ∗(1)vs )dΓ = 0 (S.C.24)

The solution of the above boundary value problem for the temperature appears as a linear function of the macroscopic gradient,
modulo an arbitrary function T̃ ∗(1)(x∗, t):310

T
∗(1)
i (x∗,y∗, t) = s∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (S.C.25)

T ∗(1)
a (x∗,y∗, t) = s∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (S.C.26)

Similarly, we have

ρ∗(1)v (x∗,y∗, t)− ρ∗(1)vs (x∗,y∗, t) = γ∗(T ∗(0))d∗(y∗) ·gradx∗T ∗(0) (S.C.27)315

with, according to (S.A.40),

ρ∗(1)vs = γ∗(T ∗(0))s∗a(y
∗) ·gradx∗T ∗(0) (S.C.28)

Thus,

ρ∗(1)v (x∗,y∗, t) = γ∗(T ∗(0))(d∗(y∗)+ s∗a(y
∗)) ·gradx∗T ∗(0) (S.C.29)

where s∗i (y
∗), s∗a(y

∗) and d∗(y∗) are periodic vectors which characterize the fluctuation of temperature and the water vapor320
at the pore scale. Introducing (S.C.29), (S.C.26) and (S.C.29) in the set (S.C.18)-(S.C.23), these vectors are solution of the
following boundary value problem in a compact form:

divy∗(k∗i (grady∗s∗i + I)) = 0 in Ωi (S.C.30)

11



divy∗(k∗a(grady∗s∗a + I)) = 0 in Ωa (S.C.31)325

s∗i = s∗a on Γ (S.C.32)

(k∗i (grady∗s∗i + I)− k∗a(grady∗s∗a + I)) ·ni =
L∗
sg

ρ∗i
α∗w∗

kγ
∗(T ∗(0))d∗ on Γ (S.C.33)

330

divy∗(D∗
v(grady∗(d

∗ + s∗a)+ I)) = 0 in Ωa (S.C.34)

D∗
v(grady∗(d

∗ + s∗a)+ I) ·ni = α∗w∗
kd

∗ on Γ (S.C.35)

with

1

|Ω|

∫
Ω

(s∗a + s∗i )dΩ= 0 (S.C.36)335

1

|Ω|

∫
Γ

d∗dΓ = 0 (S.C.37)

to ensure the unicity of the solution. Let us remark that the vectors s∗i (y
∗), s∗a(y

∗) and d∗(y∗) depend on the value α.
This model is valid for [WR] =O (1), i.e ε1/2 < [WR]< ε−1/2. This implies that (ε1/2Dvc/(lwkc)) = αmin < α < αmax =
(ε−1/2Dvc/(lwkc)).340

S.3.3 Macroscopic description

Finally, the third order problem for the heat transfer is given by Eq. (S.C.1), (S.C.2), (S.C.4), and (S.C.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.C.38)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (S.C.39)345

T
∗(2)
i = T ∗(2)

a on Γ (S.C.40)

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = (S.C.41)

350

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v )) ·ni on Γ

12



where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. Integrating (S.C.38) over Ωi and (S.C.39) over Ωa,

and then using the divergence theorem, the periodicity condition, the interface conditions (S.C.41) and the results leads to the
first order dimensionless description:

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(kC∗gradx∗T ∗(0)) =−

∫
Γ

L∗
sgw

∗(2)
n dS = L∗

sgϕ̇ (S.C.42)355

where (ρC)eff∗ and kC∗ are the dimensionless effective thermal capacity and the effective dimensionless thermal conductivity
respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (S.C.43)

kC∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗s∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗s∗i (y
∗)+ I)dΩ

 (S.C.44)360

where ϕ is the porosity.
Finally, the third order problem for the water vapor is given by Eq. (S.C.3) and (S.C.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωi (S.C.45)

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(2)
n on Γ (S.C.46)365

where the unknown ρ
∗(2)
v (x∗,y∗, t) is y∗-periodic and w

∗(2)
n is the normal interface velocity due to the sublimation/deposition

process at the first order. Consequently, integrating (S.C.45) over Ωa, and then using the divergence theorem, the periodicity
condition, and the interface conditions (S.C.46) leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(DC∗gradx∗ρ∗(0)vs (T ∗(0))) =

