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Abstract. This paper concerns a numerical stabilization
method for free-surface ice flow called the free-surface stabi-
lization algorithm (FSSA). In the current study, the FSSA is
implemented into the numerical ice-flow software Elmer/Ice
and tested on synthetic two-dimensional (2D) glaciers, as
well as on the real-world glacier of Midtre Lovénbreen, Sval-
bard. For the synthetic 2D cases it is found that the FSSA
method increases the largest stable time-step size at least
by a factor of 5 for the case of a gently sloping ice surface
(∼ 3°) and by at least a factor of 2 for cases of moderately to
steeply inclined surfaces (∼ 6° to 12°) on a fine mesh. Com-
pared with other means of stabilization, the FSSA is the only
one in this study that increases largest stable time-step sizes
when used alone. Furthermore, the FSSA method increases
the overall accuracy for all surface slopes. The largest stable
time-step size is found to be smallest for the case of a low
sloping surface, despite having overall smaller velocities. For
an Arctic-type glacier, Midtre Lovénbreen, the FSSA method
doubles the largest stable time-step size; however, the accu-
racy is in this case slightly lowered in the deeper parts of the
glacier, while it increases near edges. The implication is that
the non-FSSA method might be more accurate at predicting
glacier thinning, while the FSSA method is more suitable for
predicting future glacier extent. A possible application of the
larger time-step sizes allowed for by the FSSA is for spin-up
simulations, where relatively fast-changing climate data can
be incorporated on short timescales, while the slow-changing
velocity field is updated over larger timescales.

1 Introduction

Ice sheets and glaciers are important constituents of the
global climate system, and the mass loss from these is ex-
pected to be a main contributor to future sea-level rise (De-
Conto and Pollard, 2016; Hock et al., 2019; Meredith et al.,
2019; Fox-Kemper et al., 2021). In order to reliably estimate
future sea-level rise the accurate representation of ice-sheet
and glacier dynamics is crucial, and higher-order physics
models have proven to be instrumental in increasing the con-
fidence in predictions (Hanna et al., 2013; Shepherd and
Nowicki, 2017; Pattyn, 2018).

The most accurate description for the flow of ice, in the
sense that all stress components are present in the Cauchy
stress tensor, is the Stokes equations (Greve and Blatter,
2009). Approximations of the model are made by neglect-
ing various components, with some of the most notable ex-
amples being the shallow-ice approximation (SIA) (Hutter,
1983; Morland, 1984) and the first-order Stokes approxima-
tion (FOS) (Blatter, 1995; Pattyn, 2003). Owing to its sim-
plicity and computational efficiency, the SIA method has a
long history of use (see, e.g., Blatter et al., 2010, for a his-
torical overview); however, the SIA method has been found
to be insufficient at reproducing the flow at regimes with a
steep sloping bedrock (Meur et al., 2004; Dukowicz et al.,
2011; Leng et al., 2012), as well as for smaller glaciers with
a complex bedrock topography (Zwinger et al., 2007).

It has been demonstrated for lower-order physics models
of shear-dominated flow (such as the SIA) that when cou-
pled to the free-surface equation governing the evolution of
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ice sheets and glaciers, they are subject to a parabolic-type
time-step size constraint that is highly dependent on the ice-
domain thickness (Bueler et al., 2005; Gong et al., 2017;
Bueler, 2022; Robinson et al., 2022). However, for the Stokes
equations the same type of time-step size restriction does not
necessarily hold true – even for setups where the SIA and
the Stokes equations give qualitatively similar solutions (Löf-
gren et al., 2022). Still, for ice-sheet simulations using the
Stokes equations, the restriction on the time-step size to have
numerical stability, herein broadly defined as the unbounded
growth of numerical errors, is typically found to be on the
order of 0.1 to 10 years (Gong et al., 2017; Löfgren et al.,
2022). This is considerably smaller than typical timescales at
which ice sheets evolve (Hindmarsh and Payne, 1996), which
can be as large as 10000 years (Greve and Blatter, 2009).
Computation times can thus be cut if time-step sizes can
be increased beyond the largest stable time-step size (LST)
without compromising the desired accuracy of the solution.

One way of stabilizing the problem is to use a fully im-
plicit time-stepping scheme, which has been demonstrated
by Bueler (2016) for the SIA in a frozen-bed setting. How-
ever, the Stokes equations are considerably more expen-
sive to solve than the simpler SIA equations and, since the
nonlinear Stokes equations would have to be solved multi-
ple times in each time step, make such a scheme computa-
tionally infeasible for long-term simulations. Instead Kaus
et al. (2010) propose the free-surface stabilization algo-
rithm (FSSA), which modifies the weak formulation of the
Stokes equations in order for the free-surface coupled sys-
tem to mimic an implicit time-stepping scheme. The method
was originally developed for mantle-convection simulations
where a similar viscous-flow problem is solved, and multiple
studies have indeed demonstrated that the method lengthens
the LST substantially (Kaus et al., 2010; Duretz et al., 2011;
Kramer et al., 2012; Andrés-Martínez et al., 2015; Rose et al.,
2017).

From a glaciological perspective, a limitation of the orig-
inal FSSA method is that linear rheologies are used on do-
mains that are geometrically isotropic, meaning that they
span equally in horizontal and vertical directions; i.e., do-
main aspect ratios are 1 : 1. A notable exception is Glerum
et al. (2020), a study which considers both a similar shear-
thinning nonlinear rheology and domains with aspect ratios
on the order of 1 : 10. Still, the values of the physical param-
eters describing ice flow are different from those in mantle
convection, and aspect ratios of ice sheets can be as small as
1 : 1000.

These issues were addressed by Löfgren et al. (2022),
where the FSSA method was adapted to ice-flow model-
ing. It was concluded that the method works well in an ice-
dynamical setting, and for the problems presented it showed
the potential to increase the LST by an order of magnitude.
Nevertheless, one of the shortcomings in this case is that
the method was only applied to simple ice-sheet benchmark
problems, and more complex glacier simulations, e.g., us-

ing variable bedrock topography and sliding conditions, were
only touched on briefly in that paper’s “Supplementary ma-
terial” and not studied thoroughly.

This work focuses on addressing these issues and apply-
ing the FSSA method to the regime of glacier modeling,
considering both slip conditions and steep bedrock and sur-
face inclinations. The method is assessed with regards to
stability and accuracy for a synthetic two-dimensional (2D)
case with a randomly generated bedrock topography, using a
novel method based on so-called Perlin noise (Perlin, 1985)
and a real-world application to the glacier of Midtre Lovén-
breen, Svalbard. The experiments are carried out using the
ice-sheet solver Elmer/Ice (Gagliardini et al., 2013), in which
the FSSA method has been implemented.

The rest of the paper is structured as follows: in Sect. 2
the equations governing the flow of ice are presented; Sect. 3
introduces the numerical methods, including a presentation
of the FSSA method for ice-sheet and glacier simulations;
in Sect. 4, the experiments are presented along with their re-
sults; and finally the paper is concluded in Sect. 5 with a
discussion of the results and the general outlook of the FSSA
method from the perspective of glacier modeling.

