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Abstract. Repeated electrical resistivity tomography (ERT)
surveys can substantially advance the understanding of spa-
tial and temporal freeze–thaw dynamics in remote regions,
such as Antarctica, where the evolution of permafrost has
been poorly investigated. To enable time-lapse ERT surveys
in Antarctica, an automated ERT (A-ERT) system is re-
quired, as regular site visits are not feasible. In this context,
we developed a robust A-ERT prototype and installed it at the
Crater Lake CALM-S site on Deception Island, Antarctica, to
collect quasi-continuous ERT measurements. We developed
an automated data processing workflow to efficiently filter
and invert the A-ERT datasets and extract the key informa-
tion required for a detailed investigation of permafrost and
active-layer dynamics.

In this paper, we report on the results of two complete
year-round A-ERT datasets collected in 2010 and 2019 at the
Crater Lake CALM-S site and compare them with available
climate and borehole data. The A-ERT profile has a length of
9.5 m with an electrode spacing of 0.5 m, enabling a maxi-
mum investigation depth of approximately 2 m. Our detailed
investigation of the A-ERT data and inverted results shows
that the A-ERT system can detect the active-layer freezing
and thawing events with high temporal resolution. The resis-
tivity of the permafrost zone in 2019 is very similar to the val-
ues found in 2010, suggesting the stability of the permafrost

over almost 1 decade at this site. The evolution of thaw depth
exhibits a similar pattern in both years, with the active-layer
thickness fluctuating between 0.20–0.35 m. However, a slight
thinning of the active layer is evident in early 2019, com-
pared to the equivalent period in 2010.

These findings show that A-ERT datasets, combined with
the new processing workflow that we developed, are an effec-
tive tool for studying permafrost and active-layer dynamics
with very high resolution and minimal environmental distur-
bance. The ability of the A-ERT setup to monitor the spa-
tiotemporal progression of thaw depth in two dimensions,
and potentially in three dimensions, and to detect brief surfi-
cial refreezing and thawing of the active layer reveals the sig-
nificance of the automatic ERT monitoring system to record
continuous resistivity changes. An A-ERT monitoring setup
with a longer profile length can investigate greater depths,
offering effective monitoring at sites where boreholes are
costly and invasive techniques are unsuitable. This shows
that the A-ERT setup described in this paper can be a sig-
nificant addition to the Global Terrestrial Network for Per-
mafrost (GTN-P) and the Circumpolar Active Layer Mon-
itoring (CALM) networks to further investigate the impact
of fast-changing climate and extreme meteorological events
on the upper soil horizons and to work towards establish-
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ing an early warning system for the consequences of climate
change.

1 Introduction

Antarctica is home to 90 % of the world’s ice, making it a
crucial influencer of the Southern Hemisphere and global at-
mospheric and cryospheric systems (Bockheim, 2004). An
understanding of the distribution and properties of Antarc-
tic permafrost is essential for the cryospheric sciences, as
well as for ecology and biological sciences, since it is a
major control on ecosystem modification following climate-
induced changes (Vieira et al., 2010). Despite its significance
and compared with other components of the cryosphere,
our understanding of Antarctic permafrost and its response
to global change remains limited (Biskaborn et al., 2019;
Hrbáček et al., 2023). This gap in permafrost knowledge
holds true for much of Antarctica, excluding, perhaps, the
McMurdo Dry Valleys (MDVs), which have been the focus
of substantial research efforts for several decades (Vieira et
al., 2010). Systematic investigations on permafrost are less
common in other Antarctic regions, and the majority of stud-
ies have been conducted in the vicinity of research stations.
The harsh climate, environmental conditions, remoteness,
and logistical difficulties and expenses impose limitations on
permafrost research in Antarctica (Hrbáček et al., 2023).

In the framework of the Global Terrestrial Network for
Permafrost (GTN-P), three critical permafrost parameters
have been designated as essential climate variables (ECVs)
by the Global Climate Observing System (GCOS) of the
WMO: (i) the active-layer thickness (ALT), representing the
annual thaw depth above permafrost, with a primary focus
on data gathered from the Circumpolar Active Layer Moni-
toring (CALM) network (Brown et al., 2000); (ii) the thermal
state of permafrost (TSP), encompassing permafrost temper-
ature, systematically observed through an extensive network
of boreholes over the long term (Biskaborn et al., 2019); and
(iii) the recently approved rock glacier velocity, which fo-
cuses on the movement of these prominent geomorphologi-
cal features, especially in mountain permafrost environments
(RGIK, 2023).

Information on the spatial variability of the ALT in Antarc-
tica primarily stems from monitoring sites under the CALM-
South (CALM-S) program. However, beyond the logistical
difficulties, also discussed by Hrbáček et al. (2023), the es-
tablishment of a CALM-S site in Antarctica faces additional
challenges arising from the adverse ground surface condi-
tions such as extensive bedrock outcrops and block fields, as
well as mountainous terrains. These conditions hinder me-
chanical probing and accurate spatial measurements of ALT.
Moreover, mechanical probing lacks the capability for real-
time monitoring of thaw depth, as it is typically performed
only once a year, frequently missing the date of maximum

thaw depth. Monitoring of the TSP is also limited in Antarc-
tica, especially concerning depths below the zero annual tem-
perature amplitude, mainly due to logistical and technical
constraints (Biskaborn et al., 2019). Furthermore, boreholes
record data about discrete ground properties only in one di-
mension, rendering them impractical for comprehensive cov-
erage. In the context of Antarctic research, logistical and
technical constraints and ecologically sensitive ecosystems
further discourage the use of invasive methodologies like
boreholes (Farzamian et al., 2020).

In light of these challenges, non-invasive geophysi-
cal techniques like electrical resistivity tomography (ERT)
emerge as a promising avenue to tackle some of these issues.
ERT has become a standard tool in permafrost research due
to its capability to detect and monitor permafrost and active-
layer dynamics in two or three dimensions, leveraging the
distinct contrast in electrical resistivity between frozen (more
resistive) and unfrozen (more conductive) materials (Herring
et al., 2023). Variations in resistivity between repeated ERT
surveys are widely used to monitor the dynamics of the ac-
tive layer, permafrost temperature, and unfrozen water con-
tent (Krautblatter, 2010; Oldenborger and LeBlanc, 2018).
In this context, time-lapse ERT is an increasingly used tool
for exploring permafrost–climate interactions and providing
insights into how evolving climatic conditions influence per-
mafrost over varying timescales, spanning decades in some
cases (Mollaret et al., 2019; Buckel et al., 2023; Etzelmüller
et al., 2020; Scandroglio et al., 2021). However, in the vast
majority of cases, the ERT surveys are operated manually,
necessitating frequent on-site visits which can be logistically
complex and expensive.

