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Abstract. Upcoming submillimeter wave satellite missions
require an improved understanding of sea ice emissivity
to separate atmospheric and surface microwave signals un-
der dry polar conditions. This work investigates hectometer-
scale observations of airborne sea ice emissivity between 89
and 340 GHz, combined with high-resolution visual imagery
from two Arctic airborne field campaigns that took place in
summer 2017 and spring 2019 northwest of Svalbard, Nor-
way. Using k-means clustering, we identify four distinct sea
ice emissivity spectra that occur predominantly across mul-
tiyear ice, first-year ice, young ice, and nilas. Nilas features
the highest emissivity, and multiyear ice features the lowest
emissivity among the clusters. Each cluster exhibits similar
nadir emissivity distributions from 183 to 340 GHz. To re-
late hectometer-scale airborne measurements to kilometer-
scale satellite footprints, we quantify the reduction in the
variability of airborne emissivity as footprint size increases.
At 340 GHz, the emissivity interquartile range decreases by
almost half when moving from the hectometer scale to a foot-
print of 16 km, typical of satellite instruments. Furthermore,
we collocate the airborne observations with polar-orbiting
satellite observations. After resampling, the absolute rela-
tive bias between airborne and satellite emissivities at similar
channels lies below 3 %. Additionally, spectral variations in
emissivity at nadir on the satellite scale are low, with slightly
decreasing emissivity from 183 to 243 GHz, which occurs
for all hectometer-scale clusters except those predominantly
composed of multiyear ice. Our results will enable the de-
velopment of microwave retrievals and assimilation over sea
ice in current and future satellite missions, such as the Ice

Cloud Imager (ICI) and EUMETSAT Polar System – Sterna
(EPS–Sterna).

1 Introduction

Passive microwave observations from polar-orbiting satel-
lites have continuously monitored polar regions with high
spatial coverage for over 5 decades (Comiso and Hall,
2014). These observations are essential for atmosphere (e.g.,
Triana-Gómez et al., 2020; Perro et al., 2020), sea ice
(e.g., Spreen et al., 2008; Kilic et al., 2020; Soriot et al.,
2023), and joint atmosphere–sea-ice retrievals (e.g., Scarlat
et al., 2020; Rückert et al., 2023; Kang et al., 2023). Such
satellite-based retrievals help us to understand the acceler-
ated Arctic near-surface warming compared to the global
mean (Rantanen et al., 2022; Wendisch et al., 2023). How-
ever, the highly variable sea ice emissions cause uncertainties
in satellite retrievals and severely limit the use of surface-
sensitive microwave channels in operational numerical-
weather-prediction data assimilation compared to the open
ocean (Lawrence et al., 2019). Therefore, current research
aims to improve the assimilation of microwave observations
over sea ice; for example, Bormann (2022) showed improved
performance occurs when Lambertian rather than specular
reflection is assumed in forward simulations.

Further spaceborne capabilities will become available
through the novel Ice Cloud Imager (ICI; Buehler et al.,
2007) and EUMETSAT Polar System – Sterna (EPS–Sterna;
Albers et al., 2023) instruments, which will feature opera-
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tional channels above 200 GHz for the first time. These chan-
nels provide higher sensitivity to small cloud ice particles
than current passive microwave sensors (Buehler et al., 2012;
Wang et al., 2017a; Eriksson et al., 2020). However, variable
emissions from polar surfaces also significantly contribute
to the atmospheric signal received at the 243 (ICI only) and
325 GHz channels due to the dry atmosphere (Wang et al.,
2017b).

While there is considerable interest in expanding sea ice
emissivity estimates to account for submillimeter waves,
few field observations cover this frequency range. The
first brightness temperature (TB) observations of sea ice at
220 GHz were obtained using an airborne cross-track scan-
ning radiometer (Hollinger et al., 1984). However, sea ice
emissivity was derived only at lower frequencies, up to
140 GHz, due to high TB noise and low atmospheric trans-
missivity at 220 GHz during the field study. The observa-
tions revealed similar nadir emissivities at 90 and 140 GHz,
with higher emissivity over young ice (0.96) and lower emis-
sivity over multiyear ice (0.68). Airborne observations with
along-track scanning radiometers from Hewison and English
(1999) provide detailed emissivity spectra for typical sea ice
types and snow from 24 to 157 GHz and demonstrate the
importance of volume scattering within snow at 157 GHz.
Hewison et al. (2002) calculated the nadir emissivities of
sea ice from 24 to 183 GHz at different development stages,
from new ice to multiyear ice, using similar instrumentation
to that used in Hewison and English (1999). New-ice emis-
sivities were highest at 89 GHz, measuring 0.95, and slightly
decreased to 0.9 at 183 GHz. First-year ice emissivities de-
creased from 24 to 157 GHz and slightly increased from 157
to 183 GHz. This emissivity increase at higher frequencies
was also found for multiyear ice. Haggerty and Curry (2001)
observed first-time emissivities of up to 243 GHz at nadir
at a resolution of ∼1 km2. However, leads, which are typi-
cally smaller, could not be resolved. The 340 GHz channel
aboard the same aircraft was insensitive to surface emission
due to low atmospheric transmissivity. Airborne observations
by Wang et al. (2017b) measured sea ice emissivities of up
to 325 GHz, revealing high spatial variability, but the driving
sea ice properties at this frequency could not be estimated.

While field studies demonstrate the high sensitivity of
microwaves to sea ice and snow properties in limited re-
gions, only global sea ice emission information allows for
atmospheric retrievals from satellites. As modeling sea ice
emissions is computationally expensive and requires detailed
knowledge of sea ice and snow properties (Royer et al., 2017;
Picard et al., 2018; Rückert et al., 2023), which is missing on
global scales, spaceborne emissivity climatologies have been
developed (Wang et al., 2017b; Munchak et al., 2020). The
Tool to Estimate Land Surface Emissivity from Microwave
to Submillimeter Waves (TELSEM2; Wang et al., 2017b)
climatology for sea ice and land surfaces extrapolates emis-
sivities up to 700 GHz to provide first-guess emissivities for
upcoming satellite missions, such as ICI. To simultaneously

retrieve atmospheric, sea ice, and snow properties, radiative-
transfer models of sea ice and atmosphere have been com-
bined (Rückert et al., 2023; Kang et al., 2023). Kang et al.
(2023) additionally simulated sea ice growth to increase the
temporal consistency of the retrieved sea ice and snow prop-
erties. However, sea ice radiative-transfer models might only
be valid below 100 GHz. Recently, observed snow emissivi-
ties (up to 243 GHz) were successfully simulated based on
realistic snow properties (Wivell et al., 2023). This result
highlights the need for similar sea ice emissivity field ob-
servations that account for submillimeter waves to improve
future modeling studies of sea ice. These field observations
must also be related to satellite observations, which resolve
the surface at a much coarser resolution.

The limitation of sea ice emissivity observations at the
scale of submillimeter waves and their relevance for fu-
ture satellite missions motivate our study, which is struc-
tured around two objectives. First, we aim to identify criti-
cal physical sea ice and snow properties affecting emissiv-
ity up to submillimeter wavelengths, as observed during two
airborne field campaigns. We calculate the sea ice emissiv-
ity from TBs at 89 (25° incidence angle; horizontal polariza-
tion), 183, 243, and 340 GHz (nadir) using the airborne Mi-
crowave Radar/radiometer for Arctic Clouds (MiRAC; Mech
et al., 2019). Then, we characterize typical emissivity spectra
with airborne visual imagery and surface temperature obser-
vations. Second, we aim to relate the observed hectometer-
scale emissivity observations to the satellite scale. This in-
cludes an assessment of emissivity variability as a function
of footprint size. Furthermore, we collocate MiRAC with
observations from polar-orbiting satellites and analyze spec-
tral variations in emissivity observed at satellite resolutions
from 89 to 340 GHz, relevant for upcoming satellite missions
(such as ICI and EPS–Sterna).

The paper is outlined as follows. Section 2 describes
the airborne field data, microwave instruments, and auxil-
iary data. Section 3 details the emissivity calculation. Sec-
tion 4 identifies relevant sea ice and snow properties that af-
fect emissivity pertaining to airborne observations. Section 5
compares emissivity levels between airborne and satellite ob-
servations, and the study is summarized and concluded in
Sect. 6.

2 Data

2.1 Field data

We use airborne observations from two campaigns: Arc-
tic CLoud Observations Using airborne measurements dur-
ing polar Day (ACLOUD), from 23 May to 26 June 2017
(Wendisch et al., 2019; Ehrlich et al., 2019b), and Airborne
measurements of radiative and turbulent FLUXes of energy
and momentum in the Arctic boundary layer (AFLUX), from
19 March to 11 April 2019 (Mech et al., 2022a). Both cam-
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paigns were conducted as part of the “Arctic Amplification:
Climate Relevant Atmospheric and Surface Processes and
Feedback Mechanisms” ((AC)3) research project (Wendisch
et al., 2023). The research flights (RFs) with the Polar 5 air-
craft (Wesche et al., 2016) from the Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research (AWI),
covered the Fram Strait, located northwest of Svalbard, Nor-
way (Fig. 1). Polar 5 carried MiRAC (a microwave package),
the KT-19 (a thermal infrared sensor), and a visual camera,
as well as other instruments. Various sea ice characteristics
were observed with Polar 5 during the ACLOUD campaign
(i.e., during RF23 on 25 June and RF25 on 26 June 2017)
and the AFLUX campaign (i.e., during RF08 on 31 March,
RF14 on 8 April, and RF15 on 11 April 2019) under clear-
sky conditions and over sea ice suitable for emissivity esti-
mation. During the two ACLOUD flights, melt ponds formed
on the sea ice, and there was open water between individ-
ual ice floes. During the three AFLUX flights, snow-covered
sea ice, mostly composed of multiyear ice (Fig. A1), pre-
vailed, with nilas found in refrozen leads between individual
ice floes. Higher fractions of open water during the AFLUX
campaign were only observed in the marginal sea ice zone of
RF08. The infrared-based mean surface temperatures were
near the freezing point, ranging from 0.8 to 1 °C during both
ACLOUD flights, and well below the freezing point, rang-
ing from −22 to −17 °C during the three AFLUX flights.
The integrated water vapor, derived from in situ observa-
tions (see Sect. 2.4), was about 10 to 10.3 kgm−2 during
the two ACLOUD flights and 1.3 to 2 kgm−2 during the
three AFLUX flights, which indicates reduced water vapor
emissions and high atmospheric transmissivity during the
AFLUX campaign.

