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Abstract. Accurate snow cover modeling is a high-stakes is-
sue for mountain regions. Alpine snow evolution and spa-
tial variability result from a multitude of complex processes
including interactions between wind and snow. The Snow-
Pappus blowing snow model was designed to add blowing
snow modeling capabilities to the SURFEX/Crocus simula-
tion system for applications across large spatial and temporal
extents. This paper presents the first spatialized evaluation of
this simulation system over a 902 km? domain in the French
Alps. Here we compare snow cover simulations to the spatial
distribution of snow height obtained from Pléiades satellites
stereo imagery and to snow melt-out dates from Sentinel-2
and Landsat 8 time series over three snow seasons. We ana-
lyzed the sensitivity of the simulations to three different pre-
cipitation datasets and two horizontal resolutions. The eval-
uations are presented as a function of elevation and land-
form types. The results show that the SnowPappus model
forced with high-resolution wind fields enhances the snow
cover spatial variability at high elevations allowing a better
agreement between observed and simulated spatial distribu-
tions above 2500 m and near peaks and ridges. Model im-
provements are not obvious at low to medium altitudes where
precipitation errors are the prevailing uncertainty. Our study
illustrates the necessity to consider error contributions from
blowing snow, precipitation forcings, and unresolved subgrid
variability for robust evaluations of spatialized snow simula-
tions. Despite the significant effect of the unresolved spatial
scales of snow transport, 250 m horizontal-resolution snow

simulations using SnowPappus are found to be a promising
avenue for large-scale modeling of alpine snowpacks.

1 Introduction

Snow cover in mountainous terrains is characterized by an
important variability at multiple temporal and spatial scales
(Pomeroy and Gray, 1995; Clark et al., 2011; Anderson et al.,
2014; Mott et al., 2018). This variability results from a large
diversity of slopes, aspects, and elevations which induce a
high variability in precipitation, wind, temperature, and radi-
ation. Accurate snowpack modeling is key to describing this
high variability in hydrological applications, climate projec-
tions, and hazard forecasting in mountainous terrains (IPCC,
2022; Morin et al., 2020).

The spatial variability in precipitation amount and phase
at different scales is known to be one of the main sources of
snowpack variability at the mountain range scale (1-100 km)
(Clark et al., 2011). These patterns are specific to the re-
gional topography and atmospheric flow, with regions of in-
creased or decreased precipitation (Colle et al., 2013). At the
slope scale (a few hundred meters), preferential deposition
and snowfall enhancement are the main processes respon-
sible for snowfall variability (before snowflake settlement)
(Mott et al., 2018). The preferential deposition is the result
of the interaction of the near-surface flow field with particle
trajectories, creating areas of local accumulation (Lehning
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et al., 2008). Snowfall enhancement is a process in which
surface flows are responsible for locally increased air mois-
ture, leading to the formation or maintenance of low-level
clouds, ultimately enhancing solid precipitations through a
seeder—feeder mechanism (Bergeron, 1965; Choularton and
Perry, 1986; Minder et al., 2011). Finally, post-depositional
processes determine the snow variability at the slope scale
and below. Blowing snow transport, snow sublimation, snow
redistribution by avalanches, snow compaction, and melt are
the main processes at work (Winstral et al., 2002; Bernhardt
and Schulz, 2010; Mott et al., 2018). Blowing snow trans-
port produces a mass transfer of snow from windward areas
to leeward deposition zones. Additional mass loss occurs in
those events due to the sublimation of suspended snow (Lis-
ton and Sturm, 1998; Yang et al., 2010). The heterogeneity
of snow mass loss due to snowmelt (Brauchli et al., 2017)
and surface sublimation (Pomeroy et al., 1998; Strasser et al.,
2008) also contributes to snowpack variability in alpine ter-
rain.

The multi-scale variability in the alpine snowpack makes
it challenging to represent in numerical models. Various
approaches have been developed for that purpose. Numer-
ical weather prediction (NWP) models at the kilometer
scale or higher-resolution models can explicitly represent
the orographic precipitation patterns and in some cases local
low-level cloud formation, triggering snowfall enhancement
(Lehning et al., 2006; Vionnet et al., 2017; Wang and Huang,
2017; Monteiro et al., 2022). However, the quantification of
the precipitation is still impacted by important uncertainties
with errors in precipitation amounts and phases, localization,
and timing increased with coarse grid size (Clark et al., 2011;
Meénard et al., 2019; Lundquist et al., 2019). Downscaling
tools can be used to better represent the local meteorology
from NWP models (Sen Gupta and Tarboton, 2016; Marsh
et al., 2023; Bernhardt et al., 2010; Mital et al., 2022).

