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Abstract. Despite decades of effort, there remains an inabil-
ity to measure snow water equivalent (SWE) at high spatial
resolutions using remote sensing. Passive gamma ray spec-
trometry is one of the only well-established methods to reli-
ably remotely sense SWE, but airborne applications to date
have been limited to observing kilometre-scale areal aver-
ages. Noting the increasing capabilities of unoccupied aerial
vehicles (UAVs) and miniaturization of passive gamma ray
spectrometers, this study tested the ability of a UAV-borne
gamma spectrometer and concomitant UAV-borne lidar to
quantify the spatial variability of SWE at high spatial res-
olutions. Gamma and lidar observations from a UAV (UAV-
gamma and UAV-lidar) were collected over two seasons from
shallow, wind-blown, prairie snowpacks in Saskatchewan,
Canada, with validation data collected from manual snow
depth and density observations. A fine-resolution (0.25 m)
reference dataset of SWE, to test UAV-gamma methods,
was developed from UAV-lidar snow depth and snow sur-
vey snow density observations. The ability of UAV-gamma
to resolve the areal average and spatial variability of SWE
was promising with appropriate flight characteristics. Sur-
vey flights flown at a velocity of 5 ms−1, altitude of 15 m,
and line spacing of 15 m were unable to capture the aver-
age or spatial variability of SWE within the uncertainty of
the reference dataset. Slower, lower, and denser flight lines
at a velocity of 4 m s−1, altitude of 8 m, and line spacing of
8 m were able to successfully observe areal average SWE
and its variability at spatial resolutions greater than 22.5 m.
Using a combination of UAV-based gamma SWE and UAV-
based lidar snow depth improved the spatial representation
of SWE substantially and permitted estimation of SWE at a

spatial resolution 0.25 m with a ± 14.3 mm error relative to
the reference SWE dataset. UAV-borne gamma spectrometry
to estimate SWE is a promising and novel technique that has
the potential to improve the measurement of shallow prairie
snowpacks, and when combined with UAV-borne lidar snow
depths, can provide fine-resolution, high-accuracy estimates
of prairie SWE. Research on optimal hardware, data process-
ing, and interpolation techniques is called for to further im-
prove this remote sensing product and explore its application
in other environments.

1 Introduction

Snow is a defining feature of the hydrological cycle in
cold regions and has significant socioeconomic and envi-
ronmental implications (Pomeroy and Goodison, 1997; King
et al., 2008). A basic and persistent challenge for snow
hydrology is efficiently and accurately quantifying snow
water equivalent. The overlapping variability of landscape,
weather and climate, and snow processes combine to drive
significant spatiotemporal differences in snowpack charac-
teristics (Pomeroy and Gray, 1995; Essery and Pomeroy,
2004b; Grünewald et al., 2010; Trujillo et al., 2007; Lis-
ton and Sturm, 1998; Shook and Gray, 1996) A signifi-
cant body of research has been devoted to developing pro-
tocols and technologies to observe snow characteristics to
inform scientific understandings and decision-making (Ki-
nar and Pomeroy, 2015). Quantifying the spatial variance
of snow water equivalent (SWE) allows for calculation of
snow-covered area (SCA) depletion during the melt period
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(Essery and Pomeroy, 2004a; Faria et al., 2000; DeBeer and
Pomeroy, 2010), and in turn the SCA depletion is critical to
estimate the contributing area, and duration, of runoff and
infiltration from snowmelt (Shook et al., 1993; DeBeer and
Pomeroy, 2010). To date, the ability to directly and remotely
observe the spatial variability of SWE at the fine scales cor-
responding to the snow redistribution and ablation processes
defining snowpack formation has remained elusive (Tedesco
et al., 2015).

The SWE (water equivalent water depth per unit area) of
a snowpack is expressed in millimetres of water equivalent
or kgm−2. Snow surveys of depth (hs) and density (ρsnow)
observations along a linear transect are the traditional ap-
proach used to calculate SWE and remain the most reliable
technique but are a time-consuming, labour-intensive, and ul-
timately destructive sampling technique (Kinar and Pomeroy,
2015). Non-contact point-scale observations such as snow
pillows, passive radiometric sensors, and acoustic sensors
have demonstrated success but do not capture spatial vari-
ability (Coles et al., 1985; Kinar and Pomeroy, 2007, 2015;
Wright et al., 2011). Remote sensing has had great success
in quantifying the spatial variability of hs over wide ranges
in extent and resolution ranging from satellite stereography
(Marti et al., 2016), lidar (aeroplane-borne or UAV-based
(UAV-lidar)) (Harder et al., 2020; Jacobs et al., 2021; Deems
et al., 2013; Hopkinson and Collins, 2009), and structure-
from-motion techniques (Harder et al., 2016; Bühler et al.,
2016; Walker et al., 2021). Snow depth observations alone
capture a significant amount of the snowpack variability but
need additional observations, or estimation, of ρsnow in order
to quantify SWE (Painter et al., 2016). SWE remote sensing
products tend to be coarse-scale, utilizing passive microwave
or gamma remote sensing (Tuttle et al., 2018; Tong et al.,
2010; Tedesco et al., 2015) or active radar sensors (Tsang
et al., 2021) .