2.2 Airborne microwave instruments

Polar 5 carried the MiRAC package, which includes the com-
bined active–passive component (MiRAC-A), mounted in-
side a belly pod beneath the aircraft’s fuselage, and the solely
passive component (MiRAC-P), deployed inside the aircraft
cabin (Mech et al., 2019). MiRAC-A consists of a 94 GHz
cloud radar and a passive 89 GHz channel with horizontal
polarization, measuring backward with a 25° incidence an-
gle. MiRAC-P measures at six double-sideband water va-
por channels (183.31± 0.6, ±1.5, ±2.5, ±3.5, ±5.0, and
±7.5 GHz) and two window channels (243 and 340 GHz) at
nadir (see Table 1). Both MiRAC components measure at a
temporal resolution of 1 s. We exclude MiRAC-A observa-
tions collected during low flights, i.e., when the slant path be-
tween the instrument and the surface is less than 500 m, due
to contamination resulting from back-scattered broadband
noise from the cloud radar. This threshold means MiRAC-
A is entirely excluded during ACLOUD RF25, where the
flight altitude during clear-sky transects over sea ice ranges
from 60 to 350 m. For the other four flights, the typical
flight altitudes range from 60 m to 3 km, with about 80 %

(15 %) of the time spent below 500 m (above 2.5 km). Fur-
thermore, we exclude observations with aircraft roll or pitch
angles above 10°. The flight distance over which MiRAC
provides emissivities depends on the channel, ranging from
400 km at 89 GHz to 1,700 km at 243 GHz. For about 200 km
of this distance, all MiRAC-A and MiRAC-P channels pro-
vide emissivities nearly instantaneously – i.e., the spatially
matched footprint centers of MiRAC-P and the inclined
MiRAC-A are less than 200 m apart.

The instrument receivers were calibrated with a two-point
calibration using liquid nitrogen and an internal target at the
beginning of each campaign. In addition, MiRAC-A per-
formed gain calibrations every 15 min (and MiRAC-P per-
formed them every 20 min) during flights using an internal
target (Mech et al., 2019). After the campaign, we applied a
bias correction to the 89 GHz TBs, following Konow et al.
(2019); this was based on Passive and Active Microwave
radiative TRAnsfer (PAMTRA; Mech et al., 2020) forward
simulations and used dropsonde profiles under clear-sky con-
ditions over the open ocean, extended by ERA5 reanalysis
(Hersbach et al., 2020) to the top of the atmosphere, and
a sea surface temperature analysis (UK Met Office, 2012)
as inputs. The added 89 GHz TB offset for the ACLOUD
(AFLUX) flights in this study is 11 (32) K and decreases
linearly toward higher TBs. This high calibration offset oc-
curred due to difficult weather conditions during the liquid-
nitrogen calibration. We estimate the accuracy of the offset
correction to be 2 K. For MiRAC-P, no such calibration is-
sues occurred due to its location inside the aircraft cabin
(Mech et al., 2019). The TB noise is about 0.5 K for MiRAC-
A (Küchler et al., 2017) and MiRAC-P (Mech et al., 2019),
indicating an upper bound of the observed TB noise of 0.2 to
0.3 K, based on a homogeneous time series during ACLOUD
RF10. This random noise cancels out when averaging, but
we do not consider this here as systematic effects dominate
the overall emissivity uncertainty (see Sect. 3.2). Hence, we
assume the overall TB uncertainty from bias correction and
noise to be 2.5 K at 89 GHz and 0.5 K at all other frequencies.
The footprint size at a 60 ms−1 flight velocity with a 1 s inte-
gration time is about 70× 130 m2 at 3 km flight altitude and
1×60 m2 at 60 m flight altitude at 183 GHz, i.e., at nadir with
an opening angle of 1.3° (see Table 1). We shift the MiRAC
measurement time by 1 to 2 s (2 to 5 s) during the ACLOUD
(AFLUX) campaign relative to the infrared radiometer KT-
19 as determined from lagged correlations between 243 GHz
TBs and KT-19 infrared TBs during the clear-sky sea ice
emissivity flight segments. Note that the 243 GHz channel
showed the highest correlation with the infrared TB of all
MiRAC-P channels during both campaigns due to its high
atmospheric transmission compared to the other MiRAC-P
channels.

https://doi.org/10.5194/tc-18-4137-2024 The Cryosphere, 18, 4137–4163, 2024



4140 N. Risse et al.: Assessing sea ice microwave emissivity up to submillimeter waves

Figure 1. All Polar 5 flights, clear-sky segments over sea ice, and mean sea ice concentrations (Spreen et al., 2008) during (a) the ACLOUD
campaign, from 23 May to 26 June 2017, and (b) the AFLUX campaign, from 19 March to 11 April 2019.

Table 1. Specifications of the passive MiRAC-A and MiRAC-P channels. H: horizontal. V: vertical.

Instrument Channel Frequency Polarization Incidence Field of
(GHz) angle (°) view (°)

MiRAC-A 1 89 H 25 0.85

MiRAC-P

1 183.31± 0.6 V 0 1.3
2 183.31± 1.5 V 0 1.3
3 183.31± 2.5 V 0 1.3
4 183.31± 3.5 V 0 1.3
5 183.31± 5.0 V 0 1.3
6 183.31± 7.5 V 0 1.3
7 243 H 0 1.25
8 340 H 0 1.0

2.3 Satellite microwave instruments

We focus on commonly used cross-track and conical polar-
orbiting scanning microwave radiometers. These include the
Microwave Humidity Sounder (MHS; EUMETSAT, 2010),
the Advanced Technology Microwave Sounder (ATMS; Kim
et al., 2014), the Special Sensor Microwave Imager/Sounder
(SSMIS; Kunkee et al., 2008), and the Advanced Microwave
Scanning Radiometer 2 (AMSR2; JAXA, 2016); their plat-
forms and specifications are summarized in Table 2. To en-
sure consistency among the sensors, we use intercalibrated
Level 1C TB data (NASA Goddard Space Flight Center and
GPM Intercalibration Working Group, 2022). This intercal-
ibration corrects offsets between the constellation satellites
using the well-calibrated Global Precipitation Measurement
(GMP) Microwave Imager (GMI) (Hou et al., 2014), which
covers up to 65° N, as a reference (Berg et al., 2016).

MHS and ATMS conduct cross-track scanning at inci-
dence angles of up to 59 and 64°, respectively, and the
SSMIS and AMSR2 scan conically at incidence angles of

53 and 55°, respectively. MHS and ATMS measure TBs with
nominal vertical (QV) or nominal horizontal (QH) polariza-
tion at nadir, rotating with view angle α. These TBs are ex-
pressed as

Tb,QV = Tb,Vcos2(α)+ Tb,Hsin2(α) (1)

and

Tb,QH = Tb,Hcos2(α)+ Tb,Vsin2(α), (2)

respectively. We only use MHS and ATMS data with inci-
dence angles from 0 to 30° because these angles provide
observation conditions similar to those of MiRAC. More-
over, fewer footprints with higher incidence angles collo-
cate with MiRAC, and their increased footprint sizes make
comparisons more uncertain. Using this incidence angle fil-
ter for MHS and ATMS, the footprint sizes are mostly around
16×16 km2, with the highest resolution of 3×5 km2 provided
by AMSR2. MHS aboard the NOAA-18 spacecraft only op-
erated during the ACLOUD campaign, and the Metop-C
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and NOAA-20 spacecraft only operated during the AFLUX
campaign. The 150 GHz channel of the SSMIS aboard the
DMSP-F18 satellite was unavailable due to its failure (Berg
et al., 2016).

MiRAC overlaps spectrally with MHS, ATMS, and
SSMIS at 89 and 183 GHz and overlaps spectrally with
AMSR2 at 89 GHz. However, MiRAC’s 89 GHz channel,
which measures under horizontal polarization at 25°, is not
directly comparable with the satellite channels because MHS
and ATMS mostly measure vertically polarized TBs near this
incidence angle, and SSMIS and AMSR2 measure at higher
incidence angles. Only MiRAC’s 183 GHz near-nadir chan-
nel is directly comparable with near-nadir observations from
MHS and ATMS.

2.4 Ancillary observations

The emissivity retrieval requires ancillary information on the
atmospheric thermodynamic profile and surface temperature.
We construct the thermodynamic profile below 3 km altitude
from measurements of the aircraft’s nose boom and dropson-
des, and we construct the thermodynamic profile above 3 km
altitude from radiosondes (Maturilli, 2020) launched at the
AWIPEV station, operated jointly by the AWI and the Po-
lar Institute Paul-Emile Victor (IPEV) in Ny-Ålesund, Sval-
bard, Norway (Neuber, 2003). If no dropsonde information is
available over sea ice, we assume constant temperature and
humidity from the lowest flight altitude of about 100 m down
to the surface. The air temperature measured at these heights
differs by less than 5 K from the mean surface temperature,
which indicates that the profiles capture typical Arctic sur-
face temperature inversions (e.g., Tjernström and Graversen,
2009). The uncertainties in temperature and relative humid-
ity are ±0.2 K and ±2 % for dropsondes (Vaisala, 2010),
±0.2–0.4 K and ±3–4 % for radiosondes (Maturilli, 2020),
and ±0.3 K and ±0.4 % for the nose boom (Ehrlich et al.,
2019b).