Recent advances in instrumentation have enabled auto-
mated ERT (A-ERT) data collection in permafrost environ-
ments, eliminating the need for repeated site visits. A-ERT
equipment has been installed at several sites in the Eu-
ropean Alps (e.g., Hilbich et al., 2011; Keuschnig et al.,
2017) and more recently in the Arctic (e.g., Uhlemann et al.,
2021; Tomaškovičová and Ingeman-Nielsen, 2023; Farza-
mian et al., 2024a) to monitor changing permafrost condi-
tions. Farzamian et al. (2020) introduced a simple and robust
A-ERT prototype for continuous permafrost monitoring in
Antarctica. More recently, Farzamian et al. (2024b) reported
the hardware details of this prototype with new adjustments
to optimize the power demand of the system for better adap-
tation to monitoring in remote polar areas. This second pro-
totype was installed on Livingston Island, Antarctica. These
prototypes are low-cost, low-power, and automated and can
be operated with high temporal frequency, enabling the study
of the impacts of short-term meteorological events on per-
mafrost terrain, such as infiltration processes in the active
layer. The first prototype was installed on Deception Island
and tested for year-round operation in 2010 (see Farzamian
et al., 2020). More recently, in 2019, the authors upgraded
and reinstalled the A-ERT system to study the active-layer
and permafrost conditions after almost 1 decade and to fur-
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ther evaluate the potential of its application for permafrost
studies in remote areas.

This recent development of A-ERT prototypes presents a
new challenge for efficiently processing and inverting large
volumes of datasets while extracting essential information
from the A-ERT data. In our case, with over 1400 datasets
per year, it is not feasible to manually filter and perform a
quality control of each individual dataset, necessitating the
development of automated data filtering and inversion pro-
cedures. This need will become even more critical in the fu-
ture as the number of A-ERT systems deployed increases,
as new long-term monitoring projects are planned to span
decades or more. Currently, most available commercial and
open-source software packages lack adequate built-in filter-
ing tools and inversion protocols and/or are cumbersome to
use for A-ERT data with a very large number of repetitions.
Therefore, establishing a suitable automated data processing
tool becomes increasingly important. Although an effort has
been made to establish best practices for filtering and in-
verting ERT datasets collected in permafrost environments
(Herring et al., 2023), this workflow has not yet been ap-
plied to temporally dense time-series data. As discussed by
Farzamian et al. (2024b), such time-series data require more
sophisticated fine-tuning of data filtering and inversion pa-
rameters to process large datasets rapidly and efficiently. Ad-
ditionally, various built-in analysis tools are necessary for a
detailed assessment of permafrost and active-layer dynamics
in permafrost regions. These tools enable calculations such
as the resistivity at virtual analysis (e.g., Hilbich et al., 2011),
the average resistivity over time in a zone of interest (e.g., Et-
zelmüller et al., 2020), and maximum gradients to delineate
the thaw layer and permafrost interface depth (e.g., Herring
and Lewkowicz, 2022).

This article has, therefore, two objectives: (1) to describe
a new semi-automated processing workflow and show how it
efficiently filters and inverts a large number of ERT datasets,
extracting the key information required for detailed assess-
ment of permafrost and active-layer dynamics, and (2) to
compare the resistivity models obtained in 2019 with those
from 2010 (the latter having been presented in Farzamian et
al., 2020), in combination with climate, borehole, and soil
probing data to assess the active-layer and permafrost con-
ditions after almost 1 decade. The A-ERT data and plots, as
well as the companion Jupyter Notebook used to process the
A-ERT data, are available at https://github.com/teddiherring/
AERT (last access: 10 September 2024; Herring et al., 2024).

2 Material and methods

2.1 Study area and monitoring setup at Crater Lake
CALM-S

Deception Island, situated approximately 100 km north of
the Antarctic Peninsula in the Bransfield Strait, is part of

the South Shetland Islands (Fig. 1). The island is an ac-
tive stratovolcano with a horseshoe-shaped rim and a diame-
ter of 15 km, with a 9 km diameter caldera open to the sea
and a maximum elevation at Mount Pond (539 m) (Prates
et al., 2023). Around 57 % of Deception Island is covered
by glaciers, while about 47 km2 is glacier-free (Smellie and
López-Martínez, 2002). The climate of Deception Island is
cold–oceanic, characterized by frequent summer rainfalls
and a moderate annual temperature range. Mean annual air
temperatures near sea level hover around−3 °C. The weather
conditions are heavily influenced by polar frontal systems,
resulting in highly variable atmospheric circulation, includ-
ing the possibility of winter rainfall, as well as summer snow-
fall (Styszynska, 2004). Deception Island was formed by
the intercalation of lava flows, pyroclastic deposits, and ash.
Many of the island’s present-day glaciers are ash-covered, re-
sulting from eruptions in 1967, 1969, and 1970. These erup-
tions buried the snow mantle, with remnants of buried snow
still present in some areas outside the glacier areas. The de-
posits on the island are highly porous and insulating, with
a significant ice content at the permafrost table. The active
layer is thin, varying from 0.25 to 1 m depth across different
soils, and boreholes show the presence of warm permafrost
(Bockheim et al., 2013; Ramos et al., 2017; de Pablo et al.,
2020).

The study site, Crater Lake CALM-S, is located on
a small, relatively flat plateau-like surface covered with
volcanic and pyroclastic deposits. Positioned at an alti-
tude of 85 m above sea level, it lies north of Crater Lake
(62°59′06.7′′ S, 60°40′44.8′′W). The selection of this site
was based on its flat characteristics, absence of summer snow
cover, considerable distance from known geothermal anoma-
lies, exposure to regional climate conditions, and proxim-
ity to the Spanish station Gabriel de Castilla. The Crater
Lake CALM-S site comprises a 100 m× 100 m grid with 121
nodes for mechanical probing spaced at 10 m intervals, as
shown in Fig. 1. It was established in January 2006 and has
undergone several upgrades since its installation. The site in-
cludes the monitoring of air temperature, active-layer and
permafrost temperatures, active-layer thickness, and snow
thickness.

