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Abstract. The prescription of a simple and robust parameter-
ization for calving is one of the most significant open prob-
lems in ice sheet modelling. One common approach to the
modelling of crevasse propagation in calving in ice shelves is
to view crevasse growth as an example of linear elastic frac-
ture mechanics. Prior work has, however, focused on highly
idealized crack geometries, with a single fracture incised into
a parallel-sided slab of ice. In this paper, we study how frac-
tures growing from opposite sides of such an ice slab interact
with each other, focusing on different simple crack arrange-
ments: we consider either perfectly aligned cracks or periodic
arrays of laterally offset cracks. We visualize the dynamics of
crack growth using simple tools from dynamical systems the-
ory and find that aligned cracks tend to impede each other’s
growth due to the torques generated by normal stresses on
the crack faces, while periodically offset cracks facilitate si-
multaneous growth of bottom and top cracks. For periodic
cracks, the presence of multiple cracks on one side of the ice
slab, however, also generates torques that slow crack growth,
with widely spaced cracks favouring calving at lower exten-
sional stresses than closely spaced cracks.

1 Introduction

Iceberg calving is a key process in the dynamics of ma-
rine ice sheets, since it regulates the length of floating ice
shelves and consequently the rate at which ice is discharged
across the grounding line (Schoof et al., 2017; Haseloff and
Sergienko, 2018). Although there are numerous distinct ap-
proaches to model calving (e.g. Bassis and Ma, 2015; Benn
et al., 2017; Cook et al., 2014; Fastook and Schmidt, 1982;

Nick et al., 2010, 2013; Nye, 1955; Todd and Christoffersen,
2014), there is currently no widely accepted “universal calv-
ing law” that can be applied in large-scale ice sheet and
glacier flow models.

Calving generally happens as the result of cracks growing
to occupy the full thickness and width of an ice shelf. One
common approach to modelling such cracks is to regard ice
as an elastic medium on the short timescales associated with
fracture propagation and to either employ a classical linear
elastic fracture mechanics approach (Weertman, 1973, 1980;
van der Veen, 1998a, b; Lai et al., 2020; Zarrinderakht et al.,
2022) or treat crack propagation as the result of breaking dis-
crete bonds (Bassis, 2011; Åström et al., 2013; Crawford
et al., 2021). The former leads to continuum models that
identify the strength of stress singularities at crack tips as
controlling whether a crack will propagate or not (Zehnder,
2012), and the computation of these “stress intensity factors”
can be quite elaborate. In practice, this has restricted the use
of linear elastic fracture to simple ice geometries with a sin-
gle crack (Weertman, 1973, 1980; van der Veen, 1998a, b;
Lai et al., 2020; Zarrinderakht et al., 2022), for which in-
terpolated Green’s functions can be used to predict fracture
propagation (Tada et al., 2000). This approach allows sim-
ple calving laws to be derived (Lai et al., 2020; Zarrinder-
akht et al., 2022) but leaves many open questions, such as
whether crevasses incised into the bottom and top of the ice
will typically grow simultaneously and meet in the middle
to cause calving (as is implicitly assumed in some simpler
calving models, e.g. Nick et al., 2010), whether there is a
preferred spacing between crevasses, and how the presence
of multiple crevasses affects the calving laws constructed in
Lai et al. (2020) and Zarrinderakht et al. (2022).
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Discrete element models (Bassis, 2011; Åström et al.,
2013; Crawford et al., 2021) are better able to cope with
multiple interacting cracks and with cracks of arbitrary ge-
ometry, but they are computationally expensive and therefore
difficult to apply when exploring larger regions of parame-
ter space. More recently, phase-field models for fracture me-
chanics have been applied to crevasse formation (e.g. Clay-
ton et al., 2022; Sondershaus et al., 2023), which reproduce
the predictions of linear elastic fracture mechanics closely
while also being able to handle phenomena such as crack
splitting and the viscoelastic relaxation of stresses (though, at
present, seemingly only for small, viscous strains). As with
discrete elements, phase-field models are also computation-
ally more expensive than classical linear elastic fracture me-
chanics approaches, requiring additional degrees of freedom
to be solved for. Note that more general damage mechanics
models (Duddu and Waisman, 2013b, a; Duddu et al., 2020;
Jimeénez et al., 2017; Keller and Hutter, 2014; Mobasher
et al., 2016) aim in a similar direction, but, unlike phase-
field models, they are not ostensibly based on the energetics
of creating new fracture surfaces, and they introduce addi-
tional parameters that control not only a critical stress for
damage production but also the rate of damage production,
which makes comparison with models based on fracture me-
chanics more difficult.

Here we attempt to bridge the gap between idealized clas-
sical fracture mechanics models and more complicated (and
computationally much more expensive) discrete element and
phase-field models by extending prior work on linear elastic
fracture mechanics models to take account of multiple in-
teracting cracks. We use the boundary element method de-
scribed in Zarrinderakht et al. (2022), which can in principle
handle arbitrary domain and crack geometries, to solve for
stress intensity factors at crack tips and solve for their prop-
agation.

To keep the scope of our work tractable, we restrict our-
selves to understanding simple interactions between basal
and surface crevasses. In particular, we seek to identify how
the spacing and alignment of crevasses on opposite sides of
an ice shelf affect calving. Note that the study of interacting
cracks has a long history, often involving complicated ge-
ometries in which the direction of crack propagation must
be determined as part of the solution of the linear elastic
fracture mechanics problem (e.g. Segall and Pollard, 1980;
Baud and Reuschl, 1997). Here we use the fact that two-
dimensional ice shelves flow in pure shear at leading order
(Morland, 1987) to restrict ourselves to simple crack geome-
tries in which the stress field remains symmetric about each
crack and the assumption of vertical crack propagation re-
mains self-consistent with a maximum hoop stress criterion
(Zehnder, 2012). Importantly, this does not imply that spon-
taneous symmetry-breaking cannot occur in the geometry
considered (for instance, if the direction of crack propaga-
tion is determined by a maximum energy release criterion;

see also Zehnder, 2012); our formulation simply does not
consider this possibility.

The paper is structured as follows: in Sect. 2, we sketch the
model presented by Zarrinderakht et al. (2022) and extend
it to accommodate the concurrent growth of multiple cracks.
We show that the simultaneous propagation of two cracks can
be cast as a two-dimensional semi-smooth dynamical sys-
tem in terms of the two crack lengths and a minimal set of
dimensionless parameters. We adopt the same weakly iner-
tial crack propagation criterion used in Zarrinderakht et al.
(2022). We assume that the total stress field is composed of
an elastic stress induced by the newly introduced cracks and
a viscous pre-stress, and we impose contact constraints that
prevent opposite crack faces from penetrating into each other.
In Sect. 3.1, we describe how crack propagation and the even-
tual steady-state configuration that is attained from given
initial conditions can be visualized using a phase plane. In
Sect. 3.2, we explore how changes in parameters affect those
steady-state configurations and ultimately lead to calving.
Having focused initially on two aligned cracks in a wide do-
main, we find that such cracks naturally inhibit each other’s
growth. We therefore explore a periodic configuration with
laterally offset cracks in Sect. 3.3, finding qualitatively dif-
ferent behaviour in which calving due to the growth of both
crevasses is more prevalent. The results obtained from a pe-
riodic domain are, however, sensitive to domain width, and
we explore the effect of lateral crack spacing in Sect. 3.4. We
discuss the implications of our results in Sect. 3.5.

