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Abstract. Snow is a complex porous material presenting
a variety of microstructural patterns. This microstructure
largely controls the mechanical properties of snow, although
the relation between the micro and macro properties remains
to be better understood. Recent developments based on the
discrete element method (DEM) and three-dimensional mi-
crotomographic data make it possible to reproduce numer-
ically the brittle mechanical behaviour of snow. However,
these developments lack experimental evaluation so far. In
this study, we evaluate a DEM numerical model by reproduc-
ing cone penetration tests on centimetric snow samples. The
microstructures of different natural snow samples were cap-
tured with X-ray microtomography before and after the cone
penetration test, from which the grain displacements induced
by the cone could be inferred. The tests were conducted with
a modified snow micropenetrometer (5 mm cone diameter),
which recorded the force profile at a high resolution. In the
numerical model, an elastic–brittle cohesive contact law be-
tween snow grains was used to represent the cohesive bonds.
The initial positions of the grains and their contacts were di-
rectly derived from the tomographic images. The numerical
model was evaluated by comparing the measured force pro-
files and the grain displacement fields. Overall, the model
satisfactorily reproduced the force profiles in terms of mean
macroscopic force (mean relative error of about 20 %) and
the amplitude of force fluctuations (mean relative error of
about 55 %), while the correlation length of force fluctua-
tions was more difficult to reproduce (mean relative error of
about 40 % for two samples out of four and by a factor ≥ 8
for the other two). These characteristics were, as expected,
highly dependent on the tested sample microstructure, but
they were also sensitive to the choice of the micromechani-

cal parameters describing the contact law. A scaling law was
proposed between the mechanical parameters, the initial mi-
crostructure characteristics and the mean macroscopic force
obtained with the DEM numerical model. The model could
also reproduce the measured deformation around the cone
tip (mean grain displacement relative error of 57 % along the
horizontal axis), with a smaller sensitivity to the contact law
parameterisation in this case. These detailed comparisons be-
tween numerical and experimental results give confidence to
the reliability of the numerical modelling strategy and opens
promising prospects to improve the understanding of snow
mechanical behaviour.

1 Introduction

Snow is a brittle and porous material existing on Earth
close to its melting point. The thermodynamical conditions
in clouds govern the snowflake morphology, and, once de-
posited on the ground, snow continues to evolve via meta-
morphism. The snow material is thus characterised by a wide
variety of microstructural patterns (grain size, grain shape,
density) classified into different snow types (Fierz et al.,
2009). It has been established that the snow microstructure
controls the properties of snow (Shapiro et al., 1997; Johnson
and Schneebeli, 1999; Schneebeli, 2004). For instance, weak
layers involved in avalanche triggering (Schweizer et al.,
2003) are usually constituted of specific snow types (depth
hoar, surface hoar, precipitation particle, faceted crystals)
characterised by low cohesion and low strength (Jamieson
and Johnston, 1992). The link between the snow microstruc-
ture and its properties, especially its mechanical proper-
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ties, is still not well understood, even if it is crucial for
many applications, such as avalanche forecasting (Schweizer
et al., 2003; Jamieson and Johnston, 1992), snowpack mod-
elling (Calonne et al., 2014), ice core interpretation (Mon-
tagnat et al., 2020) or geotechnics (Shapiro et al., 1997).
In particular, the brittle failure occurring at high shear rates
(> 10−4 s−1) during the release of an avalanche remains rep-
resented by very coarse empirical laws (Brun et al., 1992;
Bartelt and Lehning, 2002; Vionnet et al., 2012). In this
elastic–brittle regime (rapid and large deformations), the me-
chanical behaviour of snow is thought to be mainly con-
trolled by bond failures and grain rearrangements (Narita,
1983).

The snow microstructure and its evolution can be cap-
tured at high resolution (typically 10–50 µm) with X-ray mi-
crotomography imaging (µCT) (Coléou et al., 2001; Freitag
et al., 2004; Schneebeli, 2004; Heggli et al., 2011). This non-
destructive method preserves the snow microstructure and
resolves the shape of snow grains, grain bonds, and poros-
ity, which is of primary importance for mechanical stud-
ies. In particular, structural properties of snow, such as den-
sity, specific surface area (SSA), correlation length and bond
characteristics, can be evaluated from tomographic data (e.g.
Schneebeli, 2004; Schneebeli and Sokratov, 2004; Hagen-
muller et al., 2014; Calonne et al., 2014; Proksch et al.,
2015). The tomographic data are also used as a basis for nu-
merical modelling (Schneebeli, 2004; Schneebeli and Sokra-
tov, 2004; Hagenmuller et al., 2015) or calibration/valida-
tion data of statistical empirical models retrieving grain-scale
physical and mechanical properties from other measurements
(e.g. Proksch et al., 2015; Reuter et al., 2019). However, to-
mographic imaging is time-consuming and not adapted to
routine measurements in the field.

The mechanical properties of snow are commonly derived
from cone penetration test (CPT) measurements, which is
an objective and relatively easy-to-set-up method (Schnee-
beli and Johnson, 1998). This method has been widely used
to characterise soil stratigraphy (Lunne et al., 1997) and
adapted to snowpack stratigraphy (Gubler, 1975; Schaap and
Föhn, 1987; Dowd and Brown, 1986; Schneebeli and John-
son, 1998; Mackenzie and Payten, 2002; McCallum, 2014).
The CPT provides a force profile by measuring the resist-
ing force exerted on a conic tip penetrating, at a constant
rate, into a material. The development of high-resolution dig-
ital penetrometers dedicated to snow studies (Schneebeli and
Johnson, 1998; Mackenzie and Payten, 2002; McCallum,
2014) has provided the possibility to resolve the force pro-
file at a microscopic scale and capture the high-frequency
fluctuations of the force signal up to a metre depth. Such
force penetration profiles contain valuable information on the
snow structural parameters at the macroscale and microscale
(Löwe and van Herwijnen, 2012).

Interpretation of the CPT requires a good understanding
of the interactions between the cone tip and the snow grains.
Several studies aimed to investigate the grain displacement

field around the tip. Particle image velocimetry (PIV) imag-
ing was performed to quantify the 2D displacement field of
snow grains while the tip penetrates into the material (Floyer
and Jamieson, 2010; Herwijnen, 2013; LeBaron et al., 2014).
Peinke et al. (2020) developed a grain-tracking algorithm
from µCT data to reconstruct the 3D displacement field of
snow grains induced by a CPT. All these studies revealed the
development of a compaction zone (CZ) in front of the tip.

Various mechanical or statistical models have been de-
veloped to interpret the CPT penetration signal in terms of
mechanical properties. The cavity expansion model (CEM)
(Bishop et al., 1945; Yu and Carter, 2002) has been ap-
plied to snow by Ruiz et al. (2016) and Peinke et al. (2020).
This model considers snow as a continuum and describes the
elastic–plastic deformation of the material around the tip in
order to retrieve macroscopic material properties (cohesion,
friction, etc.). The continuum assumption becomes invalid
for a ratio between cone diameter and mean grain diame-
ter lower than 20 typically (Bolton et al., 1993), leading to
potentially erroneous interpretations of the CPT results. Al-
ternatively, the shot noise model interprets the force signal
and its fluctuations as a superposition of independent elastic–
brittle ruptures occurring next to the tip (Schneebeli and
Johnson, 1999; Marshall and Johnson, 2009; Löwe and van
Herwijnen, 2012) and retrieves microstructural properties
(e.g. bond rupture force). The penetration process is gener-
ally modelled as a homogeneous Poisson process (HPP) with
a constant intensity (Löwe and van Herwijnen, 2012). Peinke
et al. (2019) have generalised the HPP method to account
for the transient phase of the penetration process, attributed
to the development of the CZ (Peinke et al., 2019). These
authors used a non-homogeneous Poisson process (NHPP)
considering a depth dependency of the intensity (number of
bond failures per penetration increment). Yet, the assump-
tion of independent elastic–brittle rupture events essentially
neglects the development of a CZ (Johnson and Schneebeli,
1999; Herwijnen, 2013; LeBaron et al., 2014; Ruiz et al.,
2017). Therefore, these two models do not appear to fully
account for the specificity of snow deformation induced by
the CPT. Additional investigations are required to better un-
derstand the tip interaction with snow and better interpret the
force measurements.