2 Governing equations

2.1 The Stokes equations

The dynamics of ice flow can be described as a very slow-
moving gravity-driven highly viscous fluid and is as such
governed by the Stokes equations (see, e.g., Greve and Blat-
ter, 2009):

∇ · (2η(u)ε̇(u))−∇p = ρgẑ, x ∈�, (1)
∇ ·u= 0, x ∈�, (2)

where Eq. (1) follows from conservation of momentum and
Eq. (2) follows from the conservation of mass. Furthermore,
ε̇ = 1

2

(
∇u+∇uT

)
is the strain-rate tensor, and u and p are

the ice velocity and pressure, respectively, at spatial coordi-
nate x in the domain �⊂ Rd (see Fig. 1), where d ∈ {2,3}
is the geometrical dimension. Furthermore, ρ = 910 kg m−3

is the ice density and g = 9.8 m s−2 is the acceleration due
to gravity. Lastly, η is the effective viscosity, which for ice
depends on the velocity and temperature through Glen’s flow
law (Glen, 1955; Nye, 1957):

η(u,T ′)= A(T ′)−
1
n

(
1
2
tr(ε̇2)+ ε̇2

0

) 1−n
2n
, (3)

where n= 3 (Cuffey and Paterson, 2010) is the Glen or
power-law exponent and ε̇2

0 = 10−10 yr−2 is a small regular-
ization term added in order to avoid an infinite viscosity at
strain rates of 0. The rate factor A(T ′) depends on the ice
temperature relative to the pressure melting point T ′ through
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Figure 1. Cross section of a generic glacier domain � with its
bedrock 0b marked in black and its surface 0s marked in gray. The
west 0W and east 0E sides are marked in orange. The dark-red lines
in the interior are the flow lines of the velocity field u, and as is the
accumulation/ablation rate.

the Arrhenius equation (Glen, 1955):

A(T ′)= A0 exp
(
−
Q

RT ′

)
, (4)

where A0 = 2.89165× 10−13 s−1 Pa−3 is a pre-exponential
factor, Q= 60 kJ mol−1 is the activation energy, and R =
8.314462 J K−1 mol−1 is the ideal gas constant. The values
stated here are the ones recommended by Paterson (1994)
for ice at a temperature T ′ ≥−10 °C when n= 3.

2.2 Boundary conditions

In order to specify the appropriate boundary condition (BC),
the glacier boundary ∂� is divided into non-overlapping
boundary parts 0s, 0W, 0b, and 0E (see Fig. 1). The ice sur-
face 0s is the only non-stationary part of the domain, mean-
ing the future of the glacier is determined purely by the evo-
lution of the surface. For the different parts of the boundary,
the following BCs are considered:

σ n̂= 0, x ∈ 0s, (5)
u · n̂= 0, x ∈ ∂�/0s, (6)

t̂ i · σ n̂=−β|u|
m−1u · t̂ i, x ∈ 0s

b, (7)

u= 0, x ∈ 0f
b, (8)

where σ = 2ηε̇−pI (I is the identity matrix) is the Cauchy
stress tensor, n̂ is the unit normally outward pointing to the
boundary, {t̂ i}d−1

i=0 is tangent vectors spanning the plane de-
fined by n̂, β ≥ 0 is the drag coefficient, and m≥ 1 is an
exponent.

The explanation of each BC is as follows: Eq. (5) is a
stress-free condition on the glacier surface, following from
the assumption that the stresses asserted on the surface due
to, for instance, wind or the atmospheric pressure are neg-
ligible compared to the internal stresses (Greve and Blatter,
2009). The second BC, Eq. (6), is an impenetrability condi-
tion under which ice cannot flow into the bedrock, meaning
its velocity in the direction normal to the bedrock must nec-
essarily be 0. The third BC, Eq. (7), is a Weertman-type slid-
ing law (Weertman, 1957), stating that the ice may slip along

the bedrock, following a power-law relation between the slip
velocity and the shear stress. This study focuses only on the
case for which m= 1 such that the relation is linear. Lastly,
the fourth BC, Eq. (8), is a no-slip BC representing condi-
tions where the ice is frozen to bedrock. The bedrock thus
consists of the following parts: 0s

b, where slip is present, and
0f

b, where no slip occurs.

2.3 The free-surface equation

The time evolution of a glacier (or an ice sheet) is determined
by its surface position zs = zs(x,y, t) and is governed by a
separate equation called the free-surface equation (Greve and
Blatter, 2009):

∂zs

∂t
+ us

x

∂zs

∂x
+ us

y

∂zs

∂y
= us

z+ as, (9)

where as is the vertical rate of mass accumulation (or ab-
lation) and us

= (us
x,u

s
y,u

s
z) is the velocity field from the

Stokes equations, Eqs. (1)–(2), evaluated on the surface
boundary 0s (see Fig. 1). Furthermore, the bedrock zb(x,y)

is assumed to be impenetrable and rigid such that the follow-
ing constraint is fulfilled at all times t :

zs(x,y, t)≥ zb(x,y)+Hmin, (10)

where Hmin is the minimum ice thickness. Equation (10) to-
gether with the weak formulation of Eq. (9) forms a varia-
tional inequality, which is solved using a method of imposed
Dirichlet conditions, as described in Gagliardini et al. (2013).

3 Computational aspects

3.1 Solution procedure

A first-order time-stepping approach for solving the Stokes
equations coupled to the free-surface equation is shown in
Fig. 2a and consists of first solving the Stokes equations,
Eqs. (1)–(2), for the velocity field evaluated on the surface us,
which then enters as coefficients into the free-surface equa-
tion, Eq. (9). The free-surface equation is then solved for
a new height function zs(x,y, t +1t) which in turn deter-
mines the new domain�(t+1t). The mesh is updated based
on an extruded-mesh principle, wherein nodes are vertically
aligned in columns such that the mesh can be updated by sim-
ply displacing nodes vertically according to the new height
function zs(x,y, t +1t); see, e.g., Löfgren et al. (2022) for
implementation details. This process is repeated until the fi-
nal simulation time is reached. This is the standard approach
in ice-sheet modeling (used in, e.g., Elmer/Ice; Gagliardini
et al., 2013) and is in this study referred to as an explicit
time-stepping scheme in terms of velocity.

This explicit time-stepping scheme can be contrasted with
a Picard linearized implicit time-stepping scheme, with re-
spect to the coupled system, updating both velocities and ge-
ometry simultaneously (Bueler, 2016, 2022). An example of
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a first-order implicit scheme, available in Elmer/Ice, is shown
in Fig. 2b, where an extra loop is needed in order to the re-
solve the velocity field u(t+1t) over the next time step. This
has the disadvantage that the computationally expensive non-
linear Stokes equations need to be solved repeatedly in each
time step, by iterating back and forth between the domain
at the old time step �(t) and the domain at the new time
step �(t +1t). The advantage is that it is numerically sta-
ble, allowing for large time-step sizes. The goal of this paper
is to evaluate an approach, the FSSA, that finds a solution
which is close to the solution yielded by the implicit time-
stepping scheme without adding the extra computationally
costly iteration. It is thus an approach that uses the explicit
time-stepping scheme in a way that is stable and without sub-
stantial loss of accuracy.