Due to the complex intertwining of snow variability pro-
cesses, in particular blowing snow transport, the commu-
nity found benefits in the development of dedicated high-
resolution models coupled to (e.g., Vionnet et al., 2014;
Sharma et al., 2023) or forced by atmospheric models
(e.g., Lehning et al., 2006; Liston et al., 2007; Marsh et al.,
2020; Baron et al., 2024; Quéno et al., 2023). The spatial
evaluation of this type of system, dedicated to modeling part
of the observed snow spatial variability, is a challenge in it-
self. The snow modeling community has long been evalu-
ating this kind of model locally. Evaluations can be carried
out using direct measurements of the variable of interest; for
example for blowing snow modeling, Vionnet et al. (2014)
evaluated directly the simulated blowing snow fluxes of the
Meso-NH/Crocus system against locally measured fluxes
from a snow particle counter (Sato et al., 1993). Amory et al.
(2021) also compare simulated snow transport occurrence
and mass fluxes to on-field observations in Antarctica. Simi-
larly, Baron et al. (2024) compare the simulated snow trans-
port occurrence and transport mass fluxes from the SnowPap-
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pus model to field observations. One of the main drawbacks
of this method is the low number of direct snow transport
observations found in the literature, combined with the very
high spatial variability in snow transport fluxes. As a result,
spatialized snow simulations are more classically evaluated
using measurements of snow height and snow water equiva-
lent (SWE). Prasad et al. (2001) and Liston et al. (2007) com-
pare snow simulations done using the SnowTran-3D system
(Liston and Sturm, 1998; Liston et al., 2007) with SWE mea-
surements from manual snow surveys. Marsh et al. (2020)
compare simulated SWE from the Canadian Hydrological
Model (CHM) to point observations. Mott et al. (2008) eval-
uate the Alpine3D system (Lehning et al., 2006), compar-
ing simulation with an interpolated map of snow height mea-
surements. The use of interpolation methods in Mott et al.
(2008) is justified by the high measurement density of the
study area. However, in the majority of other study areas, in
situ measurements are too sparse to characterize the complex
spatial variability in alpine snow cover (Pepin et al., 2015;
Bales et al., 2006; Vernay et al., 2022; Pomeroy et al., 2009).
This situation explains the recent use of snow remote sens-
ing (uncrewed aerial vehicle, satellite) as a means of spatial
evaluation for large-scale snow cover models. Those meth-
ods are still limited by the low availability of remotely sensed
variables, mainly snow cover fraction and derived variables
or snow height. For example, Vionnet et al. (2021) compare
CHM snow simulations (Marsh et al., 2020) with airborne Li-
dar snow height maps as well as Sentinel-2 snow cover maps.
Very recently, Quéno et al. (2023) used Lidar-acquired snow
height maps to evaluate the ability of the FSM2oshd frame-
work (Quéno et al., 2023) to represent snow accumulation
and erosion areas.

In the above-cited studies using the snow height, SWE,
or snow presence variables, the evaluation experiments are
generally carried out using a single set of meteorological
inputs. However, it is known that meteorological inputs ex-
plain an important part of the variability (Clark et al., 2011;
Colle et al., 2013; Mott et al., 2018) and uncertainty (Raleigh
et al., 2015; Giinther et al., 2019) in simulated snow height
and SWE. While the evaluations of model inputs and sim-
ulated processes are usually conducted separately, they are
often interdependent. Thus, it is difficult to determine if po-
tential errors come from the model or the input variable. For
instance, a good simulation of snow height requires both ac-
curate precipitation input and a robust snow evolution model.
To robustly assess the value of a distributed snow model, the
uncertainty in meteorological forcing must be considered.

To improve the snow spatial variability in the French snow
modeling system, Baron et al. (2024) have developed a novel,
explicit, blowing snow transport model, SnowPappus, cou-
pled with the Crocus physical snow simulation model (Vion-
net et al., 2012). This model explicitly represents the ver-
tically integrated saltation and suspension mass fluxes as
a function of wind speed and surface snowpack proper-
ties simulated by Crocus. This system is implemented on a
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regular grid to simulate snowpack evolution at a mountain
range scale (approx. 100000km?), for multiple snow sea-
sons. Baron et al. (2024) focused on the evaluation of the
model at point scale, demonstrating its ability to accurately
simulate blowing snow fluxes and occurrence at observation
stations. However, spatial evaluations of simulations on large
distributed domains are currently missing.

The goal of this paper is to present a spatial evaluation of
the SnowPappus blowing snow simulation framework (Baron
et al., 2024), considering the uncertainty of precipitation es-
timates through different data sources that exhibit contrasted
spatial patterns. The evaluation is based on Pléiades snow
height maps (Deschamps-Berger et al., 2020) and Sentinel-
2 and Landsat 8 snow melt-out dates (Gascoin et al., 2019)
and covers three consecutive snow seasons. We discuss the
relative influence of precipitation sources and blowing snow
implementation on the simulated snow cover variability and
how their interactions can affect the evaluation of a dis-
tributed snow model. By using two contrasting horizontal-
resolution simulations, we also analyze how the unresolved
spatial scales of blowing snow can affect simulation results
at a 250 m spatial scale. Finally, we emphasize the main chal-
lenges to be solved for more advanced evaluations of spatial-
ized snow simulations.

2 Data and methods
2.1 Study area

The simulation study site is located east of Grenoble in
the French Alps (Fig. 1). It covers 902km? including the
Grandes Rousses and Arves massifs. This area exhibits a
complex topography, with elevations ranging from 700 up
to 3900 m a.s.l.; a wide range of snow and temperature con-
ditions; and different types of landscape features such as val-
leys, forests, alpine pastures, lakes, and glaciers. In this area,
the local knowledge of precipitation flow patterns tells us that
most winter storms come from northwestern flows usually
giving increased precipitation on western slopes. The study
area includes the Col du Lac Blanc observatory (Guyomarc’h
et al., 2019), where Baron et al. (2024) evaluated the blow-
ing snow fluxes and occurrence simulated by SnowPappus.
It counts 41 distinct ice patches or glaciers of various sizes
as defined in the RGI Consortium (2017), forested areas, and
three hydroelectric dams which underline the hydrological
importance of the area.

As our simulation system is only able to represent snow
in open areas, the forests, glaciers, lakes, and rivers in the
study zone are masked in our simulations and observation
datasets. For the forest mask, the BD FORET® V2 dataset
has been used (IGN©, 2024a) with a masking threshold of
25 % of forested sub-pixel area. Waterways are masked fol-
lowing data from BD TOPO® (IGN©, 2024b). In the valley,
the urban areas around the city of Bourg d’Oisans, Allemont,
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and Saint-Michel-de-Maurienne are also discarded from the
analysis.

2.2 Grid generation and spatial resolution

The simulations are based on two grid resolutions, 30 and
250 m. Both simulation grids are built using as reference the
French 5 m RGE ALTI® digital elevation model (DEM) from
IGN© (2021c¢). The 5 m high-resolution DEM is resampled
using the average method to 30 and 250 m horizontal res-
olutions using GDAL/OGR contributors (2023). At 250 m
resolution, the 902 km? full simulation area is composed of
14443 grid points. At 30 m horizontal resolution, the test
zone is composed of 1005 699 simulation points.