Gamma remote sensing of SWE relies on two principles.
First, all soils contain naturally occurring gamma-particle-
emitting radioisotope elements (Topp, 1970). Second, mass,
including all phases of water, attenuates gamma radiation
(Peck et al., 1971). Beer’s law, which relates the transmis-
sion of radiation through a medium (I ) to the intensity of
the source (I0) as an exponential function of the attenuation
coefficient (µ) and thickness (d) of the attenuating medium,
as

I = I0e
µd , (1)

can be adapted to estimate SWE from observations of gamma
emissions over time. Using count rates of gamma particles
above a surface when it is snow-covered (Csnow) and snow-
free (Cbare) in place of I and I0, respectively, and assuming
a µ for water (5.835× 10−3 mm−1, Carroll, 2001), the d can
be interpreted, and solved for, as SWE (mm) as

SWE=−
1
µ

ln
(
Cbare

Csnow

)
. (2)

This requires an assumption of isotropic gamma emis-
sions from the soil and no change in soil water content in
the time between the bare and snow-covered surface ob-
servations that would change Cbare (Carroll and Carroll,
1989). Two main limitations are inherent in quantifying SWE
with gamma approaches. The first is that high attenuation
of gamma rays by water leads to complete attenuation of
the gamma signal in large snowpacks, such that this tech-
nique is limited to medium or shallow snowpacks. In a
point-scale/stationary implementation, the Campbell Scien-
tific CS725 passive gamma radiation sensor (Wright et al.,
2011; Kinar and Pomeroy, 2015) when fixed above a snow-
pack can estimate SWE for footprints of 50–100 m2 at 3 m
sensor height with 15 % accuracy and is limited to snowpacks
with < 600 mm SWE. The CS725 has been shown to work
well for uniform and relatively deep mountain snowpacks,
if placed on mild slopes where snowmelt runs off instead
of ponding (Smith et al., 2017). In an airborne implemen-
tation, the NOAA Airborne Snow Survey program has uti-
lized gamma spectrometry to observe peak SWE over much
the Red River basin of the north-central US Great Plains and
southern Canadian Prairies to inform flood predictions since
1980 (Cho et al., 2019). This airborne program typically em-
ploys flight lines at 150 m altitude, 16 km long to provide
SWE estimates with approximately 5–7 km2 footprints with
errors less than 10 % for snowpacks < 300 mm SWE (Cho
et al., 2019; Carroll and Carroll, 1989; Tuttle et al., 2018).
The second limitation is that variability in soil moisture is a
significant source of uncertainty. A snow-free observation to
capture the background gamma state as near as possible to
freeze-up is required. In the case of an overwinter increase in
near-surface soil moisture, due to snowmelt or rainfall infil-
tration, end-of-winter SWE will be biased high (Carroll and
Carroll, 1989). Approaches to correct for overwinter changes
require independent estimates of soil moisture change (Of-
fenbacher and Colbeck, 1991; Carroll, 2001; Carroll and Car-
roll, 1989), and recent applications have included indepen-
dent data sources such as SMAP soil moisture (Cho et al.,
2020).

Passive radiometric observation methods are sensitive to
an integration time and, in mobile applications, challenged
by small signal-to-noise ratios (Reinhardt and Herrmann,
2019; Peck et al., 1971). The ability to resolve a feature
of interest with gamma spectrometry is directly related to
the volume of the scintillation crystal, integration time, and
proximity to the target which all need to be balanced by
the physical limitations and operational characteristics of the
platform, area of interest, and ability to precisely collocate
sensors between different surveys (Reinhardt and Herrmann,
2019). The confluence of ever-increasing UAV capabilities
(endurance, payloads, and spatial accuracy of navigation)
and miniaturization of gamma ray spectrometers has opened
the door to UAV-borne gamma spectrometry (UAV-gamma).
Most UAV-gamma applications to date have focussed on
mapping radiative properties for mineral exploration (Mar-
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Table 1. Summary of sites and observations.

Site name Stubble Grassland

Location 51°56.11′ N 51°23.39′ N
106°21.99′W 106°26.12′W

Surface condition Standing barley stubble Grass and small shrubs
height 0.15 m height < 0.3 m

Soil texture Loamy sand Sandy loam
Snow-free observation 7 Nov 2020 9 Nov 2021
Snow cover observation 1∗ 13 Nov 2020 (fall) 14 Mar 2022
Snow cover observation 2∗ 9 Mar 2021 (spring)
UAV flight profile characteristics 5 ms−1, 15 m altitude, 15 m flight line spacing 4 ms−1, 8 m altitude, 8 m flight line spacing

∗ Bracketed identifiers denote the specific observation for reference hereafter.

tin et al., 2020) and relationships to soil properties such as
texture, type, nutrient status, erosion, organic matter and pH
(Reinhardt and Herrmann, 2019). A significant advantage of
UAV platforms over traditional crewed aircraft is the ability
to repeatedly fly consistent flight lines at low altitudes and
speeds.

The ability of UAV-borne gamma spectrometry to quantify
SWE has not been reported in the scientific literature, nor has
the possibility to interface gamma-measured SWE with fine-
resolution snow depth observations from UAV-lidar been ex-
amined. The purpose of this work is to demonstrate the work-
flows needed for deploying UAV-borne gamma spectrometry
over snow and then to evaluate the following: (1) the ability
of UAV-borne passive gamma spectrometry to directly ob-
serve the SWE of shallow agricultural snowpacks and (2) the
potential for UAV-borne gamma spectrometry by itself, and
combined with UAV-lidar, to estimate the spatial variability
of SWE at fine spatial scales.

2 Data and methods

2.1 Study area

Observations were collected over two snow seasons be-
tween fall 2020 and spring 2022 southeast of Saskatoon,
Saskatchewan, Canada, in an agricultural region of the Cana-
dian Prairie ecozone. Two study sites were chosen, both of
which have low relief and hummocky topography (Table 1).
The stubble site is a cultivated field, seeded the previous year
with barley that was harvested in September, leaving a 15 cm
standing stubble. The perennial grassland, which is grazed
during summer, contained grasses, fescues, shrubs, and forbs
with a height≤ 30 cm in fall 2021. As a result of drought con-
ditions in summer/fall, field observations showed low near-
surface soil moisture contents at both sites and dampened
spatial variability in both years. The snow season is typically
4–5 months in duration, and on average 30 % of precipitation
falls as snow (Pomeroy et al., 2007) . The regional hydrome-
teorology is extremely variable, and peak SWE can vary from

negligible in dry years to > 100 mm in cold and snowy win-
ters (Pomeroy et al., 2007).