2 Model

The basic model is described in Zarrinderakht et al. (2022).
In a Cartesian coordinate system (x1,x2)= (x,z), where
z= 0 is at sea level, we consider a parallel-sided slab of ice
between z= s and z= b, with s being surface elevation and
b being basal elevation. The ice slab is assumed to be part
of a larger ice shelf afloat in the ocean, so s = (1−ρi/ρw)H

and b =−(ρi/ρw)H , whereH is the thickness of the ice and
ρi and ρw are the densities of ice and water, respectively. We
model only the portion of the slab of ice between x = 0 and
x =W . The ice is subject to a viscous pre-stress of the form

σ v
11 = ρig(s− z)+Rxx, σ v

22 = ρig(s− z),

σ v
12 = σ

v
21 = 0, (1)

where g is the acceleration due to gravity and Rxx is related
to the far-field velocity field U through Rxx = 4µ∂U/∂x,
with µ being ice viscosity (van der Veen, 1983; Muszyn-
ski and Birchfield, 1987; Morland, 1987; MacAyeal and Bar-
cilon, 1988). We consider the short-term elastic response (on
timescales much less than a single Maxwell time) to the in-
troduction of cracks into the lower and upper boundaries of
the slab of ice. That elastic response takes the form of elastic
stress that is added to the viscous pre-stress, and the high-
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stress concentrations at the tips of the cracks can cause the
cracks to propagate.

As in Zarrinderakht et al. (2022), we prescribe a fluid pres-
sure on the domain boundary: any part of the lower boundary
below sea level is subject to hydrostatic water pressure in the
ocean, while, at the upper boundary, we prescribe a surface
water level at

z= s−hw. (2)

Any part of the upper surface below that elevation is also
subject to a hydrostatically increasing water pressure, with
the water level remaining unchanged as surface cracks prop-
agate (see also Fig. 1). Implicit here is the presence of a
near-surface aquifer that can supply sufficient water to fill
the crack while maintaining that constant water level. As in
Zarrinderakht et al. (2022), we ignore the effect of elastic
displacements on the fluid pressure at the boundary, thereby
omitting buoyancy effects. This is a potentially significant
omission that affects large-scale flexure effects discussed
further in Sect. 4.2 below (see also Sects. 2.1 and 6.3 of
Zarrinderakht et al., 2022).

We apply the same contact-type boundary conditions on
crack faces as described in Zarrinderakht et al. (2022), mean-
ing that normal compressive stress either attains the pre-
scribed water (or atmospheric) pressure, and the crack faces
have moved apart, or that normal compressive stress is at or
above that fluid pressure, and the crack faces are touching.
Other parts of the surface simply experience normal stress
equal to the external fluid pressure, while shear stresses are
assumed to vanish everywhere on the external boundary.

At the lateral domain boundaries at x = 0 and x =W , we
either apply the same conditions of vanishing elastic shear
and normal stress as in Zarrinderakht et al. (2022), or we
apply periodic boundary conditions on elastic displacement
and stress: in the notation of Zarrinderakht et al. (2022), the
latter corresponds to

ui(0,z, t)= ui(W,z, t), and σ e
i1(0,z, t)= σ

e
i1(W,z, t), (3)

where ui is the displacement field, σ e
ij is the elastic stress as

defined in Zarrinderakht et al. (2022), and i runs over {1,2}.
We have previously considered only a single surface or

basal crack in Zarrinderakht et al. (2022), in line with van der
Veen (1998a, b) and Lai et al. (2020). Our goal in the present
paper is to understand better how cracks interact with each
other, focusing on the interaction between basal and sur-
face cracks. To generalize our previous work but still retain
enough simplicity to allow qualitative insight, we consider
one basal and one surface crack in the domain, of lengths dt
and db, respectively, and assume that both are oriented verti-
cally. The symmetry conditions we impose on their locations
below make that choice of orientation self-consistent.

The elastostatic problem of Zarrinderakht et al. (2022) al-
lows us to compute a stress intensity factor KIt and KIb at
the tip of the surface and basal cracks, respectively, given

the current domain geometry, material properties, and forc-
ing parameters. As in Zarrinderakht et al. (2022), we assume
that each crack propagates at a rate related to how much the
stress intensity factor exceeds fracture toughness KIc by

ḋb =max
(
−
KIb−KIc

KIc|K ′(0)|
,0
)
,

ḋt =max
(
−
KIt−KIc

KIc|K ′(0)|
,0
)
, (4)

where the overdot indicates differentiation with respect to
time and |K ′(0)| is the derivative of the universal func-
tion K of Freund (1990) (given by Eq. (6.4.26) in Fre-
und’s book), evaluated at zero crack propagation velocity.
An approximate form of the universal function is K(ḋ)≈

(1− ḋ/vR)/

√
1− ḋ/vp, with vR and vp being Rayleigh and

primary wave velocities, so −1/K ′(0)≈ 2vpvR/(2vp− vR).
As discussed in Zarrinderakht et al. (2022), there are alter-
native hydrofracture-based models for crack tip propagation
that could replace this description. We pursue the latter here
due to the qualitative insights it provides.

For a given position of the cracks along the domain, the do-
main geometry is fully specified by ice thickness H , domain
widthW , and the crack lengths dt and db. In other words, we
can treat the right-hand sides in Eq. (4) as being functions
of dt and db, and we obtain a set of two coupled first-order
differential equations. All that the complicated elastostatic
problem described in Zarrinderakht et al. (2022) really does
is provide a means of computing KIb and KIt as functions of
the dynamic variables dt and db.

In that vein, we will treat Eq. (4) as a two-dimensional dy-
namical system for (dt,db). As in Zarrinderakht et al. (2022),
our interest will be in steady-state crack configurations, in
identifying which sets of initial conditions lead to which fi-
nal crack configurations, and in the effect of changing forcing
and geometrical parameters on steady states and their basins
of attraction. In particular, we want to identify what changes
in parameter values lead to the disappearance of steady states
in which the ice slab is only partially fractured so that cracks
are either forced to propagate all the way across the ice or
meet inside the ice. In either case, we will interpret the result
as calving: the detachment of one side of the domain from
the other.

To simplify the set of geometrical and forcing parame-
ters, we non-dimensionalize the model using the same set of
scales as in Zarrinderakht et al. (2022) and Lai et al. (2020).
This leaves only the following dimensionless parameters,

τ =
Rxx

ρigH
, η =

hw

H
, κ =

KIc

ρigH 3/2 , W
∗
=
W

H
, (5)

in addition to the dimensionless material constants given by
Poisson’s ratio ν, and

r =
ρi

ρw
. (6)
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Above, τ is a dimensionless extensional stress, η is a dimen-
sionless depth to the surface water table, and κ is a dimen-
sionless fracture toughness. We will primarily focus on di-
mensionless extensional stress τ and water level η as forc-
ing parameters, since κ is likely small, with a dimensional
fracture toughness KIc = 0.4 MPa m−1/2 (Rist et al., 1996)
and an ice thickness of H = 500 m, κ ≈ 0.004. To under-
stand better how to map the dimensionless parameters to di-
mensional ones, recall that the extensional stress in an un-
confined, one-dimensional ice shelf is ρi(1− r)gH/2 (van
der Veen, 1983; MacAyeal and Barcilon, 1988). With a den-
sity ratio of r = 0.89, this corresponds to τ = 0.055, which
provides a reference value for the dimensionless extensional
stress. The water-level parameter is somewhat simpler: η = 0
corresponds to completely full surface cracks with the wa-
ter level at the upper surface. η = 1 corresponds to a surface
crack that remains dry no matter how far it is incised. A value
of η = 1− r = 0.11 represents a surface crack for which any
portion below sea level is filled with water.