A geomorphon classification (or landform) is performed
on the 250 m resolution DEM for a more detailed analy-
sis of simulation domain features. Geomorphons introduced
by Jasiewicz and Stepinski (2013) are defined as the funda-
mental structural elements of a landscape. Here, we used the
Whitebox Geospatial Inc. (2024) classification tool, an open-
source software from Lindsay (2014). The algorithm is based
on a line-of-sight analysis with similarities to the more classi-
cal topographic position index (TPI). This method identifies
a set of topographic patterns corresponding to specific ter-
rain attributes and landform types. The advantage of this type
of classification is that it allows topographic information to
be conveyed mimicking the result of a classification process
carried out by a human analyst. Another advantage of the
geomorphon classification is that it adapts to the surrounding
terrain and can lead to the identification of landform elements
regardless of their scale. Jasiewicz and Stepinski (2013) iden-
tify the 10 most common landform elements used for geo-
morphon classification (peak (summit), ridge, shoulder, spur
(convex), slope, hollow (concave), footslope, valley, pit (de-
pression), and flat; an illustration can be found in Fig. 3 of
Jasiewicz and Stepinski, 2013). This allows us to generate a
simple, intuitive, and scale-independent landform map of our
simulation domain (Jasiewicz and Stepinski, 2013). Figure 2
illustrates the geomorphon classification result (called land-
form classification in the following) of each 250 m grid cell
of our simulation domain in terms of the 10 most common
landform elements. Figure 3 illustrates the elevation distri-
bution of the landform elements of our simulation domain.
No landform feature corresponding to Jasiewicz and Stepin-
ski (2013) “shoulder”, “footslope”, and “flat” are found in
our simulation domains. Finally, Appendix Fig. A1 demon-
strates the good representativeness of the landform feature
frequency of our domain compared with the entire French
Alps and Pyrenees.

For our analysis, each 250 m simulation grid cell is clas-
sified in terms of landform types (see Fig. 2) and into 300 m
elevation bands (see Fig. 1).
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Figure 1. Map of the simulation domain (red) and evaluation areas (Pléiades green and blue, snow melt-out date in red). Points of interest
are shown as well as forest, glacier, and lake masks. The classification of 250 m pixels is visible with a 300 m step elevation in shades of

blue. The summer aerial photography base map is from IGN© (2022).

2.3 Crocus snow model

This paper uses the well-established 1D snow model Cro-
cus (Brun et al., 1989; Vionnet et al., 2012), used oper-
ationally by the French weather forecast agency (Météo-
France) in support of avalanche hazard forecasting (Morin
et al., 2020). This snow model relies on a dynamical layering
of the snowpack and an explicit representation of snow meta-
morphism and microstructure up to 50 snow layers (Vionnet
et al., 2012). The Crocus snow model is coupled to the ISBA
ground and land cover model and is embedded in the SUR-
FEX modeling framework (Decharme et al., 2011; Masson
et al., 2013). The snowpack is simulated on a squared grid
of 250 m or 30 m spacing. Simulations are run over 3 years,
starting from 2 August 2017 at 06:00 CET to 2 June 2020
at 06:00 CET, using a 15 min time step. The initial ground
conditions are taken from a 10-year (2007-2017) simulation
driven by the SAFRAN reanalysis (Vernay et al., 2022).

2.4 SnowPappus blowing snow model

The SnowPappus blowing snow model has been specially de-
veloped to describe snow variability due to blowing snow
when the Crocus model is applied in the range of 25 to
250 m horizontal resolutions (Baron et al., 2024). SnowPap-
pus model simulates blowing snow occurrence, horizontal
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transport fluxes, and blowing snow sublimation rate on each
grid cell as a function of 2D atmospheric forcing and snow
surface properties. Then, a blowing snow mass balance is
used to quantify eroded or accumulated snow amounts and
modify the simulated snow profiles accordingly. The Snow-
Pappus methods and parameterisations used to represent the
different blowing snow processes are described in detail and
compared to existing literature in Baron et al. (2024).

SnowPappus can run over multiple snow seasons and very
large domains (about 10° km? at 250 m resolution or 10° sim-
ulation points), in a reasonable computing time (less than half
a day on a single computing node, depending on simulation
outputs).

2.5 Meteorological forcings
2.5.1 SAFRAN simulations

As most spatialized applications of the Crocus snow model
over the French Alps, our simulations are forced by the
SAFRAN meteorological reanalysis (Vernay et al., 2022).
The SAFRAN analysis system uses as a background ver-
tical profiles of air temperature, humidity, and the precipi-
tation fields of the ARPEGE NWP system and assimilates
near-surface meteorological observations to generate, with
an hourly time step, the typical sets of inputs required by
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Figure 2. Map showing the result of the landform classification performed on our 250 m simulation domain. Each grid cell is classified in
terms of the 10 most common landforms described by Jasiewicz and Stepinski (2013): peak (summit), ridge, shoulder, spur (convex), slope,
hollow (concave), footslope, valley, pit (depression), and flat. In our domain, “flat”, “footslope”, and “shoulder” landforms are not present.

The summer aerial photography base map is from IGN© (2022).

a snow model such as Crocus (Durand et al., 1993). The
SAFRAN reanalysis provides these meteorological inputs
over 23 climatologically homogeneous areas (named mas-
sifs) covering the whole French Alps (Vernay et al., 2022).
Here, only the SAFRAN reanalysis corresponding to the
Grandes Rousses massif was used to build the simulation
meteorological forcing. For a distributed use, the SAFRAN
analysis is linearly interpolated as a function of elevation for
each simulation point (as in Vionnet et al., 2016) to match the
gridded geometry of our simulation domain. Solar radiations
are projected according to the slope inclination and aspect
of each pixel and masked in the case of shadows from the
surrounding topography similarly to Revuelto et al. (2018)
and Deschamps-Berger et al. (2022). In SAFRAN, all me-
teorological variables are assumed to be constant inside a
massif for a given elevation. Whereas large-scale biases are
low thanks to the assimilation of numerous gauge observa-
tions (Vernay et al., 2022), a large part of the spatial variabil-
ity in precipitation remains unresolved under this assump-
tion (Vionnet et al., 2016; Quéno et al., 2016; Vionnet et al.,
2019; Deschamps-Berger et al., 2022). Therefore, other pre-
cipitation estimates are also considered in this study from
the AROME NWP system and the ANTILOPE radar-based
analysis. An illustration of the mean daily SAFRAN precip-
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itation spatial variability can be seen in Appendix Fig. Bla.
This map informs us of the spatial and inter-model variability
and of the absolute precipitation values of each precipitation
dataset.