The KT-19 aboard Polar 5 provides infrared TBs inte-
grated over the atmospheric window from 9.6 to 11.5 µm,
with a 1 s resolution and an opening angle of 2° at nadir.
Hence, its opening angle is slightly larger than MiRAC’s
opening angles. The accuracy of the KT-19 is about ±0.5 K.
The infrared TBs are converted to surface skin temperatures
with an infrared emissivity of 0.995, similar to Høyer et al.
(2017) and Thielke et al. (2022), which approximates the in-
frared emissivity of typical sea ice types and oceans with
an accuracy of 0.01 to 0.02 (Hori et al., 2006). We use the
KT-19 data as input for the sea ice emissivity calculation
for MiRAC. We also require an accurate description of the
surface temperature at the satellite footprint scale, which has
higher spatial coverage than the KT-19. Therefore, we use the
daily “Arctic Ocean – Sea and Ice Surface Temperature” re-
analysis (Level 4) with a resolution of 0.05×0.05° (Nielsen-
Englyst et al., 2023), which matches the AMSR2 satellite
footprint size (hereafter referred to as NE23). The product

derives daily gap-free sea and ice surface temperatures from
clear-sky thermal infrared satellite observations sensitive to
the upper few millimeters of snow or ice (Warren, 1982)
and passive microwave-based sea ice concentrations. A com-
parison between the airborne surface temperatures based on
the KT-19 and the NE23 temperatures reveals biases of 4 to
6 K during the ACLOUD campaign and biases of -1 to 1 K
during the AFLUX campaign (KT-19 minus NE23). During
the ACLOUD campaign, the KT-19 temperatures are close
to the melting point, which agrees with observed melting
conditions and a snow liquid water fraction of around 15 %
(Rosenburg et al., 2023). We use the nearest NE23 ice surface
temperature pixel to the satellite footprint as input for the
sea ice emissivity calculation for satellites. Furthermore, a
downward-looking camera equipped with a fish-eye lens op-
erating in the visible spectrum (red, green, and blue) aboard
Polar 5 provides information on sea ice characteristics ev-
ery 4 to 6 s. Finally, three data products contribute surface
information: daily sea ice concentration maps from the Uni-
versity of Bremen with a 6.25× 6.25 km2 resolution, based
on AMSR2 (Spreen et al., 2008); daily wintertime multi-
year ice concentration maps from the University of Bremen
with a 12.5×12.5 km2 resolution, based on AMSR2 and the
Advanced Scatterometer (ASCAT; Melsheimer and Spreen,
2022); and Sentinel-2B Level 2A (L2A) visual images with
a 20× 20 m2 resolution (European Space Agency, 2021).
Although the multiyear ice concentration product incorpo-
rates microwave observations from AMSR2 and ASCAT that
may correspond to observations collected at MiRAC fre-
quencies, the implemented temperature and drift corrections
increase independence between multiyear ice concentration
and MiRAC TB.

We utilize topographic data from the Norwegian Polar
Institute to exclude observations over land and near the
coastline (Norwegian Polar Institute, 2014). Specifically, we
exclude data within 150 m of the shoreline for MiRAC
and within about one footprint radius of 2.5 km (8 km) for
AMSR2 (MHS, ATMS, and SSMIS).

2.5 Collocation of MiRAC with satellites

To compare MiRAC with satellites, we require nearly si-
multaneous and spatially aligned observations. We achieve
simultaneous observations by filtering collocations within a
±2 h window, which maximizes the number of satellite over-
passes and minimizes the effects of sea ice drift. The sea
ice drift during the flights is less than 1 km h−1, based on
data from the National Snow and Ice Data Center (NSIDC;
Tschudi et al., 2020), and spatial variability exceeds tempo-
ral variability (not shown). Furthermore, we spatially align
MiRAC with the nearest satellite footprints for each satel-
lite overpass by imposing specific criteria: a footprint cen-
ter distance threshold of about one footprint radius, corre-
sponding to 2.5 km (8 km) for AMSR2 (MHS, ATMS, and
SSMIS), and a minimum of 17 (50) MiRAC footprints within

https://doi.org/10.5194/tc-18-4137-2024 The Cryosphere, 18, 4137–4163, 2024



4142 N. Risse et al.: Assessing sea ice microwave emissivity up to submillimeter waves

Table 2. Specifications of the MHS, ATMS, SSMIS, and AMSR2 channels used in this study. The instantaneous field of view (IFOV) from
MHS and ATMS is given for nadir observations. The polarizations for MHS and ATMS are either nominal vertical (QV) at nadir, rotating
with the view angle, or nominal horizontal (QH) at nadir, rotating with the view angle. The polarizations for SSMIS and AMSR2 are either
horizontal (H) or vertical (V). Only 0–30° incidence angles from MHS and ATMS are used here.

Instrument Channel Frequency Polarization Incidence angle IFOV
(GHz) (°) (km2)

MHS (Metop-A, Metop-B, Metop-Ca, NOAA-18b, NOAA-19)
1 89 QV 0–30 16× 16
2 157 QV 0–30 16× 16
5 190.31 QV 0–30 16× 16

ATMS (SNPP, NOAA-20a)
16 88.2 QV 0–30 32× 32
17 165.5 QH 0–30 16× 16
18 183.31± 7 QH 0–30 16× 16

SSMIS (DMSP-F16, DMSP-F17, DMSP-F18)

17 91.655 V 53 9× 15
18 91.655 H 53 9× 15
8 150 H 53 9× 15
9 183.31± 6.6 H 53 9× 15

AMSR2 (GCOM-W1)
13 89 V 55 3× 5
14 89 H 55 3× 5

a Satellite only operated during the AFLUX campaign. b MHS aboard NOAA-18 only operated during the ACLOUD campaign

the AMSR2 (MHS, ATMS, or SSMIS) footprint. The latter
criterion translates to a straight flight distance exceeding ap-
proximately 20 % of the satellite footprint diameter (10 % for
ATMS at 89 GHz).

The number of satellite overflights during the ACLOUD
(AFLUX) campaign with collocated footprints from MHS,
ATMS, SSMIS, and AMSR2 is 15 (23), 0 (8), 11 (26), and
2 (9), respectively. We matched channels near 89 GHz with
MiRAC-A, and channels above 100 GHz were matched with
MiRAC-P. The number of satellite footprints collocated with
MiRAC at 89 GHz during the ACLOUD (AFLUX) campaign
is 87 (86), 0 (34), 107 (175), and 23 (159) for MHS, ATMS,
SSMIS, and AMSR2, respectively. The number of satellite
footprints collocated with MiRAC above 100 GHz during the
ACLOUD (AFLUX) campaign is 222 (138), 0 (46), and 277
(261) for MHS, ATMS, and SSMIS, respectively. Around 70
MiRAC footprints fall within each of the satellite footprints
at 89 GHz, and about 200 fall within each satellite footprint at
frequencies above 100 GHz. The difference is mainly related
to the higher resolution of AMSR2 at 89 GHz.

3 Methodology

3.1 Effective sea ice emissivity calculation

We directly derive effective sea ice emissivity from observed
clear-sky TBs and infrared-based skin temperatures, follow-
ing Prigent et al. (1997). Typically, the skin temperature dif-
fers from the temperature of the emitting sea ice or snow
layer (Tonboe, 2010). The depth of the emitting layer, or pen-
etration depth, depends on sea ice and snow properties and

decreases with increasing frequency (Tonboe et al., 2006).
Emissivity based on skin temperature is commonly referred
to as effective emissivity, but hereafter, we use the term
“emissivity” for better readability.

Harlow (2011) compared methods for estimating emitting-
layer temperature from 183 GHz observations. However,
their applicability to our data is limited by the absence of
simultaneous downwelling 183 GHz TB measurements and
uncertainties in the atmospheric profile impacting surface
temperature estimates. Other studies employ precalculated
penetration depths and observed sea ice temperature profiles
for specific ice types (Mathew et al., 2008, 2009), which do
not apply to the diverse sea ice conditions presented here.

The emissivity calculation is based on nonscattering radia-
tive transfer (RT), which is valid under clear-sky conditions.
The TB observed at aircraft or satellite height, denoted as Tb,
is given by

Tb = Ts · e · t + T
↓

b · t · (1− e)+ T
↑

b , (3)

where e represents surface emissivity, Ts represents surface
temperature, t represents atmospheric transmissivity in the
viewing direction between the surface and the aircraft/satel-
lite height, T ↓b represents downwelling atmospheric radiation
at the surface, and T ↑b represents upwelling atmospheric radi-
ation at the observation height. Solving Eq. (3) for the surface
emissivity yields

e =
Tb− T

↑

b − T
↓

b · t

(Ts− T
↓

b ) · t
. (4)

Equation (4) can be solved using two RT simulations with
e = 0 and e = 1 (Mathew et al., 2008). The solution is ex-
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pressed as

e =
Tb− Tb(e = 0)

Tb(e = 1)− Tb(e = 0)
. (5)

We perform RT simulations for the Polar 5 or satellite height
using PAMTRA. In PAMTRA, we select the Rosenkranz
(1998) gas absorption with modifications for water vapor
continuum absorption (Turner et al., 2009). We simulate
specular and Lambertian reflections separately.

