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Abstract. The distribution of pressure on the vertical sea-
ward front of an ice shelf has been shown to cause down-
ward bending of the shelf if the ice is assumed to have verti-
cally uniform viscosity. Satellite lidar observations show that
many shelf edges bend upward and that the amplitude of up-
ward deflections depends systematically on ice shelf thick-
ness. A simple analysis is presented showing that upward
bending of shelf edges can result from vertical variations
in ice viscosity that are consistent with field observations
and laboratory measurements. Resultant vertical variations
in horizontal stress produce an internal bending moment that
can counter the bending moment due to the shelf-front wa-
ter pressure. Assuming a linear profile of ice temperature
with depth and an Arrhenius relation between temperature
and strain rate allows derivation of an analytic expression for
internal bending moments as a function of shelf surface tem-
peratures, shelf thickness and ice rheologic parameters. The
effect of a power-law relation between stress difference and
strain rate can also be included analytically. The key ice rhe-
ologic parameter affecting shelf edge bending is the ratio of
the activation energy,Q, and the power-law exponent, n. For
cold ice surface temperatures and large values of Q/n, up-
ward bending is expected, while for warm surface temper-
atures and small values of Q/n downward bending is ex-
pected. The amplitude of bending should scale with the ice
shelf thickness to the power 3/2, and this is approximately
consistent with a recent analysis of shelf edge deflections for
the Ross Ice Shelf. These scaling relations should help guide
fully two-dimensional numerical simulations of shelf bend-
ing.

1 Introduction

Ice shelf breakup is important since it could reduce the but-
tressing of ice sheets, leading to a speedup of ice sheet flow
and therefore a rise of sea level (Scambos et al., 2004; Rignot
et al., 2004; Schoof, 2007; Gudmundsson, 2013; Fürst et al.,
2016). Long-term models of ice sheet flow predict acceler-
ated sea-level rise caused by loss of ice shelves (e.g., De-
Conto et al., 2021). Ice shelf bending may lead to calving and
breakup of shelves in two ways. Bending stresses may lead
directly to crevasse formation and propagation (e.g., Wag-
ner et al., 2016). Bending may also affect the routing and
pooling of surface meltwater, which can facilitate crevasse
growth and calving (e.g., Weertman, 1973; Lai et al., 2020;
Buck, 2023).

The rheology of ice is critical to ice shelf calving and
to flow of ice sheets and shelves (e.g., Cuffey and Pater-
son, 2010). Laboratory and theoretical analyses suggest that
ice flow can be described as a non-Newtonian viscous fluid
(Glen, 1955) with a strong temperature dependence (e.g.,
Weertman, 1983). However, there is great uncertainty in the
parameters that describe ice flow (e.g., Cuffey and Paterson,
2010; Behn et al., 2021; Zeitz et al., 2020; Millstein, et al.,
2022). Analysis of ice shelf bending may provide an addi-
tional constraint on ice rheology.

The downward bending of ice shelf edges is expected to
result from the bending moment due to the pressure in wa-
ter exerted on the shelf. Weertman (1957) derived an expres-
sion for this bending moment as a function of ice and wa-
ter densities, assuming a uniform ice rheology with depth.
Reeh (1968) numerically calculated the deflections due to
this bending moment by treating the ice shelf as a uniform,
thin, viscous plate and showed how the downward deflections
of the edge would increase with time since the last calving
event, as viscous stresses relax. Fully two-dimensional vis-
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Figure 1. Locations of topographic profiles and borehole temperature measurements. (a) Map of Antarctica showing approximate locations
of the profiles shown in (b) and (c). (b) ICESat-derived profile of elevations across the edge of the Ronne Ice Shelf from Scambos et al.
(2005) showing down-bending of the shelf edge. Profile is oriented 63° relative to shelf edge. (c) Shelf edge topography averaged over four
ICESat-2 lines on the Ross Ice Shelf showing characteristic “moat and rampart” relief from Becker et al. (2021).

cous (Mosbeux et al., 2020) and viscoelastic models (Christ-
mann et al., 2019) of ice shelf bending, assuming uniform
properties with depth, confirm the thin-plate predictions.

The down-bending of shelf edges predicted by the
Weertman–Reeh theory has been seen in several locations
such as the edge of the Ronne Ice Shelf and across several
iceberg edges (Scambos et al., 2005, and see Fig. 1b). How-
ever, upward bending has been observed in several other ar-
eas (e.g., Scambos et al., 2005, 2008; Becker et al., 2021, and
see Fig. 1b). That many shelf edges bend upward with a high
“rampart” at the shelf edge paired with a pronounced low
“moat” inward of the edge has generated great interest (e.g.,
Wagner et al., 2014, 2016; Mosbeux et al., 2020). For exam-
ple, a comprehensive study of the Ross Ice Shelf by Becker
et al. (2021) using ICESat-2 lidar shows that moats and ram-
parts comprise 74 % of useable satellite profiles. Those au-
thors note that the moats and ramparts are separated by hor-
izontal offsets of a few hundred meters and have typical ele-
vation differences of 5 to 10 m (Fig. 1c).