Recently, numerical approaches have been developed to
study the mechanical response of snow by explicitly ac-
counting for the microstructure (Johnson and Hopkins, 2005;
Gaume et al., 2015, 2017a; Hagenmuller et al., 2015; Wautier
et al., 2015; Mede et al., 2018b, 2020; Bobillier et al., 2020,
2021). Snow is described as a granular material and mod-
elled by the discrete element method (DEM) in a high-shear-
rate regime. The complexity of the snow microstructure can
be taken into account by feeding the DEM simulations with
high-resolution 3D reconstructions obtained with µCT. These
simulations have provided new insights into the snow me-
chanical behaviour, such as the dependence of snow strength
to microstructure properties (Hagenmuller et al., 2015) or
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the identification of different failure modes in shear loading
(Mede et al., 2018b, 2020). The downside of this method is
that it is time-consuming, and simulations can only be per-
formed on small samples (up to a few centimetres). Further-
more, these numerical models still lack direct experimental
evaluation.

In this context, the aim of this study was to evaluate a
microstructure-based DEM model using recent CPT exper-
imental data performed in a controlled environment (Peinke
et al., 2020). The dataset includes µCT images of the samples
acquired before and after the tests. The deformation induced
by the CPT (strain rate of about 102 s−1; Reuter et al., 2019)
belongs to the elastic–brittle regime (Narita, 1983; Floyer
and Jamieson, 2010) and is therefore suitable for the DEM
simulation. The results of the numerical model are directly
compared to experimental data in terms of (1) macroscopic
force profile and associated statistical indicators and (2) grain
displacements induced by the cone penetration. A systematic
sensitivity analysis on the DEM mechanical parameters, in-
cluding Young’s modulus, cohesion coefficient and friction
coefficient, was performed to find the combinations of pa-
rameters that best reproduce experimental results. Finally,
the role of the microstructure was also investigated by per-
forming DEM simulations for different snow types. The eval-
uation of the numerical model provides the opportunity to
better understand the mechanisms at play during snow defor-
mation in an elastic–brittle regime and better interpret CPT
profiles.

We first present the experimental dataset and the numerical
methods. The data processing used to compare experimental
and numerical results is also explained. The results of the
DEM, the sensitivity analysis on mechanical parameters and
the comparison to experimental results are then presented.
The relevance of the DEM model and the limits of our ap-
proach are eventually discussed before concluding.

2 Methods

2.1 Experimental measurements

The experimental dataset used in this study has been acquired
by Peinke et al. (2020) and is only briefly presented in this
paper. The methodology comprises the collection and prepa-
ration of snow samples and the acquisition of high-resolution
microtomographic images and cone penetration tests (CPT).

2.1.1 Snow sample preparation

Blocks of natural snow were sampled in the French Alps near
Grenoble and stored at−20 °C in a cold room. The materials
collected were representative of the variety of seasonal snow
types (Table 1), namely rounded grains (RG), large rounded
grains (RGlr), depth hoar (DH) and precipitation particles
(PP), with distinct bulk densities and specific surface areas
(SSAs).

The samples were then prepared in a cold room at −10 °C
by sieving the different snow types into aluminium cylinders
of 20 mm height and 20 mm diameter. All samples were pre-
pared at least 24 h before the measurements in order for the
bonds between grains to rebuild after sieving.

2.1.2 Microtomography (µCT)

Tomographic scans of each sample were acquired before and
after performing the CPT to capture the initial and final mi-
crostructure of the snow, respectively. An X-ray tomograph
(DeskTom130, RX Solutions) operating at a pixel size of
15 µm per pixel, a voltage of 80 kV and a current of 100 µA
was used. During tomographic scanning, the samples were
maintained at a constant and uniform temperature of −10 °C
in a cryogenic cell (CellDyM; Calonne et al., 2015). Each
scan, consisting of 1440 two-dimensional radiographs, was
reconstructed to obtain 3D greyscale images representing the
attenuation coefficients of the different materials composing
the samples. The greyscale images were then transformed
into binary (ice matrix and pore space) segmented images
using an energy-based segmentation algorithm (Hagenmuller
et al., 2013).

2.1.3 Cone penetration test (CPT)

After the initial microtomography scan, a CPT was per-
formed on the snow samples using a modified snow mi-
cropenetrometer (SMP version 4; Schneebeli and Johnson,
1998). The specific rod used by Peinke et al. (2020) displays
a conic tip with an apex angle a of 60° and a maximum cone
radius equal to the rod radius R of 2.5 mm. The rod was in-
serted vertically into the snow sample at a constant penetra-
tion speed v of 20 mms−1. The resisting force applied on the
penetrometer (cone and rod) was recorded at every 4 µm of
penetration increment (i.e. 5 kHz frequency). The SMP sen-
sor (Kistler sensor type 9207) can measure forces up to 40 N
with a resolution of 0.01 N. The tip was stopped at depths be-
tween 7 and 15 mm, i.e. 5 to 13 mm above the sample bottom,
to avoid boundary effects (Peinke et al., 2020). The experi-
mental force profiles are presented in Fig. S26.

2.2 Numerical modelling

Snow is here considered a granular cohesive material. The
high strain rate (> 10−4 s−1) induced by the tip penetration
into the snow sample is considered to lead to brittle defor-
mations, with inter-granular fracture and grain rearrange-
ments (Narita, 1983; Johnson and Hopkins 2005; Hagen-
muller et al., 2015). We adopted an approach based on the
DEM to simulate the cone penetration tests in the measured
snow samples. The mechanical model, based on YADE soft-
ware (Šmilauer et al., 2021), is adapted from the work by
Hagenmuller et al. (2015) and Mede et al. (2018a, b, 2019).

The setup of the simulations involves different steps,
namely the generation of the initial conditions based on mea-
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Table 1. Overview of the snow samples analysed in this study and parameters of DEM grain shape representation. Sample names were given
according to the snow type classification (Fierz et al., 2009). The sample density and specific surface area (SSA) were derived from the
microtomographic images (Peinke et al., 2020). The initial contact density was computed according to Eq. (10). The minimum radius of
the sphere L (voxel, vx) and the minimum sphere coverage S were determined through a sensitivity analysis presented in Sect. S1.1 in the
Supplement. The resulting numbers of spheres, grains and cohesive grain–grain interactions are indicated, as well as the volumetric error EV
and the mechanical error EM associated with each grain shape representation.

Sample Snow Sieve Bulk SSA L S Number of Number of Number of Initial EV EM
name type size density (m2 kg−1) (vx) spheres grains initial cohesive contact (%) (%)

(mm) (kgm−3) interactions density
between grains ν

RG Rounded
grains

1.6 289 23.0 5 0.3 514 917 27 560 47 736 0.55 42.3 5.3

RGlr Large
rounded
grains

1 530 10.1 5 0.3 270 143 8488 24 005 1.63 14.6 4.2

DH Depth
hoar

1.6 364 15.9 5 0.2 743 546 11 211 24 258 0.86 24.7 14.3

PP Precipitation
particle

1.6 91.3 53.5 2 0.5 1 797 567 95 022 125 805 0.13 32.2 10.3

sured snow microstructures, the definition of the contact laws
between the snow grains and the setting of the boundary con-
ditions to reproduce the CPT configuration.