Satellite-based emissivity studies typically limit the emis-
sivity calculation to channels with high atmospheric trans-
missivity. Using aircraft, we can increase transmissivity by
flying at low altitudes. However, in addition to transmis-
sivity, the contrast between surface temperature and atmo-
spheric downwelling TB dominates the surface sensitivity,
i.e., the sensitivity of the observed TB to emissivity changes.
This can be seen when calculating the partial derivative from
Eq. (3), given as follows:

∂Tb

∂e
= (Ts− T

↓

b ) · t = Tb(e = 1)− Tb(e = 0). (6)

This term corresponds to the denominator in Eq. (5) and
should be maximized to avoid noisy emissivity estimates. We
identify 40 K as a reasonable threshold below which emis-
sivity noise exceeds typical signatures of sea ice. Observed
mean surface sensitivities during the AFLUX campaign are
200 K (50 K) at 89 GHz (340 GHz). Only observations ob-
tained at 183 and 340 GHz during the ACLOUD campaign
fall below the surface sensitivity threshold and are excluded
to avoid highly uncertain emissivity estimates.

3.2 Emissivity uncertainty estimation

We estimate the emissivity uncertainty by propagating errors
from TB (see Sect. 2.2), air temperature, relative humidity,
and surface temperature. The assumed uncertainties for air
temperature and relative humidity are ±2 K and ±5 %, re-
spectively. These assumed uncertainties are higher than the
dropsonde and radiosonde uncertainties to account for repre-
sentability errors along the flight path. The assumed uncer-
tainty in surface temperature is ±3 K during the ACLOUD
campaign and ±8 K during the AFLUX campaign. The sur-
face temperature uncertainty pertaining to the ACLOUD
campaign mainly accounts for errors in infrared emissivity
and KT-19 measurement uncertainty. The higher uncertainty
in surface temperature during the AFLUX campaign, com-
pared to the ACLOUD campaign, accounts for the spread
between surface skin temperature and emitting-layer temper-
ature, which can deviate by up to 10 K at 89 GHz over mul-
tiyear ice due to insulating snow (Tonboe, 2010). During the
ACLOUD campaign, we expect mostly isothermal sea ice
due to surface melt (Perovich et al., 1997). The uncertainty
estimation is performed only on aircraft data, not on satellite
observations, because the MiRAC channels already include

most satellite channels. A notably higher emissivity uncer-
tainty occurs for satellites operating near 183 GHz than for
MiRAC, due to the higher atmospheric contributions.

3.3 Surface reflection model

The surface reflection model affects the direction from which
downwelling atmospheric radiation is reflected at the surface.
Typically, the surface is approximated as either purely spec-
ular or Lambertian. Across specular surfaces, the incidence
angle matches the reflection angle, whereas Lambertian sur-
faces exhibit isotropic and unpolarized reflection. High sen-
sitivity to the assumed surface reflection type occurs at nadir,
where MiRAC conducts measurements, and low sensitivity
occurs at incidence angles between 50 to 60°, where imagers
like SSMIS and AMSR2 conduct measurements (Matzler,
2005; Karbou and Prigent, 2005).

Guedj et al. (2010) presented a method for constrain-
ing the surface reflection model at 50 GHz sounding chan-
nels by combining TB measurements with an emissivity re-
trieval. They calculated the emissivity at a wing channel
of the absorption line to simulate an adjacent inner chan-
nel, finding Lambertian reflection across Antarctica in win-
ter and seasonal variations in specular contributions. Here,
we adapt the method to 183 GHz MiRAC observations col-
lected during the three AFLUX flights by following three
steps. First, we calculate emissivities at 183.31± 7.5 GHz
under both specular and Lambertian reflection. Second, we
use the emissivities derived at 183.31± 7.5 GHz to simulate
TBs at 183.31±5 GHz with PAMTRA, taking the respective
surface reflection into account. Third, we compare the sim-
ulation with the observed TB at 183.31± 5 GHz. The bias
distribution is closest to zero under the Lambertian assump-
tion (Fig. 2). Despite the relatively high uncertainty near the
water vapor absorption line, the results confirm Lambertian
behavior of sea ice at 183 GHz, consistent with findings by
Harlow (2011) and Bormann (2022).

In the following, we only present the emissivities calcu-
lated using Lambertian surface reflection from aircraft and
satellites, based on findings collected at 183 GHz. Hence,
we assume similar surface reflection behavior at 89, 243,
and 340 GHz. Additionally, we assume that the reflection
type identified during the AFLUX campaign also applies to
ACLOUD observations, where 183 GHz surface emissivity
data are lacking. However, at 89 GHz, it is well known that
sea ice exhibits a distinct polarization signature (NORSEX
Group, 1983), indicating a specular contribution to the re-
flection. While we are still able to reproduce polarization sig-
natures from satellites operating at an incidence angle close
to 50° (Matzler, 2005), the specular contribution modifies
the magnitude of the simulated 25° reflected downwelling
atmospheric TB. For MiRAC observations at 89 GHz, fully
specular emissivities exceed fully Lambertian emissivities by
about 6 % to 2 % during the ACLOUD campaign and by 3 %
to 1 % during the AFLUX campaign when Lambertian emis-
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Figure 2. Histogram and mean of the difference between observed
and simulated 183.31±5 GHz TBs (Tb,obs and Tb,sim, respectively),
employing 183.31± 7.5 GHz emissivities under Lambertian and
specular surface reflection during the AFLUX campaign. The TB
bin width is 0.5 K.

sivities range from 0.6 to 0.8. This emissivity uncertainty is
comparable to or lower than the uncertainty due to the sur-
face temperature assumption since sea ice is not fully specu-
lar at 89 GHz (Bormann, 2022).

4 Airborne observations

4.1 Case study

In this section, we first illustrate the available airborne ob-
servations collected along an 11 km transect during AFLUX
RF08 on 31 March 2019 (Fig. 3). Satellite observations indi-
cate that ∼75 % of the ice within the area is multiyear ice
(Fig. A1). The sea ice types along the transect are distin-
guishable in airborne visual-camera observations (Fig. 3a–
d) and Sentinel-2B imagery (Fig. 3e). We observe predom-
inantly snow-covered sea ice from 0 to 7 km. Notably, sur-
face structural variations from 3 to 4 km suggest the presence
of young ice, defined as the transition stage between nilas
and first-year ice (World Meteorological Organization, 2014)
that is sometimes formed within leads among thicker multi-
year ice. Progressing from 7 to 11 km, we encounter refrozen
leads with nilas attached to individual snow-covered ice
floes. The observed surface temperatures reflect the chang-
ing sea ice and snow properties, with almost constant tem-
peratures of −24 °C over snow-covered sea ice and up to
−18 °C over nilas. The TBs vary significantly with ranges of
76, 47, 48, and 30 K at 89, 183.31± 7.5, 243, and 340 GHz,
respectively, and exceed the 6 K surface temperature range.
This high variability demonstrates the importance of surface
emissivity variations in the observed TB.

The difference between the minimum and maximum sea
ice emissivity decreases as frequency increases, with values
of 0.35, 0.27, 0.24, and 0.21 at 89, 183.31± 7.5, 243, and
340 GHz, respectively. The higher emissivity variability at
89 GHz compared to the other frequencies likely relates to
its horizontal polarization at a 25° incidence angle. Previ-
ous studies have shown that horizontal polarization exhibits
higher sea ice emissivity variability at 89 GHz than vertical
polarization does at an incidence angle of 53° (e.g., Shokr
et al., 2009). This is related to the enhanced sensitivity to sea
ice and snow properties with horizontal polarization. Similar
effects likely occur at a 25° incidence angle. Furthermore,
horizontal polarization at 89 GHz results in emissivities that
are up to 0.05 lower compared to nadir, depending on the sea
ice type, as shown in past airborne observations at varying
incidence angles (Hewison and English, 1999). This partly
explains the low emissivity at 89 GHz observed here com-
pared to that from the other nadir-viewing channels.

Despite the implications of incidence angle and polariza-
tion differences on spectral features, this transect showcases
typical sea ice emission signatures. Over nilas from 7 to
11 km, sea ice emissivity increases across all channels, with
values ranging from 0.9 to 1. Hewison and English (1999)
and Hewison et al. (2002) observed similar emissivities at 89
and 183 GHz over bare ice under the same observing geom-
etry as MiRAC. Sea ice emissivity over multiyear ice within
the first 7 km is lower than that over nilas at all frequencies.
The snow-covered and refrozen leads from 3 to 4 km only
cause higher emissivities at 89 GHz, likely due to the higher
sensitivity of the horizontal polarization at this channel to
sea ice and snow properties. Observations of multiyear ice
at nadir in Hewison et al. (2002) are comparable to multi-
year ice observations along this transect. The 243 GHz nadir
emissivity is close to the mean emissivity of 0.84 at 220 GHz,
observed by Haggerty and Curry (2001). The alignment of
MiRAC emissivity features with past sea ice emissivity stud-
ies provides confidence in the 243 GHz emissivity resolved at
the hectometer scale. Moreover, the high similarity between
243 and 340 GHz emissivities shows that MiRAC provides
submillimeter sea ice emissivities with a clear dependence
on distinct sea ice types for the first time.

The±8 K surface temperature uncertainty causes the high-
est emissivity uncertainty for all channels (not shown). The
uncertainty magnitude varies highly between the channels.
The lowest uncertainty range occurs at 89 and 243 GHz,
while the highest range occurs at 183.31± 2.5 GHz, which
is the channel closest to the 183.31 GHz water vapor absorp-
tion line, exceeding the 40 K surface sensitivity threshold. In
the following, we only show the 183.31± 7.5 GHz channel
due to its higher surface sensitivity and similar emissivity
compared to the inner 183 GHz channels (Fig. 3j). The mea-
sured emissivity difference between multiyear ice and nilas
exceeds the emissivity uncertainty at all frequencies, while
no significant variations occur in the first 7 km at 340 GHz.
Overall, this case study demonstrates the relevance of sensi-
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tivity tests in interpreting the retrieved emissivities to distin-
guish emissivity features arising from uncertainties inherent
to the assumptions of the emissivity calculation, caused by
unknown subsurface temperatures and uncertain atmospheric
thermodynamic profiles.