The only published model to explain rampart–moat struc-
tures relates to erosion of part of the sub-aerial shelf by wave
action (Scambos et al., 2005; Wagner et al., 2014; Mosbeux
et al., 2020; Becker et al., 2021). The submarine remnant,
termed a “foot” or “bench”, then acts as a load that pushes up
the uneroded shelf edge (Fig. 2). Bench-driven up-bending
can increase the magnitude of extensional stresses under the
moat that could drive basal crevassing and calving (Wagner
et al., 2014, 2016).

This study considers an alternative model to the sub-
merged bench model that depends on vertical variations in
the viscosity of an ice shelf. In some sense this work is a con-

Figure 2. Illustrations of the bench and internal moment models for
deflection of a shelf edge. The arrow in (a) indicates the upward
force due to a submerged ice “bench.” The internal moment arises
from vertical variations in horizontal stress indicated by horizontal
arrows in (b).MW andMI are the applied moments due the pressure
distribution of water and the internal stress variations, respectively.
Panel (c) shows the thin-plate model predictions of the model ver-
tical deflections e as a function of distance from a shelf edge for
Eqs. (21) and (23), where e0 is the deflection at the shelf edge (see
text for explanation).

The Cryosphere, 18, 4165–4176, 2024 https://doi.org/10.5194/tc-18-4165-2024



W. R. Buck: The effect of ice shelf rheology on shelf edge bending 4167

tinuation of the analysis of Reeh (1968) in that it deals with
bending moments causing an ice shelf to flex. In the pioneer-
ing paper on that topic, Reeh (1968) wrote the following:

a correct treatment of the problem would require
consideration of the great variation (by a factor ten
or more) of the viscosity. This, however, would in-
volve enormous mathematical troubles.

Here I show that, as long as we can assume that the viscos-
ity in an ice shelf varies exponentially with depth, the “math-
ematical troubles” are minimal. The exponential viscosity
approximation is shown to be reasonable if the temperature
dependence of viscosity can be described by an Arrhenius
relation, and the temperatures increase linearly with depth in
an ice shelf. That approximation allows derivation of scaling
relations between ice rheologic parameters, ice surface tem-
peratures and shelf edge deflections. For “great variations of
viscosity” across an ice shelf, I show that the edge of the shelf
should bend upward to make a rampart with a corresponding
inboard moat. After that I consider the effect of non-linear
temperature profiles on shelf bending. Before launching into
a detailed analysis of this problem, I discuss some basic ideas
about bending moments and layer bending.

2 Conceptual model

Ice shelves that are not heavily buttressed are under extension
(Weertman, 1957). While ice shelves are typically assumed
to have negligible vertical gradients in horizontal strain rates,
significant vertical variation in viscosity generates vertical
gradients in horizontal stress that cannot be neglected. The
idea that stresses internal to a layer can cause it to bend
is well known in engineering and can be illustrated with a
bimetallic strip that bends as temperatures change. Such a
strip consists of two metal layers with different thermal ex-
pansion coefficients that are welded together. At a certain
temperature this layered strip can be flat, but it will “curl
up” when the temperature is increased as long as the lower
layer has a larger thermal expansion coefficient. This occurs
because the lower layer expands more than the upper layer,
producing vertical variations in horizontal stress.

Internal stresses have been considered in explaining some
lithospheric bending observations. Parmentier and Haxby
(1986) showed how vertical variations of horizontal stress
within a strong layer might explain downward bending of
the lithosphere at transform faults. In this case, the stresses
arise due to greater rates of thermal contraction of a deeper
lithosphere combined with yielding of a shallow lithosphere.
Those authors note that gravity prevents lithospheric bending
that is of a much longer wavelength than the effective flexu-
ral wavelength of the layer. At very long length scales grav-
ity prevents the layer from bending. The vertical variation in
stress can be thought of as an internal bending moment that
is matched everywhere by adjacent bending moments except

at the plate edge (transform fault) where stresses, and so the
applied bending moment, are different.

The concept of internal bending moments was also applied
to the formation axial relief at plate spreading centers. This
was first suggested to explain “axial highs” that mark the
plate boundary at most fast-spreading centers and typically
rise 300–500 m above the surrounding seafloor. In that case,
the lithosphere is accreted with intrinsic curvature that flat-
tens as the plate moves away from the spreading center, as
suggested by Buck (2001). That paper noted that the deflec-
tion of a plate with a free end and a uniform internal mo-
ment are equivalent to that resulting from application of an
opposite moment to the end of a layer with no internal mo-
ment. Axial valley lithosphere is accreted with the opposite
sense of curvature as an axial high lithosphere (e.g., Liu and
Buck, 2018), and recently observed reverse fault earthquakes
close to axial valleys are attributed to the flattening of these
curved plates with distance from the spreading axis (Olive
et al., 2024).