3.2 The Stokes weak formulation – the basis for the
stabilization method

The Stokes equations, Eqs. (1)–(2), are discretized and
solved numerically using the finite element method (FEM),
which first requires recasting the problem in its weak form:
find (u,p) ∈ X ×Q such that

(ε̇(v) : 2ηε̇(u))�− ((∇ · v),p)�− (q,∇ ·u)�
+ (v,βu)0b =−(v,ρgẑ)�, (11)

for all (v,q) ∈ X×Q. Here the colon operator A : B between
matricesA andB denotes their Frobenius inner product. Fur-
thermore, X and Q are appropriate function spaces satisfy-
ing the so-called inf-sup stability condition (Ladyzhenskaya,
1969; Babuška, 1971; Brezzi, 1974). The fact that the forc-
ing term is constant inside the integrals of the inner products
opens up for the construction of the FSSA method, as will be
described in the next section.

The nonlinear nature of Eq. (11) requires linearizing the
viscous term with Picard or Newton iterations. Convergence
issues sometimes prohibit using Newton solvers for glacio-
logical problems. To overcome these issues relaxation meth-
ods can be employed.

3.3 Free-surface time discretization and stabilization

The weak formulation of the Stokes-coupled free-surface
equations, Eqs. (9)–(11), is discretized in time by first evalu-
ating all integrals in Eq. (11) at time t = tk+θ so that the weak
formulation reads as follows: find (uk+θ ,pk+θ ) ∈ X ×Q
such that

(ε̇(v) : 2ηε̇(uk+θ ))�k+θ − (∇ · v,p
k+θ )�k+θ

− (q,∇ ·uk+θ )�k+θ + (v,βu
k+θ )

0k+θb

=−(v,ρgẑ)�k+θ , (12)

for all (v,q) ∈ X×Q. Here k denotes the time step and θ ∈ R
is an implicitness parameter for which θ = 0 yields an ex-
plicit solver and θ = 1 yields an implicit solver. Secondly, a

semi-implicit Euler discretization is employed for the free-
surface equation, Eq. (9), such that

zk+1
s +1t

(
(us
x)
k+θ ∂z

k+1
s
∂x
+ (us

y)
k+θ ∂z

k+1
s
∂y

)
= zks +1t

(
(us
z)
k+θ
+ ak+1

s

)
, (13)

where uk+θs = ((us
x)
k+θ , (us

y)
k+θ , (us

z)
k+θ ) is the surface ve-

locity obtained from Eq. (12), 1t is the time-step size, and
zk+1

s is the unknown surface at time step k+ 1 to be solved
for. The scheme is called semi-implicit since it is implicit in
terms of the surface zs and explicit in terms of velocity u
when θ = 0.

The explicit nature, when θ = 0, of the time-stepping
scheme in Eq. (13) makes it prone to numerical instabilities.
A fully implicit scheme (θ = 1) would, on the other hand,
involve a highly expensive computation in order to evaluate
uk+1 (see Fig. 2b). To circumvent this problem, the FSSA
was introduced by Kaus et al. (2010) for mantle-convection
problems and adapted to glaciological problems in Löfgren
et al. (2022). The FSSA mimics a fully implicit scheme by
approximating all integrals on the left-hand side in Eq. (12)
by
∫
�k+θ
· d�≈

∫
�k
· d� and estimating the force term over

the new domain by applying the Reynolds transport theo-
rem (see, e.g., Greve and Blatter, 2009):

d
dt

∫
�(t)

f d�=
∫
�(t)

∂f

∂t
d�+

∫
∂�(t)

(ub · n̂)f d0. (14)

In ice-sheet modeling ub = u+asẑ is the velocity of the mov-
ing boundary and f =−ρgẑ · v. Since f is constant in time
the first term on the right-hand side of Eq. (14) becomes 0.
Taking this into account gives, using a forward Euler scheme,
the estimate of the forcing on the time step k+ θ as(
v,ρgẑ

)
�k+θ
≈
(
v,ρgẑ

)
�k

+
(
θρg1t(v · ẑ), (u+ asẑ) · n̂

)
0ks
. (15)

Note how the integrals of the weak form and the fact that ρg
is constant are features that open up the use of the Reynolds
transport theorem in this simple way.

Inserting Eq. (15) into the Stokes weak formulation,
Eq. (11), and approximating the integrals on the left-hand
side by

∫
�k+θ
·d�≈

∫
�k
·d� yields the FSSA-stabilized weak

formulation appropriate for glaciology: find (ũk+θ , p̃k+θ ) ∈
X ×Q such that

(ε̇(v) : 2ηε̇(ũk+θ ))�k − (∇ · v, p̃
k+θ )�k − (q,∇ · ũ

k+θ )�k

+ (v,βũk+θ )0kb
+ (ρgθ1tv · ẑ, ũk+θ · n̂)0ks

=−(v,ρgẑ)�k − (ρgθ1tasv · ẑ, n̂ · ẑ)0ks
,

(16)

for all (v,q) ∈ X ×Q. For the FSSA, letting θ = 1, the ve-
locity ũk+1 is only an approximation of the solution uk+1
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Figure 2. Examples of first-order (a) explicit (b) and implicit (Picard linearization) time-stepping schemes. For each time step the explicit
scheme solves the Stokes equations, Eqs. (1)–(2), for the velocity field u(t) on the domain of the current time step �(t); the solution u(t)
then enters as a coefficient into the free-surface equation, Eq. (9), from which the domain at the next time step �(t+1t) is obtained directly
and the time is updated, i.e., t = t +1t . The implicit scheme on the other hand solves for the velocity at the next time step u(t +1t). The
procedure for obtaining u(t +1t) is as follows: in each time step an initial guess u0(t) is inserted into the free-surface equation to obtain an
estimate of the new domain �̃(t +1t). The Stokes equations are then solved on �̃(t +1t) to obtain an estimate ũ(t +1t). This estimate
is then checked if it is close to the initial guess u0(t). If the estimate is not close, the process is repeated, using ũ(t +1t) as the new initial
guess, until convergence is obtained. Finally, after convergence, the time is updated. For both cases the algorithm terminates when the final
simulation time T is reached.

obtained from the fully implicit scheme. The validity of the
FSSA follows from the fact that the gravitational force is
driving the ice flow.

To better understand the effect of the stabilization term, in-
sight can be gained by applying the FSSA to the SIA approx-
imation of the Stokes equations, for which it can be shown
that the FSSA approximately coincides the evaluation of the
pressure at the end of the time integration (see the Appendix
in Löfgren et al., 2022).