4.2 TB and emissivity variability

In the following, we analyze the distributions of TB and
emissivity observed during all clear-sky flights over sea ice
during the ACLOUD and AFLUX campaigns (Fig. 4). The
histograms corresponding to 89 GHz and 183–340 GHz in-
clude different samples due to the exclusion of low flight al-
titudes at 89 GHz, which introduces a potential inconsistency
(Table 3). Therefore, we compared these histograms with
those from instantaneous measurements in which all chan-
nels sample the same sea ice, and we found no changes in the
shape of the histograms that exceed the estimated emissivity
uncertainties (not shown). Hence, we present all available ob-
servations here. The TB variability during the AFLUX cam-
paign exceeds that during the ACLOUD campaign at all fre-
quencies (Fig. 4a–d). The ACLOUD TBs at 183, 243, and
340 GHz show low variability and higher values, attributed
to the increased atmospheric water vapor and surface tem-
perature. Two distinct peaks occur at 89 and 243 GHz during
the AFLUX campaign. These peaks become even more pro-
nounced in the emissivity distributions, ranging from around
0.7 to 0.85 and from 0.9 to 1, respectively (Fig. 4e–h). These
emissivity ranges correspond to those pertaining to multi-
year ice and nilas in the AFLUX RF08 case (see Sect. 4.1).
The histograms derived for 243 GHz are broader than the
220 GHz emissivities reported by Haggerty and Curry (2001)
due to MiRAC’s higher resolution, which captures previously
unresolved leads. MiRAC’s 340 GHz emissivity distribution
follows a similar shape to the 183 and 243 GHz channels.
The broader emissivity distribution at 340 GHz could be re-
lated to the higher emissivity uncertainty of 9 % compared
to the emissivity uncertainty at 183 GHz (6 %) and 243 GHz
(5 %) during the AFLUX campaign (Table 3). The apparent
shape difference of the 89 GHz distribution and the 2-fold
higher interquartile range (Table 3) indicate that this horizon-
tally polarized and 25° inclined channel is more sensitive to
sea ice and snow properties than the other channels at higher
frequencies. The 89 GHz distribution is narrower during the
ACLOUD campaign than during the AFLUX campaign in
the presence of melting sea ice, which agrees with findings
from Haggerty and Curry (2001). Lower emissivities during
the ACLOUD campaign, indicated by the two lower peaks
around 0.65, correspond to regions with lower sea ice con-
centrations. These emissivities should be treated with care
due to the specular contributions of the sea surface.

4.3 Influence of sea ice and snow properties

In this section, we aim to relate the observed sea ice emissiv-
ity variability to sea ice and snow properties visible in fish-
eye lens images and surface skin temperature. Previous air-
borne studies have classified sea ice based on airborne im-
agery or visual inspection and calculated emissivity spec-
tra for each sea ice type (e.g., Hewison and English, 1999).
However, this approach requires sea ice classification at a
high temporal resolution. Therefore, we use k-means cluster-
ing to extract distinct emissivity spectra – a similar approach
to that seen in previous sea ice and snow emissivity studies
(Wang et al., 2017b; Wivell et al., 2023). First, we normal-
ize the data by subtracting the mean emissivity and dividing
the result by the standard deviation at each channel to en-
sure equal channel weighting. Then, we cluster the normal-
ized emissivity spectra across all four MiRAC frequencies
using k-means to identify distinct sea ice emissivity spectra.

The crucial hyperparameter for k-means clustering is the
total number of clusters. Therefore, we analyze three heuris-
tics – distortion (Thorndike, 1953), the Calinski–Harabasz
index (Calinski and Harabasz, 1974), and silhouette score
(Rousseeuw, 1987) – and yield an optimal cluster number of
four (Appendix B). However, not all clusters separate clearly
due to transitional stages and inhomogeneous sea ice prop-
erties within MiRAC’s footprint (Fig. B1b). Fish-eye images
for all samples underline the high diversity in sea ice and
snow properties (Fig. B2).

The occurrence of each cluster varies between the flights.
Cluster 1 (C1) occurs more often than the other clusters (ap-
pearing in 52 % of cases during RF08), while C2 is predomi-
nant during RF14 (accounting for 68 % of occurrences), and
C3 is observed in 48 % of instances during RF15. C4 occurs
about 20 % of the time during RF08 and RF14, and it oc-
curs 8 % of the time during RF15. It is unclear whether these
changes are due to sea ice drift or temporal changes in ice
properties, given the coarse temporal resolution and poten-
tial bias resulting from the flight pattern.

Each cluster exhibits distinct emissivity features (Figs. 5a
and C1). The lowest emissivity prevails in C1, and the high-
est is found in C4. C1 occurs over snow-covered sea ice
(Fig. 5c), which might be classified as multiyear ice and pre-
dominates during the AFLUX flights (Fig. A1). This also
corresponds to the lower skin temperature of 250 K for this
cluster compared to the other clusters (Fig. 5b). Few open
leads are present within C1 as water shows a spectral signa-
ture similar to that of this cluster. C4 occurs over nilas in re-
frozen leads (Fig. 5c). This aligns with the generally warmer
skin temperature observed in this cluster compared to in the
other clusters (Fig. 5b). C4 is distinct from the other three
clusters at 183, 243, and 340 GHz. C2 emissivities fall be-
tween those of C1 and C4 at all frequencies. This cluster oc-
curs over various surface types, but it predominantly occurs
over ice with visual properties of first-year ice. C3 emissivi-
ties are close to those of C4 at 89 GHz and close to those of
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Figure 3. Observations collected along an 11 km transect at 81.01° N, 4.28–4.91° E (about 100 km north of the sea ice edge) during AFLUX
RF08 (31 March 2019). Polar 5 flew westward (right to left in this figure) at an altitude of 540 m for about 4 min, starting at 11:39 UTC.
(a–d) Fish-eye lens images with a 100 m diameter nadir reference circle obtained at (a) 11:42:16 UTC, (b) 11:41:32 UTC, (c) 11:40:20 UTC,
and (d) 11:40:00 UTC. (e) Sentinel-2B L2A natural-color image obtained at 14:37 UTC, showing the flight track, surface skin temperature
from the KT-19, and the location of the airborne imagery. (f) Surface skin temperature from the KT-19. (g, i, k, m) TB at all MiRAC channels.
(h, j, l, n) Emissivity and uncertainty from MiRAC’s surface-sensitive channels, i.e., except the two inner 183 GHz channels in this case. The
Sentinel-2B image was shifted northward by 2.5 km to correct for sea ice drift. H-pol: horizontal polarization

Table 3. Sea ice emissivity at MiRAC frequencies during individual flights and across all flights from the ACLOUD and AFLUX campaigns.
Values include the sample count (Cnt.), median (Mdn.), interquartile range (IQR), and relative uncertainty averaged over all samples (Unc.).
The sample counts for 183, 243, and 340 GHz are constant, except for the ACLOUD flights, where emissivities measured at 183 and 340 GHz
are not available.

Campaign (RF) 89 GHz 183 GHz 243 GHz 340 GHz

Cnt. Mdn. IQR Unc. Cnt. Mdn. IQR Unc. Mdn. IQR Unc. Mdn. IQR Unc.
(%) (%) (%) (%)

ACLOUD (RF23) 3431 0.7 0.06 2 15 152 0.74 0.04 8
ACLOUD (RF25) 1595 0.87 0.06 5

AFLUX (RF08) 1955 0.78 0.17 4 4632 0.77 0.08 5 0.75 0.07 4 0.74 0.07 7
AFLUX (RF14) 638 0.81 0.15 4 2358 0.83 0.07 6 0.79 0.06 4 0.78 0.08 8
AFLUX (RF15) 1097 0.88 0.14 4 4662 0.82 0.05 6 0.73 0.05 5 0.71 0.09 10

ACLOUD 3431 0.7 0.06 2 16 747 0.74 0.04 8
AFLUX 3690 0.81 0.17 4 11 652 0.81 0.08 6 0.75 0.07 5 0.74 0.08 9
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Figure 4. Histograms of (a–d) TB and (e–h) emissivity at (a, e) 89, (b, f) 183, (c, g) 243, and (d, h) 340 GHz during the ACLOUD and
AFLUX campaigns. The TB bin width is 5 K, and the emissivity bin width is 0.025. The observations at 183 and 340 GHz collected during
the ACLOUD campaign fall below the surface sensitivity threshold and are therefore excluded from panels (f) and (h). The histograms for
183, 243, and 340 GHz contain more samples than the 89 GHz histogram (see Table 3).

C1 at 243 and 340 GHz. This cluster occurs over young ice
that has more snow cover than the sea ice in C4. Hence, scat-
tering within the upper snow layer could explain the lower
emissivity at 243 and 340 GHz in C3 than in C4. However,
the emissivity is lower than in C2, where snow is also present,
which indicates the importance of other factors, such as snow
density and grain size.

The evaluation of airborne emissivities reveals (1) low dif-
ferences in the median emissivity and interquartile range at
183, 243, and 340 GHz; (2) higher emissivities over nilas
compared to those over multiyear ice at all frequencies; and
(3) four distinct emissivity spectra. The similarity between
243 and 340 GHz implies a lower spectral variation in sea
ice emissivity in the submillimeter wave range. However, the
emissivity variability at both frequencies is still notable and
depends on the sea ice type, with the highest contrast ob-
served between multiyear ice and nilas.