2.2 Data collection

2.2.1 Site conditions and surveys

Several UAV gamma surveys were made, concomitant with
UAV-lidar surveys. Meteorological conditions during the re-
spective seasons were observed using well-instrumented me-
teorological stations (part of the Global Water Futures Obser-
vatories http://www.gwfo.ca, last access: 7 July 2024) near
the study locations. Each survey captured different envi-
ronmental and deployment conditions. In fall 2020, a bare
ground survey was conducted at the stubble site on 6 Novem-
ber immediately preceding 60 mm of SWE which fell over 7–
9 November. This provided an opportunity to test the SWE
estimation by conducting a subsequent snow-covered survey
on 13 November. For this survey interval, there was a clear
transition between exposed, unfrozen, and relatively dry soil
conditions to a continuous snow cover and frozen soil in the
near surface. The weather after the snowfall event was con-
sistently cold, with no snowmelt or rainfall, so soil moisture
was static, and the only change in gamma ray attenuation
can be attributed to the accumulation of a snowpack. Wind
redistribution of snow was a function of topography with
transport from flat and wind exposed ridges and northwest-
facing slopes to deposition locations in relatively wind shel-
tered locations on southeast-facing slopes. Development of
transverse dunes (Filhol and Sturm, 2015) in wind-exposed
locations also provided an increase in small-scale SWE spa-
tial variability. In contrast, the spring survey at this site,
with exactly the same flight profile as in the fall survey, ob-
served end-of-winter conditions and thus represents the accu-
mulation and wind redistribution of several snowfall events
over the winter, resulting in a generally deeper snowpack
on southeast facing lee slopes with greater spatial variabil-
ity in flat areas with development of transverse, sastrugi, and
barchan dune snowdrifts (Filhol and Sturm, 2015). For the
second season, the grassland site was surveyed at a lower
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Figure 1. Medusa MS-1000 mounted on a FreeFly AltaX prior to survey 6 November 2020. Photo credit: Anders Hunter.

altitude and slower flight speed, with denser flight line spac-
ing. The grassland site had greater SWE than that observed
in the stubble field surveys, and spatial variability was pri-
marily due to relatively large snowdrift formation in the lee
of fences. There was a positive relationship between vegeta-
tion height and snow depth, and taller vegetation suppressed
the formation of snowdrift dunes. A significant mid-winter
melt event took place from 7–10 February 2022, with max-
imum air temperatures reaching 6 °C and a 15 cm decrease
in snow depth observed at a GWFO meteorological station
10 km from the study site. Snow cover remained continuous,
and meltwater flow through the snowpack and refreezing as
a spatially discontinuous basal ice lens were observed during
snow surveys.

2.2.2 Gamma observations

Gamma emissions were observed with a Medusa Radio-
metrics MS-1000 passive gamma ray spectrometer mounted
on a Freefly AltaX UAV platform (Fig. 1). Flight planning
and control was done with ALTA_QGroundControl software.
Flight navigation used regular GPS signal for stubble surveys
(± 5 m positioning), while navigation for grassland flights
used an updated RTK system (centimetre-level positioning).
The MS-1000 utilized a 1 s integration time for gamma emis-
sions and observed GPS, air temperature, humidity, and air
pressure information with an integrated sensor.

In airborne applications with the spectrometer offset from
the surface, airborne corrections are often implemented in
order to account for the interactions of gamma rays in the
air mass as well as to correct for radon and cosmic ray

emissions that share this part of the electromagnetic spec-
trum. The Gamman software included with the MS-1000
by Medusa Radiometrics provides tools for airborne correc-
tions with a full spectrum analysis approach. As flights were
≤ 15 m above the ground surface, where airborne corrections
do not make a significant difference compared to the uncer-
tainty introduced, no airborne corrections were applied based
on advice of the manufacturer. Gamman (Medusa Radiomet-
rics, 2024) was used to perform energy stabilization of the
spectra and generate count rates (C) and corresponding lat-
itude, longitude, and height data at 1 s intervals. Gamman
employs a proprietary full spectrum analysis to fit a “stan-
dard spectra” to the measured spectrum, with the fitting fac-
tors quantifying the radionuclide concentrations (Hendriks
et al., 2001). To account for detector and environmental drive
factors, Gamman employs a stabilization algorithm to align
the measured spectra to the corresponding gamma energy.
Total count rates are quantified from the integration of the
stabilized and aligned spectrum. Due to data gaps in MS-
1000 GPS data, the AltaX flight telemetry was used to re-
solve sensor trajectory. Manual alignment of the telemetry
and MS-1000 GPS data was needed due to timestamp mis-
matches. Precision of the GPS data accessible from the Al-
taX telemetry logs was degraded despite RTK navigation,
so a 13-point rolling average was used to smooth the posi-
tioning data. The 13-point rolling average was a compromise
between increased precision and alignment with the known
flight path. All data at the ends of the flight lines associated
with platform slowing and turning waypoints were removed
with spatial clipping to ensure that count rate observations
represented consistent flight speeds and footprint character-
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istics. An example of the raw count data and positioning is
visualized in Appendix A.