Air temperature has been monitored since 2009 by using a
Tinytag Plus 2 logger device by Gemini, with PT100 exter-
nal temperature probe inserted into a solar radiation shield
installed on a mast at 160 cm above the ground. Data are
recorded hourly with a resolution of 0.01 °C and an accu-
racy of 0.04 °C. Ground temperatures are monitored in the
shallow borehole at node x =30 m, y =30 m (see Fig. 1) of
the CALM site (S3,3), down to 160 cm. This borehole, cased
with air-filled PVC pipe, contains an array of DS1922L iBut-
ton miniature temperature loggers by Maxim at depths of
2.5, 5, 10, 20, 40, 80, and 160 cm to measure ground tem-
perature with a resolution of 0.0625 °C and an accuracy of
0.5 °C. Snow thickness estimation is calculated using near-
surface air temperature DS1922L iButton sensors installed
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on a vertical wood stake at heights of 2.5, 5, 10, 20, 40, 80,
and 160 cm above the ground (de Pablo et al., 2016). Snow
thickness is derived considering the changes in the thermal
behavior of consecutive temperature devices along the mast
when snow covers or uncovers one sensor, following the clas-
sical method (Lewkowicz, 2008). Manual measurements of
thaw depth are conducted annually in the summer, covering
121 nodes spaced at 10 m intervals (Ramos et al., 2017).

The ground surface at the Crater Lake CALM-S site is
devoid of vegetation, and the mean annual air temperature
(MAAT) recorded between 28 January 2009 and 22 Jan-
uary 2014 was −3.0 °C. Permafrost shows a thickness of
about 4.5 m as recorded at the S1 borehole (De Pablo et al.,
2016), with temperatures from −0.3 to −0.9 °C. The active-
layer thickness varies from 25 to 40 cm (Ramos et al., 2017)
and is controlled by differences in surface deposits and snow
cover duration, mainly associated with wind exposure.

2.2 A-ERT monitoring setup

The A-ERT system, using a 4POINTLIGHT_10W (Lipp-
mann) resistivity meter, originally deployed in 2010 (see
Farzamian et al., 2020), was upgraded and reinstalled in
February 2019 for long-term quasi-continuous monitoring
along the same transect in the vicinity of the ground tem-
perature borehole S3,3. The upgrades compared to 2010 in-
clude the measurement of battery voltage and the tempera-
ture of the resistivity meter at the time of each ERT survey.
These upgrades allow us to monitor the power demand of the
system and the temperature fluctuations to which the resis-
tivity meter is exposed. The hardware details of this A-ERT
setup are very similar to those described in detail in Farza-
mian et al. (2024b) although our setup on Deception Island
does not have the timer solution to switch off the system after
each survey. The same survey parameters were used to col-
lect A-ERT data in 2010 and 2019, enabling comparison of
the two datasets. A-ERT surveys were performed using the
Wenner electrode configuration for optimized energy con-
sumption and higher vertical resolution to best differentiate
the active-layer–permafrost boundary (Loke, 2002). A total
of 20 electrodes with a spacing of 0.5 m were installed at
the site, yielding 56 individual data points for each monitor-
ing dataset at six data levels. The measurements started in
February 2019 and were repeated every 6 h. The measure-
ments were stored in the internal memory of the 4POINT-
LIGHT_10W device. This study focuses on A-ERT data col-
lected from February 2019 to February 2020, offering a year-
round dataset showcasing the A-ERT data variability and al-
lowing for a comparison with the original A-ERT dataset
from 2010. Mechanical probing before the A-ERT installa-
tion in 2019 and after data download in 2020 also allows for
a comparison with ALT data derived from mechanical prob-
ing.

Figure 1. Location of the A-ERT setup at Crater Lake CALM-S
site on Deception Island. The A-ERT box encasing the 4POINT-
LIGHT_10W resistivity meter instrument, solar-panel-driven bat-
tery, and multi-electrode connectors (A). Electrodes were buried in
the ground and were connected to the cables (B). The solar panels
are shown (C). Complementary environmental parameters are mon-
itored close to the A-ERT profile at node x =30 m, y =30 m of the
CALM’s grid including borehole ground temperatures (D), snow
thickness (E), and air temperature (F).
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2.3 A-ERT data processing

ERT data can be susceptible to various sources of noise, such
as poor galvanic contact, random errors, and polarization ef-
fects. In our setup, poor galvanic contact and the measure-
ment of high resistivities at very low currents are considered
to be the dominant sources of error. To improve the quality
of the data and identify poor-quality measurements, we ap-
plied a minimum of five and a maximum of nine stacks per
quadrupole, with a target standard deviation of 2 %. While
stacking variance can be useful for identifying bad measure-
ments, we observed that it is possible for outlier measure-
ments to have low stacking errors. This suggests that relying
solely on stacking error is ineffective for data processing, as
has been discussed by other authors (e.g., Tso et al., 2017).
Therefore, additional filtering is necessary to automatically
identify and remove poor-quality data. Automated data filter-
ing workflows are particularly valuable in our setup, where
the large number of datasets per year makes manual data
checking and filtering impractical.

Following the automated data filtering routine outlined by
Herring et al. (2023), we implemented a series of filtering
steps. Each filtering step required quantitative thresholds of
data quality, which were determined empirically by itera-
tively testing the filtering algorithm on random subsets of
the data and selecting thresholds that worked well for all
datasets. In the first filtering step (step 1), we removed data
points where the apparent resistivity was less than or equal to
0, data points with a stacking error greater than 2 %, and mea-
surements with anomalously high apparent resistivity, de-
fined as values greater than 9 times the standard deviation of
the entire technically filtered dataset to account for different
types of measurement error. This removal of physically un-
realistic values is a reasonable data filtering step for any site.
Next, in step 2, the moving median filter calculated a moving
median of logarithmic apparent resistivities along each depth
level in the pseudosection, using a window of five data points
(except at the edges of the pseudosection, where a smaller
window was necessary). Data points that deviated from the
moving median by more than 7 % were removed. We also
introduced a filtering step (step 3) that identified “bad” elec-
trodes by evaluating how many data points associated with
a particular electrode were removed in the previous steps. If
more than 25 % of the data points measured by an electrode
were removed, all the remaining data points from that elec-
trode were discarded. Finally, in step 4, any datasets where
more than 30 % of the data had been filtered in the previous
steps were considered of poor quality and were not inverted,
as the results would be too unreliable in a time-lapse model-
ing context.