∫
Γ

ρ∗iw
∗(2)
n dS = ρ∗i ϕ̇ (S.C.47)

where DC∗ is the classical dimensionless effective diffusion tensor defined as:370

DC∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ (d∗ + s∗a)+ I)dΩ (S.C.48)

S.4 Cases D1 and D2

S.4.1 Case D1

Taking into account the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [WR] =O
(
ε−1
)
, [H] =O (1), the dimensionless microscopic description (13)-(18) becomes:375

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (S.D1.1)
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ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (S.D1.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (S.D1.3)380

T ∗
i = T ∗

a on Γ (S.D1.4)

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (S.D1.5)

385

D∗
vgrad

∗ρ∗v ·ni = ε−1ρ∗iw
∗ ·ni on Γ (S.D1.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in
dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (S.D1.7)

390

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(S.D1.8)

S.4.1.1 Heat transfer and water vapor transfer at the first and the second order

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (S.D1.1), (S.D1.2), (S.D1.4), and (S.D1.5) gives at the lowest
order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (S.D1.9)395

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (S.D1.10)

T
∗(0)
i = T ∗(0)

a on Γ (S.D1.11)

400

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = L∗
sg

D∗
v

ρ∗i
grady∗ρ∗(0)v on Γ (S.D1.12)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. Introducing asymptotic expansions for ρ∗v in the

relations (S.D1.3, S.D1.6) gives at the lowest order:

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (S.D1.13)

14



405

ρ∗(0)v = ρ∗(0)vs (T ∗(0)) on Γ (S.D1.14)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. The solution of the above boundary value problems is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t) = ρ∗(0)vs (T ∗(0)) (S.D1.15)

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t) (S.D1.16)410

At the first order, the temperature and the water vapor density are independent of the microscopic dimensionless variable y∗.
We have only one temperature field. Taking these results into account, Eq. (S.D1.1), (S.D1.2), (S.D1.4), and (S.D1.5) of order
ε give the following second-order problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.D1.17)

415

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (S.D1.18)

T
∗(1)
i = T ∗(1)

a on Γ (S.D1.19)

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = (S.D1.20)420

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni on Γ

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

Moreover we have the second-order problem for Eq. (S.D1.3) and (S.D1.6) is written:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs )) = 0 in Ωa (S.D1.21)425

ρ∗(1)v = ρ∗(1)vs on Γ (S.D1.22)

where the unknowns ρ∗(1)v (x∗,y∗, t) is y∗-periodic. According to (S.A.40), this latter boundary condition can be also written

ρ∗(1)v = ρ∗(1)vs = γ∗(T ∗(0))T ∗(1)
a on Γ (S.D1.23)

Moreover, we have430

gradx∗ρ∗(0)vs = γ∗(T ∗(0))gradx∗T ∗(0) (S.D1.24)

thus Eq. (S.D1.21) and (S.D1.23) are written:

divy∗(D∗
v(grady∗ρ∗(1)v + γ∗(T ∗(0))gradx∗T ∗(0)) = 0 in Ωa (S.D1.25)

15



ρ∗(1)v = γ∗(T ∗(0))T ∗(1)
a on Γ (S.D1.26)435

The solution of the above boundary value problems (S.D1.17)-(S.D1.20) and (S.D1.25)-(S.D1.26) appears as a linear function
of the macroscopic gradient gradx∗T ∗(0), modulo an arbitrary function.

T
∗(1)
i (x∗,y∗, t) = r∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (S.D1.27)

T ∗(1)
a (x∗,y∗, t) = r∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (S.D1.28)440

ρ∗(1)v (x∗,y∗, t) = γ∗(T ∗(0))r∗a(y
∗) ·gradx∗T ∗(0) + T̃ ∗(1)

a on Γ (S.D1.29)

where r∗i (y
∗) and r∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the
pore scale. Introducing (S.D1.27) and (S.D1.28) in the set (S.D1.17)-(S.D1.20), these two vectors are solution of the following
boundary value problem in a compact form:445

divy∗(k∗i (grady∗r∗i + I)) = 0 in Ωi (S.D1.30)

divy∗((k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) = 0 in Ωa (S.D1.31)

r∗i = r∗a on Γ (S.D1.32)450

(k∗i (grady∗r∗i + I)− (k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) ·ni = 0 on Γ (S.D1.33)

1

|Ω|

∫
Ω

(r∗a + r∗i )dΩ= 0 (S.D1.34)

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar to455
the one of the Eq. (S.A.20)-(S.A.24) where k∗a is now equal to k∗a +L∗

sgD
∗
vγ

∗(T ∗(0))/ρ∗i . At the local scale, the thermal
conductivity appears to be enhanced by the phase change.