2.2.3 Validation data

A reference dataset of SWE (SWEref) was developed from
UAV-lidar hs and snow survey ρsnow observations. UAV-lidar
surveys quantified the spatial variability of hs at a 0.25 m spa-
tial resolution. A Freefly AltaX UAV platform with a Riegl
miniVUX2-UAV lidar was flown over the extent of the snow-
covered survey areas on the same day as gamma flights. The
data processing workflows to generate digital surface models
(DSMs) are detailed in Harder et al. (2020). Utilizing ap-
proaches from LAStools (Isenburg, 2019), the irregular lidar
point cloud was processed to a 0.25 m gridded representation
via a TIN surface fitting approach. Rescaling from the 0.25 m
base resolution to other resolutions used the mean value of
the larger grids. The hs was computed as the difference be-
tween the snow-covered DSM and existing snow-free DSMs
of the respective sites. Flights were conducted at an eleva-
tion of 110 m, with 80 m between flight lines, at a speed of
10 ms−1. The overall SWEref uncertainty (1SWEref: mm)
was propagated from the uncertainty of the observed snow
density (1ρsnow) and UAV-lidar snow depth observations
(1hs-UAV) as

1SWEref =

√√√√√√ i=n∑
i=1

(
SWEi ·

√(
1hs-UAV
hs-UAV,i

)2
+

(
1ρsnow
ρsnow

)2
)2

n
, (3)

where i indexes all snow hs-UAV observations between 1
and n (total number of observations). The 1hs-UAV was
assumed to be 5 cm, a conservative value for this domain
from the literature (Harder et al., 2020; Jacobs et al., 2021).
For each flight, manual snow surveys collected between 12
and 60 observations of ρsnow with an ESC-30 snow tube
(Pomeroy and Gray, 1995). Survey-specific mean ρsnow was
calculated, and its uncertainty (1ρsnow) was estimated via
error propagation. Assuming an hs uncertainty (1hs) of
1.27 cm (ruler had increments of inches) and snow mass un-
certainty (1mass) of 5 % (0.05 ·mass), the uncertainty of
individual ρsnow observations was consolidated to a survey
scale 1ρsnow as

1ρsnow =

√√√√√√ i=n∑
i=1

(
ρsnow,i ·

√(
1hs
hs,i

)2
+

(
0.05·massi

massi

)2
)2

n
, (4)

where i indexes the individual ρsnow observations and its con-
stituent terms for the respect surveys.

2.3 Gamma SWE processing

To relate gamma emissions observed from a moving passive
sensor to a spatially distributed SWE is a signal-to-noise and

interpolation challenge. Two main factors need to be consid-
ered: the first being the temporal stability of a gamma obser-
vation and the second the footprint it represents. At 1 s in-
tegration intervals, and a scintillation crystal volume of 1 L,
count rates are often unstable, and, based on the flight profiles
employed, each observation will have overlapping footprints
in longitudinal and lateral dimensions.

2.3.1 Count rate stability

To understand the temporal stability of this system, C obser-
vations were analyzed at start of every flight when the system
was static on the ground surface. The mean C for a 75 s inter-
val was assumed to be the true C of the surface. Aggregating
the 1 s C with rolling means between 1 and 75 s simulates
different integration times. The coefficient of variation (CV)
for the difference in integration time mean and the 75 s mean
were used to articulate a relationship between signal stability
and integration time. This provided a means to estimate the
integration period required to establish a stable C.

2.3.2 Spatial representation

A drop-in-the-bucket (DIB) oversampling scheme was used
to resolve a gridded product with minimal noise (Long et al.,
2019) as common grids are needed to compare observed and
estimated SWE and determine errors when varying spatial
resolution. Spatial interpolation techniques, such as kriging
or spline interpolation, were not implemented in this work
to avoid associated biases and artefacts and rather focus on
the implications of spatial resolution and number of individ-
ual observations aggregated. For DIB, a dense grid was gen-
erated for the respective areas of interest, with resolutions
ranging between 10 and 50 m at 2.5 m intervals. For each
grid resolution the mean C, and number of 1 s integrations
included, at each grid point are computed from all points
within a radius equivalent to the distance between the cen-
tre and corner of the raster pixel. Upon computation of the
respective C for the various resolutions, and snow and snow-
free situations, the C values were input to Eq. (2) to compute
SWE. Henceforth all SWE estimated from gamma observa-
tions is denoted as SWEgam. The SWEref was resampled to
the respective resolutions to allow for direct comparison with
the SWEgam.

2.3.3 Gamma–lidar data fusion

A completely non-contact-UAV-based SWE (SWEgam-lid)
was made by fusing fine-resolution hs from lidar data and
density from SWEgam. A field-scale mean snow density
(ρsnow) was quantified from a field-scale mean gamma SWE
(SWEgam) and an independent field-scale mean snow depth
(hs) from lidar as

ρsnow =
SWEgam

hs
. (5)
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Table 2. Snow density mean and uncertainty from Eq. (4) for re-
spective snow surveys.

Survey ρsnow (kgm−3) 1ρsnow (kgm−3)

Fall stubble 256 25
Spring stubble 312 23
Grassland 249 17

The ρsnow in turn was reapplied to the spatially vari-
able hs from the UAV-lidar to estimate spatially distributed
SWEgam-lid as

SWEgam-lid = hs · ρsnow. (6)

3 Results

3.1 Snow density uncertainty

The uncertainty of SWEref comprised observational errors
associated with density and depth observations. For the re-
spective manual snow surveys, the mean ρsnow and uncer-
tainty was summarized in Table 2. No meaningful relation-
ships between hs–ρsnow (Fig. 1) were observed, so survey
average values of ρsnow are deemed to be appropriate.

3.2 Count rate stability

Stable count rates are needed to ensure confidence that mean-
ingful observations are being collected. For this, the pri-
mary factor, specific to the volume of the scintillation crystal,
was the integration time. Operating the spectrometer on the
ground prior to takeoff demonstrated the influence of inte-
gration time (Fig. 3). By varying the integration time with
application of different rolling mean windows, it was evident
that the coefficient of variation (CV) decreases logarithmi-
cally with integration time, while mean bias was relatively
stable. The longer the integration time, the lower the CV. An
inflection point in integration time occurs near 20 s when CV
was between 0.01 and 0.02. Longer integration times have a
decreasing rate of CV change.