Using the Green’s function formulation in Crouch and
Starfield (1983), it can be shown that the solution for stress
in the model in Zarrinderakht et al. (2022) is independent
of Poisson’s ratio ν (while displacements do depend on ν).
Consequently, the dimensionless stress intensity factors K∗Ib
and K∗It depend only on the scaled crack lengths and on
(τ,η,W ∗, r). Equation (4) can therefore be written in the di-
mensionless form

ḋ∗b =max
(
K∗Ib

(
d∗b ,d

∗
t ;τ,η,W

∗, r
)
− κ,0

)
,

ḋ∗t =max
(
K∗It

(
d∗b ,d

∗
t ;τ,η,W

∗, r
)
− κ,0

)
, (7)

where the asterisk decorations on the crack length variables
and stress intensity factors denote their dimensionless coun-
terparts, scaled with ice thickness H and with the stress in-
tensity ρigH

3/2, respectively.
Note that, for simplicity, we immediately omit the asterisk

decorations, in the understanding that all variables and pa-
rameters used below are dimensionless. Any changes in forc-
ing parameters are assumed to occur much more slowly than
cracks propagate, so the dimensionless forcing and geometry
parameters τ , η, κ , and W are constant during crack prop-
agation. The problem at hand is therefore an autonomous
two-dimensional dynamical system, and we rely primarily
on phase planes to visualize the behaviour of the system: in
the (db,dt) plane, we plot curves traced out by dt(t) against
db(t) as time t increases for a solution to the dynamical sys-
tem; these are the orbits of the dynamical system (7) (e.g.
Strogatz, 1994). In practice, we use the boundary element
method described in Zarrinderakht et al. (2022) to solve for
the right-hand sides of Eq. (7) and use the MATLAB routine
“streamslice” to generate phase planes.

Plotting orbits on a phase plane provides a simple graphi-
cal way of identifying the behaviour of the system for a given
set of parameters and for all possible initial conditions. In
that way, a phase plane is analogous to, for instance, Fig. 10

of van der Veen (1998a) or Figs. 4 and 7 in Zarrinderakht
et al. (2022) for the single-crack systems considered in these
papers. There, the evolution of the single crack length vari-
able d is determined graphically by plottingKI(d): from this,
one can read off whether a crack lengthens or not depending
on whether or not the stress intensity factor exceeds fracture
toughness (KI > κ). A perhaps even more direct analogue
to a phase plane is shown in Figs. 6 and 8b of Zarrinder-
akht et al. (2022), where (for a given set of parameter values)
the range 0≤ d ≤ 1 is divided into intervals for which ḋ = 0
and ḋ > 0 and hence indicates what state d evolves. A phase
plane generalizes this not only by indicating where ḋb and ḋt
are positive and zero, respectively, but by showing the rela-
tive size of the rates of change, which determines the angle
of the orbit and ultimately the state that the cracks evolve
towards.

The ability to visualize evolution from arbitrary initial
conditions using a phase plane also allows us to address how
the dynamical system evolves under slow changes in forcing
parameters (see also Zarrinderakht et al., 2022, Sect. 4-4–
4.5): if started with a combination of forcing parameters that
does not cause calving (generally with τ being too small or
η being too large), a partially incised crevasse will still typ-
ically result. A subsequent change in parameters may then
lead to full crack penetration starting with initial conditions
dictated by the previous formation of a partially incised crack
(as opposed to short seed cracks only), subject to the caveat
that we do not re-compute the full viscous pre-stress in this
paper when doing so (but see also Zarrinderakht et al., 2023).

3 Results

3.1 Phase planes for aligned cracks

Firstly, we generalize the geometry considered in Zarrinder-
akht et al. (2022) by introducing aligned surface and basal
cracks at the mid-way point x =W/2 as in Figure 1. Note
that the intention here is to mimic the infinitely wide domain
of van der Veen (1998a, b) and Lai et al. (2020), and we use
a large domain width W = 10, applying the same boundary
conditions of vanishing elastic traction as Zarrinderakht et al.
(2022).

Figure 2 shows an example of a (db,dt) phase plane for
this geometry. There are several non-standard qualitative fea-
tures in this phase plane that turn out to be generic for the
dynamical system (7), in each case related to the maximum
over KI− κ and zero taken on the right-hand side of Eq. (7).
Firstly, by construction, crack lengths can never shrink, so
all orbits are either horizontal, vertical, or angled upwards
to the right: if a stress intensity factor is less than the frac-
ture toughness, the corresponding crack tip simply does not
move.

Secondly, the dynamical system is non-smooth: the max-
imum function on the right-hand sides of Eq. (7) not only
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Figure 1. Geometry of the problem: the finite domain shown in panel (b) is intended to represent part of a floating ice shelf with two aligned
crevasses, one each at the upper and lower surfaces.

Figure 2. Phase plane diagram for two aligned cracks for τ = 0.02,
η = 0.04, κ = 0.001, W =10, and r = 0.89. The inset shows an en-
largement of the region marked as a black box around db = 0.28.
Blue curves are orbits of the dynamical system (7), and the direction
in which (db,dt) evolves in time is indicated by blue arrowheads.
The region of black dots indicates steady-state solutions for which
both stress intensity factors are less than fracture toughness κ . The
coloured dots indicate saddle-type (cyan, yellow, and red triangles)
and node-type (red circle and cyan square) marginal fixed points as
defined in the main text. The cyan curves are the orbits into and out
of the cyan saddle point, while the red and yellow curves are the
orbits that delimit the basin of attraction of the red node point. A
small region of steady states near the origin is not visible due to its
small size, as is a thin strip of non-steady states close to the db axis
extending to the right of db = 0.28, discernible only in the inset.

ensures that cracks cannot shrink, it generally renders those
right-hand sides non-differentiable where K∗Ib = κ or K∗Ib =
κ , even ifKIb andKIt are smooth functions of (db,dt) (where
the latter seems likely unless a new contact area is formed
or a section of open crack fully disappears at that point;
see Fig. 4a of Zarrinderakht et al., 2022). For simplicity, we
will refer to the sets of points for which K∗Ib = κ or K∗Ib = κ

as marginal db and dt nullclines, respectively: these are the
curves along which one of the elastostatic stress intensity
factors is equal to the fracture toughness. This awkward ter-
minology is necessary here because a nullcline is simply a
set of points for which ḋb = 0 or ḋt = 0; for smooth dynami-
cal systems, these sets are generally one-dimensional curves,
which is not the case here, as we describe below. In a phase
plane like Fig. 2, parts of the marginal nullclines are then
the boundary between regions in which the orbits are purely
horizontal or vertical (so K∗It < κ or K∗Ib < κ , respectively),
and “curved” orbits, along with both crack lengths, change
simultaneously. The change from curved to straight vertical
or horizontal orbits is a graphical manifestation of the non-
differentiability of the dynamical system.