3.4 Weak formulation of the free-surface equation

The time-discretized free-surface equation, Eq. (13), is dis-
cretized spatially using the FEM, which requires recasting it
to its weak formulation: find zk+1

s ∈ V such that

(v,zk+1
s )0⊥s

+1t

(
v,(ũs

x)
k+θ ∂z

k+1
s
∂x

)
0⊥s

+1t

(
v,(ũs

y)
k+θ ∂z

k+1
s
∂y

)
0⊥s

= (v,zks )0⊥s

+1t
(
v,(ũs

z)
k+θ

)
0⊥s

+1t
(
v,ak+1

s

)
0⊥s
, ∀v ∈ V, (17)

where 0⊥s ⊂ Rd−1 is the projection of the free surface 0s
onto the underlying plane (or line in two dimensions) with
z= 0. This advection-type equation is stabilized in Elmer/Ice
by either the residual-free bubbles (RFB) method (Baiocchi
et al., 1993) or streamline upwind Petrov–Galerkin (SUPG)
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stabilization (Franca and Frey, 1992). The stabilizing impact
of the transport stabilization is investigated in this study.

4 Numerical experiments

4.1 Overview

In this section two experiments using varying bedrock slopes
and sliding conditions are presented to demonstrate the ap-
plicability of the FSSA method to glacier modeling and to
assess its stabilizing properties. In the first experiment, the
method is applied to a 2D flow-line case, with an undulating
bedrock generated using gradient noise (see Appendix A),
superimposed on a sloping bedrock. The FSSA method is in-
vestigated with regards to accuracy and stability of different
bedrock slopes, mesh resolutions, and upwinding schemes.
The second experiment applies the FSSA method to the real-
world glacier of Midtre Lovénbreen, Svalbard, and is also
evaluated based on stability and accuracy.

4.2 Experiment 1: 2D “Perlin” glacier

4.2.1 Setup: advancing glacier

This experiment consists of a 2D glacier geometry with a
sloping, undulating bedrock, where accumulation and sliding
conditions are present. The bedrock is generated by superim-
posing three gradient-noise octaves (see Appendix A) on a
parabola such that

zb(x)=
α

Lx
(x−Lx)

2
+C1octave1(1x

1,x)

+C2octave2(1x
2,x)+C3octave3(1x

3,x), (18)

where α is the average slope, Lx = 8000 m is the horizon-
tal extent of the domain, and the octaves represent noise
of different frequencies. The coefficient of the parabola has
been chosen such that dzb

dx (0)= 2α and dzb
dx (Lx)= 0. The

noise amplitudes are set to C1
= 300 m, C2

= 500 m, and
C3
= 600 m, and the respective octave frequencies are set to

1x1
= 2000 m, 1x2

= 1000 m, and 1x3
= 500 m. The re-

sulting bedrock is visible in Fig. 3.
The initial ice surface is a thin layer of ice:

zs(x,0)= zb(x)+ 10m. (19)

To build up a glacier on the bedrock, a non-negative accumu-
lation function that is linearly decaying (with the horizontal
coordinate) with a maximum at x = 0 is used:

a(x)=max
(

1−
3x
Lx
,0
)
. (20)

The BCs imposed are impenetrability, Eq. (6), on the west-
and east boundaries, 0W and 0E (see Fig. 1). On the surface
0s, the free-surface condition, Eq. (5), is applied. Lastly, on

the bedrock 0b, the impenetrability BC, Eq. (6), is combined
with the linear Weertman sliding law of Eq. (7), with a drag
coefficient given by

β(x)= βmin+
βmax−βmin

1+ exp
(
x−µ
σ

) , (21)

where βmax = 1000 MPa yr m−1, βmin = 0.01 MPa yr m−1,
σ = 200 m, and µ= 3000 m. This drag coefficient should be
viewed as a transition from a no-slip condition when x� µ

to a free-slip condition when x� µ, with the length of the
transition zone controlled by σ .

Firstly, a study is performed to investigate how both sta-
bility and accuracy of the FSSA method are influenced by
increasing bedrock slopes for an advancing glacier. Simula-
tions are performed on three domains with different average
bedrock slopes in Eq. (18): α = 0.05 (≈ 2.9°) (gently sloping
glacier), α = 0.1 (≈ 5.7°) (moderately sloping glacier), and
α = 0.2 (≈ 11.5°) (steeply sloping glacier).

To estimate the error, a reference solution is obtained for
all three cases by performing simulations using a short time-
step size 1t = 0.05 years and a fine mesh resolution with
(Nx,Nz)= (1000,10), where Nx and Nz are the number
of layers in the horizontal and vertical directions, respec-
tively. The reference simulations are performed until final
times t = 900, 700, and 500 years, for the respective cases.
Subsequent simulations using coarser temporal resolutions
are then started from an intermediate glacier surface obtained
from the reference simulation, starting from times t = 500,
400, and 300 years. The error is then estimated by comparing
the ice thicknessH(x)= zs(x)−zb(x) of the coarse solution
to the thickness of the reference simulation Href at the final
times for the respective slopes. The ice thickness error εH is
computed as

εH =
||Href−H ||2

||Href||2
, (22)

where || · ||2 denotes the discrete L2-norm. The error is
then measured for multiple coarse-temporal-resolution sim-
ulations, with and without the FSSA, for various time-step
sizes 1t .

A stability study is conducted for estimating the LST for
different mesh resolutions for the case of α = 0.1. Starting
from an intermediate glacier surface obtained at time t =
300 years, 15 time steps are performed using a fixed 1t . In
each time step, stability is examined by calculating the in-
finity norm of the velocity field: the solver is said to be un-
stable if ||uz||∞ ≥ 100 m yr−1. If the simulation is deemed
stable, then 1t is incremented by 1 year and the simulation
is restarted.

Following Gong et al. (2017) and Löfgren et al. (2022), all
simulations use a constant rate factor A= 100 yr−1 MPa−3

in Eq. (3) and a constant ice density ρ = 910 kg m−3. The
elements used to solve the Stokes equations are the inf-sup
stable Taylor–Hood elements (Taylor and Hood, 1973), and
RFB is used to stabilize the transport problem.
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4.2.2 Setup: retreating glacier

A study is also conducted to compare the stabilizing impact
of the FSSA method to the standard upwinding schemes of
RFB and SUPG, both of which are available in Elmer/Ice.
In this case the methods are applied to a glacier subject to a
negative net mass balance. Investigating such a case is of in-
terest for two reasons: firstly, since the glacier approaches a
steady state, it allows for performing very long-term simula-
tions without the glacier reaching the end of the domain; sec-
ondly, a negative accumulation could potentially affect the
stabilizing impact of the FSSA due to triggering the surface
limiter imposing the minimum ice thickness, for which in
this study the FSSA has not been adapted to take into con-
sideration.

Stability is, as in the previous of the advancing-glacier
study, evaluated based on the relative increase in the LST as
compared to not using the FSSA. For this reason the same
stability study as in previous experiment is performed for
the three cases: no upwinding, RFB, and SUPG. The start-
ing glacier surface is the final surface obtained at time t =
700 years of the reference simulation. All simulations use a
mesh resolution of (Nx,Nz)= (1000,10).

To obtain a retreating glacier, melting is introduced into
the accumulation function by simply letting

a(x)= 1−
3x
Lx
, (23)

which is essentially the same accumulation function as
Eq. (20) but allows for negative values.