5 Comparison with satellites

5.1 Spatial variability at a subfootprint scale

Airborne and satellite observations resolve sea ice emissiv-
ity on different spatial scales. Hectometer-scale airborne ob-
servations resolve most leads, while kilometer-scale satellite
observations partially smooth out these structures. Figure 6a
shows a Polar 5 transect during AFLUX RF08, covering a
5 km lead mainly composed of nilas. MiRAC’s 89 GHz emis-
sivity exhibits a pronounced increase from multiyear or first-

year ice to nilas, followed by a sharp decrease over a short
section of open water. Consequently, emissivity clusters shift
from C1 over multiyear or first-year ice to C4 over younger
sea ice. The 5 km AMSR2 footprints partially resolve the
lead, with higher emissivities observed over nilas, whereas
the 16×16 km2 MHS footprints cannot fully capture it. This
example underscores the significance of subfootprint-scale
emissivity variations over spatially heterogeneous sea ice.

Next, we examine how emissivity varies with footprint
size from 0.1 to 20 km for all airborne observations. We
calculate the larger-scale emissivity from the mean airborne
surface temperature and emission for each footprint size in-
terval. The interquartile range of the emissivity decreases
rapidly with increasing footprint size during the ACLOUD
and AFLUX campaigns at all frequencies (Fig. 6b). For ex-
ample, the variability in 100 m footprints at 340 GHz during
the AFLUX campaign decreases by 42 % (65 %) when the
footprint size corresponds to 5×5 km2 (16× 16 km2). The
smallest decrease occurs at 89 GHz during the ACLOUD
campaign, with a decrease of 21 % (20 %) when the footprint
size reaches 5×5 km2 (16×16 km2). Hence, a larger satellite
footprint averages out small-scale emissivity variations.

5.2 Channel intercomparison

Before integrating MiRAC data with all satellite observations
to study spectral variations of up to 340 GHz on a satellite
scale, we must ensure that our collocation approach repro-
duces satellite observations at similar frequencies and ob-
serving geometries. The near-nadir (0–30°) 157 GHz MHS
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Figure 5. Comparison of sea ice emissivity and surface temperature across k-means clusters. (a) Tukey boxplot depicting the distribution
of sea ice emissivity at MiRAC frequencies within each k-means cluster. (b) Tukey boxplot showing the distribution of surface temperature
within each k-means cluster. (c) Fish-eye lens images representing the k-means cluster centroids, i.e., for emissivity samples similar to the
mean cluster emissivity, with a 100 m diameter nadir reference circle (see Fig. B2 for all images). It should be noted that the actual footprint
might not lie within the indicated region due to the aircraft attitude causing MiRAC-P to point off-nadir by a few degrees and potential
temporal shifts between the camera and MiRAC.

and 165.5 GHz ATMS channels are comparable to MiRAC’s
183 GHz channel at nadir. We compare these satellite chan-
nels rather than the 190.31 and 183.31±7 GHz channels due
to their higher surface sensitivity and lower uncertainty, even
though spectral emissivity gradients might occur (e.g., Hewi-
son et al., 2002). Other channel or instrument combinations
differ in terms of incidence angle or polarization, making
footprint-level comparisons less meaningful.

Figure 7 illustrates the resampling process, which transi-
tions from MiRAC’s high-resolution emissivity to the satel-
lite footprints. It also shows the corresponding satellite emis-
sivity and the differences for all AFLUX flights. Notably,
MiRAC reveals hectometer-scale emissivity features, such as
leads, which are not captured by MHS and ATMS due to their
16×16 km2 footprint. This high hectometer-scale variability
consistently occurs within each satellite footprint (right col-
umn in Fig. 7) and diminishes after resampling to the satel-
lite footprint scale. The limited spatial coverage of MiRAC

causes deviations from MHS and ATMS as MiRAC only
captures a narrow strip of the satellite footprint (e.g., during
AFLUX RF08 near 80.4° N, 5° E; Fig. 7a), resulting in the
highest emissivity bias (Fig. 7d). However, the collocation
method is robust in most cases and yields MiRAC emissivi-
ties that are representative of the 16× 16 km2 satellite foot-
prints. Moreover, the assessment of relative bias, calculated
by subtracting the MiRAC emissivity from MHS or ATMS
emissivity and dividing the result by the MiRAC emissivity,
yields insights into the consistency of MiRAC observations
from satellites (Tables 4 and 5). This relative bias of −3 %
to 1 % falls well within MiRAC’s 6 % uncertainty range at
183 GHz (see Table 3). The correlation between MiRAC and
MHS or ATMS ranges from 0.4 to 0.6 and reflects the par-
tial footprint overlap, reducing the representation of MiRAC
for each satellite footprint. In summary, the comparison with
MHS and ATMS provides confidence in the accuracy of our
airborne-emissivity estimates and the reliability of convert-
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Figure 6. (a) Sea ice emissivity at 89 GHz from MiRAC (10:32 to 10:37 UTC), AMSR2 (11:02 UTC), and MHS onboard Metop-B
(11:38 UTC) during AFLUX RF08 on 31 March 2019. The MiRAC emissivity cluster is displayed 100 m east of the emissivity. The ac-
tual MiRAC footprints lie between the emissivity and emissivity cluster locations. The background shows a Sentinel-2B L2A natural-color
image that was obtained at 14:37 UTC and shifted 4 km northward to correct for sea ice drift. (b) The emissivity interquartile range as a
function of footprint size from 0.1 to 20 km for all flights and channels. The spread represents the minimum and maximum interquartile
ranges for each campaign.

ing from hectometer to satellite footprint scales. Hence, we
can apply the same approach to other MiRAC channels at
frequencies up to 340 GHz.

5.3 Spectral variations

In this section, we collocate MiRAC with MHS, ATMS,
SSMIS, and AMSR2 to analyze spectral variations in sea ice
emissivity from 88 to 340 GHz as well as angular and polar-
ization effects. We group all collocated emissivities by fre-
quency into the following categories: 88–92, 150–165 (only
for satellites), 176–190, 243, and 340 GHz. The MiRAC ob-
servations are averaged to align with the collocated footprints
of each satellite instrument, ensuring equivalent spatial sam-
pling (see Sect. 2.5).

The channel-dependent emissivity variability observed on
a satellite scale during the ACLOUD and AFLUX campaigns
reveals distinct features related to spectral, angular, and po-
larization differences (Fig. 8). Low spectral differences dur-
ing the ACLOUD campaign occur near nadir from 89 to
243 GHz (MHS and MiRAC) and at vertical polarization
from 91 to 150 GHz (SSMIS; Fig. 8a). The higher satellite
emissivity can be attributed to the underestimation of the
NE23 skin temperature compared to that of the KT-19. As
expected, the 89 GHz emissivity shows a polarization signal
of about 0.1. This indicates a specular contribution to sur-
face reflection and an underestimation of emissivity in the
case of purely Lambertian reflection at 89 GHz for MiRAC
(see Sect. 3.3). Combining both polarizations from SSMIS or
AMSR2 with quasi-vertical polarization, following Eq. (1),

reduces the absolute emissivity difference, meaning it falls
within the 0–30° emissivity range of MHS. Furthermore,
the horizontally polarized 89 GHz channel of MiRAC is
closer to the horizontally polarized channels of SSMIS and
AMSR2. Spectral differences observed during the AFLUX
campaign exceed those observed during the ACLOUD cam-
paign, which might be due to contrasting sea ice proper-
ties (i.e., melting conditions during the ACLOUD campaign
versus much colder and dryer sea ice and snow during the
AFLUX campaign; Fig. 8b). The near-nadir emissivity re-
mains constant from 89 to 183 GHz but decreases near fre-
quencies of 243 and 340 GHz. No significant difference in
spectral emissivity can be detected in the 165 to 183 GHz
frequency range, where all satellites fall within MiRAC’s
6 % uncertainty (see Table 3)). The decrease around 243 GHz
exceeds the 243 GHz emissivity uncertainty. The AFLUX
emissivities show a lower polarization difference at 89 GHz
compared to the ACLOUD emissivities, which can be at-
tributed to the lower amount of open water between ice
floes during the AFLUX campaign. The emissivity of the
89 GHz MiRAC channel lies between the horizontally polar-
ized AMSR2 and SSMIS channels and the near-nadir MHS
and ATMS channels.

Different instruments show similar emissivity distribu-
tions at similar channels. For example, the three MHS and
ATMS channels exhibit nearly identical distributions during
the AFLUX campaign (see Fig. 8b). Additionally, the polar-
ized 89 GHz channels of the SSMIS and AMSR2 show good
agreement. However, during the ACLOUD campaign, emis-
sivity differences between AMSR2 and SSMIS are noted
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Figure 7. Comparison of emissivity from nadir 183 GHz MiRAC observations and near-nadir (0–30°) 157 GHz MHS and 165.5 GHz ATMS
observations collected along the Polar 5 flight track during AFLUX RF08, RF14, and RF15 (rows). (a, f, k) MiRAC emissivity at the original
resolution. (b, g, l) MiRAC emissivity resampled to satellite (Sat.) footprints. (c, h, m) Satellite emissivity. (d, i, n) Emissivity difference
between MiRAC and the satellites (satellite emissivity minus MiRAC emissivity). (e, j, o) MiRAC emissivity interquartile range within
the satellite footprint. No 183 GHz observations from MiRAC were available during the ACLOUD campaign. The background images are
composites of MODIS onboard Terra from the same day (NASA Worldview). All footprints are approximated as circles. MiRAC’s footprints
are enlarged to a 5 km diameter. The satellite footprint size corresponds to the footprint size at nadir.