2.2.1 Grain segmentation and grain shape
representation

The DEM model was fed by the 3D ice–air images derived
from µCT. The continuous ice matrix was first segmented
into individual grains based on geometrical criteria, as de-
scribed by Hagenmuller et al. (2013). The main idea of the
approach is to detect potential mechanical weakness zones
(i.e. the bonds) based on the principal minimal curvature κT
and a contiguity parameter cT. The threshold on curvature κT
was set to 1.0 for the RG, RGlr and DH samples and to 0.7
for the PP sample; the contiguity parameter was set to 0.1 for
all the samples (see Hagenmuller et al., 2013, for details).

To construct the DEM sample, the irregular shape of the
grains was approximated by filling the grain volume with a
population of overlapping spheres (Fig. 1). The position of
these spheres was derived from the medial axis of the struc-
ture (Coeurjolly et al., 2007; Mede et al., 2018a), and redun-
dant spheres were discarded based on a power diagram fil-
ter (Coeurjolly et al., 2007). This grain shape representation
by a multitude of spheres preserves the capability of YADE
to handle sphere–sphere contact detection. However, a high
number of spheres slows down the simulations. We thus fur-
ther decimated the number of spheres by approximating the
grain shape. We only selected the spheres with a radius larger
than a threshold L (voxel) and with a relative coverage larger
than S (i.e. the ice volume associated with the sphere accord-
ing to the power diagram should be larger than S times the
sphere volume) (Coeurjolly et al., 2007). A trade-off must

be found between this grain shape approximation, influenc-
ing the simulation accuracy, and the number of spheres influ-
encing the numerical cost. Eventually, the spheres belonging
to the same grain were clumped together in rigid aggregates
constituting single discrete elements (DEs). A detailed sen-
sitivity analysis was conducted (see Table S1 and Fig. S1 in
the Supplement) to determine the optimal values of the L
and S parameters. Note that this grain shape approximation
might also lead to deleting the smallest grains in the numer-
ical samples, as they cannot be covered with the chosen pa-
rameters L and S. The grain number difference and shape
approximation of the numerical sample compared to the ini-
tial segmented µCT image can be quantified by computing
the volumetric error EV. The final chosen L and S values for
each snow type, with the associated volumetric EV and me-
chanical EM errors (defined in Sect. S1.1), can be found in
Table 1.

2.2.2 Interactions and contact law

The contacts between adjacent grains were identified dur-
ing the grain segmentation phase. In the DEM simulations,
each grain contact is represented by several sphere–sphere
interactions. The interactions between spheres are described
by an elastic–brittle cohesive contact law characterised by
four parameters, namely the normal and the shear contact
stiffness KN and KS, the adhesion A, and the friction an-
gle ϕ. The normal force FN between two spheres is com-
puted as proportional to the distance between the two sphere
surfaces xN and limited by the adhesion value in the tensile
regime (xN> 0):

FN =KNxN ≤ A. (1)
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Figure 1. Illustration of the DEM CPT modelling for the RGlr sam-
ple. The penetrometer is moving downward at a constant speed of
20 mms−1. Snow grains (represented with different colours) are
modelled by overlapping spheres clumped together. The zoomed-in
window shows the initial cohesive interactions between the spheres
of adjacent grains (white lines).

The shear force FS is proportional to the shear displace-
ment between the spheres xS, with a maximal value given by
the sum of adhesion and friction:

FS =KSxS ≤ A+FN tan(ϕ). (2)

If the force exceeds the threshold, either in tension or in
shear, the cohesive bond is broken. As long as the spheres
remain in contact after the bond is broken, friction remains
active in shear. In the initial state, all interactions in the nu-
merical sample are considered cohesive. While the sample
deforms, grain displacements lead to progressive breakage of
the initial cohesive interactions and the potential creation of
new contacts. These new interactions are frictional only (no
cohesion), meaning that sintering mechanisms are not con-
sidered in this study.

The force of a given inter-granular cohesive contact corre-
sponds to the sum of all the associated sphere–sphere interac-
tions. Based on the total contact surface between two grains
(obtained from the µCT image) and the number of associated
sphere–sphere interactions, each sphere–sphere interaction i
can be associated with a representative contact surface Di .
In order to recover the correct cohesion strength between
two grains, the adhesion parameter A was defined for each
sphere–sphere interaction as

Ai =DiC, (3)

with C (Pa) being the cohesion of ice. In YADE, by default,
the contact stiffnesses are computed based on the radii of the

spheres in interaction and two elastic material parameters,
namely Young’s modulus E and the Poisson ratio ν. For our
computations, to ensure that all cohesive sphere–sphere in-
teractions between two grains break at the same separation
distance, the computation of the normal stiffness was rede-
fined as

KN,i =
DiE

rmean
, (4)

where rmean (m) is a characteristic length constant for all
the interactions in the numerical sample, taken as the mean
sphere radius. The shear stiffness is then defined as

KS = ν×KN. (5)

Note that due to the rather arbitrary characteristic length
considered in the definition of the normal stiffness (Eq. 4),
which depends on the grain shape approximation, as well as
to the simple linear relation considered for the normal force
(Eq. 1), the contact-level YADE Young’s modulus E should
not be regarded as the true Young’s modulus of the material
but rather as a representative parameter of the elastic proper-
ties at the contacts.

2.2.3 Simulation setup and critical time step

In order to evaluate the DEM model, we have implemented a
CPT configuration similar to the experimental setup used by
Peinke et al. (2020) (Fig. 1). The snow sample is contained in
a rectangular box open at the top. The box is about 12.4 mm
along the x and y axes and about 15 mm along the z axis. The
vertical and horizontal box sizes were reduced compared to
the 20 mm height and 20 mm diameter, respectively, of the
sample holder used by Peinke et al. (2020). This choice has
been motivated by (1) simplifying the geometry with a rect-
angular numerical sample, (2) matching the sample height
imaged with µCT and (3) reducing the computational time.
A sample size sensitivity analysis has been performed to en-
sure that border effects are not introduced by reducing the
sample size (Fig. S2). The penetrometer tip displays a maxi-
mal radius R of 2.5 mm and an apex angle a of 60°. Initially
in a centred position at the box surface, it is displaced down-
wards through the sample at a constant speed of 20 mms−1.
The simulation stops when the tip reaches the bottom of the
box. The walls (box and tip) are represented by facets with
rigid boundary conditions. The gravity is set to 9.81 ms−2.

The stability of the explicit integration scheme is ensured
by estimating the critical time step, based on the propagation
speed of elastic waves in the sample (Zhao, 2017):

1tcr =min
(
mi

KN,i

)0.5

, (6)

with mi and KN,i being the mass and normal stiffness of the
DE i. The mass mi , or equivalently the material density ρ,
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can be artificially increased to increase the time step (Hagen-
muller et al., 2015). A numerical sensitivity analysis (Fig. S3)
has shown that increasing the density by a factor f equal
to 100 does not affect the simulation results, while it does
significantly reduce the computing time. Finally, a Cundall’s
non-viscous damping coefficient 3 was applied to the par-
ticle acceleration to dissipate kinetic energy and avoid nu-
merical instabilities (Šmilauer et al., 2021). A value of 0.05
was chosen according to the results of a numerical sensitivity
analysis (Fig. S4).