In order for the glacier to experience sliding throughout
the simulation, the drag coefficient is modified so that slip
occurs predominantly in the interior of the domain:

β(x)= βmin+
βmax−βmin

1+ exp
(
x−µ
σ

) + βmax−βmin

1+ exp
(
Lx−x−µ

σ

) , (24)

where βmax = 1000 MPa yr m−1, βmin = 0.001 MPa yr m−1,
σ = 100 m, and µ= 1500 m. Since this experiment is de-
signed to study the effect of upwinding, the minimum drag
coefficient is reduced by a factor of 10, compared to the pre-
vious advancing case, in order for the Stokes-coupled free-
surface system to admit a more transport-like behavior, i.e.,
large horizontal velocities with a shear-to-slip ratio close to 0.

4.2.3 Results: advancing glacier

The reported estimated ice thickness error εH , as calculated
by Eq. (22), are shown in Table 1 for different bedrock slopes
α and FSSA stabilization parameters θ . The FSSA method
(θ = 1) is seen to be stable for time-step sizes 1t up to
25 years for α = 0.05 and α = 0.1, while for α = 0.2 it was
stable for all tested 1t values, up to 50 years. In the case
of θ = 0 the largest stable time-step size (LST) is between 5
and 10 years for α = 0.05 and α = 0.1 and between 10 and

25 years for α = 0.1 and α = 0.2. The FSSA method thus in-
creases the LST by at least a factor of 2 for all cases and may
even be as large as 5 times for α = 0.05. Compared to ice-
sheet simulations in, e.g., Löfgren et al. (2022), the time-step
sizes are large even without stabilization.

In Table 2 the LST is reported for different mesh sizes for
the intermediate sloping case of α = 0.1. It is seen that with-
out the FSSA that the LST is by all practical means mesh in-
dependent, which is in agreement with the mesh studies car-
ried out by Löfgren et al. (2022). On the other hand, for the
FSSA a slight mesh dependence of the LST∼1x0.4 is seen.
This means that the stabilizing effect of the FSSA decreases
for higher mesh resolutions, where the relative increase in
the LST reduces from 3 for the coarser mesh (Nx,Nz)=
(400,10) to 2.1 for the finer mesh (Nx,Nz)= (1000,10).

The LST is larger for the steep-bedrock case, despite the
velocity field also having a larger magnitude (see Fig. 3d–f).
The reason for this might be related to the cases of low and
moderately inclined bedrock having greater ice thickness, for
which analytical expressions derived using zeroth-order ap-
proximation, e.g., SIA, have shown a strong inverse relation
between the LST and ice thickness (Gong et al., 2017; Robin-
son et al., 2022). In Löfgren et al. (2022) it was shown that
the characteristics of the instabilities for Stokes-coupled free-
surface flow are related to the domain aspect ratio: thicker
domains tend to give rise to long wavelength sloshing insta-
bilities, while thin domains give rise to numerical oscillation
of shorter wavelengths.

In the current experiment, thick domains are represented
by α = 0.05 and α = 0.1, where velocities are low enough
for a thicker ice to develop, and the thin domain is rep-
resented by α = 0.2. Indeed from Fig. 4, which shows a
time series of vertical velocity profiles for unstable time-step
sizes, it is seen that for low and moderate bedrock slopes,
Fig. 4a–c and d–f, respectively, the instabilities behave dif-
ferently than for the case of steep bedrock, Fig. 4g–i. In the
former cases the instabilities emerge as result of the vertical
velocity profiles shifting in sign and growing in magnitude
between time steps, resulting in the glacier surface slosh-
ing around the stable reference surface (dashed black lines
in Fig. 4). For the steep-bedrock case, while sloshing is pos-
sible to discern in the interior, the most prominent feature of
the instabilities is the high-frequency numerical oscillations
occurring at the glacier front, seen in Fig. 4i. Despite the dif-
ferent characteristic of the instabilities arising for the differ-
ent cases, it is clear from Table 1 and Fig. 3 that the FSSA
method mitigates instabilities in both cases, as was also con-
cluded by Löfgren et al. (2022).

Comparing the errors in the FSSA method (θ = 1) to no
stabilization (θ = 0) in Table 1, it is seen that the FSSA
method generally yields a much more accurate solution, and
as1t increases, the discrepancy grows in favor of the FSSA.
For 1t ≥ 5 years the error for all slopes is almost twice as
large when θ = 0 compared to θ = 1. For some cases, even
using a time-step size twice as large with the FSSA com-
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pared to no FSSA, the increase in the error is much less than
the expected 100 %.

Generally, the error increases linearly with the time-step
size1t , i.e., εH =O(1t), as is expected of the semi-implicit
Euler time-stepping scheme in Eq. (13), as long as stability
restrictions are satisfied. This observation holds regardless of
slope α and stabilization parameter θ .

Figure 3 shows the glacier surfaces at the final times for
different 1t and θ values. In all cases it is seen from the
zoom-in plots that too large a time-step size gives too thin
a glacier front, compared to the reference solution. Compar-
ing Table 1 and Fig. 3, it is seen that a larger error corre-
sponds to a thinner glacier front. Consequently, the FSSA
method, which is generally more accurate in this experiment,
yields a faster moving front for the same1t . This is expected
based on the fact that the FSSA method is a quasi-implicit
time-stepping scheme, meaning it uses an estimate of the ve-
locity from the next time step to update the glacier surface
in Eq. (9). Since the glacier is growing in size, the velocity
field is expected to increase in magnitude over the duration
of the simulation such that ||uk+1

|| ≥ ||uk|| (k denotes the
time step), meaning that the FSSA method gives a larger ve-
locity coefficient in the free-surface equation and thus yields
a faster moving front.

The error also increases with the bedrock slope α, despite
the simulation times being shorter, which is expected given
that larger slopes give a higher velocity coefficient in the free-
surface equation, Eq. (9). From the large error seen for the
steep-bedrock case of α = 0.2, it is not even clear that sta-
bility considerations are the limiting factor for the time-step
size, it might as well in practical applications come down to
accuracy – depending on whether Eq. (22) is deemed a sat-
isfactory error metric. From a practical point of view, this
has the implication that using a time-step size close to the
LST may not be a wise strategy when employing the FSSA
method as the error in the final ice thickness is quite large for,
e.g., the stable case of1t = 50 years, especially for the long-
term simulations considered in this experiment. On the other
hand, the smaller errors observed for α = 0.05 and α = 0.1
indicate that stability considerations are more important for
the time-step size. Thus, for a given error tolerance, the FSSA
method seems to offer the greatest potential for speedup for
simulating glaciers that are on top of bedrock with a topog-
raphy that is gently to moderately inclined. Regardless of the
surface slope, it is obvious that the FSSA method not only
gives a more stable solver but also increases its accuracy.

In summary, the main finding is that the FSSA method al-
lows for using larger time-step sizes by increasing both accu-
racy and stability, for all slopes angles investigated. However,
the method seems to offer the greatest benefit for gently to
moderately sloping glaciers, where the time-step size seems
to be mainly limited by stability considerations.