2.4 ERT data inversion and analysis

Following the data filtering, all data were inverted using
pyGIMLi, an open-source software package for geophysi-

cal modeling and inversion (Rücker et al., 2017). An L1 or
“blocky” model norm was used due to its ability to better re-
solve sharp boundaries and large resistivity contrasts (Loke
et al., 2003), like those expected between the thawed sur-
face layer and the frozen ground beneath. Since the choice
of regularization parameter controls the relative weighting of
model and data misfit terms in the inversion, it is important to
choose this parameter judiciously to avoid an overly smooth
or noisy model. Here, the regularization parameter was opti-
mized by an L-curve method using a built-in pyGIMLi func-
tion, a process which tests several regularization values and
determines the optimal value (Günther et al., 2006). A sim-
ple linear noise model is typically used to estimate data error
(Tso et al., 2017). Here, a noise model was created with 4 %
relative noise and a small noise floor, taken to be 0.001. The
starting model was set to a homogenous model of the average
apparent resistivity for the first dataset in each monitoring pe-
riod, while subsequent inversions used the previous inverted
model (i.e., a “cascaded” inversion approach). The inversion
proceeded until χ2 was equal to 1 (i.e., the data were fit to
within the assumed noise levels), a maximum number of it-
erations was reached (here set to 20 iterations), or the inver-
sion converged (here taken to be when the objective function
changed by less than 1 % between iterations).

After inversion, several analyses were conducted in order
to extract the key information required for a detailed inves-
tigation of permafrost and active-layer dynamics. Similar to
Farzamian et al. (2020), inverted resistivities were plotted for
a virtual borehole in the center of the profile, close to the ex-
isting borehole S3,3, enabling easy visualization of temporal
patterns and comparison of inverted resistivities of A-ERT
data from 2019 to 2010. This virtual borehole analysis is
also used to compare the A-ERT results to the correspond-
ing temporal borehole thermal variations obtained from S3,3.
In addition, the model coverage, which is calculated with a
built-in pyGIMLi function by summing the entries of the Ja-
cobian and normalizing by cell volume, was incorporated as
an opacity filter in order to assess the reliability of the mod-
els.

To delineate the active layer and permafrost and to map
the progression of thaw depth, we used the gradient method.
This method is a reliable way to identify structurally simple
unfrozen–frozen interfaces (Herring and Lewkowicz, 2022)
based on their large resistivity contrast. At Crater Lake, the
presence of an ice-rich top of permafrost layer improves this
approach, since it results in a very high vertical resistivity
contrast. Thaw depths were only interpreted when the near-
surface resistivity was low (i.e., unfrozen). The results were
then compared to the manual probing data and borehole tem-
peratures. Furthermore, to facilitate assessment of temporal
resistivity changes in the permafrost zone, a zone of interest
was delineated at the center of the resistivity model from 2–
7.5 m along the survey and 0.5–1.5 m depth. This zone of in-
terest represents a well-resolved zone of the permafrost (i.e.,
beneath the permafrost table and in a region of higher sen-
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sitivity away from the edges of the model). Similar method-
ologies to examine resistivity in a zone of interest have been
applied in previous studies (e.g., Etzelmüller et al., 2020;
Kneisel et al., 2014; Mollaret et al., 2019).

3 Results

3.1 Analysis of observational data

Figure 2 shows mean monthly air temperatures and snow
thickness at Crater Lake from 2010 to 2019, observed close
to the middle of the A-ERT transect (see Fig. 1 for the lo-
cations of sensors and A-ERT profile), to present the gen-
eral trends in temperatures and snow thickness in this period.
Mean monthly air temperatures at Crater Lake from 2010 to
2019 showed a slight cooling until 2015 followed by a slight
warming, with mean annual air temperatures ranging from
−3.2 °C in 2015 to −0.8 °C in 2018. Mean monthly snow
thickness followed a general trend similar to the air temper-
ature, with years such as 2011 and 2019 showing shallow
snow pack (< 10 cm), while 2014, 2015, and 2016 showed
longer and thicker snow cover (> 20 cm). Overall, the data
show that interannual conditions are variable both in snow
cover and temperature and that 2010 and 2019 have compa-
rable temperatures but different snow regimes.

Figure 3 shows detailed variations in snow cover thick-
ness, air, and borehole temperature during the A-ERT mon-
itoring periods in 2010 and 2019. Snow cover during win-
ter was generally thin, with only 5 to 30 cm thickness and
frequent snow-free periods (Fig. 3a). The number of days
with snow cover was lower in 2019 (85 d) compared to 2010
(118 d). In addition, the snow thickness was also thinner in
general in 2019, and the difference became more evident
during October, which showed either snow-free or very thin
(i.e., less than 5 cm) snow cover in 2019. The air tempera-
ture fluctuation (Fig. 3b) is very similar in 2010 and 2019,
ranging from −13.8 to 2.8 °C in 2010 and from −13.9 to
2.8 °C in 2019. The mean annual air average temperature
is slightly lower in 2019 (−2.9 °C vs. −2.3 °C in 2010),
and the standard deviation was also slightly higher in 2019
(3.4 °C vs. 3.2 °C in 2010), suggesting 2019 was a slightly
colder year with slightly larger temperature fluctuations at
this site. Air and shallow ground temperature are generally
well-coupled when there is no snow cover and with a slight
phase lag when snow is present.

The ground temperature at three depths (5, 20, and 80 cm)
is shown in Fig. 3c–e for S3,3. Temperature fluctuates signif-
icantly at shallower depths (i.e., within the active layer) dur-
ing the year, with temperatures at 5 cm depth ranging from
−7.5 to 2.1 and −8.6 to 3.1 °C in 2010 and 2019, respec-
tively, and from−6 to 0.5 and−7.1 to 1 °C at 20 cm depth in
2010 and 2019, respectively, reflecting the snow cover vari-
ability and air temperature fluctuations. The average ground
temperature at these depths was slightly colder (i.e., 0.1 °C)

in 2019 compared to 2010. Active-layer freezing started in
mid-April in 2010 and in mid-May in 2019, showing a delay
of about 1 month between 2010 and 2019. Due to the thin
snow cover during freezing and its late onset, as well as the
lack of significant soil moisture, no zero-curtain effect is ev-
ident in either year. In contrast, there is a zero-curtain phase
of almost 1 month during the thawing season starting from
mid-October in both years. During both years and apart from
seasonal freezing and thawing, brief and superficial changes
of the ground temperature around 0 °C are very frequent. A
more detailed discussion of these short-lived meteorological
events is presented by Farzamian et al. (2020). Similar surfi-
cial refreezing events can be also identified in 2019 in April
and May.