2.2.4 Input parameters

In view of the preceding paragraph, the density of the ice
grains was set to ρ= f × 917 kgm−3. The contact law pa-
rameters were derived from typical values measured on ice.
The Poisson coefficient P was set to 0.3 (Schulson and
Duval, 2009). The typical Young’s modulus E, the cohe-
sion strength C and the friction coefficient tan(ϕ) values for
the ice are usually evaluated around 1× 1010 Pa, 1× 106 Pa
and 0.2, respectively (Gammon et al., 1983; Schulson and
Duval, 2009). For this study, a sensitivity analysis on the val-
ues of these parameters was performed to get insights into
their influence and best adjust simulation results to the exper-
imental measurements. The considered ranges were 1× 108–
1× 1010 Pa for E, 5× 105–5× 106 Pa for C and 0.2–0.5
for tan(ϕ), respectively. Note that the range of Young’s
modulus E ensures small grain overlaps, i.e. compliance
with the rigid grain assumption (Fig. S5). We must men-
tion that, due to longer computing times, fewer parameter
values could be explored for large Young’s modulus values.
For the PP sample, no numerical simulations could be per-
formed for a Young’s modulus of 1× 1010 Pa, as computing
times were unreasonable (E= 1× 108 Pa, t ∼ 4 months, and
E= 1× 109 Pa, t ∼ 10 months, on a 72-core machine with
2.6 GHz Intel Xeon processors (2.6 GHz) and 500 GB RAM.
YADE scripts enable parallelisation on up to five cores).

2.3 Data processing

The outputs of the DEM simulations are the resisting force
exerted by the grains on the penetrating rod and the displace-
ment of the grains. These results can be directly compared to
the experimental measurements.

2.3.1 Force sampling

The sum of the forces along the z axis applied on all
the facets constituting the penetrometer (cone and rod) is
recorded at each time step. The characteristics of the raw nu-
merical force profiles depend on the numerical parameters
(notably the time step), and they are not necessarily suited
for direct comparison with experimental results. To obtain
numerical profiles that can be compared to their experimen-
tal counterparts, the simulated force values were averaged
over windows corresponding to displacement increments of

4 µm, thus matching the sampling frequency of the SMP. This
averaging is also useful to smooth out high-frequency fluctu-
ations linked to the very small time steps used in the DEM.
Finally, numerical and experimental force profiles are then
resampled by linear interpolation over a regular grid with a
step of 4 µm over the same depth. The profiles span from
a depth of 0 mm (initial contact between the cone and the
sample surface) to the chosen maximum depth, which, in
our study, is set to 7 mm (i.e. 1750 points). This value cor-
responds to the minimum depth reached by the penetrometer
during the experimental CPT tests for the selected samples.

2.3.2 Statistical indicators

Quantitatively, the DEM numerical model is evaluated by
comparisons with experimental force profiles in terms of
three statistical indicators: the mean macroscopic force F
(N), the amplitude of force fluctuations σ (N) and the cor-
relation length l (mm). The indicator σ is calculated as the
variance of the detrended force profile as follows:

σ = F̃
2
, F̃ =

F −Fsm

Fsm
; (7)

with F̃ (Eq. 5) (Peinke et al., 2019) being the detrended force
profile, F being the force profile and Fsm being the averaged
force profile calculated over a rolling window 1z= 3 mm.
The correlation length l (mm) is also computed on the de-
trended force profile (Peinke et al., 2019). In our study, the
snow samples exhibit a rather homogeneous structure, allow-
ing us to consider that l is constant over the depth (Peinke
et al., 2019). These three statistical indicators have been cho-
sen because they are easily quantifiable and commonly used
to describe force profiles obtained by CPT in snow (John-
son and Schneebeli, 1999; Löwe and van Herwijnen, 2012;
Peinke et al., 2019). In addition, they constitute key parame-
ters to derive additional microstructural properties based on
Poisson shot noise models (Löwe and van Herwijnen, 2012;
Peinke et al., 2019).

To select the set of model mechanical parameters (E, C
and tan(ϕ)) providing the best fit to the experimental mea-
surements, a total error REtot is computed according to

REtot =

√
2REF

2+RE2
σ +RE2

l , (8)

with REk being the logarithmic relative error calculated for
the three statistical indicators, k= (F,σ, l), as

REk =
log(measured valuek)− log(computed valuek)

log(measured valuek)
. (9)

Given the difficulties in reproducing the correlation length
with the DEM model for two out of four samples and the fact
that the values of the statistical indicators vary over several
orders of magnitude (see Sect. 3.2), the logarithmic relative
errors (REk) were computed with the log of the considered
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values. We have attributed a weight factor of 2 to the loga-
rithmic relative error REF related to the mean macroscopic
force, to put more emphasis on the correct reproduction of
this quantity. Hence, for each snow sample, the set of me-
chanical parameters minimising the total error REtot was de-
termined.

2.3.3 Grain displacement analysis

The position of all grains was recorded every ∼ 0.4 mm of
penetration into the DEM simulations. The total displace-
ments and the trajectories can therefore be reconstructed for
each grain. Due to the thermodynamically active nature of
snow, interrupted experimental tests were not feasible, and
only the initial (before CPT) and the final states (after CPT)
of the snow sample could be imaged by µCT. Grain tracking,
applied to the microtomographic images, has been performed
by Peinke et al. (2020), providing the total displacement of
the identified grains. We thus compared the total displace-
ment between the CPT experiments and the DEM simula-
tions at the same penetration depth, i.e. at the maximal pen-
etration measured experimentally. Note that grain tracking
could not be performed for the PP sample due to the small
size of the grains.

The profiles of vertical and radial displacements were av-
eraged around the cone axis and over the height of an area
located between the top section of the cone and the sample
surface. A displacement threshold of 0.03 mm was set to de-
fine the CZ (Peinke et al., 2020). Only the radial profiles were
compared to the experimental results, as we suspect the ver-
tical profiles derived from µCT scans might be misleading
(Peinke et al., 2020). Indeed, before acquiring the post-CPT
µCT scans, the tip was removed from the snow. This proce-
dure was performed about 1 h after the tip penetration to al-
low for bonds between ice grains to re-form by sintering and
to limit grain displacements during tip removal. However,
despite this precaution, some grains in contact with the tip
might have been dragged upward due to friction with the tip.
Therefore, the upward component of the vertical displace-
ment might have been overestimated in the experimental re-
sults, especially for the larger grains.

3 Results

3.1 Simulated cone penetration tests

This section presents an example of CPT simulation results
for the case of the RG snow sample with the following
mechanical parameters: E= 1× 109 Pa, C= 5× 106 Pa and
tan(ϕ)= 0.2 (Table 3). The results for the other snow sam-
ples are shown in Sect. S2.1 in the Supplement.

The simulated penetration force globally increases with
depth and is characterised by high-frequency fluctuations
whose amplitude also tends to increase with depth (Fig. 2a).
The force profile displays an S shape with three stages: (1) up

to ∼ 3.5 mm depth the profile is convex, (2) between ∼ 3.5
and ∼ 6 mm depth the increase in force with depth is al-
most linear, and (3) for depths larger than 6 mm the force
reaches a nearly constant value. A similar behaviour is ob-
servable for the RGlr and PP samples (Figs. S6a and S10a),
with slight variations in the transition depths between the
different stages. For the DH sample, the macroscopic force
profile also displays stages 1 and 2, but the stabilisation at a
nearly constant value is less evident for the results presented
in Fig. S8a. Stage 3 might be reached at greater depths for
this sample.