A major difference between an ice shelf and the litho-
sphere (or a bimetallic strip) is that the stresses in the ice
are controlled by viscosity. The viscous, or more precisely
the viscoelastic, response of an ice shelf to bending moments
was recognized by Reeh (1968), who noted that the wave-
length of the response after a calving event should decrease
with time. This cannot be properly treated without a fully
2D numerical simulation, but, as discussed at the end of this
paper, this effect should lead to slow growth of the ampli-
tude of bending deflections. As noted by Reeh (1968) the top
of an ice shelf is typically colder than the base (by as much
as 30 °C), and so viscosity decreases with depth in the shelf.
There is a corresponding decrease in extensional stress with
depth, and this affects the internal bending moment in the
shelf.

An internal moment will not cause bending where the
shelf is laterally uniform and continuous over distances much
larger than the flexural wavelength. Imagine that a calving
event just broke off a broad section of the shelf, making a
new shelf edge. If the bending moment applied by air and
water at the shelf edge is different from the internal bend-
ing moment, then the shelf edge should bend, much like the
bimetallic strip described above. However, the bending will
take time to develop as viscous flow causes the flexural wave-
length to diminish with time.

In the absence of a bench, it is the internal stress distri-
bution that determines whether the edge bends up or down.
The key question for this paper is how the horizontal stresses
internal to an ice shelf affect the bending of a shelf edge.
To address this question, I follow the approach of Weertman
(1957) and Reeh (1968) and calculate the contribution to the
total applied bending moment due to the difference between
water pressure and internal stress in the ice layer. The new
twist is that I consider internal stress variations related to ver-
tical viscosity variations in the ice shelf.
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3 Internal moment model

3.1 Stresses, pressures and bending moments

To determine how an ice layer will flex due to the water pres-
sure distribution on the side of the layer (as shown in Fig. 3),
we need to calculate the total applied bending moment MT
due to the difference between pressure of the water Pw and
the horizontal stress σxx in the ice:

MT =−

h∫
0

[Pw(z)− σxx(z)]zdz, (1)

where the arbitrary minus sign ensures that upward bending
corresponds to positive total applied moments. The pressure
in the water that acts on the side of the floating ice layer is

Pw(z)=

{
0 for z < d

ρwg(z− d) for h > z > d,
(2)

where ρw is the density of water, h is the thickness of the ice
layer, z is depth below the ice surface, g is the acceleration of
gravity and d is the freeboard height shown in Fig. 3. Equat-
ing the vertical stress and water pressure at z= h requires the
following:

d =

(
ρw− ρi

ρw

)
h, (3)

assuming that the vertical stress, σzz, in the ice is

σzz(z)= ρigz, (4)

where ρi is the density of ice. I use the geologic convention
that positive stress is compressive to simplify the comparison
of water pressures and ice stresses. Horizontal force balance
requires the following:

Fx =

h∫
0

σxx(z)dz=

h∫
d

Pw(z)dz, (5)

where σxx(z) is the horizontal stress in the layer.
To consider the effect on layer edge bending for a range

of possible distributions of the horizontal stress that satisfy
Eq. (5), it is useful to define a reference horizontal stress
distribution σxxR(z). This allows separate calculation of the
applied moments due to the water pressures, MW, and the
horizontal stresses with the ice,MI, relative to that reference,
such that Eq. (1) can be rewritten as

MT =MW+MI = −

h∫
0

[Pw(z)− σxxR(z)]zdz

+

h∫
0

[σxx(z)− σxxR(z)]zdz. (6)

Figure 3. Illustrations of stresses and stress differences affecting a
floating ice layer. Panel (a) shows an ice layer of thickness h float-
ing on seawater. The sea surface is at a depth d below the top of the
ice. The green line shows pressures in seawater, and the blue shows
the vertical stress in the ice. The black line shows the reference hor-
izontal stress σxxR in the ice which is offset by a constant stress
difference 1σ from the vertical stress. Plot in (b) shows the dif-
ference between the water pressure and horizontal stress for a case
with uniform properties so that the horizontal stress is the reference
stress. Panel (c) shows the difference between the water pressure
and horizontal stress for an example with a strong exponential vari-
ation of viscosity and so horizontal stress with depth in the ice (with
an e-folding depth, z0 = h/3 in Eq. 16). Images in (b) and (c) show
that the sense of bending is the opposite for the cases shown.