Temperature fluctuations at the deeper layers (i.e., 80 cm),
just below the permafrost table, show smaller amplitudes
ranging from−3.9 °C to close to 0 °C in both years (Fig. 3e).
While the temperature range of the permafrost is similar be-
tween the 2 years, permafrost is slightly warmer during the
first 9 months of the year in 2019 and then slightly colder
during the last 3 months. These small differences can be at-
tributed to air temperature and snow cover differences, such
as the cold event in early October 2019 that penetrated deeper
in the absence of snow cover, leading to slightly lower tem-
peratures in the last 3 months of 2019.

3.2 Analysis of apparent resistivity data

Figure 4 shows an example of the application of a multi-step
data processing workflow. Although the majority of datasets
collected in 2010 and 2019 exhibit excellent quality, the pre-
sented example serves for illustrative purposes to demon-
strate the functionality of the filtering scheme. Figure 4a rep-
resents the original data, while Fig. 4b–d display the filtered
data after each step of the process. Through this multi-step
data processing workflow, poor-quality measurements and
anomalous data points were effectively eliminated, showcas-
ing the effectiveness of the filtering procedure. This work-
flow was automated and applied to all datasets, enabling
rapid and efficient identification and elimination of problem-
atic data based on the same qualitative criteria. For other sites
and applications, each step should be tested and threshold
values adjusted as needed, as optimal values (specifically for
steps 2–4) depend on the site conditions and data quality.

Overall, the A-ERT data in both years exhibited high qual-
ity, with less than 1 % of data points being removed by filter-
ing and less than 0.5 % of A-ERT datasets being discarded
due to poor quality (Fig. 5). Almost all of the discarded
datasets were from the winter when the active layer is frozen
and contact resistances at the electrodes are high (> 100 k�).
After processing and filtering the measurements, the mean
daily apparent resistivity (ρa) values for each data level be-
tween 2010 and 2019 were plotted (Fig. 6).

In general, there is good agreement between the apparent
resistivity data from 2010 (ρa2010) and 2019 (ρa2019), both
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Figure 2. Mean monthly air temperatures and snow thickness at Crater Lake from 2010 to 2019, observed close to the middle of the A-ERT
transect.

during winter and summer. The shallow data, corresponding
to electrode spacings of 0.5 and 1 m and investigation depths
of ∼ 0.25 and 0.5 m, exhibit the highest temporal variability
in both years, as these measurements are more influenced by
significant resistivity changes during phase change processes
(i.e., freeze and thaw events within the active layer), which
are more frequent close to the ground surface. In mid-April,
the ρa2010 data for 0.5 and 1 m electrode spacing experience
a sharp rise in apparent resistivity within a 2-week period,
starting from values below 20 k�m and exceeding 500 k�m
by early May, indicating the onset of the seasonal freezing.
ρa2019 data show a similar sharp rise in apparent resistivity in
mid-May from values below 30 k�m to larger than 500 k�m
in mid-May but within a shorter time interval (1 week). This
suggests a 1-month delay in the seasonal freezing between
2010 and 2019 and agrees well with borehole information
presented in Fig. 3c–e. The sharp increase in apparent resis-
tivity in both years is attributed to the abrupt phase change
upon freezing in the absence of a significant snow cover dur-
ing April and May. Deeper levels, corresponding to electrode
spacing of 1.5, 2, 2.5, and 3 m and investigation depths of
∼ 0.75–1.5 m, exhibit a delayed response, indicating the ad-
vancement of the freezing front, which aligns with the grad-
ual decrease in the permafrost temperature with depth (see
Fig. 3e).

Conversely, the beginning of the seasonal thawing phase in
both years is characterized by a steady decrease in apparent
resistivity, starting on 4 October and extending until the end
of October in 2010 and starting on 15 October and continuing
until mid-November in 2019. The gradual decrease in appar-
ent resistivity during the thawing season, as opposed to the
abrupt phase change in autumn, can be attributed to the pres-
ence of snow cover (Farzamian et al., 2020). The snow cover
acts as an insulating layer, preventing the subsurface from be-
ing directly affected by warm-air signals in spring, thereby

dampening the thawing process. Furthermore, the melting
snow provides infiltrating water into the active layer close
to 0 °C, which refreezes in contact with the colder ground
(Scherler et al., 2010). During thawing, latent heat is ab-
sorbed and the temperature remains at 0 °C (zero-curtain ef-
fect). Similar to the temperature evolution, the deeper layers
experience a delay in the resistivity decrease compared to
shallower layers. Notably, this decrease in apparent resistiv-
ity was more gradual in 2010 compared to 2019, particularly
at the beginning of the thawing season, where the resistivity
decrease is sharper during 15–20 October compared to 2019.
This is in good agreement with the temperature and snow
cover data (Fig. 3).

Aside from the seasonal resistivity changes, the daily ap-
parent resistivity fluctuations during 2010 and 2019 are gen-
erally small. However, there are notable fluctuations ob-
served in both years, which are associated with brief surfi-
cial refreezing of near-surface layers during summer or short
thawing periods in winter, as reported previously by Farza-
mian et al. (2020), resulting from short-lived meteorological
extreme events with rapid and superficial changes in ground
temperature around 0 °C.

3.3 Analysis of inverted resistivity models

3.3.1 2D models

Figure 7 shows monthly modeled resistivity results for the
years 2010 and 2019. The model coverage was plotted as
an opacity filter to show where the model was more sensi-
tive to the data (higher opacity) and less sensitive to the data
(lower opacity). The data utilized in this analysis are from
the 15th day of each month at 12:00 (in local solar time) for
both years, showcased side by side for comparison. The RM-
SEs indicate that the inverted models are able to reproduce
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Figure 3. Comparative plots of 2010 and 2019: daily snow cover depth (a), air temperature (160 cm above the surface) (b), and ground
temperatures at 5 cm (ground surface) (c), 20 cm (active layer) (d), and 80 cm (permafrost) depths (e).

field data reasonably well. RMSEs for ERT data collected in
permafrost environments usually range between 2 %–10 %,
with higher values typically recorded in winter (Herring et

al., 2023), which is in good agreement with the results from
the Crater Lake A-ERT dataset.

The resistivity pattern observed along the A-ERT monitor-
ing transect at the CALM-S site exhibits two distinct resis-
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Figure 4. Multi-step data filtering to remove noisy data points: (a) field measurements; (b) data after application of filtering step 1 (removal
of measurements that were≤ 0, had poor repeatability, or were outliers relative to the rest of the dataset); (c) data after application of filtering
step 1 and step 2 (moving median filter); and (d) data after the application of filtering step 1, step 2, and step 3 (bad electrode filter).