3.3 Errors versus spatial resolution

The root mean square error (RSME), mean bias, and coeffi-
cient of determination (r2) of SWEgam versus the resampled
SWEref are shown in Fig. 4. The RMSE and r2 improve as
the spatial resolution increases, while the mean bias remains
static. An important dynamic was the influence of flight char-
acteristics on survey errors. The surveys conducted at the
stubble site, which had higher altitudes, wider line spacing,
and higher speed, clearly show higher errors than the slower,
lower, and narrow flight spacing of the grassland surveys.
The median number of points for each raster cell for the bare
and snow-covered surveys is also noted. For grassland sur-

veys, the 22.5 m spatial resolution was associated with ap-
proximately 20 gamma observations. In contrast for stubble
surveys, a spatial resolution of 35 m is required before the
median number of observations reaches a similar 20 observa-
tion target. The 22.5 m resolution coincides with an inflection
point for the RMSE and r2 metrics for the grassland survey.
The RMSE and r2 values decrease between 10 and 22.5 m
resolutions, and thereafter the rate of change slows. Variabil-
ity in the grassland metrics begins to appear at the 22.5 m
resolution and was explained by the overall extent of the area
increasing and decreasing as pixels progressively increase in
size and entire rows/columns on the edges of the extent are
dropped progressively.

The scatter plot between the resampled SWEref and
SWEgam in Fig. 5 for 22.5 and 35 m resolutions demon-
strates the positive and negatives biases of fall and spring
stubble surveys, respectively. The grassland relationship was
stronger with limited bias in the SWEgam, though the vari-
ability was muted relative to the resampled SWEref.

Comparisons of the spatial features discernible for the
22.5 m resolution SWEgam and SWEref, and in the origi-
nal 0.25 m resolution, visualize the ability of the technique
to discern SWE features (Fig. 6). The negative bias of the
fall stubble SWEgam was evident and with little spatial co-
herence to the resampled SWEref. While muted and nosier
than the resampled SWEref, the diagonal snowdrift features
in the southeast of the domain were captured by the gamma
in spring stubble survey. The grassland survey demonstrates
the most coherence between the 22.5 m resampled SWEref
and SWEgam. The snowdrifts on the north and south are ev-
ident as well as increases in SWE in the depressions in the
centre of the domain. Overall, the variability of the SWEgam
was much more muted than the SWEref.

3.4 Statistical properties of SWE distributions

Statistical properties of the SWE distributions, specifically
the mean and CV of SWE for the respective survey ar-
eas, were computed from the 22.5 m resolution SWEgam and
SWEref, as well as the 0.25 m resolution SWEref (Table 3).
The mean SWEref was similar for the 22.5 and 0.25 m resam-
pling as a common survey area was used. The mean SWEs
provide coarse-scale metrics analogous to traditional air-
borne gamma survey metrics. The mean SWEgam for grass-
land was within the uncertainty bound of the SWEref (from
Eq. 3) at 22.5 and 0.25 m resolutions. For fall and spring
stubble, the mean SWEgam, except for fall 22.5 m resolution
SWEref, was outside of the uncertainty range. The smaller
magnitude of SWE, and larger uncertainty, for stubble sur-
veys reduces confidence in these surveys. The CV of the
0.25 m resolution SWEref was the highest of all the surveys
(ranging between 0.3 and 0.43). For the resampled 22.5 m
SWEref, the CV drops (between 0.14 and 0.29). Other than
fall stubble, which had a slighter higher CV for SWEgam at
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Figure 2. Manual snow survey density (kgm−3) versus snow depth (cm) observations (top), with the mean value (horizontal solid line) for
respective surveys (colour).

Figure 3. Total count coefficient of variation for static operation, prior to all survey flights, of the UAV passive gamma ray spectrometer with
varying integration time.

0.15 versus SWEref at 0.14, the SWEgam was lower than the
22.5 m SWEref, ranging between 0.10 and 0.15.

To compare the statistical distributions of the different
SWE representations, density plots are shown in Fig. 7. All
22.5 m resolution data had lower CVs than the 0.25 m res-
olution and were also lower than the reference distribution.
Resampling of the 0.25 m resolution observations to coarser
scales meant similar mean values but reduced variability.
From Table 3, the CV of 22.5 m SWEref is 53 % of the
0.25 m SWEref. The SWEgam means are higher (grassland
+12.5 mm and spring stubble+17.2 mm) or lower (fall stub-
ble−14.9 mm) than the 0.25 m SWEref, with the greatest de-
partures for the stubble sites. Only the grassland SWEgam
was within the uncertainty bounds of the corresponding
0.25 m SWEref. Variability of SWEgamwas also lower with
the mean CV 34 % of the corresponding 0.25 m SWEref ar-
eas. The grassland SWEgam demonstrates greater variability
than the stubble surveys. The grassland SWE distribution
shows a bimodal distribution that was evident for all reso-

lutions and observation techniques. Regardless of technique
utilized, it was apparent that the 22.5 m resolution data strug-
gle to accurately capture the statistical/spatial variability of
the 0.25 m SWEref data.

3.5 Fine-resolution SWE from gamma–lidar fusion

Combing lidar-derived hs and SWEgam observations of
grassland demonstrates a workflow to estimate SWE at a
0.25 m resolution completely using remote sensing meth-
ods that require no manual snow survey (Fig. 8). The aver-
age value of SWEgam-lid was 95 mm, while the correspond-
ing SWEref (Table 3) was 82 mm, and the RMSE between
the two was 14.3 mm. The difference map in Fig. 8 be-
tween SWEref and SWEgam-lid demonstrates that the fusion
approach overestimated SWE as a function of snow depth,
owing to a constant ρsnow being applied. The probability den-
sity plot of the SWEgam-lid (fusion/0.25 m in Fig. 7) demon-
strates a very similar distribution to that of the SWEref (li-
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Figure 4. The root mean square error (mm: RMSE), mean bias (mm), coefficient of determination (r2), and median number of count rate
observations versus raster resolution for all surveys. RMSE, mean bias, and r2 are computed relative to resampled SWEref. The 22.5 and
35 m spatial resolutions are highlighted by the respective vertical black lines.