2.5.2 AROME precipitation simulations

AROME is the high-resolution non-hydrostatic NWP sys-
tem operated by Météo-France for short-range forecasts. It
uses a 1.3 km grid spacing (Seity et al., 2011). Due to high
temperature and radiative biases of AROME in mountain ar-
eas (Quéno et al., 2020; Gouttevin et al., 2023), and to fo-
cus our study on the uncertainty of precipitation spatial pat-
terns rather than on all meteorological forcing uncertainties,
we only consider the total precipitation amount (liquid and
solid) from AROME in our simulations. Thus, the precipita-
tion phase is set to solid if the SAFRAN air temperature is
lower than 274.15 K and liquid if the air temperature is above
274.15 K. Although more advanced and continuous phase
functions are available in the literature (Froidurot et al., 2014;
Vionnet et al., 2022), this choice was made for consistency
between all simulations, as this threshold is also used by the
SAFRAN system. SAFRAN analysis data are used for all
the other forcing variables. An illustration of the mean daily
AROME precipitations can be seen in Appendix Fig. B1d.
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Figure 3. Distribution of simulation pixels in terms of 300 m step elevation bands and the landform classification. The number of pixels

corresponding to each class is shown.

2.5.3 ANTILOPE precipitation simulations

ANTILOPE is an hourly precipitation estimation analysis
product (rain rate), combining radar and rain/snow gauges
with 0.01° (1 km) resolution (Champeaux et al., 2009). AN-
TILOPE precipitation fields are the kriging result of avail-
able gauge measurements, using radar-estimated precipita-
tion fields as external drift. In a mountainous context, the
skill of the product can be affected by a partial or total mask
of the radar beams and other common radar measurement
errors (Faure, 2017; Yu et al., 2018), although the use of ob-
servations improves the precipitation estimates compared to
raw radar precipitation. Since ANTILOPE does not discrim-
inate solid from liquid precipitations, we used information
from SAFRAN to classify rainfall and snowfall as well as all
the other forcing variables. The precipitation phase is set to
solid if the SAFRAN air temperature is lower than 274.15K
and liquid if the air temperature is above 274.15 K. SAFRAN
analysis data are used for all the other forcing variables. An
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illustration of the mean daily ANTILOPE precipitations can
be seen in Appendix Fig. Blc.

2.6 DEVINE wind downscaling model

Wind fields are important drivers of turbulent and mass ex-
changes at the surface of the snowpack. Wind fields also pro-
foundly determine the onset and evolution of drifting and
blowing snow episodes. The interaction between mesoscale
winds and local topography induces strong modifications
in terms of both speed and direction that deeply influence
the spatial variability in wind fields at the local mountain
scale (Whiteman, 2000). Neither interpolated NWP systems
operating with a kilometer resolution (Seity et al., 2011)
nor massif-scale SAFRAN reanalyses (Vernay et al., 2022)
would permit us to take into account the local influence
of terrain on wind fields. As the local-scale wind patterns
are crucial to determine high-resolution snow patterns (Mus-
selman et al., 2015), we downscaled AROME wind fields
(1.3km grid spacing) to a 30m grid using the DEVINE

https://doi.org/10.5194/tc-18-3081-2024
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downscaling model (Le Toumelin et al., 2022). This method
leverages a convolutional neural network to emulate the be-
haviour of the complex atmospheric model ARPS (Advanced
Regional Prediction System), previously run on a large num-
ber of synthetic topographies and in turn increase the spatial
resolution of wind fields in complex terrain.

The DEVINE downscaling model has been previ-
ously evaluated over a large number of in situ stations
(Le Toumelin et al., 2022, 2024), including stations located in
our study domain. It has been shown that DEVINE wind out-
puts can represent wind acceleration along ridges and sum-
mits, deceleration windward, and some deflection around to-
pographic obstacles, but it can not represent more complex
wind patterns such as thermal winds or recirculation areas.

2.7 Model experiments

To disentangle the impacts of the simulation of blowing snow
from the precipitation forcing, 250 m resolution simulations
were run with and without the SnowPappus transport mod-
ule and with the three different precipitation datasets, result-
ing in six different 250 m simulations. All simulations uti-
lize the default options, including the GM98 parametriza-
tion of blowing snow occurrence, and the flux limiter is
activated (Guyomarc’h et al., 1998; Baron et al., 2024).
In addition, blowing snow sublimation is represented using
parametrization adapted from the simplified blowing snow
model (SBSM) (Essery et al.,, 1999; Baron et al., 2024).
To investigate the role of unresolved transport variability in
snow transport, two additional simulations were done at 30 m
resolution with and without the SnowPappus transport mod-
ule (see HR standing for high resolution). Due to the higher
numerical cost of these simulations and the increased com-
plexity of downscaling and validating weather forcing at this
resolution, 30 m resolution simulations were only run with
the SAFRAN precipitation fields.

As the 30 m resolution simulations are used in this paper
to evaluate the contribution of unresolved spatial variability
in 250 m simulations, we do not evaluate 30 m simulations
at their native resolution but after a resampling on the 250 m
resolution grid using the Earth System Modeling Framework
(ESMF) first-order conservative method (Earth System Mod-
eling Framework et al., 2023).