Figure 5. Data points removed using the automated data filtering
routine for 2010 (a) and 2019 (b). Overall, less than 1 % of the data
were removed.

tivity zones, and this distinction is evident in both years. The
first zone, extending to a maximum depth of approximately
0.4 m during the summer months in both years, corresponds
to the active layer, characterized by substantial resistivity

Figure 6. Apparent resistivity data of the A-ERT profile averaged
for each electrode spacing for 2010 (a) and 2019 (b).

changes during freezing and thawing events. The deeper zone
captures the permafrost down to a depth of 2 m. The resis-
tivity of both the active-layer and permafrost zones shows
minimal lateral variation along this small transect, suggesting
spatially homogeneous ground conditions in the study area.
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This observation aligns well with thaw depth measurements
obtained using a mechanical probe, which also indicated lim-
ited spatial variability at this CALM site, particularly around
the location of the A-ERT setup.

The top 40 cm, representing the active layer, undergoes the
largest resistivity changes primarily during seasonal freezing
and thawing events. In 2010, the most substantial resistiv-
ity changes commenced in May when the active layer froze.
However, in 2019, the substantial resistivity changes asso-
ciated with seasonal freezing are observed a month later in
June, as already detected by borehole data (see Fig. 3c–e).
Once the active layer freezes, heat is lost from deeper lay-
ers (i.e., permafrost zone), reducing unfrozen water content
and consequently increasing resistivity in the winter months,
as observed in both 2010 and 2019. While resistivity models
in 2010 are generally similar to those in 2019 during winter,
variations in resistivity values are also evident. For instance,
modeling results in September and October show an overall
more resistive subsurface in 2019 compared to the equiva-
lent period in 2010, which can be attributed to cooler ground
temperatures on 15 September and 15 October 2019, as seen
in Fig. 3c–e.

The initiation of seasonal thawing is marked by a re-
sistivity drop in November for both years. As the active
layer thaws and heat flows into the permafrost zone, un-
frozen water content increases and subsequently resistivity
decreases are observed in December and January. An inter-
esting episode that shows the relevance of A-ERT data for
monitoring is the resistivity increase in the active layer in
December 2010 following seasonal thawing. This indicates a
brief surficial refreezing of the near-surface layer during this
period, as also evident in the apparent resistivity data (Fig. 6).
Shallow ground temperature data at 5 cm (see Fig. 3c) simi-
larly recorded this brief freezing episode, occurring after sub-
zero air temperatures during this period.

3.3.2 Virtual borehole

To better interpret temporal patterns in resistivity over time,
resistivity values were extracted at a virtual borehole at the
midpoint of the survey section. Figure 8 shows the evolution
of inverted resistivity over time in the virtual borehole at the
S3,3 location during 2010 and 2019 (see Fig. 7 for the posi-
tion of the virtual borehole). As in Fig. 7, the model coverage
was plotted as an opacity filter to show where the model was
more sensitive to the data (higher opacity) and less sensitive
to the data (lower opacity). The resistivity values and model
sensitivities varied depending on the season. In the summer,
lower sensitivity at depth is due to preferential electrical cur-
rent flow through the thawed active layer (e.g., Herring and
Lewkowicz, 2022). Resistivity values in areas of the model
with lower sensitivity should therefore be interpreted with
caution.

There is good agreement between modeled results from
2010 and 2019 in terms of temporal and vertical resistivity

values and their variability both during winter and summer.
In both years, the highest resistivity values were observed
in winter and near the permafrost table at depths around
0.40 m. This can be attributed to the cyclic process of wa-
ter infiltration from snow or rain accumulating on top of the
permafrost table, which undergoes repeated thawing and re-
freezing, forming an ice-rich layer (see for example Shur et
al., 2005). The most drastic resistivity changes in the active
layer occurred during the freezing phases in April 2010 and
May 2019, with a 1-month lag between the 2 years. The ac-
tive layer remained frozen until October in both years, except
for a brief surficial thawing event between 7 and 14 May in
2010. Similarly, resistivity changes near the surface during
winter coincided with consecutive cooling and warming of
the active layer in both years (see Fig. 3).

Overall, the subsurface down to approximately 0.70 m ex-
hibited lower resistivity values in 2010. This is likely due
to slightly higher ground temperatures at shallower layers,
as discussed in Sect. 3.1. The difference becomes more pro-
nounced in May and June, with frequent warming events in
2010 that were absent in 2019. Increasing temperatures led
to higher unfrozen water content and increased ion mobility,
resulting in decreased resistivity. Interestingly, the slightly
lower subsurface temperatures at greater depths (beyond
0.70 m) during October and November 2019 were reflected
in the resistivity models, resulting in higher resistivity com-
pared to the equivalent period in 2010.

The estimated active-layer depth using the maximum gra-
dient method is shown as a red line in Fig. 8. The good agree-
ment between the estimated depths and frost probe measure-
ments (black dots) shows that maximum gradients are a re-
liable way to determine thaw layer depth and that A-ERT
data can be used to infer real-time progression of thaw depth
throughout the year. Based on these results, it can be con-
cluded that the active layer at this site remains comparatively
stable during the summer months in both years, with minor
fluctuations ranging between ∼ 0.20 and 0.35 m.

The small temporal variability in thaw depth can be at-
tributed to the presence of an ice-rich transient layer and per-
mafrost table at this site and to the cool summers that charac-
terize the maritime Antarctic, which do not significantly heat
the soil. In January 2010, the average thaw depth was approx-
imately 0.3 m, exhibiting a slight increase from late January
until mid-March. These fluctuations correspond to higher air
temperatures and subsequent active-layer warming, as evi-
denced by the shallow ground temperature measurements.
The deepening of the active layer is followed by a rapid and
brief freezing phase in mid-March, induced by subzero air
temperatures. As the active layer cools and the infiltrating
water above the permafrost table potentially refreezes, the
active layer thins in late March and April, preceding the sea-
sonal freezing. The thawing of the active layer initiates again
at the beginning of November, with a relatively thinner thaw
depth (around 0.2 m) at the start of the thawing season. How-
ever, the thaw depth gradually increases in late December
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Figure 7. The 2D inverted resistivity models showing mid-month resistivity profiles for 2010 (left) and 2019 (right). The vertical black line
denotes the position of the virtual borehole, and the red box denotes the zone of interest.

as the active-layer warming extends to greater depths, influ-
enced by warmer air signals during this period. The abrupt
rise in resistivity observed in December coincides with the
brief active-layer freezing occurring in that month. In 2019,
the thaw depth is slightly thinner before the seasonal freezing
(∼ 0.1 m compared to the equivalent period in 2010). In con-
trast to 2010, 2019 showed more frequent brief active-layer

freezing events before seasonal freezing. This could account
for a slightly thinner thaw depth in 2019 compared to the
same period in 2010, as these events may lead to the freezing
of unfrozen water atop the permafrost table, contributing to
the shallowing of the active layer. In contrast, A-ERT did not
detect any brief active-layer thawing event in 2019, unlike
the occurrence in May 2010.
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Figure 8. Inverted resistivities at a virtual borehole in the center of the ERT survey for 2010 (a) and 2019 (b) and interpreted thaw depth.
Probed thaw depths are shown.