Figure 5. UAV-lidar and snow density survey reference versus UAV-gamma-estimated snow water equivalent for 22.5 and 35 m resolutions
for respective surveys, with the 1 : 1 line plotted. Vertical errors bars are the propagated uncertainty of the SWEref.

dar/0.25 m in Fig. 7) for the grassland survey versus the fall
and spring stubble surveys, which showed biases with respect
to the shifted peaks.

4 Discussion

4.1 Accuracy, spatial resolution, flight characteristics,
and snowpack scaling interactions

Relating the error metrics between spatial resolution and re-
spective flights profiles demonstrates the many challenges
of UAV-borne gamma spectrometry to capture SWE spa-
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Figure 6. Snow water equivalent maps at 22.5 m resolution from the UAV-gamma technique (a–c); 22.5 m resampled UAV-lidar and snow
density survey reference, SWEref (d–f); and 0.25 m, SWEref (g–i) for the fall stubble (a, d, g), spring stubble (b, e, h), and grassland (c, f, i)
surveys.

Table 3. Snow water equivalent site summary statistics for gamma-based (22.5 m) and lidar-based (22.5 and 0.25 m) resolution SWE.

Survey SWEgam SWEref SWEref

Mean CV Mean CV Uncertainty Mean CV Uncertainty
(mm) (mm) (mm) (mm) (mm)

Fall stubble 38.1 0.15 52.9 0.14 13.9 53.0 0.30 13.9
Spring stubble 83.9 0.10 66.6 0.21 16.5 66.7 0.36 16.5
Grassland 94.3 0.12 81.2 0.23 13.8 81.8 0.43 13.9

tial variability. Temporally integrating the spectral observa-
tions is a common approach to stabilize the gamma sig-
nal, and the minimum integration time was identified as an
inflection point at 20 s in Fig. 3. Length scales of 10 to
100 m are typically needed to capture the spatial variabil-

ity of a prairie snow cover, with a +30 m “fractal cutoff”
length scale reported to overcome autocorrelation effects on
flat, open Canadian Prairie fields (Shook and Gray, 1996).
For UAV operations, a 20 s integration time created long
and narrow elliptical footprints (i.e., grassland flight foot-
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Figure 7. Probability density plots of snow water equivalent for the different surveys (rows) and estimation method/resolution (colour).

prints were approximately 15 m wide and 95 m long) that ex-
ceeded the 30 m fractal cutoff reported for analogous snow-
fields (Shook and Gray, 1996). To avoid elliptical footprints,
a DIB approach to meet the integration threshold was ap-
plied that resulted in similar areal extents but circular shapes
(grassland flights give approximate footprints with a radius
of 21.6 m). The stabilization of the relation between error
metrics and resolution occurred at 22.5 and 35 m resolu-
tions for grassland and stubble surveys, respectively, which
aligns with the integration time threshold. Error stabiliza-
tion for grassland at 22.5 m was associated with a 16.0 mm
RMSE, −0.14 mm bias, and 0.87 r2. For the 35 m interval
stubble surveys, the RMSEs were similar (15.9 and 19.0 mm
for fall and spring stubble, respectively), but the larger biases
(0.36 and−0.24 mm for fall and spring stubble, respectively)
and lower r2 (0.17 and 0.47 for fall and spring stubble, re-
spectively) imply that variability was not being captured as
well. While there was a difference in GPS navigation accu-
racy between the grassland and stubble flights (Sect. 2.2.2),

the much larger signal footprint and its high sensitivity to
flight altitude negate this as a significant source of error.
These interactions demonstrate the scaling challenges of try-
ing to extract spatial information on SWE from UAV-gamma.
The slower, lower, and denser flight lines over the grassland
reduced the footprints enough to begin to converge on the
underlying SWE variability, while stubble flight footprints
and SWE variability did not align. The flight characteristics
required to meet specific resolution objectives will be sensor-
specific and a proposed approach to guide flight planning
best practices is articulated in the Appendix B.

4.2 Non-contact fine-resolution SWE with sensor
fusion

An ongoing need for snow hydrology is to be able to re-
motely sense wind-redistributed snowpack SWE at fine res-
olutions without resorting to supplementary surface obser-
vations. The large gamma footprints relative to snowpack-
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Figure 8. Fine-resolution (0.25 m) snow water equivalent (SWE) estimated from UAV-lidar snow depth and UAV-gamma SWE fusion (a)
versus reference UAV-lidar and manual snow survey density SWE (b) and their difference (SWEgam-lid−SWEref: c) for the grassland site.

scale variability, as discussed, challenge the use of gamma
techniques alone to directly measure SWE spatial variabil-
ity. Notwithstanding, UAV-borne gamma spectrometry does
have value in fusion with fine-resolution snow depth esti-
mates from lidar or possibly other approaches such as UAV-
based structure from motion, providing opportunities for this
tool to advance remote snowpack measurement and map-
ping.

The overestimation of SWE can be partly explained by a
melt event earlier in the winter. Shallow snow, with less cold
content to buffer a positive energy balance and lower liquid-
water-holding capacity to absorb snowmelt, experiences rel-
atively greater melt and snowpack outflow than the deeper
drifts (Gray and Landine, 1988; Fernández, 1998; Pomeroy
et al., 1998). The SWEref was based upon a snow depth de-
rived from a surface difference, and so it will not reliably
measure snowpack density changes due to meltwater redis-
tribution and refreezing. In contrast, the SWEgam will still be
influenced by the presence of this refrozen water. The com-
plexity of snow mid-winter melt snow processes and the in-
ability to map the accumulation, redistribution, and refreez-
ing of the meltwater non-destructively and independently at

the snow–soil interface complicate validation of SWEgam-lid
with respect to the depth-based SWEref.