Regardless of the simulation configuration, 10-year
SAFRAN spinup simulations (without SnowPappus) were
performed to produce the ground’s initial condition.

A summary of all the simulation experiments is found in
Table 1.

2.8 Reference dataset and evaluation methods
2.8.1 Snow melt-out dates

We use the annual snow melt-out dates (SMODs) distributed
by Theia (level 3 product of the snow collection (Gascoin
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et al., 2019)). This product has a 20 m spatial resolution and
indicates the last date of the longest continuous snow period.
It is obtained by the linear interpolation in the time dimen-
sion of all the single-date (level 2) snow cover area products
between 1 September and 31 August (Gascoin et al., 2019).
These products are generated from Sentinel-2 and Landsat 8
images. The SMOD is given in days starting from 1 Septem-
ber. We resampled the SMOD to the 250 m resolution grid
of our model using the Earth System Modeling Framework
et al. (2023) first-order conservative method.

We use the same definition to compute the SMOD from
the model output. To compute the longest continuous snow
period, the snow height is first averaged by day and then a
snow height threshold of 20 cm is applied, as this value was
found to be optimal in the sensitivity analysis of Deschamps-
Berger et al. (2022) at the same horizontal resolution. For this
threshold, the accuracy is found to be 91.5 % (See Fig. 10 of
Gascoin et al., 2019). The forest, glaciers, and lakes on the
domain are masked for both the observations and simulations
using the mask defined in Fig. 1 and Sect. 2.1.

2.8.2 The Pléiades stereo imagery

In order to evaluate more directly the spatial variability in
the simulated snow height, we used snow height maps de-
rived from Pléiades stereo images (Deschamps-Berger et al.,
2020; Marti et al., 2016). In both cases, a snow height is de-
fined following a vertical axis. The Plé¢iades raw images have
a 0.5m horizontal resolution and are acquired on request.
Snow height maps are obtained by combining two surface
elevations of the same area, one with snow and one snow-
free. Each surface elevation map is derived from pairs or
triplets of Pléiades images. The reference snow-off surface
elevation is calculated from Pléiades stereo images acquired
on 28 September 2016 for the Galibier area and 24 Octo-
ber 2018 for the Grandes Rousses area. A winter image ac-
quisition gives a second elevation map with snow on the
ground. The difference between the two elevation fields pro-
vides a snow height map. The generated snow height map
has a horizontal resolution of 2m. Two observation zones
have been selected based on available images. The first one
covers 66km? around the Col du Lac Blanc experimental
site in the Grandes Rousses mountains. The second observa-
tion zone covers 168 km? around the Lautaret experimental
site in the Galibier mountains. Two dates with snow on the
ground have been analyzed for each observation zone. For
the Grandes Rousses area, two images are available for a dif-
ferent year but at the same period of the season (Pléiades 1
on 13 May 2019 and Pléiades 2 on 4 May 2020). For the Gal-
ibier area, the two images give a view at different times of the
same season (Pléiades 3 on 23 January 2018 and Pléiades 4
on 16 March 2018).

Due to the method used to reconstruct the snow height
map, usual Pléiades observations contain a few no-data pix-
els where the quality of the observation is lower due to cliffs,

The Cryosphere, 18, 3081-3116, 2024



3088 A. Haddjeri et al.: Analyzing the sensitivity of a blowing snow model

Table 1. Overview of the different simulation experiments, their model configurations, and naming. It is important to note that the computing
resolution is different from the evaluation resolution. All simulations are evaluated at 250 m resolution (see Sect. 2.8).

Experiment name Precipitation ~ Blowing snow  Computing
forcing transport mode  resolution

SAFRAN SAFRAN No transport 250 m
SAFRAN with transport SAFRAN Transport 250 m
SAFRAN HR SAFRAN No transport 30m
SAFRAN HR with transport SAFRAN Transport 30m
AROME AROME No transport 250 m
AROME with transport AROME Transport 250 m
ANTILOPE ANTILOPE  No transport 250 m
ANTILOPE with transport ANTILOPE  Transport 250 m

steep slopes, clouds, or shaded areas. The snow height map
was filtered to exclude values out of the [—0.5m, 20 m]
range. According to previous Pléiades snow map evaluations
(Deschamps-Berger et al., 2020), averaging 2m Pléiades
observation resolution to 250 m reduces the vertical snow
height standard error to approximately 0.3 and 0.4 m. Neg-
ative snow heights are kept as removing them would slightly
positively bias the averages. For comparison with snowpack
simulations, the 2m resolution Pléiades snow height map
is resampled to the 250 m horizontal-resolution grid using
a conservative method, similarly to Deschamps-Berger et al.
(2020). The entire 250 m pixel is set to “no data” if more than
70 % of the 2 m pixels is “no data”; this threshold ensures the
minimum representativeness of the pixel’s snow height.

The forest, glaciers, and lakes on the domain are masked
for both the Pléiades observations and simulations using the
mask defined in Sect. 2.1. An additional mask of the “no
data” pixels in the Pléiades data is applied to the simulations
for accurate comparison.

2.8.3 Observation data summary

All observations are summarized in Table 2. For the compar-
ison with simulations, the observed SMOD and snow height
are grouped by altitude in various elevation bands. The refer-
ence altitude used for the observation is the 250 m DEM de-
scribed in Sect. 2.2. This elevation band classification is one
of the most often used in the literature because the elevation
is one of the main topographic drivers of snow cover vari-
ability (Griinewald et al., 2014; Vionnet et al., 2022; Mon-
teiro et al., 2022; Tong et al., 2009; Deschamps-Berger et al.,
2022; Vionnet et al., 2017). However, for a more advanced
analysis of the snow cover spatial structure, we also present
our results grouped according to the landforms presented in
Sect. 2.2.

2.9 Synoptic scores

To summarize the simulation and observation comparison,
a combination of three scores has been chosen. The mean
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bias, standard deviation ratio, and spatial probability score
(SPS) value are used to quantify the similarity between the
simulated and observed snow height distribution.