Thirdly, equilibria of the dynamical system are generally
not isolated but occupy regions of finite size, rendered with
black dots in Fig. 2. These regions are again bounded by parts
of the marginal nullclines defined above (where stress inten-
sity factors are equal to the fracture toughness). Here, the
marginal nullclines separate regions in which orbits are ei-
ther vertical or horizontal from regions of steady states in
which all orbits are fixed points. Inside the regions of steady
states, both stress intensity factors are less than the fracture
toughness.

In addition, the phase plane here is bounded: crack lengths
must be positive, and, for aligned cracks, their sum must be
less than the ice thickness. When using dimensionless crack
lengths scaled with H , the crack tips meet when

db+ dt = 1, (8)

which we take to correspond to calving as marked in Fig. 2.
The usual notions of phase plane analysis, like identifying

isolated fixed points and their stability, do not apply without
modification due to the non-differentiability of the dynami-
cal system and due to the fact that equilibria occupy extended
regions of the phase plane. Equilibria inside these extended
regions are stable in the sense of Lyapunov but not asymptot-
ically stable (Strogatz, 1994): if perturbed, the state variable
(db,dt) stays nearby because it does not evolve. For equi-
libria on the boundary of a region of steady states (that is,
equilibria on one of the marginal nullclines), we can distin-
guish between unstable and stable. The boundary is unstable
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if there are orbits that point away from it, which is the case
for boundaries at the top or to the right of a region of steady
states, and stable (again in the sense of Lyapunov) otherwise.

There are several equilibria that occupy a special role,
namely those where two marginal nullclines intersect. We
will refer to these equilibria as marginal fixed points below.
There are five such equilibria in Fig. 2, although only one is
clearly visible in the enlargement in the inset.

One, marked with a red dot, is analogous to a stable node
in standard phase plane analysis, and we will therefore refer
to it as a “stable node” in a slight abuse of terminology. If
we start the system with small surface and basal cracks of
length dt(0) and db(0), they will evolve towards this equilib-
rium solution provided the ratio dt(0)/db(0) is large enough
and that dt(0) and db(0) are not too small. The last caveat
arises because, for the small values of κ relevant to typical ice
shelves, there is a small region around the origin in the phase
plane (not visible in Fig. 2 due to its small size) in which nei-
ther crack will grow. When we state that orbits started near
the origin will evolve towards the node, we have to add that
they need to start outside that small region. The existence
of short steady-state crack lengths has been discussed previ-
ously (van der Veen, 1998a; Lai et al., 2020) and is associ-
ated with low-stress intensity factors, scaling as d1/2τ for the
surface crack and d1/2(τ − 1+ r−1) for the basal crack (see
Appendix C1 of Zarrinderakht et al., 2022): for small enough
d, these are guaranteed to be less than fracture toughness κ .
An analogous region of very short steady-state cracks can
be seen, for instance, in Figs. 4 and 7 in Zarrinderakht et al.
(2022).

Even though the stable node is not an attractor in the strict
sense (there are other equilibria arbitrarily close to the stable
node), it does have a finite basin of attraction demarcated by
the red and yellow orbits into the stable node. Note that the
size of that basin of attraction is easy to overestimate visu-
ally due to the finite resolution used in computing the phase
portrait. Close to the stable node is a marginal fixed point
that is analogous to a saddle in standard phase plane analysis,
marked with a yellow triangle in the inset. For this marginal
fixed point, a single orbit ends at the saddle, while a sec-
ond orbit connects saddle and node (both shown in yellow
in the inset). Below the orbit leading up to the saddle, there
are additional orbits starting with lower values of dt(0)/db(0)
that terminate at the boundary of a region of steady states as
shown in the inset.

The third marginal fixed point is marked with a cyan tri-
angle in Fig. 2 and again plays the role of a saddle in a stan-
dard phase plane. Here, one orbit (marked in cyan) emerges
from the saddle point towards the calving boundary, while a
second orbit (also marked in cyan) connects a fourth (cyan
square) marginal fixed point that is almost on the dt axis to
the cyan triangle saddle point; this orbit is analogous to a sep-
aratrix in a standard phase plane, and it divides initial condi-
tions that lead to immediate calving from initial conditions

that lead to stable, steady cracks of finite length that leave
the ice slab intact.

The unstable node point marked by a cyan square is paired
with a third saddle point marked as a red triangle that is also
located almost on the dt axis (“almost” because there is in
fact an imperceptible region near the dt axis in which db does
not grow, as discussed above). For the dynamics of a single
top crack, the red triangle and cyan square points were pre-
viously identified elsewhere (see e.g. Figs. 2a and 6a, b of
Zarrinderakht et al., 2022) as stable and unstable equilibria.
That is, if we set db = 0, then the evolution of short cracks
towards the smaller (red triangle) of the two is physically ex-
plained by the effect of the imposed tensile stress τ in open-
ing the short crack eventually being overcome by cryostatic
pressure as the crack lengthens. In fact, in all of the phase
planes shown in the paper, the dynamics along each of the
coordinate axes reduce to the dynamics of a single crack,
as previously discussed in Lai et al. (2020) and Zarrinder-
akht et al. (2022). As Fig. 2 shows, the simple rationale re-
garding the stability of single cracks developed previously
in these papers, however, falters when coupling the surface
crack with a basal crack: for instance, both the red triangle
and cyan square equilibria are actually unstable to the growth
of a basal crack.

3.2 Changes in crack configuration due to altered
forcing

Suppose the system is started with only small seed cracks
to initiate crevasse growth (where these seed cracks need
to be large enough in order to start outside the region of
steady states around the origin discussed above). Calving will
then occur if there is an orbit connecting the near-origin ini-
tial conditions in the phase plane to the calving boundary at
db+dt = 1. In Fig. 2, that is not the case: instead, cracks will
evolve to the configuration represented by the red dot or one
very close to it.

As in Zarrinderakht et al. (2022), we ask how the marginal
fixed point at the red dot evolves under changes in forc-
ing parameters and how such changes can themselves lead
to calving. The same caveat applies here as in our earlier
work (see Sect. 4.5 of Zarrinderakht et al., 2022): in asking
how the dynamical system changes under changes in param-
eters and how an existing crack configuration is affected, we
are ignoring the fact that the viscous pre-stress will gener-
ally not remain of the same form as assumed in our model
even over relatively short timescales (comparable with the
Maxwell time of ice), and changes in domain geometry will
occur as the result of viscous flow over long timescales so
that results based on the rectangular geometry assumed here
will eventually become misleading. We address these issues
in the companion paper Zarrinderakht et al. (2023).