3.3.3 Average resistivity in zone of interest

To gain deeper insight into the resistivity changes within
the permafrost zone and to examine the permafrost stabil-
ity after almost a decade, daily resistivity and monthly av-
erage resistivity within the zone of interest (2< x < 7.5 m
and 0.5< z < 1.5 m; see Fig. 7) were calculated and are pre-
sented in Fig. 9. Box plot analysis was conducted on monthly
data to depict the variability of resistivity within each month.
The daily changes in resistivity within the zone of interest
(Fig. 9a) align well with the ground temperature at a depth of
80 cm (permafrost zone; see Fig. 3e), indicating that resistiv-
ity variations follow permafrost temperature trends. Gener-
ally, there is good agreement between resistivities in 2010
and 2019 during the summer months and before seasonal
freezing in April, as well as the winter period from June to
September. During these periods, the resistivity difference is
minimal, mirroring the small difference in ground temper-
ature at 80 cm depth. A significant disparity in average re-
sistivities occurs in May due to a phase change lag between
2010 and 2019, as seasonal freezing began about 1 month
earlier in 2010 than it did in 2019. From October onward,
the daily average resistivity tends to be higher in 2019 and
remains elevated towards the end of the year. The most sub-
stantial difference is observed in October, aligning well with
the ground temperature at 80 cm depth, where the tempera-
ture difference is most pronounced during this period. In the
context of monthly resistivity changes, Fig. 9b also reveals
that the monthly average resistivities in 2010 and 2019 are
quite similar, except during seasonal freezing, influenced by
a 1-month lag, and during the thawing season, influenced by
slightly colder permafrost temperatures in late 2019. As an-

ticipated, the most significant resistivity changes within each
month and throughout the year occur during seasonal freez-
ing and thawing events, driven by substantial subsurface re-
sistivity changes during phase changes. The ongoing A-ERT
monitoring will allow for the calculation of average resis-
tivities at the yearly, seasonal, and monthly intervals, thus
potentially providing new parameters that will enable the as-
sessment of long-term permafrost changes. The analysis of
parameter variability, such as the box plots in Fig. 9b, will
enable the characterization of extreme melt or cooling events
and the assessment of their impacts on the ground thermal
regime.

4 Discussion

The analysis of A-ERT data reveals predominantly good
quality, with only a few problematic measurements observed
during winter (Fig. 5) when subsurface freezing occurs and
electrode contact may consequently be poor. However, the
small number of bad measurements does not affect the real-
time monitoring of subsurface resistivity and, consequently,
thaw depth progression. The applied data processing tech-
nique enabled reliable spatiotemporal mapping of the subsur-
face, providing better insights on seasonal freezing and thaw-
ing as well as brief active-layer freezing and thawing events
than would be obtained by borehole temperature monitoring
alone. However, it is important to note that due to the homo-
geneity of the study site and the minimal variability of thaw
depth along the A-ERT setup, significant lateral variability
has not been observed in our modeling results. Additionally,
the size of our A-ERT transect is relatively small compared

The Cryosphere, 18, 4197–4213, 2024 https://doi.org/10.5194/tc-18-4197-2024



M. Farzamian et al.: Employing A-ERT for detecting short- and long-term changes in permafrost 4209

Figure 9. Average resistivity within the zone of interest (2< x < 7.5 m and 0.5< z < 1.5 m) for (a) all datasets and (b) data grouped by
month. The zone of interest is plotted in Fig. 7.

to other A-ERT studies, where more pronounced lateral vari-
ations along the ERT transects are typically observed (e.g.,
Hilbich et al., 2011; Supper et al., 2014; Keuschnig et al.,
2017). A-ERT monitoring, particularly using longer profile
lengths, is expected to be even more advantageous at hetero-
geneous sites where point-location monitoring cannot cap-
ture lateral variability.

The depth of the maximum resistivity gradient correlated
well with probed thaw depth, demonstrating that A-ERT can
be used to accurately determine thaw depths over time. It
is important to note that the resolution of thaw depth us-
ing this method depends on the acquisition parameters (e.g.,
electrode spacing and array type) that govern the resolution
capabilities of the survey and also how finely the model is
discretized. In this case, the cell heights in the top 0.4 m of
the model were between 5–7 cm, with smaller cell sizes near
the ground surface and gradually larger cells towards the base
of the model.

The consistent patterns of resistivity changes observed
during the seasonal freezing and thawing events in both years
indicate that the sharp and rapid rise in resistivity (active-
layer freezing) during winter, followed by a gradual and
smoother resistivity change over a longer period of time
(active-layer thawing), is likely typical for this site. These
patterns can be attributed to the dynamics of snow cover
and ground moisture, which were well-resolved by A-ERT in
both observation periods. The A-ERT modeling results also
reveal a consistently stable active layer at this site through-
out the summer months in both years, with slight fluctuations
within the range of approximately 0.20 to 0.35 m. However,

the active layer appears slightly thinner and more resistive in
early 2019. This can be attributed to slightly colder air and
surface temperatures in early 2019, along with the impact
of frequent brief freezing of the active layer before seasonal
freezing in 2019, as detected by A-ERT. The ability of the
A-ERT system to capture these rapid changes in the active
layer, as a result of short-lived meteorological extreme events
(see Farzamian et al., 2020), reaffirms the significance of the
automatic ERT monitoring system in recording continuous
resistivity changes.