The reference horizontal stress distribution is what one
would obtain for a shelf with uniform rheologic properties
so that the horizontal stress is lower than the vertical stress
by a uniform amount,1σ . As noted by Weertman (1957), the
value of the average stress difference1σ at the edge of an ice
shelf (or within a shelf where buttressing forces are zero) is
constrained by Eqs. (5), (4) and (2) and can be written as

1σ = σ zz− σ xx = ρig
h

2
−
Fx

h
=

1
2

(
ρi

ρw

)
(ρw− ρi)gh (7)

so that

σxxR(z)≡ σzz(z)−1σ = ρigz−
1
2

(
ρi

ρw

)
(ρw− ρi)gh. (8)
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For1σ given by Eq. (7), the bending moment term related
to the water pressure variation is

MW = −

h∫
0

[Pw(z)− σxxR(z)]zdz

= −
1

12

(
ρi

ρw

)
(ρw− ρi)gh

3
[

1−
2d
h

]
, (9)

which is equivalent to that found by Weertman (1957) and
Reeh (1968).

The internal bending moment term MI is

MI =

h∫
0

[σxx(z)− σxxR(z)]zdz, (10)

and below I consider cases for different distributions of the
horizontal stress with depth in the ice.

The simplest case is for an ice layer with vertically uni-
form properties and infinite yield strength (or infinite frac-
ture toughness), so there is no opening of surface or basal
crevasses, thus reducing the stresses in the layer. This im-
plies a constant offset between the horizontal and vertical
stresses in the layer such that σxx(z)= σxxR(z), implying
that MI = 0 so that MT =MW. In this case the moment
applied to the end of the layer bends it down. Assuming
ρi/ρw= 0.9 in Eq. (3) means that d = h/10 so that MT =

MW =−(
1

15 )(
ρi
ρw
)(ρw− ρi)gh

3.
Reeh (1968) calculated that the applied bending moment

increases by up to 30 % as the layer is deflected, because as
the shelf edge moves down the water pressure on the end
increases. However, this neglects the counter-effect of the
change in pressure on the underside of the deflected layer
inboard of the edge. Thus, the average horizontal stress in
the ice should remain constant as long as the thickness of the
shelf does not change or the top of the layer does not drop
below the water surface. Here, I neglect any changes in the
applied moment with layer deflection.

3.2 Exponential variation of effective viscosity with
depth

As noted above, viscosity in an ice shelf is expected to de-
crease with depth (e.g., Reeh, 1968). Two simplifying as-
sumptions are used here to relate viscosity variations with
depth to rheologic parameters and ice shelf surface temper-
atures. The first assumption is that temperatures linearly in-
crease with depth. The base of ice shelf should be at the pres-
sure melting point, while the surface must be colder (e.g.,
Cuffey and Paterson, 2010), and borehole measurements on
some ice shelves indicate nearly linear temperature–depth
profiles, as is discussed below.

The second assumption is the form of the ice flow law.
There is debate about how the flow of ice varies with stress

and temperature, and there is evidence that multiple pro-
cesses require complex descriptions (e.g., Behn et al., 2021).
However, a wide range of observations and laboratory data
are well approximated with a power-law relation between
stress and strain rate, such as Glen’s flow law (Glen, 1955)
and an Arrhenius relation between strain rate and tempera-
ture (e.g., Cuffey and Paterson, 2010). Then the strain rate ε̇
is related to stress difference1σ and absolute temperature T
as

ε̇ = A1σ nexp
(
−Q

RT

)
, (11)

where A and n are constants, Q is the activation energy and
R is the universal gas constant. The effective viscosity η (≡
1σ/ε̇) at a constant strain rate is then

η(ε̇T )= A−1/nε̇

(
1
n
−1
)
exp

(
Q

nRT

)
. (12)

A constant strain rate is used because the horizontal strain
rate should be constant with depth for a uniform thickness
ice shelf far from the shelf edge (i.e., where x�h and x is
distance from the edge).

For a constant temperature gradient dT/dz, we can de-
scribe the temperature with depth in the ice as

T = TS+
dT
dz
z= TS+

(TB− TS)

h
z, (13)

where TS is the temperature at the surface, and TB is the tem-
perature at the base of the ice shelf, as shown in Fig. 4. As-
suming that Q/n is constant with temperature and that tem-
perature variations in the ice are small compared to the abso-
lute surface temperature allows the approximation of Eq. (12)
as

η(ε̇,z)∼= η(ε̇,TS)exp
(
−z

z0

)
, (14)

where z0 is the “e-folding” length for viscosity variations
(i.e., the distance over which the viscosity drops by 1/e). By
ensuring that Eq. (14) gives the same viscosity as Eq. (12)
for the top and bottom of the layer (i.e., where T (0)= TS
and T (h)= TB) yields

z0 =
nRTBTS

QdT/dz
or
z0

h
=

nRTBTS

Q(TB− TS)
. (15)