In Fig. 3, we plot phase planes analogous to Fig. 2 for
a range of values of η and τ as indicated for each column
and row of the grid. Figure 2 is reproduced in panel (c2). If
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Figure 3. Gridded phase plane diagrams for two aligned cracks. η = 0 (column 1), 0.04 (column 2), 0.08 (column 3), and 0.1 (column 4).
τ = 0.04 (row a), 0.03 (row b), 0.02 (row c), 0.01 (row d), and 0 (row e). The remaining parameters are those used in Fig. 2.

we track the position of the (red) stable node-type marginal
fixed point in Fig. 2, we find that it moves upwards and to the
right (that is, in the direction of flow of the dynamical sys-
tem) under increases in extensional stress τ , while it remains
unchanged under an increase in η (that is, an increase in the
depth of the water table). In other words, if τ is increased,
(db,dt) will track the position of the node but conversely

remain stranded in the region of steady states indicated by
black dots under a subsequent reduction in τ . This is analo-
gous to becoming stranded in the grey region of steady states
in Fig. 6 of Zarrinderakht et al. (2022). The insensitivity to
η by contrast is easy to understand in terms of the shallow
depth of the top crack dt at the node: the tip of the surface
crack is above the water level in columns 2–4 of Fig. 3.
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Calving under increases in τ eventually occurs for each of
columns 2–4 through the node meeting the diagonal calving
boundary in row a, with the surface crack length dt remaining
very shallow: calving occurs almost entirely by the propaga-
tion of the basal crack. The critical value of τ in each case lies
somewhere between τ = 0.03 and τ = 0.04, which is consis-
tent with the critical value of τ = 0.039 for calving by basal
crevasse propagation determined numerically in Zarrinder-
akht et al. (2022).

The saddle-type marginal fixed point marked by a cyan tri-
angle moves downwards and to the right under increases in
τ , and it moves downwards under decreases in η. An alter-
native calving mechanism, starting with a stable steady-state
configuration like the node in panel (c2), is to raise the sur-
face water level (that is, to decrease η) until the two marginal
fixed points annihilate each other: this is analogous to the
saddle-node bifurcations of Fig. 6a and b of Zarrinderakht
et al. (2022) (for instance, by going from panel (c2) to panel
(c1) in Fig. 3 here). When that annihilation occurs due to a
reduction in η, the length of the basal crack remains almost
unchanged during the subsequent evolution of (db,dt): the
orbit emerging from the saddle towards the calving boundary
(shown in cyan in Fig. 2) is nearly vertical; hence the motion
in the phase plane from the equivalent of a saddle-node bi-
furcation is also nearly vertical. Calving driven by changes in
water level occurs almost entirely by the propagation of the
surface crack.

In fact, if we suppose that a step from one panel in Fig. 3
to a neighbouring panel corresponds to calving (for instance,
starting from the node in (c2) and changing parameter val-
ues to those in (c1) or starting from the node in panel (b2)
and changing parameter values to those in (b1)), then we can
identify which crack will propagate to cause calving purely
by looking at orbits that emerge near the origin in the panel in
which calving occurs: in panel (c1), orbits emerging near the
origin evolve predominantly upward. More significantly still,
if we start an orbit near the origin with db = 0, that orbit will
evolve to the calving boundary at dt = 1 while maintaining
zero basal crack length. Similarly, orbits emerging near the
origin in panel (b1) evolve predominantly to the right, and an
orbit started near the origin with dt = 0 will evolve to calving
at db = 1 with zero surface crack length.

In other words, in order to predict parameter combinations
that lead to calving with aligned cracks, we can actually look
at the dynamics of surface and basal cracks in isolation: our
admittedly coarse sampling of parameter space strongly sug-
gests that calving occurs from near the origin (a nearly un-
fractured initial domain) as it does from the node configura-
tion (with a short surface and larger basal crack). One crack
is always dominant, and the propagation of one crack does
not significantly reinforce the propagation of the other.

A plausible physical explanation of this behaviour is pro-
vided by the torques generated on each crack face (see also
Zarrinderakht et al., 2022, Appendix C2): the torque gener-
ated by extensional stress on and fluid pressure in the bottom

crack induces a rotation on both sides of the crack (see also
Fig. 10 of Zarrinderakht et al., 2022) that tends to compress
the ice surface and vice versa for the torque generated on a
surface crack.

3.3 Offset crevasses in a periodic domain

Motivated by our conjecture that torques generated by a
crack on one side of the domain affect the propagation of
a crack incised into the opposite side of the ice, we con-
sider whether the dynamics of misaligned (or laterally off-
set) cracks differ qualitatively from those of aligned cracks:
presumably, if a basal crack causes compression at the upper
surface, that compression is strongest above the basal crack
and decreases with horizontal distance.

To maintain the requisite symmetry for laterally offset
cracks to act as mode I crack and propagate vertically, we
assume that they are located at x =W/4 and x = 3W/4 and
switch to laterally periodic boundary conditions as in Eq. (3):
as a result, the model describes a periodic array of surface
and bottom cracks in which the surface and bottom cracks
are spaced a half-wavelength W/2 apart (Fig. 4). Note that
the assumption of vertical crack propagation is then consis-
tent with a maximum hoop stress criterion (Zehnder, 2012,
Sect. 4.4.1), but we do not address the question of crack path
stability (Cotterell and Rice, 1980), namely that a perturbed
crack could evolve progressively away from a vertical orien-
tation.

Figure 5 shows a grid of phase planes analogous to Fig. 3.
One obvious difference is that the “calving boundary” now
consists of the lines db = 1 and dt = 1: offset cracks will no
longer meet part-way through the ice. We find similar be-
haviour in Fig. 5 as in Fig. 3 for cases where crack evolu-
tion away from the origin does not lead to immediate calv-
ing, with a node-type marginal fixed point evident in pan-
els (d2)–(e2), (c3)–(e3), and (b4)–(e4). The corresponding
saddle-type fixed point does not always exist, being absent in
panels (b4) and (c4) (which is also the case in Fig. 3, panels
(b4) and (c4)).

A subtle but significant qualitative difference with Fig. 3
is the size of the surface crack at the node point: while
basal crack length db is significantly larger than surface crack
length dt, the latter is much bigger than in Fig. 3. As a conse-
quence, the tip of the surface crack corresponding to the node
point equilibrium is below the water level, and the stress field
is actually affected by surface water pressure in several of the
examples in Fig. 5. As a result, the node point moves upwards
as η is decreased (the crack lengthens as water level rises) in
several examples (for instance, in going from panel (c4) to
panel (c3) or from panel (d3) to panel (d2) in Fig. 5).

This has a knock-on effect on the style of calving under
increases in extensional stress: in the aligned crack case of
Fig. 3, an increase in extensional stress invariably leads to
calving by basal crack propagation (see the discussion in
Sect. 3.2 and columns 2–4 in Fig. 3). In the offset crack
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Figure 4. A periodic domain with offset cracks at x =W/4 and x = 3W/4.

case of Fig. 5, increases in τ by contrast lead to calving
by top crack propagation through the annihilation of sad-
dle and node points (panels (d2)–(c2) and (c3)–(b3)) more
frequently than by the node point reaching the right-hand
calving boundary (panels (b4)–(a4)), while the annihilation
of saddle and node points in a saddle-node bifurcation only
occurs as the result of a decrease in η in Fig. 3.

3.4 The effect of periodicity

The results in the previous section suggest that the presence
of offset instead of aligned cracks may promote the simulta-
neous growth of both cracks: specifically, the motion of the
node-type marginal fixed point under changes in parameter
values involves significantly greater growth of the surface
crack.