Table 4. Comparison of collocated emissivity from nadir 183 GHz MiRAC observations and near-nadir (0–30°) 157 GHz MHS observations
collected during the three AFLUX flights. Values include the number of collocated satellite footprints (Count); median; interquartile range
(IQR); relative bias (Rel. bias), i.e., MHS emissivity minus MiRAC emissivity divided by MiRAC emissivity; relative root-mean-square
deviation (Rel. RMSD), normalized by MiRAC emissivity; and Pearson’s correlation coefficient (Corr.).

Campaign (RF) Count Median IQR Rel. bias Rel. RMSD Corr.

MiRAC MHS MiRAC MHS (%) (%)

AFLUX (RF08) 36 0.79 0.81 0.04 0.04 1 5 0.56
AFLUX (RF14) 34 0.84 0.83 0.02 0.02 −1 2 0.48
AFLUX (RF15) 68 0.83 0.82 0.02 0.02 −1 2 0.5

for the vertically polarized channel, primarily due to the
low number of collocated AMSR2 footprints compared to
MiRAC footprints. For the AFLUX campaign, where the

footprint counts of SSMIS and AMSR2 are comparable,
AMSR2 shows higher variability as it has a smaller footprint
than SSMIS.
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Table 5. Comparison of collocated emissivity from nadir 183 GHz MiRAC observations and near-nadir (0–30°) 165.5 GHz ATMS observa-
tions collected during the three AFLUX flights. The columns are identical to those in Table 4.

Campaign (RF) Count Median IQR Rel. bias Rel. RMSD Corr.

MiRAC ATMS MiRAC ATMS (%) (%)

AFLUX (RF08) 18 0.81 0.81 0.04 0.04 1 4 0.63
AFLUX (RF14) 13 0.84 0.82 0.03 0.01 −3 4 0.58
AFLUX (RF15) 15 0.83 0.82 0.02 0.01 −1 3 0.42

Furthermore, MiRAC distributions align with MHS and
ATMS distributions near nadir. The increased emissivity
variability in MiRAC’s 25° inclined 89 GHz channel, com-
pared to that of MHS and ATMS, may be explained by its
horizontal polarization. When comparing the vertically and
horizontally polarized SSMIS and AMSR2 channels, hori-
zontal polarization exhibits higher variability, consistent with
findings from experiments by Shokr et al. (2009).

The consistent outcomes from spaceborne and airborne
observations unveil a first-time representation of sea ice
emissivity variability from 89 to 340 GHz. As detected by
MiRAC, hectometer-scale emissivity variations smooth out
when observed from a satellite perspective. Our analysis
shows a potential decline in emissivity from 183 to 243 GHz
under cold and dry conditions during the AFLUX campaign.
This spectral pattern occurs within airborne emissivity clus-
ters – i.e., within C3 (young ice) and, to some extent, within
C2 (first-year ice) and C4 (nilas) – but is notably absent in
C1 (multiyear ice) and prevails after being resampled onto a
satellite scale. These cluster differences underscore the im-
portance of spatial distributions among sea ice types.

6 Conclusions

The upcoming launches of ICI and EPS–Sterna, featuring
novel frequencies above 200 GHz, and AMSR3, exhibiting
a novel AMSR2-like resolution at 183 GHz, require an im-
proved understanding of sea ice emissivity to distinguish
atmospheric and surface microwave signals under dry po-
lar conditions (Wang et al., 2017b). However, few field ob-
servations have measured sea ice emissivity at such high
frequencies using a hectometer-scale resolution. Therefore,
we analyzed sea ice emissivity variations observed with the
MiRAC microwave radiometer during two airborne field
campaigns – the ACLOUD campaign (summer 2017) and
the AFLUX campaign (spring 2019). The flights analyzed
in this study covered about 1700 km of distance. Moreover,
7000 samples were collected at 89 GHz (25° incidence an-
gle; horizontal polarization), 28 000 samples were collected
at 243 GHz (nadir), and 11 000 samples were collected at 183
and 340 GHz (nadir).

Our first objective was to identify critical physical sea ice
and snow properties affecting emissivity up to submillime-

ter wavelengths. Sea ice emissivity exhibits high variability,
ranging from about 0.65 to 1, with the lowest emissivities
observed at 89 GHz. The 89 GHz distribution showed higher
variability than the nadir channels due to its inclination and
horizontal polarization. MiRAC resolves sea ice emissivity
features that align with sea ice and snow properties identi-
fied from visual imagery. Four emissivity spectra from 89
to 340 GHz could be identified through k-means clustering.
These spectra predominantly correspond to multiyear ice,
first-year ice, young ice, and nilas. However, the emissivity
variability for each cluster is significant due to variations in
snow or sea ice microphysical properties and mixed types
within the radiometer footprint. The lowest emissivity is ob-
served over multiyear ice, and the highest emissivity is found
over nilas, consistent with previous studies conducted at 89
and 183 GHz (NORSEX Group, 1983; Hewison and English,
1999; Hewison et al., 2002).

Our second objective was to relate the observed
hectometer-scale emissivity observations to the satellite
scale. We collocated MiRAC with MHS, ATMS, SSMIS,
and AMSR2 for this purpose. Satellite instruments do not
resolve hectometer-scale sea ice emissivity variations ob-
served by MiRAC due to their larger footprints. By averag-
ing the airborne observations, we estimated the decrease in
the emissivity interquartile range as footprint size increases.
The reduction in the interquartile range is most significant
during the AFLUX campaign, when leads induce signifi-
cant hectometer-scale emissivity variations. For example, the
emissivity interquartile range decreases by almost half from
the hectometer scale to a footprint of 16× 16 km2, typical of
microwave satellite instruments. We find high agreement be-
tween MHS, ATMS, and MiRAC emissivities near 183 GHz.
During the AFLUX campaign, emissivity decreases signifi-
cantly from 183 to 243 GHz, while it remains almost constant
during the ACLOUD campaign. The estimates provided here
may represent the emissivities that future satellites, such as
ICI and EPS–Sterna, will observe.

The study’s implications are as follows:

– The first implication involves hectometer-scale fre-
quency dependency. The 183, 243, and 340 GHz chan-
nels exhibit similar hectometer-scale sea ice emissivity
variations at nadir, regardless of the sea ice type (e.g.,
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Figure 8. Tukey boxplots of collocated emissivity observed during (a) the ACLOUD campaign and (b) the AFLUX campaign for the fre-
quency ranges 88–92, 150–165, 176–190, 243, and 340 GHz, derived from MHS (0 to 30°), ATMS (0 to 30°), SSMIS (53°), AMSR2 (55°),
and MiRAC (25° at 89 GHz and 0° at 183, 243, and 340 GHz). The secondary axis denotes the count of the collocated footprints. Quasi-
vertical SSMIS QV and AMSR2 QV polarizations are characterized by dominant contributions of 64 % and 67 %, respectively, from hori-
zontal polarization. The 88–92 GHz satellite footprint count might be lower than the satellite footprint count at frequencies above 150 GHz
because satellite footprints are excluded if the nearest MiRAC channel exhibits no emissivity. Note that no ATMS overpass occurred during
the ACLOUD campaign.

multiyear ice and nilas). This finding is crucial for the
development of airborne retrieval methods.

– The second concerns spatial and temporal representa-
tion. At the satellite footprint scale, hectometer-scale
sea ice emissivity variations average out, which fa-
cilitates sea ice emissivity parameterization. However,
these variations become more relevant for higher-
resolution channels, such as AMSR2.

– The third pertains to emissivity frequency extrapolation.
The relatively low spectral variation in emissivity at the
satellite scale from 89 to 340 GHz at nadir supports us-
ing a first-order approximation of constant emissivities
over sea ice within existing parameterizations, such as
TELSEM2 (Wang et al., 2017b). Accounting for spatial
and temporal emissivity variations appears to be more
relevant than focusing on spectral gradients.

This study has several limitations:

– The first limitation concerns channel intercompari-
son. The 25° inclination and horizontal polarization of
the 89 GHz channel may affect comparisons with the
183–340 GHz nadir-viewing channels by increasing the
channel’s variability and lowering its emissivity com-
pared to an 89 GHz nadir-viewing channel. Quantifica-
tion of this effect might be possible by analyzing the
airborne HALO–(AC)3 campaign conducted in spring
2022 (Wendisch et al., 2021).

– Another limitation involves surface temperature
assumption. Using the surface skin temperature
rather than the emitting-layer temperature imposes a
frequency-dependent bias on emissivity measurements
collected during the AFLUX campaign.
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– Sea ice and snow properties pose another limitation.
The aerial images provide only a broad perspective on
sea ice and snow properties and have limitations in pro-
viding vertical profiles of sea ice microphysics, such as
density, grain size, or salinity.

– Spatial resolution is also a limiting factor. MiRAC’s
hectometer scale may not resolve smaller sea ice fea-
tures, such as ridges or melt ponds, which could influ-
ence emissivity.

– There are also spatial and temporal limitations. Field
observations are limited in space (approximately
100 km) and time (5 d), potentially restricting the gen-
eralizability of findings across polar regions.

Three primary challenges persist when it comes to com-
prehending sea ice emissivity variations to advance atmo-
spheric and surface retrievals over sea ice. First, the relatively
unexplored emissivity dependence on polarization and inci-
dence angles, especially at frequencies above 200 GHz, de-
mands comprehensive investigation. Potential solutions in-
clude utilizing shipborne or airborne observations with scan-
ning radiometers. Second, the high uncertainty due to at-
mospheric emissions that mask spectral features of emis-
sivity, particularly at 340 GHz and over the more reflective
multiyear ice, requires simultaneous measurements of near-
surface downwelling atmospheric TB for emissivity calcula-
tions. Third, observed emissivity spectra must be combined
with in situ measurements of sea ice and snow microphysics
to advance radiative-transfer modeling. In summary, address-
ing these challenges will help bridge remaining knowledge
gaps in sea ice microwave emissivity and will have impli-
cations for current and upcoming satellite missions. Future
work will need to focus on separating sea ice and atmo-
spheric signals under all-sky conditions.
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Appendix A: Multiyear ice concentration maps

We include maps illustrating multiyear ice concentration
to offer additional context for the three AFLUX flights
(Fig. A1). The multiyear ice concentration is mainly around
50 %, with higher concentrations in the northern parts of the
RF08 and RF14 flight tracks. The case study transect ob-
served during RF08 falls within a pixel corresponding to
∼75 % multiyear ice concentration (Fig. A1a).