For a thin floating layer, the horizontal strain rate far from
the sides (i.e., many layer thicknesses) should be constant
so that the difference between the horizontal stress and the
vertical stress is well approximated as

1σ(z)= σzz(z)−σxx(z)= η(ε̇,z)ε̇ ∼=1σ0exp
(
−z

z0

)
, (16)

where the stress difference at the surface is

1σ0 = η(ε̇,TS) ε̇ =

(
ε̇

A

) 1
n

exp
(

Q

nRTS

)
. (17)
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Figure 4. Illustration of stress differences for full flow law and exponential approximation. (a) Relations between temperatures with depth
divided by the ice layer thickness in the ice shelf and (b) the ratio of effective viscosity (or stress difference) at a constant strain rate to the
viscosity (or stress difference) at the base of the layer. The solid lines are based on the standard Glen-type flow law of Eq. (12), and the
dashed lines are for the exponential approximation of Eq. (14). For a surface temperature TS=−10 °C, there is no visible difference in the
two values of viscosity or stress difference; for TS=−30 °C, the difference is minor.

Figure 5. Relations between model parameters. (a) Variation of the non-dimensional e-folding depth scale z0/h with surface temperature
assuming the rheologic parameters indicated and that the base of the shelf is at a temperature of 0 °C. Panels (b) and (c) show the components
of the moments as functions of z0/h.

The relationship between z0/h and TS is shown in Fig. 5
for a range of values of Q/n assuming for simplicity that
TB= 0 °C.

We do not need to know the strain rate to find 1σ0, since
it is set by the force applied by water at the front of the ice
shelf given by Eqs. (2) and (5). Integration of Eq. (16) over
the depth range of the ice shelf implies that

1σ0 =1σ

(
h

z0

)[
1− exp

(
−h

z0

)]−1

. (18)

Figure 4 confirms that, with a linear temperature profile
through an ice shelf, Eq. (14) is an excellent approximation
to Glen’s flow law relation given by Eq. (12) for reasonable
rheologic parameters and surface temperatures. It shows how
the horizontal stress difference varies relative to the stress
at the layer base for values of z0/h defined for given val-
ues of Q/n and for two values of the surface temperature.
For surface temperature warmer than −10 °C, the horizon-
tal stresses at all depths are nearly equal to the basal stress,
and that implies a nearly constant offset between the hori-
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Figure 6. Analytic model predictions for a range of surface tem-
peratures. Values of the rheologic parameter Q/n are shown on the
different curves. The vertical scale on the right shows the total mo-
ment divided by the absolute value of the moment of water pres-
sure for a uniform rheology ice shelf. The scale on the left is the
predicted height difference between the shelf edge and the closest
position with zero slope (i.e., where the surface is horizontal) for a
thin plate with the indicated thickness and flexural parameter.

zontal and vertical stresses. For colder surface temperatures,
the horizontal stress differences near the surface are far more
extensional than deeper in the layer.

The internal bending moment given by Eq. (10) for the
stress distribution of Eq. (18) is

MI =
1
2

(
ρi

ρw

)
(ρw− ρi)gh

3

×

{
1
2
−

[
z0

h
−

(z0

h
+ 1

)
exp

(
−h

z0

)]
×

[
1− exp

(
−h

z0

)]−1}
. (19)

Equation (19) implies that the internal bending moment
and so the bending of a layer depend on the ice and sea-
water densities, the layer thickness, h, and the e-folding
depth, z0, for viscosity variations. Figure 5 shows the re-
lation between the internal moment and z0/h. For z0� h

the internal moment is zero, which makes sense because the
horizontal stresses are equal to the reference stresses at all
depths. For z0� h the maximum value of MI is 1σh2/2,
which is 3.75 times the absolute value ofMW. If z0/h≈ 0.6,
the internal moment is equal and opposite in sign to the mo-
ment applied by the water. This would give no bending of
the layer. For larger values of z0 the layer bends down, and
for smaller values the layer bends up. Figure 6 shows how
the surface temperature affects the total bending moment for
different values of the rheologic parameter Q/n.

The error in the analytic approximation was analyzed by
carrying out numerical integration of the stress differences
for the full ice flow law (Eq. 11). The differences between
the full and approximate solutions for the internal bending
moment depend on the assumed flow law parameters and sur-

Figure 7. Internal moment model topography. Deflections versus
distance from a shelf edge are calculated for a thin plate subject to
an applied moment at x = 0 that depends on the indicated rheologic
constant and surface temperatures The model ice shelf is taken to
be 400 m thick, and the flexure parameter α is set to 250 m.

face temperature but are less than 3 % for the most extreme
cases illustrated in Fig. 6.