A second notable feature of Fig. 5 as compared with Fig. 3
is, however, that the values of extensional stress τ are signif-
icantly larger in the former than in the latter, even though we
obtain qualitatively similar phase planes (with a node- and
saddle-type marginal fixed point in some of them and there-
fore with parameter combinations that lead to finite crack
growth but not to calving if starting near the origin). The
fact that larger extensional stresses are required to produce a
qualitatively similar result is not the result of having laterally
offset versus aligned cracks but of using a periodic domain
with a relatively short (W = 1) length: in addition to surface
and basal cracks interacting, neighbouring cracks on each of
the surfaces also interact.

Here we analyze the interaction between neighbouring
cracks, restricting ourselves to a periodic array of basal
cracks for simplicity. The second equation in Eq. (7) then
becomes redundant, and the dynamical system can be visu-
alized simply by plotting KIb against db, identifying where
KIb > κ . We show results in Fig. 6. Panel (a) shows how KIb
depends on crack length db for fixed a value ofW = 2 as τ is
varied, analogously to Fig. 7b in Zarrinderakht et al. (2022).
For a given set of parameters, the crack will grow if KIb > κ

(the latter being the broken straight line) and remain static
otherwise. Calving occurs if, as in the curves for τ = 0.12
in Fig. 6a, KIb > κ up to the limiting value db = 1, at which
the basal crack fully penetrates through the ice thickness. As
shown in Fig. 6b, this is the case for larger τ , qualitatively

mimicking the corresponding behaviour for a non-periodic
domain studied in Zarrinderakht et al. (2022).

Figure 6b similarly shows KIb against crack length for a
fixed value of τ = 0.04, just above the critical value of 0.039
for calving by basal crack propagation for a non-periodic do-
main in Zarrinderakht et al. (2022). The curve marked “NP”
reproduces the corresponding result for that domain, given
by the purple curve in Fig. 7b of Zarrinderakht et al. (2022).
If we compare the case of a finite-width periodic domain with
the case of the non-periodic domain, we find that KIb agrees
between the two for short crack lengths db, for which the
far field is relatively unimportant. The difference becomes
noticeable as db grows, more so for short periodicities W .
Only the non-periodic case experiences calving at τ = 0.04
in Fig. 6b.

For each combination of parameters τ and κ and a given
domain periodicityW , the points of intersection between the
corresponding solid curve and the dashed curve in Fig. 6 cor-
respond to marginal equilibria as defined in Sect. 3.1, with
the smaller solution being unstable and the larger solution
being stable if it exists. As extensional stress is increased, the
larger, stable marginal equilibrium also increases until it dis-
appears entirely. Figure 7a shows the corresponding steady
states for W = 10 as a continuous function of the parameter
τ , by analogy with Fig. 8b in Zarrinderakht et al. (2022). The
grey region consists of steady states for W = 10 as an exam-
ple to clarify that the curves show separate regions of steady
states from regions of phase space in which db increases.

As Fig. 7a shows, calving for basal cracks occurs through
the continuous growth of crevasse length with increasing τ
until db = 1 is reached at a critical value τcrit. For the case
W = 10 shown in Fig. 6a, τcrit = 0.088, as compared with
τcrit = 0.039 for a non-periodic domain. In Fig. 7b, we plot
the dependence of τcrit on W : the larger the W , the lower
the critical stress. We conjecture (but have not attempted to
prove) that the limit of τcrit for large W is given by the criti-
cal stress for a non-periodic domain with traction-free lateral
boundaries, τcrit,∞ = 0.039. If so, the decrease in τcrit clearly
continues to be significant beyond the range for which we
have calculated τcrit in Fig. 7: for W = 20, τcrit is a little un-
der twice the critical value for a non-periodic domain. Note
that, in the limit of a small crevasse spacing (much less than
a single ice thickness), the effect of neighbouring crevasses
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Figure 5. Gridded phase plane diagram for two offset cracks with periodic boundary conditions and W = 1, with the same plotting scheme
as Fig. 3. η = 0.04 (column 1), 0.08 (column 2), 0.1 (column 3), and 0.12 (column 4). τ = 0.12 (row a) 0,1 (row b), 0.8 (row c), 0.06 (row
d), and 0.04 (row e). The vertical dashed line separates columns in which the surface water table is above sea level (to the left) from surface
water tables below sea level (to the right). The horizontal dashed line separates rows in which τ exceeds the value of 0.055 for an unconfined
ice shelf (above) from those where τ is less than 0.055 (below). All remaining parameter values are as in Fig. 3.

observed here agrees with the previous results of Weertman
(1973) and van der Veen (1998a), who found a significant re-
duction in crack tip stress intensity factor for crevasses that
are spaced closer than their depth of penetration relative to
an isolated crevasse.

As in the non-periodic case considered in Zarrinderakht
et al. (2022), calving occurs because KIb changes from van-
ishing as db→ 1 for τ < τcrit to becoming infinite for τ >
τcrit (Fig. 6a). In Zarrinderakht et al. (2022, Appendix C),
we were able to associate that behaviour with the net torque
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Figure 6. (a) Stress intensity factor KIb against crack length with
W = 2 for a basal crack for different values of τ = 0.04 (red), 0.05
(blue), 0.06 (yellow), 0.07 (purple), 0.08 (green), and 0.12 (orange).
(b) Scaled stress intensity factor versus the crack length for differ-
ent values of scaled periodic domain length, W = 0.5 (blue), 1 (or-
ange), 2 (red), 5 (yellow), and 10 (purple), with the non-periodic
domain shown by NP (green) for τ = 0.04. The result for the non-
periodic domain was computed for W = 10 but is insensitive to
the domain width for traction-free lateral boundary conditions. The
dashed horizontal line in both panels indicates the fixed parame-
ter value κ = 0.001. The crack grows if KIb > κ and remains static
otherwise.

Figure 7. (a) Bifurcation diagram for a periodic domain with a
single basal crack: W = 1 (green), 10 (yellow), and 20 (red), with
the non-periodic domain shown by NP (blue). The region of steady
states generally lies to the left of each curve, as indicated by grey
shading forW = 10. (b) The critical extensional stress as a function
of the domain width W .

generated by the crack on the remaining “neck” of ice im-
mediately above the crack. In a non-periodic domain with
vanishing lateral traction, the torque generated by forces on
the crack face must be balanced by a torque generated by
stresses in the neck of ice. The balance of torques dominates
the stress field in the neck when the crack spans nearly the
full ice thickness, and a positive stress intensity factor (di-
verging to +∞ as db→ 1) results if the net torque on the
crack remains positive for basal crack lengths approaching
unity.

In the present case, the torque generated by one crack is
balanced not only by the torque in the overlying neck of ice
but also by torques due to all the other cracks in the periodic
array, which reduces the net torque and therefore stresses
generated in the neck of ice. The smaller the spacing W be-
tween cracks, the stronger that effect becomes, which we can
visualize by looking at the vertical displacement u3 around
the crack. Figure 8 shows the stress field σxx and the corre-

Figure 8. The stress distribution for a basal crevasse with τ = 0.1
and db = 0.8 for (a) a non-periodic domain with W = 10 and (b) a
periodic domain with W = 10. As in Fig. 10 of Zarrinderakht et al.
(2022), we illustrate the results here using a deformed domain, plot-
ting σxx against Eulerian position (x+cux ,z+cuz) with c = 0.02.

sponding deformation of the domain for identical parameter
values τ = 0.1.