The penetration of the tip induces bond failures in the
simulated samples (Fig. 2b). Overall, for the RG sample,
about 15 % of the cohesive interactions broke over 10 mm
of penetration, corresponding to an average rate of ∼ 650
bond failures per millimetre. This average bond failure rate
is variable among the samples, reaching up to 1400 bond
failures per millimetre for the RGlr sample (Figs. S6b, S8b
and S10b). In detail, for the RG sample, we notice an in-
crease in the bond failure rate at around 3.5 mm of pen-
etration depth (Fig. 2b), coinciding with the transition be-
tween the first and second stages observed in the force sig-
nal (Fig. 2a). Bond failure intensity then remains nearly con-
stant as the macroscopic force reaches its steady-state value.
Similar characteristics are observed for the other snow types
(Figs. S6 and S10), except for the DH sample, for which the
slope change between the first and second stages is less clear
(Fig. S8b).

Figure 3a shows the total displacement of the grains as
well as grain trajectories. The largest displacements (up to
several millimetres) are observed for grains initially located
on the path of the tip. Around the tip, the displacements are
<1 mm and are mainly localised close to the tip. Grain tra-
jectories indicate that grains are pushed downward from each
side of the tip. Grains initially located on the tip axis display
quasi-straight vertical trajectories. The trajectories become
more radial and curved away from the tip medial axis, with
grains also being pushed aside. Both radial and vertical dis-
placement profiles show a pronounced decreasing trend and
reach almost zero values at a radial position of about 1.7–
1.8R (Fig. 3b). The vertical profile attests of a dominant
downward movement of the grains close to the tip. Similar
observations are made for the DH (Fig. S9) and PP (Fig. S11)
samples. In contrast, for the RGlr sample, vertical displace-
ments are smaller and oriented slightly upward, on average,
for the mechanical parameters chosen here (Fig. S7).

3.2 Sensitivity to mechanical parameters

The influence of the mechanical parameters (Young’s mod-
ulus, cohesion, friction coefficient) involved in the contact
law has been systematically explored. For the RG sample,
the force profiles obtained for the different values of the pa-
rameters within the explored ranges (Table 2) are presented
in Fig. 4, and synthetic plots of the sensitivity of the statisti-
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Figure 2. (a) Force F as a function of penetration depth (light line) obtained for the RG sample. The superimposed smoothed profile (bold
line) Fsm corresponds to the force value averaged over a rolling window of 3 mm. (b) Rate of cohesive bonds broken per unit penetration
depth and cumulative proportion of cohesive bonds broken (%) as a function of tip penetration depth. The initial number of cohesive bonds
is indicated in Table 1. The results are obtained with the mechanical parameters indicated in Table 3.

Table 2. Input parameters used for the simulations presented in this paper.

Simulation setup

Sample width W 13 mm
Sample height H 15 mm
Tip radius R 2.5 mm
Cone apex a 60°
Tip velocity v 20 mms−1

Gravity g 9.81 ms−2

Numerical parameters

Time step dt ∼ 1× 10−6–1× 10−8 s
Mass factor f 100
Non-viscous damping coefficient 3 0.05

Material properties

Grain density ρ 917× 102 kgm−3

Poisson coefficient P 0.3
Friction coefficient tan(ϕ) 0.2–0.5 (default value 0.2)
Young’s modulus E 1× 108–1× 1010 (default value 1× 109) Pa
Cohesion C 5× 105–5× 106 (default value 2× 106) Pa

cal indicators to these parameters are presented in Fig. 5. The
results for the other snow samples can be found in Sect. S2.3.
Table S3 also summarises the values of statistical indicators
in all cases.

First, it can be observed that increasing Young’s modu-
lus decreases the mean macroscopic force (Figs. 4a and 5a)
and the correlation length (Fig. 5c). The influence of Young’s
modulus on the amplitude of force fluctuations is more com-
plex and displays a co-dependency with the cohesion values
(Fig. 5b). For low (respectively high) cohesion values, the
amplitude of force fluctuations shows a decreasing (respec-

tively increasing) trend with Young’s modulus. Regarding
the influence of cohesion, it is observed that increasing this
parameter increases the three statistical indicators. Finally,
increasing the friction coefficient generally also leads to an
increase in the three statistical indicators. Note however that,
over the range of explored friction coefficient values (0.2–
0.5), the sensitivity to this parameter is less important than
for the other two mechanical parameters (where E is varied
over 2 orders of magnitude and where C is varied over 1 or-
der of magnitude). Despite changes in absolute force values,
the evolution of the force profiles (Figs. S14, S18 and S22)
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Figure 3. (a) Simulated grain displacement map for the RG sample. The red arrows indicate the grain trajectories while the tip is penetrating
(sampling= 0.4 mm). White grains correspond to grains that are not represented in the DEM simulation. The final tip position is indicated by
the solid black lines. The horizontal dashed black line indicates the cone top. (b) Radial (upper panel) and vertical (lower panel) displacement
profiles (red curves) for the RG sample. These profiles represent averages computed from the sample surface to the cone top. By convention,
downward (respectively upward) movement corresponds to positive (respectively negative) values of vertical displacement. The shadowed
areas around the solid lines represent the standard deviation of grain displacements. The results are obtained with the mechanical parameters
indicated in Table 3.

Figure 4. Influence of mechanical parameters on the simulated force profile. The sensitivity analysis has been performed on (a) Young’s mod-
ulus E (Pa) (for C= 2.0× 106 Pa and tan(ϕ)= 0.2), (b) cohesion C (Pa) (for E= 1.0× 109 Pa and tan(ϕ)= 0.2) and (c) friction coefficient
tan(ϕ) (for E= 1.0× 109 Pa and C= 2.0× 106 Pa). The results presented here correspond to the RG sample.
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Figure 5. Evolution of statistical indicators as functions of Young’s modulus, cohesion and friction coefficient: (a) mean macroscopic force F ,
(b) amplitude of force fluctuations σ and (c) correlation length l. The experimental results (black diamonds) are also represented in the plots.
The results presented here correspond to the RG sample.

Table 3. Selected combination of mechanical parameters for the RG, RGlr, DH and PP samples. The indicated values of Young’s modulus E,
cohesion C and friction coefficient tan(ϕ) correspond to the combinations that yield the lowest total error REtot on the statistical indicators
(mean macroscopic force F , amplitude of force fluctuations σ , correlation length l) measured experimentally. Logarithmic relative error REk
for all the mechanical parameter combinations tested are indicated in Table S3.

Sample E (Pa) C (Pa) tan(ϕ) REF REσ REl REtot

RG 1× 109 5× 106 0.2 1.2× 10−1 1.2× 10−1 5.2× 10−1 5.6× 10−1

RGlr 1× 109 1× 106 0.3 5.5× 10−2
−4.6× 10−1 1.1× 10−1 4.8× 10−1

DH 1× 1010 5× 106 0.2 1.2× 10−1
−1.1× 10−1

−2.3× 10−1 3.1× 10−1

PP 1× 109 2× 106 0.5 −1.3× 10−1
−1.6× 10−1 6.5× 10−1 6.9× 10−1

and statistical indicators (Figs. S15, S19 and S23) with the
mechanical parameters follow similar trends for all the sam-
ples.

The number of broken bonds per increment of tip pen-
etration depth appears rather insensitive to Young’s modu-
lus (Figs. S12a, S16a, S20a and S24a) and is only slightly
reduced when cohesion increases (Figs. S12b, S16b, S20b
and S24b). Conversely, this quantity is significantly affected
by the friction coefficient, with an increase in the average
bond failure rate when tan(ϕ) increases (Figs. S12c, S16c,
S20c and S24c).

Finally, it is observed that the influence of the mechanical
parameters on the radial grain displacement profiles is negli-
gible (Figs. S13, S17, S21 and S25). Young’s modulus shows
no influence on the vertical grain displacement either. Cohe-
sion appears to play a role in the vertical displacement pro-
file for the RGlr sample, by enhancing upward movements.
Larger friction coefficients tend to increase the downward
movement of the grains close to the tip for all the snow types.