The mean bias (MB) defined in Eq. (1) describes the mean
bias between the simulation and the observation over a given
area.

MB(S) = (S) — (0), (1

where (S) represents the mean value of the simulation distri-
bution and O the observation distribution.

The standard deviation ratio (or ¢ ratio in the following)
(Eq. 2) is the ratio between the simulated standard deviation
and the observed one.

o (S)
o(0)’

with o (S) the simulated standard deviation and o (Q) the ob-
served standard deviation.

The spatial probability score (SPS) is a distance metric be-
tween two cumulative distribution functions (CDFs) defined
in Eq. (3) as the quadratic discrepancy measure between the
simulated CDF, denoted F, and Pops the empirical observed
CDE

o ratio(S) =

2

SPS(F) = /(F(X) — Pops(x))*dS, 3)
s

with x € S and S the volume of possible values of the indi-
cator of interest. This score is derived from the continuous
ranked probability score (CRPS) primarily used to evaluate
probabilistic forecasts in ensemble forecasting (Candille and
Talagrand, 2005). Here, it is used to compare two spatial dis-
tributions, similarly to the description in Goessling and Jung
(2018), although using a non-binary probability field for the
perfect observation. In short, this metric quantifies the simi-
larity of two probability densities. It is close to the Wasser-
stein distance (Riischendorf, 1985) used in Vionnet et al.
(2021) although here of order 2. A low SPS value means a
small distance between the observed and the simulated dis-
tributions. Two identical distributions give an SPS score of 0.
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Table 2. Summary of satellite observations used in this study. The observed area, variables, resolutions, and dates are detailed for each
observation. The aggregated resolution is a reminder of the resampling operation done on the observation data before comparison with

simulations.

Satellite Observed area Variable Observation date Native Aggregated
observation resolution  resolution
Pléiades 1 Grandes Rousses region (GR) ~ Snow height (m) 13 May 2019 2m 250 m
Pléiades 2 Grandes Rousses region (GR)  Snow height (m) 4 May 2020 2m 250 m
Pléiades 3 Galibier region (Glb) Snow height (m) 23 January 2018 2m 250 m
Pléiades 4 Galibier region (Glb) Snow height (m) 16 March 2018 2m 250 m
Sentinel-2 A Entire simulation domain SMOD (days) 1 September 2017 to 1 September 2018  20m 250 m
Sentinel-2 B Entire simulation domain SMOD (days) 1 September 2018 to 1 September 2019  20m 250m

The SPS unit is identical to the unit of the target variable (m
for snow height, days for SMOD).

3 Results
3.1 Spatial variability in the snow height

This section compares observed and simulated snow height
from the eight experiments described in Table 1 to the four
Pléiades observations (Table 2).

An example of simulated and observed snow height vari-
ability can be found in Fig. 4. In this figure, snow height
is simulated on 13 May 2019 for the SAFRAN, AROME,
and ANTILOPE precipitation forcings and observed for the
Grandes Rousses area on the same date. For each precipi-
tation forcing, the panel shows from one side the impact of
the SnowPappus blowing snow model on the simulated snow
height, where we can see areas of increased and decreased
snow height, most visible along the ridges and peaks, and in
each left sub-maps the same simulation without snow trans-
port. It can be observed that the primary areas of model snow
accumulation are located in regions of high observed snow
height. However, the opposite is not true, many areas with
high observed snow accumulation are not present in the sim-
ulations. Additional maps for 13 May 2019 comparing reso-
lutions can be found in Appendix Fig. C1.

3.1.1 Grandes Rousses area

In this section, we compare the two Pléiades snow height
images of the Grandes Rousses area to simulations. For a
quantitative evaluation of these snow height maps, we sum-
marized simulations and observations in terms of spatial
distributions. For each Pléiades subdomain, simulated snow
heights are discretized using 300 m elevation bands. Each
snow height distribution describes the internal snow height
spatial variability within each elevation band. The associ-
ated spatial distributions obtained in the Grandes Rousses
region (green box in Fig. 1) are compared in Fig. 5a and b
for 13 May 2019 (same data as Fig. 4) and 4 May 2020. The
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skill of these distributions is summarized through synthetic
scores presented in Fig. 6a.

Figure 5a shows a major impact of the precipitation in-
put on the simulated snow height distribution, regardless of
the use of snow transport in simulations. Precipitation in-
puts impact the simulated snow height distribution’s shape,
variance, and mean value. Simulation with AROME precip-
itations leads to the highest snow height on average for all
elevation bands and the two evaluation dates. This result is
especially notable for Fig. 5a at the elevation band of 2500 to
2800 m on the 13 May 2019 evaluation. The AROME precip-
itation gives a mean snow height of about 3 m representing
a positive bias compared to the Pléiades observation means
(1.87 m), consistent with Fig. 6a. The standard deviation of
the AROME simulations overestimates Pléiades’ standard
deviation at low elevations on both dates (Fig. 6b, e). It is
more realistic between 2500 and 2800 m and dependent on
snow transport at higher elevations.

Simulations with the ANTILOPE precipitation, on the
other hand, have a negative snow height bias compared to
the observation. For the 2500 to 2800 m elevation band, the
ANTILOPE simulations give a mean snow height of only
1.30 m. This negative bias tends to increase with altitude as
illustrated in Fig. 6a. The standard deviation of ANTILOPE
simulations is closer to observations than AROME simula-
tions. Similar results are found for 4 May 2020 (Figs. 5b, 6d—
f). For the SAFRAN and SAFRAN HR simulations, results
are consistent between the simulation resolution (250 and
30 m) but with varying skill between both evaluation years.
At all elevations, the SAFRAN and SAFRAN HR simula-
tions show a lower bias compared to observations than sim-
ulations forced by AROME and ANTILOPE. However, the
SAFRAN mean value of 4 May 2020 (around 2 m) underes-
timates the observed snow height. A similar result is found at
both resolutions and with or without snow transport. At most
elevations, the standard deviation is similar to ANTILOPE
forcing and close to the Pléiades observations.