4.2.4 Results: retreating glacier

The LST for different numerical schemes and FSSA stabi-
lization parameters θ is reported in Table 3. Compared with
the LST in the advancing case (Table 2), which uses RFB, it
is seen that the LST in this case is about 3 times smaller. This
may be explained by the larger velocities of 90 m yr−1 (see
Fig. 5a) compared to 20 m yr−1 (see Fig. 3e). Despite this, it
is interesting that the larger velocities do not seem to have
an impact on the stability of the FSSA, and in fact the LST
is larger in this case (39 years compared to 27 years). How-
ever, it should be noted that the FSSA method yields smaller
velocities as 1t increases (see Fig. 5), which for the case of
1t = 39 years decreased to 45 m yr−1. The fact that the LST
is larger in this case demonstrates that the FSSA is also ap-
plicable to cases where the free surface is constrained by a
minimum ice thickness.

Furthermore, it is seen that upwinding alone appears to
have a negligible impact on the stability of the solver, despite
surface velocities being dominated by sliding (see Fig. 5).
However, combining the FSSA with upwinding increases the
LST slightly for RFB (∼ 12 %) and substantially for SUPG
(∼ 60 %), compared to the FSSA alone. The best choice
stability-wise thus seems to be combining the FSSA and
SUPG.

It was also found for the large time-step sizes 1t >
25 years allowed for by the FSSA that non-zero surface
velocities started arising in the deglaciated areas. However,
these could effectively be mitigated by setting the accumu-
lation part of the FSSA to 0 in deglaciated areas. This did
not compromises stability nor accuracy as all simulations
deemed stable were found to approach the same steady state.

4.3 Experiment 2: Midtre Lovénbreen

4.3.1 Setup

This experiment aims to demonstrate how the FSSA works
for a real-world, three-dimensional (3D) glacier simulation.
For this purpose, the valley glacier Midtre Lovénbreen, Sval-
bard (78.53° N, 12.04° E), is chosen as it is a thoroughly
studied glacier that has been modeled using Elmer/Ice previ-
ously (Zwinger and Moore, 2009; Välisuo et al., 2017). The
glacier is in this study classified as a moderately to steeply
sloping glacier with an average surface slope α of 0.14 (8°).
The initial geometry is shown in Fig. 6, where colors in-
dicate ice thickness (Fig. 6a), surface mass balance (SMB;
Fig. 6b), and velocity magnitude (Fig. 6c) and where gray
contour lines represent surface heights in meters above sea
level.

The basal BC is the linear sliding law of Eq. (7) with the
same drag coefficient as in Välisuo et al. (2017):

β(x,y, t)=

{
0.04 MPa yr m−1 if H(x,y, t)≥ 120m,
10 MPa yr m−1 if H(x,y, t) < 120m,

(25)
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Table 1. Relative error in the ice thickness, as defined by Eq. (22), for different time-step sizes1t , the FSSA parameter θ , and bedrock slopes
α. The error is calculated after final times of 900, 700, and 500 years for the respective slopes of α = 0.05, 0.1, and 0.2. Entries marked with
an X are unstable cases.

Ice thickness error (%)

α = 0.05 α = 0.1 α = 0.2

1t (years) θ = 0 θ = 1 θ = 0 θ = 1 θ = 0 θ = 1

0.5 0.15 0.14 0.25 0.22 0.61 0.48
1 0.27 0.22 0.49 0.38 1.24 0.72
2.5 1.04 0.80 2.27 1.58 7.07 3.60
5 2.79 1.80 6.89 3.69 18.5 8.43
10 X 3.81 15.3 8.03 34.4 15.7
25 X 9.15 X 15.2 X 24.9
50 X X X X X 34.0

Table 2. Largest stable time-step size (LST) with and without FSSA stabilization for different mesh resolutions (Nx ,Nz), where Nx and Nz
denote the number of horizontal and vertical layers, respectively. The resolution for the reported LST is 1 year, meaning that it is between 12
and 13 years for, e.g., the case of θ = 0 and (Nx ,Nz)= (400,10). The last column shows the relative increase in the LST.

LST Perlin glacier (advancing) (years)

(Nx ,Nz) Without the FSSA With the FSSA LST(θ = 1)/LST(θ = 0)
θ = 0 θ = 1

(400,10) 13 39 3.0
(600,10) 12 33 2.8
(800,10) 13 30 2.3
(1000,10) 13 27 2.1

where H is the ice thickness. This drag coefficient imposes
high slip velocities at parts where the ice is thick (≥ 120 m)
and essentially imposes a no-slip condition at the shallower
parts (< 120 m). Note that this also means that sliding veloc-
ities decrease as the glacier thins. The values for the drag co-
efficient were determined in Välisuo et al. (2017) by a man-
ual inversion using observed surface velocities as input data.
As in Välisuo et al. (2017), the bedrock elevation is given by
a bedrock DEM (© Norwegian Polar Institute) created from
ground-penetrating radar data (Rippin et al., 2003; Zwinger
and Moore, 2009), the 1995 surface elevation DEM (© Nor-
wegian Polar Institute) is based on digital photogrammetry
from vertical aerial photographs, and the 2005 surface ele-
vation DEM is a product derived from airborne lidar (light
detection and ranging) data (James et al., 2006; Kohler et al.,
2007).

Following Välisuo et al. (2017), the SMB used has been
estimated from surface DEMs of the ice surface for the years
1995 and 2005. The SMB is obtained by solving the Stokes
equations, Eqs. (1)–(2), on the domain defined by the 1995
surface DEM; from the time-discretized free-surface equa-
tion, Eq. (13), the SMB is given by

as =
z2005

s − z1995
s

10 yr
+ u1995

x

∂z2005
s
∂x

+ u1995
y

∂z2005
s
∂y
− u1995

z . (26)

The 3D mesh is generated by extruding a 2D footprint
mesh into five layers (Nz = 5) with a horizontal resolution
of about 25 m. The footprint is large enough to cover the
glacier at the size it was in 1962, which implies that a large
deglaciated area is included in the domain.

For this experiment, linear equal-order elements are
used in conjunction with Galerkin least-squares stabilization
(Hughes et al., 1986) to circumvent the inf-sup stability con-
dition. Furthermore, the free surface is constrained by a min-
imum ice thickness of Hmin = 10 m. The transport problem
is stabilized using SUPG.

The glacier evolution is simulated from the year 1995 to
2195 with and without the FSSA and compared and evalu-
ated in regards to the LST and accuracy. To measure accu-
racy a reference solution is obtained by performing a sim-
ulation from the year 1995 to 2195 using a small time-step
size of 1t = 1 year and no FSSA (θ = 0). The error is esti-
mated by comparing the ice thickness in the final solutions
to the reference solution, for various time-step sizes. Stabil-
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Figure 3. (a–c) Glacier surfaces and (d–f) horizontal velocities of the reference simulations at final times T for different bedrock slopes α,
FSSA stabilization parameters θ , and time-step sizes 1t . The solid gray lines in (a)–(c) are the reference surface zs for the respective case,
and the solid black lines are the bedrock zb. The solid blue lines in (d)–(f) are the surface velocities us

x , and the solid red lines are the bedrock
slip velocities ub

x . The reference solution was obtained using a short time-step size 1t = 0.05 years.