3.3 Comparison of the DEM results with experimental
measurements

A first noticeable observation is that, for the values of the
mechanical parameters tested, the orders of magnitude of
the statistical indicators obtained numerically are consistent
with the experimental results in most of the cases (Figs. 5,
S15, S19, and S23 and Tables S2 and S3). This demonstrates
that the DEM model is indeed capable of reproducing the

main characteristics of the CPT force profile (Fig. S26, Ta-
ble S2). However, we highlight the difficulty of matching the
three statistical indicators at once for a given combination
of the three mechanical parameters studied. Hence, for the
RG sample (Fig. 5), the DEM simulation can reproduce the
experimental mean macroscopic force and the amplitude of
force fluctuations but tends to overestimate the correlation
length by a factor of 8 for the best combination of mechan-
ical parameters. For the RGlr and DH samples (Figs. S15
and S18), all the experimental statistical indicators can be re-
produced individually but not for one single combination of
the mechanical parameters. For the PP sample, the experi-
mental mean macroscopic force and the amplitude of force
fluctuations can be reproduced numerically, but the correla-
tion length is systematically overestimated by a factor of at
least 8 (Fig. S23).

Based on the sensitivity analysis (Sect. 3.2), we selected
for each sample the combination of the three mechanical
parameters that minimises the total error REtot (Tables 3
and S3). The corresponding simulated force profiles (re-
ferred to as “Numerical simulation 1”) are compared with
the experimental profiles in Fig. 6. Note that the error val-
ues quoted in the text below correspond to relative errors
calculated without the logarithmic function, as they are eas-
ier to grasp. These values therefore differ from the logarith-
mic relative errors shown in Tables 3 and S3 and used for
the parameter selection. From a qualitative point of view, a
good overall agreement is observed between these numeri-
cal and experimental force profiles. For the RG sample, the
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Figure 6. Experimental (grey) and numerical (coloured) CPT force profiles obtained for (a) RG, (b) RGlr, (c) DH and (d) PP samples.
The “Numerical simulation 1” profiles correspond to the best fit of the mechanical parameters determined for each sample (Table 3), while
“Numerical simulation 2” profiles correspond to an overall best fit of the mechanical parameters for the four samples (E= 1× 109 Pa,
C= 2× 106 Pa and tan(ϕ)= 0.2; Table S3).

experimental mean macroscopic force is overestimated by
∼ 20 % for the numerical result, the amplitude of force fluc-
tuation is overestimated by∼ 70 % and the correlation length
is largely overestimated by a factor of 8 (Figs. 5 and 6a,
Table 3). Both the experimental and numerical force pro-
files reach a quasi-steady-state value at about the same depth
(∼ 6 mm, Fig. S27). For the RGlr sample, the experimental
mean macroscopic force is fairly reproduced with a relative
error of 6 %, the amplitude of force fluctuations is under-
estimated by ∼ 60 % and the correlation length is overesti-
mated by 35 % (Figs. S15 and 6b, Table 3). We note that
the slope change between 2.5 and 3 mm penetration depth
is reproduced numerically. However, it appeared difficult to
reproduce numerically the amplitude of force fluctuations in
the upper section (from 0 to 4 mm) of the experimental pro-
file. For the DH sample, the experimental mean macroscopic
force is overestimated by ∼ 25 %. The experimental ampli-
tude of force fluctuations is underestimated by 28 %, and
the correlation length is about half of the experimental value

(Figs. S19 and 6c, Table 3). The numerical results minimise
the force peaks observed in the upper part of the experimen-
tal profile (above 3 mm) but reproduce fairly well the main
features of the amplitude of force fluctuations, especially the
force jump at 3 mm depth. Finally, for the PP sample, the
experimental mean macroscopic force is underestimated by
∼ 30 %, while the experimental amplitude of force fluctua-
tions is underestimated by ∼ 60 %. In this case, the experi-
mental correlation length could not be reproduced at all, with
values overestimated by a factor of 20 (Figs. S23 and 6d, Ta-
ble 3).

For comparison, we also selected the single set of mechan-
ical parameters that minimises the combined total error REtot
on RG, RGlr, DH and PP samples. Corresponding values
areE= 1× 109 Pa, C= 2× 106 Pa and tan(ϕ)= 0.2. The re-
spective logarithmic relative errors for each sample can be
found in Table S3. As before, the error values presented in
the text below correspond to the relative errors without the
logarithmic function applied to the values. In general, the
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Figure 7. Total displacement maps obtained experimentally with µCT (left panels) and numerically with the DEM simulation (right panels)
for the RG, RGlr, DH and PP samples. A displacement threshold of 0.03 mm has been set to define the deformation zone (Peinke et al., 2020).
White grains correspond to non-trackable grains in µCT scans (Peinke et al., 2020) and grains not represented in the DEM simulations. The
final tip position is indicated with solid black lines. The horizontal dashed black line indicates the cone top. Displacement profiles shown
in Fig. 8 are computed from the sample surface to the cone top. Numerical results are obtained with the mechanical parameters indicated in
Table 3. The experimental displacement field could not be determined for the PP sample.

corresponding simulated force profiles (referred to as “Nu-
merical simulation 2” in Fig. 6) also show a fair agreement
with the experimental results. For the RG sample, however,
the experimental mean macroscopic force is significantly un-
derestimated by ∼ 70 % (Figs. 5 and 6a, Table S3). The nu-
merical amplitude of force fluctuations is underestimated by
∼ 35 %, while the correlation length is significantly overesti-
mated by a factor of 5. For the RGlr sample, the agreement
is acceptable for the three statistical indicators with relative
errors around 50 %. For the DH sample, the experimental
mean macroscopic force is reproduced at 90 %, while the ex-
perimental amplitude of force fluctuations is underestimated
by 60 % and the experimental correlation length is overes-
timated by a factor of ∼ 2. Finally, for the PP sample, the
experimental mean macroscopic force is underestimated by
∼ 80 %, the amplitude of force fluctuations is underestimated
by ∼ 85 % and the experimental correlation length is again

strongly overestimated by a factor of 20 (Figs. S23 and 6d,
Table S3).

As shown in Fig. 7, the DEM simulations also proved ca-
pable of reproducing, at least qualitatively, the experimental
grain displacement patterns derived from µCT scans for the
four snow types. Essentially similar results are obtained with
the individual best-matching sets of mechanical parameters
indicated in Table 3 (Fig. 7) and with the globally match-
ing set of parameters introduced in the previous paragraph
(Fig. S28). For the RG sample, the overall shape and size of
the deformation zone are well reproduced by the simulations.
For the DH sample, the radial extension of the deformation
zone is well reproduced by the simulations, but the vertical
extension tends to be overestimated. The largest discrepan-
cies are observed for the RGlr sample, for which the radial
and vertical extensions of the deformation zone are overesti-
mated compared to the experimental data.
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Figure 8. Radial displacement profiles (solid lines) obtained experimentally (black) and numerically (coloured) for the RG, RGlr, DH and
PP samples. The shadowed areas around the solid lines correspond to the standard deviation of grain displacement and exhibit the variability
of the radial displacement of grains. The numerical results are obtained with the mechanical parameters indicated in Table 3.