S.4.1.2 Macroscopic description

Finally, the third order problem is given by the equations (S.D1.1, S.D1.2, S.D1.4, S.D1.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.D1.35)460

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (S.D1.36)
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T
∗(2)
i = T ∗(2)

a on Γ (S.D1.37)

465

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = (S.D1.38)

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni on Γ

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. For the water vapor, the third order problem is given

by the the equations (S.D1.3, S.D1.6) of order ε2:470

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωa (S.D1.39)

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(3)
n on Γ (S.D1.40)

Integrating (S.D1.35) over Ωi and (S.D1.36) and (S.D1.39) over Ωa, and then using the divergence theorem, the periodicity
condition, and the interface conditions (S.C.41) leads to the first order dimensionless description:475

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(kD∗gradx∗T ∗(0)) =

∫
Γ

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS =−L∗

sgϕ̇ (S.D1.41)

where (ρC)eff∗ and kD∗ are the dimensionless effective thermal capacity and the apparent dimensionless conductivity respec-
tively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (S.D1.42)

480

kD∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗r∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗r∗i (y
∗)+ I)dΩ

 (S.D1.43)

where ϕ is the porosity. Integrating (S.D1.39) over Ωa, and then using the divergence theorem and the periodicity condition,
leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(DD∗gradx∗ρ∗(0)vs (T ∗(0))) =−

∫
Γ

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS = ρ∗i ϕ̇ (S.D1.44)

where DD∗ is the apparent effective diffusion tensor defined as:485

DD∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ r∗a(y

∗)+ I)d Ω (S.D1.45)
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S.4.2 Case D2

Taking into account the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [WR] =O
(
ε−1
)
, [H] =O (1), the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (S.D2.1)490

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (S.D2.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (S.D2.3)

495

T ∗
i = T ∗

a on Γ (S.D2.4)

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (S.D2.5)

D∗
vgrad

∗ρ∗v ·ni = ε−2ρ∗iw
∗ ·ni on Γ (S.D2.6)500

This set of equations is completed by the Hertz-Knudsen equation (S.A.7) and the Clausius Clapeyron’s law (9) expressed in
dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (S.D2.7)

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(S.D2.8)505

S.4.2.1 Heat transfer and water vapor transfer at the first and second order

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (S.D2.1, S.D2.2, S.D2.4, S.D2.5) gives at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (S.D2.9)

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (S.D2.10)510

T
∗(0)
i = T ∗(0)

a on Γ (S.D2.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = L∗
sg

D∗
v

ρ∗i
grady∗ρ∗(0)v on Γ (S.D2.12)

18



where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. Introducing asymptotic expansions for ρ∗v in the515

relations (S.D2.3, S.D2.6) gives at the lowest order

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (S.D2.13)

ρ∗(0)v = ρ∗(0)vs (T ∗(0)) on Γ (S.D2.14)

where the unknowns ρ∗(0)v (x∗,y∗, t) is y∗-periodic. The solution of the above boundary value problems is given by:520

ρ∗(0)v = ρ∗(0)v (x∗, t) = ρ∗(0)vs (T ∗(0)) (S.D2.15)

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t) (S.D2.16)

At the first order, the temperature and the water vapor density are independent of the microscopic dimensionless variable y∗.
We have only one temperature field. Taking these results into account, equations (S.D2.1, S.D2.2, S.D2.4, S.D2.5) of order ε525
give the following second-order problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.D2.17)

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (S.D2.18)

530

T
∗(1)
i = T ∗(1)

a on Γ (S.D2.19)

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = (S.D2.20)