The ability to discriminate between water or ice stored in
the snowpack and that which infiltrated or runoff can be im-
portant depending upon the research question or application.
In shallow snowpacks such as those found in the Canadian
Prairies, midwinter melts can be responsible for hydrolog-
ically significant changes in the snow and snow–soil inter-
face, and UAV-gamma is not likely to observe changes in
SWE in addition to near-surface soil water/ice mass. This
creates challenges in situations where SWE estimates are im-
portant but also creates opportunities. For instance, quanti-
fying the total water change in the snow and near-surface
water/ice is incredibly valuable for estimating end-of-winter
changes in water stored in soil and snowpack. The total wa-
ter input available from midwinter melts and snow accumu-
lation for soil moisture recharge and runoff is critical to in-
form agricultural production potential (Harder et al., 2019)
and spring freshet (He et al., 2023) in this sub-humid envi-
ronment. Thus, a method that quantifies the net input of wa-
ter to soil water balance and runoff potential, which an end-
of-winter snow-specific observation would miss, has great
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value. Application of this SWEgam-lid approach elsewhere
will need to be cognizant of the saturation limits of gamma
methods for changes in water present in both the snowpack
and the near surface and should not be applied to deep snow
environments without further testing.

4.3 Spatial variability of snow

The spatial variability of SWE can be described statistically
(Steppuhn and Dyck, 1974), which permits calculation of
snow cover depletion curves (Pomeroy et al., 1998). Specif-
ically, a two-parameter log-normal distribution is often ob-
served in shallow snow situations (DeBeer and Pomeroy,
2010; Essery and Pomeroy, 2004a; Faria et al., 2000; Janow-
icz et al., 2003; Shook and Gray, 1996) and provides a the-
oretical basis to predict snow cover depletion. Development
of tools that can reliably estimate these distribution parame-
ters from remote sensing, such as with the UAV-based sen-
sors assessed herein, would greatly improve the capacity
to understand and model prairie snowmelt dynamics. The
large differences between the SWE distribution in response
to resolution and lidar or gamma-based techniques (Fig. 7)
complicate the ability to parametrize statistical representa-
tion of SWE directly from gamma observations. The log-
normal approaches were originally developed from snow sur-
vey datasets in uniform landscape units (Steppuhn, 1975).
DeBeer and Pomeroy (2010) needed to consider landscape
classes, based on topographic position and shallow versus
deep snow classes, in order to fit observations, in a small
mountain basin, to a log-normal distribution. Faria et al.
(2000) found deviations from the log-normal distribution
due to inhomogeneous melt in a boreal forest. The more
detailed and spatially distributed information now available
from UAV-based sensors, which capture a wide range of
landscape features equally well, provide more insights than
application of simple statistical approaches applied to land-
scape units. This work highlights the need to consider how
fine-resolution distributed snow information in the prairies
may need to be discretized to meet the assumptions of log-
normal statistical approaches or if different statistical ap-
proaches are needed to estimate snow cover depletion over
field scales.

4.4 Limitations

A key advantage of UAV versus airborne deployments is that
the low and slow operations with precise positioning will al-
low for precise spatial co-registration of gamma emission ob-
servations from different observation intervals. Challenges in
the data processing of the observations were due to gaps and
low precision in the available positioning data. Both the un-
certainty of GPS positioning for survey data < 3 m and the
unquantified difference between flight lines associated with
the snow-free and snow-covered flights contribute differ-
ences that complicate absolute positioning and consequently

the collocation of observations between flights and how they
relate to the absolute position of surface features. The foot-
prints of individual observations with these flight profiles are
greater than the uncertainties associated with standalone GPS
observations and are not expected to have a significant in-
fluence on results presented herein. Conducting UAV oper-
ations at lower altitudes or ground-based mobile operations
will require more precise absolute spatial positioning to take
advantage of smaller footprints.

The airborne, radon, and cosmic corrections often im-
plemented with passive gamma spectrometry were not im-
plemented here. The near-surface deployment of the sensor
meant corrections would have a minimal influence on count
rates. Identical flight profiles and relative altitudes imply that
airborne corrections should provide the same magnitude of
correction between surveys. Radon concentrations in the at-
mosphere vary over time and may be a source of uncertainty.
Future work will need to evaluate this assumption and test
the influence of airborne and radon corrections.

The attenuation relationship to relate SWE to emissions
used here was based on total gamma count rates. This dif-
fers from the equation used in the NOAA program which
takes advantage of spectral information to compute a SWE
from total counts as well as radioisotope-specific emissions
that differ in their response to water attenuation in an em-
pirical approach (Tuttle et al., 2018). An attempt was made
to use a similar radionuclide-specific approach. This proved
unsuccessful as the noise increase associated with isolating
specific radionuclide concentrations at 1 s integration inter-
vals drowned out the relatively subtle SWE signal. To avoid
the empirical aspects of these derived constants and increase
the signal-to-noise ratio, the generic total count rate attenua-
tion proved to be much more appropriate. Further work may
benefit from revisiting the SWE attenuation with respect to
specific radioisotopes in a UAV-gamma spectrometry appli-
cation.

A challenge of this approach was capturing the variability
of SWE, which may be a consequence of gamma emission
mixing within the footprint. The SWEref quantifies isolated
drifts that do exceed the 300 mm SWE, which is the upper
limit of SWE detection in airborne applications. Aggregation
to 22.5 m resolution in which portions of the snowpack can
have SWE> 300 mm implies integrating observations across
a large footprint that will under-sample the high SWE loca-
tions. Further refinements of the footprint with nearer-surface
flight altitudes are needed to test this feedback.

Geo-statistical interpolation techniques are the typical ap-
proach to translate irregular point observations to regularized
grids. Such methods were avoided in this analysis as the in-
terplay between integration intervals and spatial resolutions,
a defining feature of passive radiometric signal-to-noise chal-
lenges, needed direct consideration. Interpolation techniques
all have respective strengths and weaknesses, and here sta-
tistical artefacts were avoided. Opportunities to address the
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signal-to-noise challenges may reside in applying interpola-
tion techniques to further refine these results.