Table 3. Largest stable time-step size (LST) with and without FSSA stabilization for the numerical schemes: no upwinding, residual-free
bubbles (RFB), and streamline upwind Petrov–Galerkin (SUPG). The resolution for the reported LST is 1 year, meaning that it is between 3
and 4 years for, e.g., the cases of θ = 0. The last column shows the relative increase in the LST.

LST Perlin glacier (retreating) (years)

Upwinding Without the FSSA With the FSSA LST(θ = 1)/LST(θ = 0)
θ = 0 θ = 1

None 4 35 8.8
RFB 4 39 9.8
SUPG 4 55 13.8
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Figure 4. Vertical velocity profiles uz from simulations using no FSSA (θ = 0) and unstable time-step sizes of (a–c) 1t = 10 years and
(d–i) 1t = 25 years shown at the indicated times t . The profiles are shown for the different bedrock slopes of (a–c) α = 0.05, (d–f) α = 0.1,
and (g–i) α = 0.2. The dashed black line in each figure is the glacier surface obtained from the stable reference simulation.

Figure 5. Horizontal velocity profiles (a) without the FSSA and (b) with the FSSA using stabilization parameter θ = 1 and time-step size
1t = 10 years. The solid blue line is the surface velocity us

x , and the solid red line is the bedrock slip velocity ub
x .

ity is for this experiment evaluated qualitatively, based on the
presence of spurious shifts in the sign of the vertical velocity,
i.e., sloshing, since it was found that checking the norm of
the velocity alone did not accurately predict the presence of
instability in this case.

To remedy convergence issues of the Newton solver
(which appeared both with and without the FSSA) the deriva-
tive of the viscosity appearing in the Newton linearization is
relaxed by a factor of 2/3.

4.3.2 Results

The final glacier surface after 200 years is shown in Fig. 7a,
where the color denotes the ice thickness of the reference
simulation. Compared with the thickness of the initial glacier
in Fig. 6a, it is seen that the glacier surface has retreated a
distance of about 1.5 km uphill. In addition the glacier has
also experienced thinning from initially having a maximum
thickness of about 180 m down to a maximum thickness of
100 m. The retreat of the glacier is expected given the con-
siderably negative SMB, as can be seen from Fig. 6b. Note,
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Figure 6. (a) Ice thickness, (b) surface mass balance (SMB) excluding the deglaciated area (gray), and (c) modeled surface velocity and
surface elevation of Midtre Lovénbreen at the start of the simulation, in the year 1995. The ice flows from top to bottom. The computational
domain is given by the 1962 extent of the glacier, and the white line indicates the outline of the glacier at the start of the simulation. The
figures were created using the open-source visualization and analysis toolkit PyVista (Sullivan and Kaszynski, 2019).

Figure 7. Midtre Lovénbreen in the year 2195. (a) Glacier outlines of the reference solution (white) using a short time-step size1t = 1 year,
as well as outlines for a simulation using the larger1t = 40 years, with the FSSA (dark gray) and without the FSSA (orange). The thickness
of the glacier as given by the reference solution is indicated with colors in panel (a). (b) Ice thickness along the black line in panel (a) for
the reference solution (dashed black line in b) and simulations with and without the FSSA for1t = 20 and 40 years (solid lines in b). (c) Ice
thickness errors as compared to the reference solution. Panel (a) was created using the open-source visualization and analysis toolkit PyVista
(Sullivan and Kaszynski, 2019).
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Figure 8. Vertical velocity profiles uz at indicated times t on Midtre Lovénbreen for cases with (a–c) a stable 1t = 5 years without the
FSSA, (d–f) an unstable 1t = 25 years without the FSSA, and (g–h) a stable 1t = 25 years with the FSSA. The figure was created using
the open-source visualization and analysis toolkit PyVista (Sullivan and Kaszynski, 2019).

however, that predicting the actual retreat of the glacier is not
the objective of this study but rather demonstrates the stabi-
lizing properties of the FSSA method for an SMB derived
from experimental data. The true SMB is in reality likely to
change substantially over the simulation period considered.

Figure 7a shows the glacier outlines for the stable ref-
erence simulation (white line), an FSSA-stabilized simula-
tion with 1t = 40 years (dark gray line), and an unstabilized
simulation with 1t = 40 years (orange line). It is seen that
the unstabilized case deviates substantially from the refer-
ence simulation, due to instability, while the glacier outline
from the FSSA simulation is to a large extent indistinguish-
able from the outline of the reference simulation. The largest
time-step size tested for stability in each case is shown in
Table 4, where it is seen that the FSSA simulation is stable
for time-step sizes at least twice as large. From Fig. 7b it is
seen, similarly to the 2D Perlin experiment, that instabilities
arise in the deep parts of the domain, where the error is large
– indicative of the sloshing-type instability encountered in
the previous experiment. Indeed from Fig. 8d–f, instability
is observed, in the sense of spurious shifts in the sign of the
vertical velocity, for the case with 1t = 25 years and θ = 0
in the upper parts of the domain. These are effectively miti-
gated by reducing the time-step size (Fig. 8a–c) or by means
of stabilization (Fig. 8g–i).

Furthermore, despite the unstable surface deviating sub-
stantially from the reference, the norm of the velocity never
grew unboundedly in this case. Thus determining the pres-

ence of instability based on the norm of the velocity alone
may not accurately predict the presence of instabilities. The
cause of this may be the significantly negative SMB which
causes glacier thinning and in a sense “stabilizes” the solver
over time. However, as is evident from Fig. 7b the solution
is still polluted by the initial instability. For this reason, the
presence of the vertical velocity shifting in sign spuriously
was taken as a criterion for instability in this case.

Figure 7c shows that for the stable time-step size 1t =
20 years, the error using the FSSA is larger than without
the FSSA at the deep parts of the glacier, but the accuracy
near edges is higher so that the glacier area is more accu-
rate (Fig. 7a and c). This is contrary to what was found in
the previous 2D experiment, where the FSSA method was
overall more accurate. The reason for this discrepancy could
be explained by the fact that the estimated reference solu-
tion in this case is only refined temporally and therefore may
not represent the analytical solution accurately enough. Fig-
ure 7b and c also show that the less accurate the solution
is, the smaller the glacier retreat and larger ice thickness
are compared to the reference solution. This should be con-
trasted with the first experiment which considered an advanc-
ing glacier, where the less accurate the solution is, the less the
glacier had advanced.

In order to ensure computation times are not negatively
affected by the FSSA method, an experiment was performed
to measure the CPU time of the FSSA method compared to
no stabilization. The computation times for different 1t val-
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Table 4. Largest stable time-step size of a 200-year-long simulation
with and without FSSA stabilization for two different mesh resolu-
tions 1x.

Largest stable time-step size,
Midtre Lovénbreen (years)

Without the FSSA With the FSSA
θ = 0 θ = 1

Coarse mesh, 1x ∼ 50 m 20–25 ≥ 50
Fine mesh, 1x ∼ 25 m 20–25 ≥ 50

Table 5. CPU times for a 200-year-long simulation for different
time-step sizes 1t , measured with and without FSSA stabilization.
The simulations were run on a mesh with a horizontal resolution
1x ∼ 25 m. Note that case with 1t = 40 years and θ = 0 is unsta-
ble.