3.3 Topographic variation based on the thin-plate
approximation

To estimate the deflections expected for the bending mo-
ments derived here, we can use the thin-plate flexure approx-
imations. Many studies of ice shelf bending treat an ice shelf
using the plate approximations either with elastic, viscous
or viscoelastic rheologies (e.g., Reeh, 1968; MacAyeal and
Sergienko, 2013; Olive et al., 2016; Wagner et al., 2016; Ban-
well et al., 2019; MacAyeal et al., 2021). Vertical deflections
of a thin, semi-infinite plate with a moment MT applied to
the end are given in Turcotte and Schubert (2014) as

eM(x)= eM0 exp(−x/α)[cos(x/α)− sin(x/α)]

with

eM0 =
2MT

ρwgα2 , (20)

where x is distance from the shelf edge, α is the flexure pa-
rameter (directly related to the flexural wavelength), ρw is the
water density and g is the acceleration of gravity.

Reeh (1968) and Olive et al. (2016) find that, for a viscous
or viscoelastic plate with a uniform viscosity η, the wave-
length of the flexure changes with time as

α(t)/α(0)∼
[τM

t

]1/4

and

α(0)∼
[

Eh3

ρwg(1− υ2)

]1/4

, (21)

where t is time, E is Young’s modulus, υ is Poisson’s ratio
and τM =

E
η

is a measure of the Maxwell time of the layer
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with η representing the average layer viscosity. Combining
Eqs. (20) and (21) suggests that the amplitude of deflection
should increase with time roughly as eM0 (t)= e

M
0 (0)[

t
τM
]
1/2.

Eventually, as the flexure parameter approaches the layer
thickness, the two-dimensional nature of the problem means
that the thin-plate approximation is no longer valid. For lay-
ers with thicknesses of a few hundred meters, this should take
about 1000 Maxwell times. For an average layer viscosity
of a few times 1014 Pas and a layer thickness of 300 m, this
should take about 4 years. Reeh (1968) came to this con-
clusion and estimated that the long-term flexure parameter
can be a bit smaller than the layer thickness. A more thor-
ough study was done by Olive et al. (2016), who compare
fully two-dimensional viscoelastic models of flexure to the
thin-plate solution and find the best fitting thin-plate flexure
parameter evolution to match the 2D results. They find af-
ter many Maxwell times that the effective flexure parameter
is smaller than the layer thickness. Thus, for Figs. 6 and 7
α is set to 250 m, while the ice layer thickness is taken to be
400 m.

Figure 7 shows how the ice surface temperature affects
the elevation given by Eq. (20) for a total moment given
by the sum of Eqs. (9) and (19). Figure 6 shows just the
predicted deflection of the shelf edge for this model. Given
that the internal and water-related moment scale with h3 (via
Eqs. 9 and 19), the combination of this result with Eq. (20)
and (21) implies that for the same rheology, temperature pro-
file and time since calving the deflection amplitude should
scale with h3/2.

The thin-plate approximations can also be used to illus-
trate the predictions of the bench model. The effect of the
load VB of a submerged bench on topographic deflections
(after Wagner et al., 2016) can be written as

eB(x)= eB0 exp(−x/α)cos(x/α)

eB0 =
2VB

ρwgα
, (22)

where VB = w(h− d)(ρw− ρi)g with w being the width of
a bench whose top is just at sea level. Combining this re-
lation for the bench load with Eqs. (21) and (22) suggests
that the amplitude of vertical deflections for the bench model
should scale linearly with the bench width, w, but only de-
pend weakly on the ice layer thickness (i.e., bench-driven de-
flections should scale with h1/4). Figure 2 illustrates that for
the same flexure parameter, α, the internal moment model
produces a much shorter wavelength response than the bench
model.

3.4 Effect of nonlinear temperature–depth profiles on
shelf bending

Several effects, including accretion or melting of the surface
or base of an ice shelf, can contribute to non-linearity of tem-
peratures with depth, and this should affect viscosity, stresses
and internal moments. Observations of temperature profiles

are limited since they require boreholes through ice shelves,
and Fig. 8 shows temperature profiles for the three largest
Antarctic ice shelves. Two of the three profiles from the Ross
Ice Shelf (from Thomas and MacAyeal, 1982) show nearly
linear temperatures with depth (Fig. 8a and b). The profile
from location LAV on RIS (Fig. 8d) shows a concave-up
profile that Thomas and MacAyeal (1982) interpret to result
from rapid surface accretion. In contrast, the profile from the
Amery Ice Shelf (Fig. 8d) shows a departure from linearity
that Craven et al. (2009) assert to result from accretion of
marine ice at the shelf base.