The representation of snow transport is found to only im-
pact snow height bias for the upper elevation band (with a
reduction in the mean snow height). The fact that this im-
pact is beneficial or detrimental depends on the choice of the
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b) Arome

[ simulation area
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2z and lakes mask

Snow height (m)
>0

N ouv b WwN =

Figure 4. Maps illustrating raw simulation outputs and Pléiades observed snow height on 13 May 2019 at 10:00 CET. (a) SAFRAN 250 m
simulation with snow transport and without snow transport in the left sub-map. (b) AROME 250 m simulation with snow transport and
without snow transport in the left sub-map. (¢) ANTILOPE 250 m simulation with snow transport and without snow transport in the left
sub-map. (d) The Pléiades 1 observed snow height resampled to 250 m. The absence of snow in simulations is indicated in gray. For (d) the

summer aerial photography base map is from IGN© (2022).

meteorological forcing. Below this elevation band, the im-
pact of snow transport on the bias is found to be shallow to
non-existent. Figure 5a also shows that for the three upper
elevation bands (above 2500 m), SnowPappus (non-hatched
violin plots) increases the simulated standard deviation on
average by 63.7 % between snow height distribution with
and without snow transport (hatched violin plots). Figure 5b
(above 2500 m) shows a similar standard deviation increase
of 67.7 % for the next year when adding snow transport in
the simulations. The impact of snow transport on the simu-
lated snow height is noticeable for all precipitation inputs.
Figure 6b and e show that the increase in standard deviation
(above 2500 m) introduced by the transport module is some-
times overestimated comparatively to the observation (o ra-
tio > 1), depending on the date and precipitation forcing. Be-
low 2500 m, the snow height distributions with and without
snow transport, for a given precipitation input, are broadly
similar.

Finally, SPS scores (Fig. 6c, f) suggest that model perfor-
mances are mostly modified by SnowPappus at the highest
pixels of our domain and that simulation improvements or
degradations depend on combinations of model setups (trans-
port/no transport and precipitation forcings).
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3.1.2 Galibier area

The second snow height evaluation is done in the Galibier
mountain area (blue box in Fig. 1). It uses two snow height
maps derived from Pléiades stereo images acquired in Jan-
uary and March 2018, in which snow cover extends to lower
elevations than in the Grandes Rousses snow height maps.
On both dates, a positive bias appears for the three lowest el-
evation bands, regardless of the forcing and decreasing with
elevation (Fig. 8a, d). For instance, the Pléiades observation
provides a mean snow height of 1.25 m at the 1900-2200 m
elevation band on 23 January 2018, while the simulation’s
mean values are all above 1.74 m of snow. At these eleva-
tions, the standard deviation is underestimated by all simula-
tions (0.71 m for the reference Pléiades observation, 0.16 m
for SAFRAN, and 0.32 m for AROME), without any signif-
icant impact of the snow transport module (see standard de-
viation ratio in Fig. 8b, e).

For the two upper elevation bands, the main features are
consistent with the evaluations for the Grandes Rousses area:
on both dates, the AROME simulations exhibit the high-
est mean snow height corresponding to a positive bias com-
pared to observations, while the ANTILOPE simulations ex-
hibit the lowest snow height corresponding to a negative bias.
Contrary to the previous section, SAFRAN simulations also
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Figure 5. Spatial distribution of snow height (m) for 300 m elevation bands in Pléiades observations (gray) and all simulation configurations
over the Grandes Rousses mountains on 13 May 2019 (Pléiades 1) (a) and 4 May 2020 (Pléiades 2) (b). The different colours represent the
different precipitation forcing and horizontal resolutions, while hatching is used to distinguish between the activation and deactivation of the
SnowPappus blowing snow scheme. Each violin contains a small inner black box representing the first and third quartile and a white dot
representing the median distribution value. The number of samples for each subgroup is denoted by N.

overestimate snow height in the Galibier area. For all precip-
itation forcing, the standard deviation of simulations with-
out transport (between 0.11 and 0.25 m in January at the up-
per level) is much smaller than in the observed spatial dis-
tribution (0.87 m). When the snow transport is activated, a
more realistic spatial variability is obtained, although it is
still underestimated below 2800 m elevation. This conclusion
remains valid on 16 March (Fig. 7b). As for the Grandes
Rousses evaluation, the simulations with the AROME pre-
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cipitation have the highest spatial variability in snow height
at all elevations and for the two dates. Conversely, the sim-
ulations with SAFRAN have the smallest standard deviation
across elevation.

For the SPS score (Fig. 8c, f), the ANTILOPE forcing
produces very accurate scores (< 0.1 m) between 2200 and
2800 m and for both dates, in contrast to the results obtained
over the Grandes Rousses area. For the lowest elevation
band, AROME simulation with snow transport is the closest
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Figure 6. Scores comparing simulations with the Grandes Rousses Pléiades observations. Panels (a), (b), and (¢) compare simulations with
the 13 May 2019 Pléiades 1 image; panels (d), (e), and (f) are based on the 4 May 2020 Pléiades 2 image. (a), (d) Bias (m); (b), (e) standard
deviation ratio (no unit); (c), (f) SPS (m). All scores are presented as a function of 300 m elevation intervals.

to observations with an SPS score of 0.4 and 0.3 m in Jan-
uvary and March. The simulations forced by SAFRAN pre-
cipitation provide the spatial distributions the furthest from
Pléiades observations. This is an opposite conclusion to the
results obtained for the Grandes Rousses region.

3.1.3 Summary: relative impacts of snow transport and
precipitation forcing

When comparing the simulation performance between both
simulation regions and all dates, common and different pat-
terns arise. The impact of the simulation of snow transport
on the bias is restricted to the upper altitude, close to moun-
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tain summits. For all simulations, higher average snow height
are obtained without transport than with transport. However,
the added value of snow transport can not be established on
these criteria as the bias highly depends on the precipitation
forcing.