CPU time, Midtre Lovénbreen

1t Without the FSSA With the FSSA
(years) θ = 0 θ = 1

5 4 h 17 m 4 h 14 m
10 2 h 20 m 2 h 16 m
20 1 h 25 m 1 h 15 m
40 1 h 1 m 46 m

ues are shown in Table 5. It is seen that the FSSA method
was faster for all cases. The FSSA method was about 10 %
faster for the case with 1t = 20 years, while the difference
is only slightly in favor of the FSSA for 1t = 10 years and
1t = 5 years. The difference in computation times seems to
be related in this case to the average number of nonlinear it-
erations needed for convergence. For example, for the case
with 1t = 20 years the FSSA method required about 10 %
fewer iterations for convergence, which explains the 10 %
difference in computation times. The increase in nonlinear
iterations might be due to stability issues of the unstabilized
solver as the relative difference becomes smaller with a de-
creasing 1t .

In summary, the FSSA method gave a more stable solu-
tion, increasing the LST by at least a factor of 2, without
negatively impacting computation times. In regards to accu-
racy, the FSSA method yielded larger ice thickness errors in
the interior, while the error was reduced at the glacier front.
This has the implication that the FSSA method may be more
suitable for predicting future glacier extent, while the non-
FSSA method is more accurate for determining future glacier
thinning.

5 General discussion and conclusions

The FSSA was implemented into Elmer/Ice and tested on
simulations of synthetic glaciers as well as on Midtre Lovén-

breen, Svalbard. The FSSA increased the largest stable time-
step size (LST) by a factor of 2 for the simulation of Midtre
Lovénbreen and up to a factor of 5 for the synthetic Per-
lin glacier with a low surface slope. Low glacier surface
slopes were correlated with a shorter LST for the unstabi-
lized method and were also the cases where the stabilization
had the greatest effect. This may be due to the thicker ice
that developed on the glaciers with low bedrock inclination,
for which stability restrictions on lower order models have
shown a strong inverse dependence (e.g., Gong et al., 2017;
Robinson et al., 2022). For a case approaching a steady state,
it was also found that despite the large time-step sizes al-
lowed for by the FSSA, the same steady state was approached
compared to a reference simulation using a short time-step
size. Even without stabilization the LST was already quite
large in many cases; for instance, for the advancing Perlin
glacier with an intermediate slope, an LST of 13 years was
observed, compared to 2 to 4 years for the ice-sheet simu-
lations in, e.g., Löfgren et al. (2022). The larger LST ob-
served here likely stems from a combination of lower flow
speeds (∼ 20 m yr−1 compared to ∼ 40 m yr−1) and the con-
siderably thinner ice (∼ 200 m compared to ∼ 2000 m).

It was also found that when compared to other means of
stabilization, e.g., residual-free bubbles (RFB) and stream-
line upwind Petrov–Galerkin (SUPG), the FSSA was the
only one when used alone that increased the LST. However,
combining the FSSA and SUPG was the most stable choice.
Furthermore, the mesh study revealed that the LST of the
unstabilized case was mesh independent, in agreement with
Löfgren et al. (2022), while the FSSA admitted a slight mesh
dependence at high spatial resolutions. However, even for the
finest mesh resolution investigated, the FSSA had twice the
LST compared to no stabilization.

The FSSA mitigated instabilities and improved the accu-
racy overall, with the only exception being in the deep parts
of Midtre Lovénbreen. As the computational cost is also low,
the FSSA can be added as a security measure in simula-
tions to prevent sloshing instability polluting the result, with-
out negatively impacting accuracy or simulation times. For
glacier simulations this may offer the greatest benefit of the
FSSA, given the already large time-step sizes of the unsta-
bilized method. Another potential usage are spin-up simu-
lations, where a very large time-step size of, e.g., 50 years
could be used. Climate data could then be incorporated on
shorter timescales using semi-implicit time stepping of the
surface.

In the previous study by Löfgren et al. (2022) the FSSA
was tested in synthetic ice-sheet experiments, largely disre-
garding the effect of variable bedrock and sliding conditions
and simplifying the contact problem near glacier fronts. This
paper demonstrates that the FSSA method is applicable to
more complex real-world simulations and the new imple-
mentation in Elmer/Ice makes the method accessible to a
broad user base.
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Some limitations of the current study are the generally
low flow speeds (< 100 m yr−1) and that only linear slid-
ing laws were considered. The FSSA method also remains
to be adapted to higher-order time-stepping schemes, which
could possibly yield better stability properties due to stronger
coupling between the geometry and velocity, as has been
demonstrated by Wirbel and Jarosch (2020) for a second-
order Runge–Kutta scheme. Considering higher-order time
stepping is an ongoing project for the authors.

Appendix A: Bedrock generation

This section presents an algorithm that is used to randomly
generate bedrock topographies. It is based on a method that is
common practice in computer graphics as a computationally
inexpensive and flexible way of randomly generating visu-
ally appealing landscapes, clouds, textures, etc., known as
gradient noise. The first application of gradient noise, the
so-called Perlin noise, was developed by Perlin (1985) to
model fire, water, and wrinkled surfaces and later adapted
by Musgrave et al. (1989) for landscape generation. As the
name suggests, gradient noise is based on generating a set
of pseudo-random gradients at predefined vertices and then
interpolating polynomials matching these gradients such that
the resulting global interpolating function is smooth. In this
study, the mesh vertices are assumed to be equally spaced
with a spatial period 1xf. The superscript f is used to denote
the fact that the final noise function may consist of multiple
spatial frequencies, so-called octaves – similar to a Fourier
decomposition. See Fig. A1 for an example of a randomly
generated bedrock consisting of three octaves.

Figure A1. Gradient noise consisting of three octaves (solid orange, blue, and yellow lines in b–d) superimposed on a parabola (dashed gray
line in a) to generate a natural-looking bedrock topography (solid black line in a). (b–d) Spatial periods of the octaves are 1x1

= 2000 m
(solid orange line in b), 1x2

= 1000 m (solid blue line in c), and 1x3
= 500 m (solid yellow line in d). The black dots and solid gray lines

in (b)–(d) denote the nodal values (zero in this case) and the matched pseudo-randomly generated tangents.

For the interpolation cubic Hermite polynomials are used:

pk(x)=

3∑
i=0

cix
i, (A1)

where pk is the polynomial interpolation in cell k and ci is
coefficients determined by matching gradients and function
values at the vertices. This gives the set of equations for each
vertex xi in cell k the following:

pk(xi)= 0, (A2)

dpk(xi)

dx
= fxi , (A3)

where fxi is uniformly randomly generated gradients over
the interval [−1,1], corresponding to slope angles between
−45 and 45°. Since the number of vertices in each cell is
two, this leads to a total of four equations, matching the to-
tal number of unknowns. Solving the resulting linear system
then gives the octave characterized by the spatial period 1xf

of the noise function. The final noise function is obtained as
a linear combination of all the octaves such that

noise(x,y)=
n∑

f=1
Afoctave(1xf,x,y), (A4)

where Af and1xf are the amplitude and spatial period of the
f th octave, respectively, and n is the number of octaves.
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