Clearly, stresses are larger around the crack tip for the non-
periodic case in panel (a). Far-field displacements uz are also
larger for the non-periodic case and linear in x; without any
applied traction at the lateral boundaries, the far field under-
goes a rigid body motion. By contrast, the periodic case has
smaller far-field displacement with a finite, negative curva-
ture: far from the crack, the stress and displacement fields
are those for an elastic beam, with the curvature signalling
a bending moment that resists the torque generated in the
crack.

4 Discussion

4.1 Towards a calving law

As in the simpler case of a single crack studied by van der
Veen (1998a, b), Lai et al. (2020), and Zarrinderakht et al.
(2022), we can attempt to create a calving law for the case
of interacting cracks incised into opposite sides of the ice.
Identifying which parameter combinations (τ,η,κ) result in
calving given an initial state with only minimal crack lengths
(db(0),dt(0)) is relatively simple. Firstly, the initial crack
lengths need to be sufficient for the stress intensity factor to
overcome the typically small fracture toughness κ . As the
crack lengths are short, the effect of interactions between
cracks is minimal in that case: the results of van der Veen
(1998a, b), Lai et al. (2020), and Zarrinderakht et al. (2022)
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suffice, with both Lai et al. (2020) and Zarrinderakht et al.
(2022) furnishing the relevant criteria. Secondly, the ensuing
crack propagation needs to result either in the cracks meet-
ing inside the ice as in Sect. 3.2 or in one crack propagating
fully through the ice as in Sect. 3.3. That outcome is easy
to identify through the absence of the node-type marginal
fixed point in the relevant phase planes, as shown in Figs. 3
and 5. The relevant region of parameter space can be delin-
eated crudely from Figs. 3 and 5 directly, which could be im-
proved upon by identifying conditions under which the fixed
point marginally exists (defining the boundary of the region
of parameter space in which calving occurs): for instance,
when it first appears at the “calving boundary” (the diagonal
db+ dt = 1 in Fig. 3 or the right-hand edge db = 1 in Fig. 5)
or when it first forms at a saddle-node bifurcation (for in-
stance, between the parameter values used in panels (d2) and
(c2) of Fig. 5).

A more complicated problem is the construction of a calv-
ing law that allows slow changes in the forcing parameters:
by slow, we mean as compared with the natural timescale of
crack evolution in the dynamical system (7), which is likely
the case in any realistic setting, where extensional stress τ
and water level η typically evolve on the advective timescale
for ice transport across an ice shelf and on the seasonal
timescale associated with surface melt, respectively. In that
situation, cracks may propagate only part-way across the ice.
Calving can occur because of subsequent changes in forcing
parameters to cause them to propagate further and eventually
meet in the ice or reach the opposite ice surface.

In the confines of our model, the difference between calv-
ing by such slow changes in forcing parameters and instant
calving as discussed above is that the cracks will have a
significant initial length at the instant that a critical param-
eter combination permitting calving is reached. The analo-
gous situation for a single crack was discussed in Sect. 5 of
Zarrinderakht et al. (2022) and led to a relatively simple pre-
scription for calving (Eq. 37 of Zarrinderakht et al., 2022),
but the present case is more complex to capture.

Consider the case of offset cracks as shown in Fig. 5.
The simplest approximation is to assume that the region of
steady states indicated by black dots as in panels (d2)–(e2),
(c3)–(e3), and (b4)–(e4) always takes the form of a rectan-
gle with its sides aligned with the (db,dt) axes. Let the up-
per and lower boundaries of the region be at d+tm(τ,η,κ) and
d−tm(τ,η,κ) and the left-hand boundary at dbm(τ,η,κ). If any
one of these boundaries is not present (as is the case for d+tm
in panels (b4) and (c4)), then simply set the corresponding
value of d·m to unity.

The node-type marginal fixed point, if present, must be at
(d−tm,dbm), and any initial evolution is to that fixed point, at
least to a close approximation. Subsequent movement of the
boundaries of the rectangle of steady states can have one of
four consequences. Firstly, the node can move upwards and
to the right, in which case the crack configuration (db,dt)

tracks the location of the node. Secondly, the node can move

downwards and to the left, leaving the crack configuration
(db,dt) static and inside the region of steady states. Thirdly,
the node can move down and to the right, in which case db
tracks the left-hand edge dbm of the region of steady states,
while dt remains static. Fourthly, the node can move upwards
and to the left, in which case dt tracks the bottom of the re-
gion of the steady states at d−tm, while db remains static.

Any movement of the boundaries of the region of steady
states at d+tm, d−tm, and dbm that occurs later leads to a simi-
lar pattern of crack evolution: (db,dt) will either move hori-
zontally to stay on the left-hand edge of the region of steady
states, move vertically to stay on the bottom edge, move diag-
onally to track the corner that is the node-type marginal fixed
point, or remain inside the region of steady states if none of
the other alternatives are possible. That is until either (db,dt)

reaches the right-hand edge of the unit square, and calving
occurs by the propagation of the bottom crack all the way to
the upper ice surface, or the upper boundary of the region of
steady states reaches the location (db,dt). The latter outcome
can occur either as a result of the upper boundary reaching a
location (db,dt) that had previously ended up on the inside of
the region of steady states or because the upper boundary d+tm
reaches the lower boundary at d−tm and the two marginal fixed
points annihilate each other in a saddle-node bifurcation. In
either event, calving occurs by the propagation of the surface
crack to the base of the ice.

Mathematically, we can capture the implied motion of the
phase point (db,dt) under changes in parameter values by the
following statement, analogous to Eq. (37) in Zarrinderakht
et al. (2022). Let

Sb(τ,η,κ)= {d : d > dbm(τ,η,κ)},

St(τ,ηκ)= {d : d
−
tm(τ,η,κ)≤ d < d

+
tm} ∪ {1}. (9)

Then, if T is a slow time variable associated with the change
in parameters (as opposed to the fast time variable with re-
spect to which the dynamical system (7) evolves), we can
write

db(T )=inf{d : d ∈ Sb(τ (T ),η(T ),κ(T )

and d > db(T
′) for allT ′ < T }, (10)

dt(T )=inf{d : d ∈ St(τ (T ),η(T ),κ(T )

and d > dt(T
′) for allT ′ < T }. (11)

All that is then required is to know how the boundaries of the
region of steady states depend on τ , η, and κ .

4.2 Limitations of the model

We have not attempted to complete the calculation suggested
at the end of the last subsection, namely to compute in detail
how the boundary of the region of steady states depends on
forcing parameters. The reason is that Fig. 5 (on which the
procedure described was based) was computed for a specific
value W of the spacing between crevasses, and we demon-
strated in Sect. 3.4 that our results are highly sensitive to that
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spacing. More specifically, we found no preferred finite spac-
ing between crevasses at which calving occurs most easily
(Fig. 7b). It appears that basal crevasses propagate more eas-
ily the further apart they are spaced, as the torques exerted
on each other by neighbouring cracks have the effect of act-
ing to close the tracks (Fig. 8), and this makes the exercise of
trying to define a calving rule for finitely spaced crevasses an
exercise of limited value.