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni on Γ535

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

Moreover we have the second-order problem for the equations (S.D2.3, S.D2.6) is written:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs )) = 0 in Ωa (S.D2.21)

ρ∗(1)v = ρ∗(1)vs on Γ (S.D2.22)540

where the unknowns ρ∗(1)v (x∗,y∗, t) is y∗-periodic. According to (S.A.40), this latter boundary condition can be also written

ρ∗(1)v = ρ∗(1)vs = γ∗(T ∗(0))T ∗(1)
a on Γ (S.D2.23)

Moreover, we have

gradx∗ρ∗(0)vs = γ∗(T ∗(0))gradx∗T ∗(0) (S.D2.24)

19



thus equations (S.D2.21) and (S.D2.23) are written:545

divy∗(D∗
v(grady∗ρ∗(1)v + γ∗(T ∗(0))gradx∗T ∗(0)) = 0 in Ωa (S.D2.25)

ρ∗(1)v = γ∗(T ∗(0))T ∗(1)
a on Γ (S.D2.26)

As in the Cases C1 and C2, the solution of the above boundary value problems (S.D2.17-S.D2.20) and (S.D2.25-S.D2.26)
appears as a linear function of the macroscopic gradient gradx∗T ∗(0), modulo an arbitrary function.550

T
∗(1)
i (x∗,y∗, t) = r∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (S.D2.27)

T ∗(1)
a (x∗,y∗, t) = r∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (S.D2.28)

ρ∗(1)v (x∗,y∗, t) = γ∗(T ∗(0))(r∗a(y
∗) ·gradx∗T ∗(0) + T̃ ∗(1)

a ) on Γ (S.D2.29)555

where r∗i (y
∗) and r∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the
pore scale. Introducing (S.D2.27) and (S.D2.28) in the set (S.D2.17-S.D2.20), these two vectors are solution of the following
boundary value problem in a compact form:

divy∗(k∗i (grady∗r∗i + I)) = 0 in Ωi (S.D2.30)

560

divy∗((k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) = 0 in Ωa (S.D2.31)

r∗i = r∗a on Γ (S.D2.32)

(k∗i (grady∗r∗i + I)− (k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) ·ni = 0 on Γ (S.D2.33)565

1

|Ω|

∫
Ω

(r∗a + r∗i )dΩ= 0 (S.D2.34)

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar to
the one of the Eq. (S.A.20)-(S.A.24) where k∗a is now equal to k∗a +L∗

sgD
∗
vγ

∗(T ∗(0))/ρ∗i . At the local scale, the thermal
conductivity appears to be enhanced by the phase change.570
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S.4.2.2 Macroscopic description

Finally, the third order problem is given by Eq. (S.D2.1), (S.D2.2), (S.D2.4), and (S.D2.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (S.D2.35)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (S.D2.36)575

T
∗(2)
i = T ∗(2)

a on Γ (S.D2.37)

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = (S.D2.38)

580

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni on Γ

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. For the water vapor, the third order problem is given

by Eq. (S.D2.3) and (S.D2.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωa (S.D2.39)

585

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(4)
n on Γ (S.D2.40)

Integrating (S.D2.35) over Ωi and (S.D2.36) and (S.D2.39) over Ωa, and then using the divergence theorem, the periodicity
condition, and the interface conditions (S.C.41) leads to the first order dimensionless description:

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(kD∗gradx∗T ∗(0)) =

∫
Γ

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS =−L∗

sgϕ̇ (S.D2.41)

where (ρC)eff∗ and kD∗ are the dimensionless effective thermal capacity and the apparent dimensionless thermal conductivity,590
respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (S.D2.42)

kD∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗r∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗r∗i (y
∗)+ I)dΩ

 (S.D2.43)

where ϕ is the porosity. Integrating (S.D2.39) over Ωa, and then using the divergence theorem and the periodicity condition,595
leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(DD∗gradx∗ρ∗(0)vs (T ∗(0))) =−

∫
Γ

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS = ρ∗i ϕ̇ (S.D2.44)

where DD∗ is the apparent effective diffusion tensor defined as:

DD∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ r∗a(y

∗)+ I)d Ω (S.D2.45)
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