To estimate the possible generation of such non-linear
temperature profiles and their effect on ice shelf internal
bending moments, I use a standard ice shelf thermal model.
The approach, described by Robin (1955), assumes that pure
shear thinning of the layer maintains a uniform shelf thick-
ness, h, while the vertical velocity of the surface is vS and
the vertical velocity of the base is vB. The surface is main-
tained at TS and the base at TB. Assuming downward veloc-
ity is positive, the steady-state temperature T as a function of
depth below the ice surface, z, can be written as

T (z∗)= TS+ (TB− TS)

×

{
erf(ξz∗)− erf(−ξzref)

erf[ξ(1− zref)] − erf(−ξzref)

}
, (23)

where z∗ = z/h−zref,zref =
vS

(vS−vB)
, ξ =

√
(vS−vB)h

2κ and κ is

the thermal diffusivity, here taken to be 10−6 m2 s−1. Result-
ing temperature profiles for a layer 400 m thick and several
combinations of vS and vB are shown in Fig. 9a. Freezing
onto the base of an ice shelf results in an increase in the tem-
perature gradient with depth, while surface accretion results
in the opposite effect on the temperature profile.

Using a temperature–depth distribution given by Eq. (23),
I use Glen’s flow law (Eq. 11) with given rheologic param-
eters to calculate stress difference variations with depth as a
function of strain rate. Then, numerical integration of Eq. (5)
is used to set the value of the strain rate in Eq. (11), which
gives stress differences that balance the horizontal force ap-
plied by water at the shelf edge. Finally, numerical integra-
tion of Eq. (10) with these stress differences gives the internal
bending moment (MI).

Figure 9b shows examples of fractional variations in the
internal bending moment (i.e., the ratio of the internal mo-
ment for a given temperature profile divided by the inter-
nal moment for a linear temperature profile) for a range of
“Robin-type” temperature profiles for a 400 m thick model
ice shelf. The black dots show the fractional variation in MI
for the three particular temperature profiles shown in Fig. 9a.
Freezing onto the base of an ice shelf acts to increase the am-
plitude of the internal moment and so the expected upward
bending of the shelf edge. In contrast, accretion to the surface
and melting of the base act to diminish the internal bending
moment. These effects can be large enough to change the
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Figure 8. Borehole temperature measurements for parts of three Antarctic ice shelves. Panels (a)–(e) show relatively linear temperature–
depth profiles: (a) and (b) are from open areas of the Ross Ice Shelf, and (c) is from the Amery Ice Shelf. Panel (d) is from an area of the
Ross Ice Shelf close to Roosevelt Island. Panel (e) is a profile from the Filchner Ice Shelf redrawn from Eicken et al. (1994). Data points
for (a), (b) and (d) are replotted from Thomas and MacAyeal (1982); (c) is replotted from Craven et al. (2009). Approximate locations of the
boreholes are shown in (f).

sign of shelf edge bending for very rapid surface accretion
or basal melting. Whether this happens depends not only on
accretion or melt rates but also on the thickness of the shelf,
the surface temperature and the rheologic properties of the
layer.

4 Conclusions

The simple analysis presented here shows how stresses inter-
nal to a floating ice shelf can affect the bending of the shelf
edge. It shows that Reeh (1968) was right to be concerned
about variations of viscosity through an ice sheet, since those
stresses determine whether the edge of a shelf bends up or
down. For small variations of viscosity across an ice shelf
(less than about a factor of about 5), the edge bends down,
while for larger viscosity variations the edge bends up. As-
suming a fairly standard ice flow law and a linear temperature
gradient through a shelf, these viscosity variations are con-
trolled by two parameters: the surface temperature, TS, and
the rheologic parameter ratio of activation volume divided by
the power law exponent, Q/n. The constant A in the flow-
law relation (Eq. 11) should affect the time over which bend-

ing deflections occur but not the direction or maximum mag-
nitude of those deflections. This “internal moment” model
predicts upward bending for cold surface temperatures and
large values of the ratio Q/n.

Significant departures of ice shelf temperature–depth pro-
files from linearity, as seen for parts of some ice shelves (see
Fig. 8), can affect the bending amplitude and sign. As shown
in Fig. 9 rapid surface accretion and/or basal melting can di-
minish the internal bending moment of an ice shelf. It ap-
pears that, for many parts of the Ross, the Filchner–Ronne
and Amery ice shelves, the temperature gradient is nearly
linear, so the simple analytic estimates of internal bending
moments should be justified. The most strongly non-linear
temperature profiles shown in Fig. 9d for one site on the Ross
Ice Shelf (RIS) may explain the downward bending seen in a
few places along the front of that shelf (Becker et al., 2021).