Figure A1. Maps illustrating the Polar 5 flight track; the sea ice edge, indicated by the 15 % sea ice concentration isoline (Spreen et al., 2008);
and multiyear ice concentration (Melsheimer and Spreen, 2022) during (a) AFLUX RF08 (including the case study transect), (b) RF14, and
(c) RF15.
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Appendix B: Optimal number of k-means emissivity
clusters

The k-means algorithm assigns a cluster to each normal-
ized emissivity spectrum across the four MiRAC frequen-
cies. Normalization involves subtracting the mean and scal-
ing the emissivity of each channel to include unit variance,
which ensures equal weighting between the four channels.
However, the absolute number of clusters (k) is unknown
and needs to be defined objectively. Therefore, we eval-
uate three metrics for cluster sizes ranging from 2–10 to
identify the optimal k value (Fig. B1a). The distortion rep-
resents the sum of squared distances from all samples to
their assigned cluster centroids (Thorndike, 1953). The dis-
tortion ideally follows an elbow-shaped curve, exhibiting a
decrease until the optimal k value is reached and constant
distortion for higher k values. The distortion curve for the
emissivity samples flattens slightly after a k value of 4. The
Calinski–Harabasz index determines the ratio of between-
cluster dispersion to within-cluster dispersion, i.e., the ra-
tio of separation to cohesion (Calinski and Harabasz, 1974).
Higher Calinski–Harabasz index values correspond to opti-
mal clustering with well-separated and dense clusters. The
index peaks at a k value of 4 and decreases for both higher
and lower values (Fig. B1a). The silhouette score represents
the mean silhouette coefficient, which measures the simi-
larity of a sample to its cluster compared to other clusters
(Rousseeuw, 1987). Silhouette coefficients of 1 (−1) indi-
cate correct (wrong) class assignment. On average, the sil-
houette score is 0.37 for 2–10 clusters. The silhouette score
is highest for two clusters and shows a secondary peak at
four clusters. All three metrics indicate that the emissiv-
ity spectra can be optimally divided into four clusters. The
two-dimensional principal component analysis compression
(Hotelling, 1933) shows the four identified emissivity clus-
ters (Fig. B1b). Overall, the emissivity clusters are well sep-
arated, with gradual transitions occurring due to mixed types
within the radiometer’s footprint or transitional stages of the
sea ice. Fish-eye lens images resolve these mixed types and
transitional stages (Fig. B2).
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Figure B1. (a) The k-means clustering metrics – distortion, the Calinski–Harabasz index, and silhouette score – plotted as functions of the
number of clusters. (b) Clustered emissivity spectra projected along the first two principal components (x1, x2) using k-means. The k-means
cluster boundaries are approximated in a Voronoi diagram based on the cluster centroid projections. The cluster numbers are shown at the
centroid positions.

Figure B2. Fish-eye lens images corresponding to the emissivity
samples shown in Fig. B1b. The k-means cluster boundaries are
approximated in a Voronoi diagram based on the cluster centroid
projections onto the first two principal components (x1, x2). The
cluster numbers are shown at the centroid positions.
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Appendix C: Sea ice emissivity spectra

We provide a figure of the MiRAC sea ice emissivity spectra
and the k-means cluster centroids (Fig. C1).

Figure C1. MiRAC sea ice emissivity spectra and k-means clus-
ter centroids. Note that the 89 GHz channel measures horizontal
polarization at an incidence angle of 25°, while the 183, 243, and
340 GHz channels measure it at nadir.

Code and data availability. The code for this study and a
usage example of the published emissivity data are avail-
able on Zenodo at https://doi.org/10.5281/zenodo.11535477
(Risse, 2024). The MiRAC emissivity data are available on
PANGAEA at https://doi.org/10.1594/PANGAEA.965569
(Risse et al., 2024). MiRAC-A measurements collected
during the ACLOUD campaign were obtained from
https://doi.org/10.1594/PANGAEA.899565 (Kliesch and Mech,
2019), and those collected during the AFLUX campaign were
obtained from https://doi.org/10.1594/PANGAEA.944506
(Mech et al., 2022b). MiRAC-P measurements collected
during the ACLOUD campaign were obtained from
https://doi.org/10.1594/PANGAEA.944070 (Mech et al., 2022c),
and those collected during the AFLUX campaign were obtained
from https://doi.org/10.1594/PANGAEA.944057 (Mech et al.,
2022d). Camera images taken during the AFLUX campaign
were obtained from https://doi.org/10.1594/PANGAEA.901024
(Jäkel and Ehrlich, 2019). KT-19 measurements col-
lected during the ACLOUD campaign were obtained from
https://doi.org/10.1594/PANGAEA.900442 (Stapf et al., 2019),
and those collected during the AFLUX campaign were
obtained from https://doi.org/10.1594/PANGAEA.932020
(Stapf et al., 2021). Dropsonde measurements collected
during the ACLOUD campaign were obtained from
https://doi.org/10.1594/PANGAEA.900204 (Ehrlich et al.,
2019a), and those collected during the AFLUX campaign were
obtained from https://doi.org/10.1594/PANGAEA.922004
(Becker et al., 2020a). Nose boom measurements col-
lected during the ACLOUD campaign were obtained from

https://doi.org/10.1594/PANGAEA.902849 (Hartmann et al.,
2019), and those collected during the AFLUX campaign were
obtained from https://doi.org/10.1594/PANGAEA.945844
(Lüpkes et al., 2022). Aircraft position and orientation
were obtained from the “ac3airborne” intake catalog (Mech
et al., 2022e). Radiosoundings from Ny-Ålesund were
obtained from https://doi.org/10.1594/PANGAEA.914973
(Maturilli, 2020). The sea–land mask for Svalbard was
obtained from the Kartdata Svalbard 1 : 100000 (S100
Kartdata)/Map Data of the Norwegian Polar Institute at
https://doi.org/10.21334/npolar.2014.645336c7 (Norwegian Polar
Institute, 2014). The L1C TB data for SSMIS on DMSP-F16 were
obtained from https://doi.org/10.5067/GPM/SSMIS/F16/1C/07
(Berg, 2021a). The L1C TB data for SSMIS on DMSP-F17 were ob-
tained from https://doi.org/10.5067/GPM/SSMIS/F17/1C/07 (Berg,
2021b). The L1C TB data for SSMIS on DMSP-F18 were ob-
tained from https://doi.org/10.5067/GPM/SSMIS/F18/1C/07 (Berg,
2021c). The L1C TB data for AMSR2 on GCOM-W1 were obtained
from https://doi.org/10.5067/GPM/AMSR2/GCOMW1/1C/07
(Berg, 2022a). The L1C TB data for MHS on Metop-A were
obtained from https://doi.org/10.5067/GPM/MHS/METOPA/1C/07
(Berg, 2022b). The L1C TB data for MHS on Metop-B were ob-
tained from https://doi.org/10.5067/GPM/MHS/METOPB/1C/07
(Berg, 2022c). The L1C TB data for MHS on Metop-C were ob-
tained from https://doi.org/10.5067/GPM/MHS/METOPC/1C/07
(Berg, 2022d). The L1C TB data for MHS on NOAA-18 were
obtained from https://doi.org/10.5067/GPM/MHS/NOAA18/1C/07
(Berg, 2022e). The L1C TB data for MHS on NOAA-19 were
obtained from https://doi.org/10.5067/GPM/MHS/NOAA19/1C/07
(Berg, 2022f). The L1C TB data for ATMS on SNPP were obtained
from https://doi.org/10.5067/GPM/ATMS/NPP/1C/07 (Berg,
2022g). The L1C TB data for ATMS on NOAA-20 were obtained
from https://doi.org/10.5067/GPM/ATMS/NOAA20/1C/07
(Berg, 2022h). The NE23 Level-4 “Arctic Ocean – Sea
and Ice Surface Temperature” data were obtained from
https://doi.org/10.48670/moi-00123 (Copernicus Marine Service,
2024; Nielsen-Englyst et al., 2023). The AMSR2 sea ice concen-
tration data from the University of Bremen were retrieved from
https://data.seaice.uni-bremen.de/ (last access: 8 September 2024,
Spreen et al., 2008). The AMSR2 and ASCAT multiyear ice con-
centration data from the University of Bremen were retrieved from
https://data.seaice.uni-bremen.de/MultiYearIce/MYIuserguide.pdf
(Melsheimer and Spreen, 2022). Sentinel-2B L2A images
were obtained from the Copernicus Data Space Ecosys-
tem https://doi.org/10.5270/S2_-znk9xsj (European Space
Agency, 2021). Images from MODIS onboard Terra
were retrieved from the NASA Worldview application at
https://worldview.earthdata.nasa.gov (NASA ESDIS, 2024).
Satellite bandpass information was obtained from the EUMETSAT
Numerical Weather Prediction Satellite Application Facility
at https://nwp-saf.eumetsat.int/site/software/rttov/download/
coefficients/spectral-response-functions/ (NWP SAF, 2024).
Sea ice drift data were retrieved from the NASA National
Snow and Ice Data Center Distributed Active Archive Center at
https://doi.org/10.5067/INAWUWO7QH7B (Tschudi et al., 2019).
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