The A-ERT setup provided valuable insights into the per-
mafrost condition and evolution of ground ice at this site.
Our detailed analysis indicates that there is no significant
change in permafrost (e.g., ice degradation) after almost a
decade. As shown, most of the differences in resistivity be-
tween 2010 and 2019 can be attributed to seasonal tem-
perature variations and a phase change lag between these
years. These findings align with the non-statistical insignif-
icant warming trend in mean annual near-surface tempera-
tures in the South Shetlands (0.028 °C yr−1) from 2006 to
2020, as reported by Hrbáček et al. (2023) and from climate
data obtained from this site (see Fig. 2). We anticipate that
the site-specific conditions of our study site, characterized
by an ice-rich permafrost table (confirmed by A-ERT data
and cores), contributed to the stability of permafrost against
potential degradation. In order to more accurately assess ice
content at A-ERT monitoring sites, future work could incor-
porate additional complementary geophysical surveys, such
as seismic surveys, which can significantly enhance our abil-
ity to quantify ice content. For example, seismic travel times
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can be used in a four-phase model (Hauck et al., 2008, 2011)
to quantify water, air, and ice contents for a given porosity
model. The joint application of ERT and seismic reflection
data, combined with petrophysical joint inversion approaches
(Wagner et al., 2019; Mollaret et al., 2020), has enabled
quantitative estimates of water, air, ice, and rock volumes.
These techniques could further improve ice content quantifi-
cation and monitoring of its temporal evolution.

Compared to current traditional approaches such as bore-
holes and mechanical probing, A-ERT offers several practi-
cal advantages. Boreholes only provide limited 1D depth pro-
files at specific locations, which is insufficient to capture the
variability observed in a spatial context. In addition, and in
our case, the thaw depth variability in the 0.2–0.35 m range,
seen in the resistivity data plotted at a virtual borehole, can-
not be reflected in the ground temperature borehole data due
to the lack of sensors in these depths. Furthermore, borehole
data cannot offer the insights into the spatial and temporal
variability of ground ice needed to evaluate permafrost sta-
bility. On the other hand, while mechanical probing can be
used to determine the spatial variability of thaw depth over
larger areas, it becomes impractical in many Antarctic re-
gions with coarse and bouldery sediments or thick active
layers. Moreover, logistical challenges and adverse weather
conditions can impede manual probing at consistent time in-
tervals, leading to biased information regarding thaw depth
dynamics. These same logistical and weather challenges also
apply to manually repeating ERT measurements, as reported
by Etzelmüller et al. (2020), making the A-ERT method also
advantageous over traditional manual ERT monitoring.

The high-resolution quantitative data from electrical re-
sistivity measurements offer objective insights into changes
in ground conditions, influenced by both climate conditions
and geothermal heat fluxes. These data reveal variations in
thermal state, ice content, and moisture, with the capabil-
ity of monitoring at short and long time intervals. Given
that the Global Climate Observing System defines ECVs as
those physical, chemical, or biological variables (or groups
of linked variables) that critically contribute to the character-
ization of Earth’s climate (Bojinski et al., 2014), we propose
that electrical resistivity has the potential to become a new
ECV. This designation would promote its broader applica-
tion and provide valuable data for understanding permafrost
dynamics. Unlike the 1D nature of borehole temperatures,
electrical resistivity methods can be used to characterize 2D
transects or 3D volumes, enabling the observation of both
vertical and lateral permafrost changes, thus bridging the gap
between remote sensing observations and point data.

5 Conclusion and outlook

Geophysical techniques, especially ERT measurements, have
become increasingly common in permafrost science to study
active-layer and permafrost dynamics. Low-cost and low-

power monitoring resistivity systems, such as the A-ERT sys-
tem presented in this study, offer a unique means to investi-
gate detailed freezing and thawing processes in permafrost
regions in remote areas. This system can be operated with
high temporal frequency, enabling the study of short-term
meteorological events on permafrost and active-layer dynam-
ics, as well as consistent analysis of long-term changes. Our
detailed investigation of the A-ERT data and inversion mod-
eling results shows that the A-ERT system detected the sea-
sonal and brief surficial active-layer freezing and thawing
events, as well as the phase change lag of almost 1 month
between 2010 and 2019 during seasonal freezing. Without
automated ERT monitoring, an identification of these events
and the real-time progression of the thaw depth would not be
possible. With the continuation of A-ERT measurements for
long-term monitoring at Crater Lake, as well as at other sites
in Antarctica (we have recently installed A-ERT systems on
Livingston, King George, and James Ross islands), future
calculations of monthly and even yearly resistivity changes
within the permafrost zone can be conducted to assess per-
mafrost stability. We propose that electrical resistivity could
be used as a new essential climate variable for evaluating
long-term permafrost changes, and it would be a valuable
complement to other climate and borehole data.

Processing large-resistivity time-series data in such harsh
environments needs to be carefully executed before any in-
terpretation. The processing tool presented in this work, sup-
ported by the companion Jupyter Notebook, forms the ba-
sis for a semi-autonomous high-throughput processing work-
flow for dense temporal datasets collected by A-ERT sys-
tems. The implemented filtering tool processes all A-ERT
data consistently using the same criteria, identifying and re-
moving bad measurements, ensuring efficient handling of a
large number of A-ERT data, and facilitating the prompt ex-
traction of key information. The inversion process was then
carried out using the open-source pyGIMLi library, and fur-
ther processing was performed afterward to extract key in-
formation from a large amount of A-ERT data efficiently and
quickly to study the active-layer and permafrost dynamics.
For example, inverted resistivity plots at a virtual borehole
enabled an efficient assessment of changing site conditions
over short and long timescales and allowed for comparison
to measured temperatures and manual probing. The gradient
method applied in this study was an efficient way to delin-
eate the interface between the thawed surface layer and un-
derlying frozen ground. Calculating resistivity averages over
a zone of interest (i.e., permafrost zone) also enhanced the
assessment of permafrost conditions after almost a decade.
Future work could incorporate additional information, like
borehole temperatures, probed thaw depths, or other geo-
physical data, to constrain the inversion and increase model
reliability. Furthermore, co-located seismic datasets could be
used to quantify subsurface ice content.

Antarctic ice-free regions are facing rapid changes, forced
by changes in solar radiation, temperature, snow, and rain-
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fall events. Consequently, alterations of the active layer and
permafrost are expected, potentially generating a cascade of
effects mainly associated with surface and subsurface hy-
drology and geomorphic dynamics. These changes have the
potential to impact terrestrial ecosystems, infrastructure, and
nearshore and lacustrine environments. In this context, future
installations of A-ERT monitoring systems will contribute to
gaining deeper insights into permafrost and active-layer dy-
namics in Antarctica and permafrost regions globally.
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