To the authors’ knowledge, there have been no other UAV-
borne gamma spectrometer observations of SWE, and this
work is the first to articulate the challenges associated with
using differential gamma emissions to try and resolve the
spatial variability of SWE. Many future research opportuni-
ties exist to refine SWEgam estimates from improving spa-
tial resolution and precision, evaluating airborne corrections,
assessing value of gamma spectral information versus bulk
count rates, testing the upper limit of SWE detection, and
exploiting interpolation techniques.

5 Conclusions

Remotely sensing SWE at fine resolution is an ongoing need
to advance snow hydrology. Large-scale SWE monitoring
with airborne gamma methods has a long history, whilst
UAV-deployable passive gamma spectrometer systems have
only recently been coming to market. The ability to remotely
sense the spatial variability of SWE with an UAV-based pas-
sive gamma spectrometer was assessed over two snow sea-
sons. The UAV-gamma system was able to estimate areal av-
erage of SWE (94.3 mm) for a 2.5 ha grassland study site
within the uncertainty of a reference dataset based upon
UAV-lidar and snow survey observations (81.8± 13.9 mm).
With a drop-in-the-bucket aggregation method to assess spa-
tial resolution versus errors, it has become evident that flight
profile characteristics exert significant controls on the abil-
ity to resolve the spatial variability of SWE. Flight profiles
in the first season of observation (5 ms−1 velocity, 15 m al-
titude, and 15 m line spacing) struggled to capture the un-
derlying SWE variability within the uncertainty of the ref-
erence SWE dataset. Updated flight profiles in the second
season of observation (4 ms−1, 8 m altitude, and 8 m line
spacing) demonstrated an improved ability to quantify the
spatially variability of SWE down to 22.5 m spatial resolu-
tion (RMSE: ± 16 mm, r2: 0.87). Clear challenges remain
in capturing SWE variability with the flight profiles tested,
but they do have value in informing best practices moving
forward. A fusion of gamma-based SWE and independent
datasets of UAV-lidar-derived snow height has been identi-
fied as an approach to remotely sense SWE at a fine (0.25 m))
spatial resolution, with an RMSE of ± 14.3 mm with respect
to the reference SWE dataset. Ongoing work is still needed to
evaluate the ability to resolve SWE at even lower and slower
flight profiles, which will introduce higher navigation pre-
cision demands. This work demonstrates some of the chal-
lenges of UAV-based gamma SWE but also articulates the
opportunities available to improve remote sensing of the spa-
tial variability of SWE for research and operational data col-
lection applications.
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Appendix A: Raw count rates

Figure A1 shows an example of the raw count rates for the
grassland surveys. The count positioning reveals the flight
paths and the irregularity in point positioning. The reduction
of count rates by the snow cover is clearly visible from the
much higher count rates related to the bare soil surface before
snow accumulation versus the snow-covered situation at the
maximum of snow accumulation before snowmelt.

Figure A1. Raw count rates (colour) and positioning for the grassland study site before snow accumulation (a) and at peak accumulation (b).
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Appendix B: Flight planning best practices for
UAV-based gamma SWE observations

Balancing SWE observation resolution and UAV platform
limitations is the main challenge to employing UAV-based
gamma methods to quantify the spatial variability of SWE.
Variations in flight line spacing, altitude, and velocity influ-
ence the scale of resolvable features and flight planning best
practices to inform future operations can be gleaned from this
experience. Generally, two thirds of gamma counts originate
from a footprint area twice the altitude in width and twice the
altitude in addition to the distance travelled in length (Ward,
1981). Based on flight profiles, this means the approximate
footprints for stubble profiles are 1050 m2 (30 m resolution)
and for grassland profiles are 320 m2 (16 m resolution). The
relationship between flight altitude, line spacing, and veloc-
ity and resolution associated with a 20 s integration time is
simulated applying the (Ward, 1981) footprint approxima-
tion in a drop-in-the-bucket (DIB) approach (Fig. B1). The
simulated resolutions range from 4.5 m with a flight profile
with a 1 ms−1 velocity, 1 m altitude, and 1 m altitude to a
65 m resolution with a flight profile with a 10 ms−1 veloc-
ity, altitude of 15 m, and line spacing of 15 m. The stubble
flight profile aligns with a 53 m footprint resolution, which
demonstrates the challenges the error versus resolution pat-
terns demonstrated in Sec 4.3 which had high errors up to the
maximum 50 m resolution tested. In contrast, the grassland
profile aligns with a 30 m footprint resolution which aligns
with the plateauing of errors in the 20–30 m resolution range
(Fig. 4). The relative implications of flight profiles for resolv-
able features can be estimated from the interaction visualized
in Fig. B1. In uniform landscape classes on the Canadian
Prairies, sampling needs to span length scales between 30
and 100 m to capture the spatial variability of SWE (Shook
and Gray, 1996); it is apparent that the grassland flight profile
employed is on the edge of capturing SWE variability appro-
priately. Further tests of lower, slower and closer flight lines
are needed. At altitudes approaching 1 m hardware, demands
increase as real-time terrain-following guidance systems and
RTK precision are needed for navigation and position log-
ging. The system employed in this study did not have these
features, and so these profiles could not be tested. The influ-
ence of atmospheric attenuation will vary with altitude and is
not considered in this conceptual flight profile versus resolu-
tion simulation.
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Figure B1. Relationship between flight altitude (vertical axis), line spacing (horizontal axis), and platform velocity (panels) versus estimated
resolution (fill colour) for a 20 s integration time. Contour lines of 5, 10, 20, and 40 m resolutions and the points corresponding to the stubble
and grassland flight profiles are plotted.
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