The edge of the Ross Ice shelf is the only place where a
systematic study of shelf bending has been done along an
entire shelf front, and it offers a good first test of this model
for several reasons: RIS shows rampart and moat structures
along most of the front (Becker et al., 2021), it has a low sur-
face temperature (e.g., MacAyeal and Thomas, 1979), and no
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Figure 9. Effect of surface or basal accretion on ice shelf tempera-
ture profiles and internal bending moments. (a) Examples of three
steady-state temperature profiles for the indicated values of surface
and basal velocities (vS and vB) compared with a linear temperature
profile for the same surface and base temperatures. (b) Numerically
calculated normalized internal bending moments for a range of tem-
perature profiles calculated with the indicated parameters. Black
dots indicate the temperature profiles shown in part (a). Moments
are divided by the moment for a linear temperature profile.

benches have been reported there. The last point is significant
since shelf edge benches have been seen for several other ice
shelves (e.g., Scambos et al., 2005), including recent studies
using ICESat-2 lidar (Philipp Arndt, personal communica-
tion, 2023).

Becker et al. (2021) show strong and systematic variations
in the height of upward bending (or in the difference in ele-
vation between the moat and rampart, 1e) and the inferred
ice thickness, h. They find that for h= 150 m the average el-
evation difference 1eM' 5 m, while for h= 250 m they find
that 1e' 10 m. As noted above the internal moment model
predicts that the elevation difference scales with the ice layer
thickness to the power of 3/2 (i.e., with h3/2), so it is con-
sistent with these observations. In contrast, the bench model
elevations are very weakly dependent on layer thickness (i.e.,
1eB ∼ h

1/4), and so they do not explain this trend.
The horizontal offset between ramparts and moats along

the RIS front also may be easier to explain with the inter-
nal moment model than with the bench model. This offset is
slightly less than the layer thickness as estimated by Becker
et al. (2021). As shown in Fig. 2 the lateral scale of deflec-
tions for the internal moment model is roughly a factor of 2
smaller than that of the bench model. A detailed comparison
of such model predictions must await numerical viscoelastic
models since the flexure parameter is not determined in the
present analysis.

This analysis makes several significant approximations
that can be considered in numerical simulations. Such simu-
lations are now being done (e.g., Glazer and Buck, 2023) and
can treat fully two-dimensional deformations, non-uniform
vertical temperature gradients, variations of ice density with
depth and the time dependence of viscoelastic deformation,

among other factors. Of particular importance will be the cal-
culation of the evolution of the effective flexural wavelength.
However, the present analysis can guide those model stud-
ies since it suggests testable scaling relations, including the
dependence of deflection amplitude on the rheologic param-
eter Q/n and the temperature difference across an ice shelf.

Figure 6 shows that, for the internal moment model to ex-
plain the observed 5–10 m of upward bending seen along
RIS edge, it is required that the value of the rheologic ra-
tioQ/n be greater than about 50 kJmol−1. This is at the high
end of laboratory, theoretical and field estimates of this ra-
tio, though uncertainties in estimates of these parameters are
large. For example, estimates for the flow-law exponent, n,
vary from 1 to 4.5, with higher values corresponding with
faster-flowing ice, less sliding and larger grain sizes (Bons
et al., 2018; Zeitz et al., 2020; Millstein et al., 2022, Behn
et al., 2021). Likewise, Q is found to vary with temperature
(Barnes et al., 1997; Paterson, 1991) with estimated values
for cold ice (<−10 °C) ranging from 42 to 85 kJmol−1 and
for warmer ice from 120 to 200 kJmol−1 (Zeitz et al., 2020;
Greve, 1997; Fürst et al., 2011; Lipscomb et al., 2019; Weert-
man, 1983). Another key result of laboratory studies of ice
flow is that at low stress differences (. 105 Pa) flow is better
described by low values of the power-law exponent n (e.g.,
Behn et al., 2021). For an ice shelf with a cold surface tem-
perature, the warm lower part of the shelf may only support
stress differences on the order of 104 Pa and so may be in a
low n flow regime (as can be seen by combining an estimate
of average stress difference via Eq. 7 with the calculation of
vertical variations in effective viscosity given by Eq. 12 and
illustrated in Fig. 4).

Further numerical and observational tests of the internal
moment model may allow new constraints to be placed on
these rheologic parameters. Since models of ice sheet and
ice shelf flow depend on these parameters, there should be
interest in doing such tests. One important observation is to
measure the distribution and size of ice benches since they
certainly can affect shelf bending (e.g., Wagner et al., 2014,
2016). Key observational tests should also involve compre-
hensive studies of shelf edge bending for all the ice shelves of
Antarctica and Greenland. Surface temperatures vary for dif-
ferent ice shelves. If the bending characteristics vary system-
atically with surface temperature, this offers hope of giving
new constraints on the temperature dependence of ice rheol-
ogy.
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