The absence of an optimal, finite crevasse spacing at which
crack propagation occurs most easily (in the sense of calving
occurring at the lowest possible extensional stress τ ) likely
points to the same deficiency in the model as previously dis-
cussed in Sect. 6.3 of Zarrinderakht et al. (2022): based on
the assumption of small-strain elasticity, the model neglects
the effect of vertical elastic displacements on fluid pressure
at the domain boundary. In other words, the effect of elas-
tic deformation on buoyancy is excluded from the model,
even though, at large lateral distances, we can expect suffi-
cient vertical displacements to have a leading-order effect.
We anticipate that incorporating the feedback between dis-
placement and fluid pressure at the boundary will lead to ad-
ditional torques generated by vertical displacements in the
far field, suppressing crack growth for very large crack spac-
ings (see also Buck and Lai, 2021). We leave a study of this
effect to future work.

There are several other limitations in addition to not ac-
counting for the effect of buoyancy on elastic stresses. For a
given elastic pre-stress, the linear elastic fracture mechanics
problem solved here relies on the same weakly inertial prop-
agation rate prescription due to Freund (1990) that was pre-
viously used in Zarrinderakht et al. (2022). Since the cracks
under consideration are typically fluid-filled, it is likely that
dynamic propagation is controlled by the retarding effect of
fluid flow in the fractures (Spence et al., 1985), which re-
quires a significantly more complicated hydrofracture model
that is unlikely to permit a comprehensive study of parameter
space or even of fracture evolution for different initial con-
ditions as in Figs. 2, 3, and 5. In addition, the assumption of
purely vertical crack propagation is contingent on the highly
specific crack orientations considered here, which ensure that
we have purely mode I crack propagation. In reality, there are
likely to be many interacting and potentially curved cracks,
which we will address with a future iteration of the model.

There are two other major complications that need to be
addressed. The first is the computation of the viscous pre-
stress itself. In the present work, we have insisted on a
parallel-sided slab as the basic domain into which cracks are
incised, with viscous pre-stress that corresponds to a com-
pletely unfractured ice slab. In practice, we expect these as-
sumptions to break down over different timescales: firstly,
once cracks have propagated to a steady-state configuration
in which they span only part of the ice thickness, the elas-
tic stress built up during fracture propagation will decay vis-
coelastically over a single Maxwell time, likely on the or-
der of hours in an ice shelf (Olinger et al., 2022). After that

viscoelastic relaxation, the form of the pre-stress assumed
here and in van der Veen (1998a, b), Lai et al. (2020), and
Zarrinderakht et al. (2022) will no longer be appropriate; a
more complicated recomputation of the viscous pre-stress on
the now partially fractured domain becomes necessary (Krug
et al., 2014). Secondly, over the much longer timescale as-
sociated with significant viscous deformation of the ice shelf
(typically decades or longer), even the fractured ice domain
will no longer take the form of a parallel-sided slab with nar-
row cracks incised into it: the cracks will be widened by vis-
cous flow, significantly altering the domain in which the lin-
ear elastic fracture mechanics problem considered here needs
to be solved. We consider both of these complications in the
companion paper (Zarrinderakht et al., 2023).

The second major issue is the prescription of surface hy-
drology through a surface water table elevation, as we do
through the parameter η. In reality, near-surface aquifers or
surface hydrological systems are unlikely to be spatially uni-
form, or they are unaffected by the evolution of the crevasses
that they feed: drainage of water into a crevasse should intro-
duce an additional dynamic timescale and set of processes
that the prescription of a fixed water level completely ig-
nores. This is unlikely to be a trivial issue, as ice shelves are
unlikely to be isothermal even if the near-surface supports
an aquifer: if water is supplied slowly and crevasse propaga-
tion is slowed, then the refreezing of water in a newly formed
crack (a process we ignore here on the basis that we assume
rapid crack propagation) could suppress crevasse growth.

A simpler end member is, of course, the case of a dry
ice shelf surface (η = 1 in our notation). This is not a case
that we have dwelt on, as we have focused on the richer dy-
namics generated by a finite water table depth. The right-
most columns of Figs. 3 and 5, however, provide a guide
to what happens as we keep lowering the water table: sur-
face crack propagation is progressively inhibited. For aligned
cracks as in Fig. 5, a small surface crack generally forms, but
its tip remains above water level unless initial conditions to
the contrary are specified, and calving happens due to bottom
crevasse propagation at sufficiently large extensional stress τ .
For offset cracks, the top crack in column 4 of Fig. 5 still pen-
etrates below the water level, but the actual depth to which it
penetrates appears to have no bearing on steady-state bottom
crack lengths, and calving once more occurs due to bottom
crevasse propagation at sufficiently large τ . In other words,
for progressively drier top cracks (meaning larger values of
η approaching unity), we only expect a model for bottom
crevasse formation to predict calving adequately.

5 Conclusions

In this study, we modelled the simultaneous growth of both
basal and surface crevasses, which has received less attention
in the literature due to a lack of tabulated Green’s functions.
Here, a semi-smooth two-dimensional dynamical system is
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used to display crack growth rate, (ḋb, ḋt ), and their interac-
tions as a phase plane with the constraints imposed by the
contact conditions. The orbits in this system show the direc-
tion of propagation flows with arrows. In other words, they
show the rate of evolution of crack length as a function of
the current crack length for a fixed set of parameters. The
steady regions are where no crack penetration occurs, and
they are denoted by dots. This model can predict the evolu-
tion of cracks either to a steady state or to the point where
the cracks span the width of the ice, known as calving, for a
given set of initial conditions and parameters.

For two aligned crevasses in the shelf, we observed that the
top crack dominates when the water level is high and when
there is a significant amount of water in it. When the shelf
is intact, the basal crack grows rapidly and reaches a steady
state where the hydrostatic pressure is equal to the cryostatic
pressure. Meanwhile, the surface crack, despite containing a
large amount of water, remains small and stable until a cer-
tain point and then becomes unstable and grows to span the
entire thickness of the shelf. Our study has shown that no set
of parameters can result in both cracks growing simultane-
ously from an undamaged shelf to calving while considering
that only one crack is insufficient to cause calving. The model
indicates that one crack is always dominant, and the scenario
of two aligned cracks growing at the same time to a steady
state is not predicted. This behaviour can be attributed to the
difference in crack growth speed and stress intensity factor
at the crack tips. The results support the conclusion that the
calving criterion established by Zarrinderakht et al. (2022) is
effective for the case of two aligned crevasses and does not
require any modification to the system behaviour.

Driven by our hypothesis that torques produced by a crack
on one side of the domain can impact a crack on the oppo-
site side of the ice, we investigated laterally offset cracks. To
ensure that misaligned cracks maintain the necessary sym-
metry to function as a mode I crack and propagate vertically,
we assume that they are located at regular intervals. We con-
sider that periodic boundary conditions and the frequency of
cracks on a shelf can improve stability and resistance to crack
propagation under higher extensional stress. In this case, the
domain length and crack spacing become effective, and, as
the domain grows and the crack separation increases, the
stress intensity factors also increase. The model proposed in
this study, similar to Zarrinderakht et al. (2022), does not ac-
count for the buoyancy effect that generates a torque to stabi-
lize the crack, resulting in a tilt in the domain. However, pe-
riodic boundary conditions counteract this bending effect by
reproducing the crack pattern as the shelf bends back down to
the next crack. In addition, applying periodic boundary con-
ditions causes steady-state and fixed points to occur at later
stages of larger crack lengths.
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