Similarly, the radial displacement profiles obtained from
the DEM numerical simulations are overall in good agree-
ment with their experimental counterparts (Figs. 8 and S29).
Consistently with the displacement maps, the largest discrep-
ancy is observed for the RGlr sample. In particular, the abrupt
slope break seen in the experimental profile at a radial po-
sition of about 1.5 is not reproduced in the numerical pro-
file. Note, however, that, due to a relatively low number of
trackable grains (Fig. 7), the standard deviation of the grain
radial displacements is larger in the experimental measure-
ments, which may result in a larger uncertainty on the av-
erage profile. In contrast, simulations on the RG and DH
samples show a very good agreement with the experiments.
The CZ (defined with displacement threshold set at 0.03 mm)
obtained from numerical simulations extends radially up to
1.6R, 2.2R, 2.0R, and 1.5R for the RG, RGlr, DH, and PP
samples, respectively. In comparison, the CZ derived from
µCT scans extends radially up to 1.7R, 1.5R, and 1.9R for
the RG, RGlr, and DH samples, respectively (no measure-
ment for PP sample).

4 Discussion

4.1 Evaluation of the DEM model

We used three mechanical parameters, namely Young’s mod-
ulus, the cohesion coefficient and the friction coefficient, to
adjust the simulated force profiles to the experimental results.
Overall, the numerical model could reproduce relatively well
the mechanical response of all studied numerical samples
with a single set of mechanical parameters (E= 1× 109 Pa,
C= 2× 106 Pa and tan(ϕ)= 0.2) (Fig. 6), indicating that
the differences in the force profiles among the samples are
mainly dependent on the snow microstructure.

It should also be noted that the values of the mechanical
parameters obtained by adjusting the model on the experi-
mental data (either globally for all samples or for each sam-
ple individually, Table 3) are reasonably close to the mechan-
ical properties of ice. Young’s modulus of ice is measured be-
tween 9× 109 and 10× 109 Pa (Gammon et al., 1983), while
our selected values range between 1× 109 and 1× 1010 Pa.
Recall that, in YADE, Young’s modulus is a numerical pa-
rameter used to define the normal contact stiffness, and it
is not expected to necessarily correspond to the physical
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Young’s modulus of the material (Sect. 2.2.2). Nevertheless,
the fact that the numerical value of E is in the same range
of magnitude as the elastic properties of ice provides confi-
dence that the DEM model and the used contact law (Eqs. 1–
5) correctly capture the physical processes at play. Similarly,
the numerical cohesion values, ranging between 1× 106 Pa
and 5× 106 Pa, are in agreement with typical cohesion values
measured on ice (in the range 2× 106 to 6× 106 Pa; Schul-
son and Duval, 2009). Finally, numerical friction coefficients
appear to be of the order of 0.2–0.5, while values measured
experimentally generally range from 0.02 to 1 (Fish and
Zaretsky, 1997; Maeno and Arakawa, 2004). All these results
reinforce confidence in the relevance of the DEM model.

We acknowledge that the mechanical parameters obtained
from minimising the logarithmic relative errors on the statis-
tical indicators do not necessarily represent optimal values,
in the sense that only a limited number of parameter sets
could be tested. Based on the sensitivity analysis, a proper
inversion procedure could be developed to retrieve true op-
timal values of the mechanical parameters. This would cer-
tainly provide more robust elements as to whether a single
set of mechanical parameters can be used to represent the
experimental results of all snow types or whether these me-
chanical parameters differ according to the snow type. Our
current analysis cannot provide a conclusive answer to this
question. Note that ice is a polycrystalline material, whose
mechanical behaviour can be strongly anisotropic depending
on the ice structure (Fish and Zaretsky, 1997; Thorsteinsson,
2001; Maeno and Arakawa, 2004). Therefore, it is not un-
likely that ice bonds between grains could be characterised
by different mechanical properties depending on the specific
conditions of snow formation and evolution.

As further proof of the DEM predictive capabilities, we
could also observe that the grain displacement fields mea-
sured for the different snow types were overall well repro-
duced by the simulations (Figs. 7 and 8). In particular, the
model captures the radial extent of the deformation zone,
which is of the order of 1.5R–2.2R. A discrepancy between
the numerical and experimental radial displacement profiles
was observed for the RGlr sample. However, it can be noted
that these experimental radial displacement profiles for the
RGlr sample also show the largest divergence with the pre-
diction of the cavity expansion model (CEM) (Yu and Carter,
2002), as shown by Peinke et al. (2020). In fact, the radial
profile predicted by the CEM for this sample is similar to the
radial profile obtained numerically in this study.

4.2 Interpretation

4.2.1 Sensitivity to the mechanical parameters

The sensitivity analysis revealed a strong influence of the
mechanical parameters on the simulation results. In partic-
ular, a clear dependence of the mean macroscopic force with
Young’s modulus E was observed, suggesting that a signifi-

cant part of the sample undergoes elastic deformation, while
brittle failures are confined in a region close to the tip. Note
that a similar dependence on E with a cohesive contact law
has been observed in the DEM modelling of soil compres-
sion (De Pue et al., 2019) and snow compression (Bobillier
et al., 2020). The mean macroscopic force, the amplitude of
force fluctuations and the correlation length all increase with
the cohesion C and, to a smaller extent, with the friction co-
efficient tan(ϕ). This can be related to the fact that increasing
cohesion and friction between grains increase bond strength.
It was also observed that cohesion tends to prevent bond fail-
ures and to favour the upward movement of grains for sam-
ples with a large initial density, such as RGlr. In contrast,
increasing the friction coefficient enhances the bond failure
rate and the downward movement of grains (Figs. S12, S16,
S20 and S24). When sliding between grains is inhibited, a
grain dragged by the tip movement will entrain surrounding
grains more easily, thus enlarging the deformation zone and
triggering additional bond failures. Finally, radial grain dis-
placements and the radius of the deformation zone appeared
to be mostly insensitive to the mechanical parameters, indi-
cating that these features are mainly controlled by the CPT
configuration and snow microstructure.

4.2.2 Compaction zone development

For all snow types, the force profiles computed numerically
display an S shape (Figs. 1, S6, S8 and S10). We attribute this
shape to the development of a compaction zone (CZ) in front
of the tip during its penetration into the numerical sample.
More specifically, the first stage of the force profiles (slope
increase) is presumably caused by the progressive entry of
the cone into the sample. The second stage (constant slope)
is attributed to the development of the CZ in front of the tip.
The third stage (quasi-constant force value) suggests that a
steady-state regime, with a fully developed CZ, is reached.
Depending on the snow type, the numerical results indicate
that full development of the CZ occurs for 6 mm to 8 mm of
penetration depth. These results agree with the experimen-
tal profiles for the RG, DH and PP samples. Globally, we
can highlight that the DEM simulations are able to reproduce
fairly well the global shape of the experimental profiles and
thus to correctly capture the development of the CZ.

Nevertheless, in another experimental study, the CZ has
been reported to be fully developed only for around 40 mm of
depth penetration (Herwijnen, 2013), which is significantly
deeper than the experimental and numerical results obtained
in this study. A first hypothesis to explain this discrepancy
is that since the maximum depth of our CPT force profiles
is 10 mm, we might miss information on the full CZ devel-
opment. A second explanation could be related to the differ-
ences in the experimental setups. Indeed, Peinke et al. (2020)
performed the CPT on snow samples contained in cylinders
of 20 mm diameter and 20 mm height, which is significantly
smaller than the decimetric snow samples considered by Her-
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Figure 9. (a) Initial contact density ν versus the slope λ of the proportion of cohesive bonds broken per unit depth (mm−1) for each snow type.
The values of initial contact density ν were computed with Eq. (10), and the values are indicated in Table 1. The slopes λ were computed
from the evolution of the cumulative proportion of cohesive bonds broken (Figs. S12, S16, S20 and S24) over a window of 7 mm depth.
(b) Dimensionless quantity FT−1E1/2C−3/2 (see Eq. 11) versus the initial contact density ν for all simulation results is shown. All the
results are provided for a friction coefficient tan(ϕ) of 0.3.

wijnen (2013). Boundary effects might thus play a role in
limiting the development of the CZ. Finally, the tip geometry
also differs between the two studies. Peinke et al. (2020) used
a plain tip, while Herwijnen (2013) used the original SMP tip
geometry with a cone radius larger than the rod. A sensitivity
analysis comparing the two geometries showed an influence
over the upper 12 mm of the force profiles (Peinke, 2019).
The plain tip geometry resulted in larger values of the mean
macroscopic force and the amplitude of force fluctuation val-
ues. This effect might also influence the characteristics of the
CZ development, which could be studied in the future using
the presented numerical model.

4.2.3 Grain–tip interaction

The sensitivity analysis on the grain shape representation
(Sect. S1.1) provides interesting insights into the interpre-
tation of force profiles. In particular, the study highlighted
that the grain shape representation could be relatively coarse
(high volumetric error EV) but still produce a force profile
with an acceptable mechanical error EM compared to a ref-
erence profile obtained for a fine grain shape representation
(EV< 10 %) (Fig. S1, Table S1). This is notably the case for
the RG sample, for which the selected grain shape represen-
tation (L= 5, S= 0.3) corresponds to a value of EV of about
40 %. Large values ofEV often imply grain loss, as the small-
est grains identified in the µCT scans cannot be represented
by the DEM with coarse spherical elements. Yet, the similar-
ity of the force profile to the reference force profile indicates
the limited contribution of these smallest grains to the macro-
scopic force, compared to the largest grains with stronger
bonds. The loss of grains and bonds might nevertheless di-
rectly affect the force fluctuations, providing a potential ex-
planation as to why the DEM model underestimates the cor-

relation length obtained experimentally for the samples with
the smallest grain sizes (RG and PP) (Figs. 5 and S23).

4.2.4 Scaling relation for the mean macroscopic force

To try and synthesise the large number of simulation results
obtained in this study, scaling relations describing the evo-
lution of the statistical indicators as a function of the main
simulation parameters can be looked for. We focused in par-
ticular on the mean macroscopic force F , which was ob-
served to depend both on the mechanical parameters (E, C
and tan(ϕ)) and on sample microstructure. Since the range
of friction coefficient values (between 0.2–0.5) that we could
explore remained limited compared to the ranges of E and
C, the parameter tan(ϕ) was not included in this analysis,
and the results presented below correspond to a single value
tan(ϕ)= 0.3.

First, inspection of our results (see Figs. 5a, S15a, S19a
and S23a) indicates that the dependencies of the mean
macroscopic force F to Young’s modulus E and cohesion C
appear to be consistent across the four tested samples (see
also Table S4). More precisely, F scales with E according
to a power law of the form F ∼ C−α , with an exponent α of
the order of 1/2. Similarly, F scales with C according to a
power law of the form F ∼ Cβ , with β of the order of 3/2.

Second, we can expect F to be also related to the rate of
cohesive broken bonds per unit penetration depth. In partic-
ular, it is observed (see Figs. S12, S16, S20 and S24) that
the slope λ of the cumulative proportion of broken bonds
as a function of depth is essentially independent of Young’s
modulus and cohesion. Conversely, as shown in Fig. 9a, this
slope λ is linearly related to the initial contact density ν de-
fined as

ν = z8, (10)
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with z being the coordination number (number of initial co-
hesive interactions between grains divided by the number of
grains; see Table 1), and8 the volume fraction of the sample
(ice density= 917 kgm−3; see Table 1).

From these different observations, the following scaling
law for the mean macroscopic force F can be proposed:

F = BTC

(
C

E

)α
f (ν), (11)

with B being a dimensionless constant, T (m2) being the sur-
face area of the cone (with a radius R and a cone apex a, Ta-
ble 2) in contact with the sample and f being a function to
be determined. Figure 9b shows the dimensionless quantity
FT −1E1/2C−3/2 plotted against the initial contact density ν.
We observe that all the simulation results for the four snow
types and the different values of Young’s modulus and cohe-
sion nicely merge on a unique logarithmic trend. Note, how-
ever, that a relatively larger dispersion is observed for RGlr
(ν= 1.63) compared to the other samples.

Equation (11) encapsulates in a single relation the main
physics controlling the mean macroscopic force recorded by
the penetrometer. In particular, this relation indicates that the
influence of snow microstructure can be captured, at least as
a first approximation, by the initial contact density ν. For-
mer studies already showed that this parameter plays a key
role in the mechanical behaviour of cohesive granular ma-
terials (Gaume et al., 2017b). Looking for similar relations
describing the other statistical indicators (amplitude of force
fluctuations and correlation length) constitutes an interest-
ing prospect for future analyses, although we can anticipate
these indicators to display more complex dependencies. Fur-
ther analyses will also be required to explore the influence of
the friction coefficient on these relations.

5 Conclusion

We have evaluated a numerical model based on a DEM that
reproduces the mechanical behaviour of snow in the brittle
regime. The DEM model takes into account the ice proper-
ties and the snow microstructure captured by tomography.
The experimental configuration of the CPT measurements
conducted on different snow types by Peinke et al. (2020)
has been reproduced with the DEM model. Three parameters,
namely the mean macroscopic force, the amplitude of force
fluctuations and the correlation length, were used to quan-
tify the similitude of the numerical and experimental profiles.
The grain displacement field was computed and compared to
the experimental displacement field derived from µCT scans
acquired before and after the CPT.

The DEM model has demonstrated, overall, a good capa-
bility to reproduce the mechanical responses of CPTs per-
formed in different snow types. The computed force profiles
satisfactorily reproduce the main characteristics of the exper-
imental force profiles. The results revealed that the force pro-

file characteristics are strongly dependent on the microstruc-
ture. A sensitivity analysis also demonstrated the dependence
of the mechanical response to the mechanical parameters of
the contact law. In particular, a simple scaling law could be
derived, relating the mean macroscopic force computed by
the DEM to the mechanical parametersE (Young’s modulus)
and C (cohesion), as well as to the microstructure character-
istics captured by the initial contact density. The displace-
ment fields are also well reproduced by the model, except
for the RGlr sample, showing a larger extent for the numer-
ical results. The agreement in terms of radial displacement
profiles is very good. The grains are mainly travelling down-
ward during the CPT, although for the RGlr sample the up-
ward movements close to the surface are not negligible. The
CPT implies a complex deformation field with a compres-
sion zone around the apex and an expansion zone close to
the surface (Peinke et al., 2020). Therefore, being able to re-
produce the force profiles (including high-frequency fluctua-
tions) and displacement fields for this mechanical test consti-
tutes a strong validation of the reliability of the DEM model.

However, a downside of the DEM is its high computa-
tional cost (simulation times ranging from 1 week to several
months depending on the physical and numerical parame-
ters for the chosen CPT configuration), which limited the
range of mechanical parameters that could be explored for
all snow types. The developed DEM model nonetheless con-
stitutes a versatile approach that could be applied to various
materials and configurations in future studies. In particular,
it will be possible to use the model to gain more physical in-
sights into the interaction between the tip and the grains, in
order to better interpret the CPT force profiles. Such analy-
ses will provide ways to test and derive relevant macroscale
and microscale mechanical parameters to characterise the
microstructure properties from the CPT force signal solely.
In particular, the validity of the assumptions made by the
HPP-NHPP method, as well as the influence of the CZ devel-
opment, will be assessed. Future studies may also consider
refining the used contact laws, e.g. the influence of sintering
processes on CPT results.
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