In all simulations, lower snow heights are obtained with
ANTILOPE precipitation and higher snow heights with
AROME precipitation, with increasing differences with el-
evation. However, upon examining the various bias scores
(as shown in panels a and d of Figs. 6, 8, and 10), it is clear
that no precipitation forcing produces a snow height simu-
lation that is systematically less biased than the others over
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Figure 7. Spatial distribution of snow height (m) for 300 m elevation bands in Pléiades observations (gray) and all simulation configurations
over the Galibier on 23 January 2018 (Pléiades 3) (a) and 16 March 2018 (Pléiades 4) (b). Similar legend as in Fig. 5. Each violin contains
a small inner black box representing the first and third quartile and a white dot representing the median distribution value. The number of

samples for each subgroup is denoted by N.

the different evaluation dates and areas. Across all elevation
ranges, the mean driver of simulation bias appears to be the
precipitation dataset choice.

The addition of snow transport increases the simulated
standard deviation of snow height of 0.25 and reduces the
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SPS value closer to the observation. The impact of transport
on scores is mainly above 2500 m with a slope increasing
with elevation. For these upper elevation bands, the snow
transport prevails in the choice of the precipitation dataset on
these criteria. For the lower elevation bands, the main driver
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Figure 8. Scores comparing simulations with the Galibier Pléiades observations. Panels (a), (b), and (¢) compare simulations with the
23 January 2018 Pléiades 3 image; panels (d), (e), and (f) are based on the 16 March 2018 Pléiades 4 image. (a), (d) Bias (m); (b), (e)
standard deviation ratio (no unit); (c), (f) SPS (m). All scores are presented as a function of 300 m elevation intervals.

of simulation standard deviation appears to be the choice
of the precipitation dataset. The simulations using AROME
precipitation have the biggest standard deviation value of all
simulations.

3.1.4 Impact of subgrid variability

The effect of unresolved subgrid variability can be analyzed
by comparing SAFRAN and SAFRAN HR simulations. Sim-
ulation maps illustrating the expected subgrid variability can
be found in Appendix Fig. Cla, b, and c. At the 30 m grid res-
olution, the spatial variability in the topography (SAFRAN
HR without transport vs. SAFRAN without transport) re-
duces the snow height and increases the 250 m scale spatial
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variance at high elevations for the Grandes Rousses evalua-
tions. The impact is smaller for the Galibier assessment. In
Figs. 6 and 8, the difference in the different scores between
a simulation with and without snow transport is smaller for
simulations computed at a 30 m resolution, compared to the
250 m computed simulations (dashed and continuous orange
lines are less distant or equivalent to the dashed and contin-
uous green lines). Finally, it is observed that SAFRAN HR
and SAFRAN simulations are relatively close in terms of
snow height bias, o ratio, and SPS. Therefore, despite the
significant impact of the simulation resolution at the process
level, it is not obvious that the 250 m simulations would pro-
vide less accurate snow height spatial distributions than sim-
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ulations computed at higher resolution and resampled on a
250 m grid.

3.2 Spatial variability in snow melt-out date (SMOD)

The evaluations of the SMOD allow us to extend the eval-
uations over our entire simulation domain. It also provides
more complementary information on the entire snow season
than the use of snow height snapshots. The associated spa-
tial SMOD distributions for the 2017-2018 and 2018-2019
years can be found in Fig. 9a and b. The synthetic summary
of simulation performances is given by Fig. 10.

3.2.1 Differences between years

There are some notable differences between the 2017-2018
and 2018-2019 snow season SMODs (Fig. 9). For the two
lower elevation bands, there are on average 15 d (Fig. 9a) and
20d (Fig. 9b) SMOD differences between the 2 years for the
observation. A similar SMOD difference is found on average
for the simulations. However, for the 2018-2019 snow sea-
son (Fig. 9b), we see the observation and simulation distribu-
tions have a much bigger variance than the previous season.
Continuing the analysis, the observed median SMOD show
an earlier melt at all elevation for the 2018-2019 season. This
observation is even more pronounced for the three upper el-
evation bands. We also note that the distribution variability
is greater for this year. For the 2017-2018 snow season at
elevations between 2500 and 3400 m, there was an average
SMOD difference of 18 d between observations and simula-
tions. In the subsequent season, this difference increased to
an average of 39d. In contrast, during the 2018-2019 snow
season, the simulations that included snow transport were,
on average, closer to the observed variance than for the other
seasons.

3.2.2 Impact of precipitation forcing

Above 2500 m, the simulation with transport and the ANTI-
LOPE precipitation has the largest distribution variance and
lower mean SMOD value. As a result, this is the only sim-
ulation that underestimates the mean SMOD in 2018-2019
(Fig. 10d) and overestimates its spatial variability (Fig. 10e).

For the other precipitation forcing, in 2017-2018 the
SMOD is overestimated at low elevations, indicating that the
snow melt-out occurred too late in the season compared to
observation (Fig. 9b). Conversely, SMOD is underestimated
at high elevations with a simulated melting up to 20 d before
the observed one. In 2018-2019, SMOD was overestimated
at all elevations. On average, the spatial variance of SMOD is
underestimated except for simulations with the ANTILOPE
forcing at the upper elevation where the o ratio is found
much above 1.

The SPS values of SMOD (Fig. 10c, f) finally provided
the opposite conclusion between both years, with the simu-
lations forced by AROME being the closest to the observed
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spatial distribution at all elevations in 2017-2018 but the fur-
thest in 2018-2019 and conversely the simulations forced by
ANTILOPE the furthest to observations in 2017-2018 and
the closest in 2018-2019.

Analysis of wind speed and direction over the 3 simula-
tion years indicates that the values remained consistent. Ex-
amination of the yearly solid precipitation of the SAFRAN
forcing reveals that the 2018-2019 season had 21 % less
snowfall compared to 2017-2018. This result is consistent
with a smaller amount of solid precipitation leading to a re-
duced amount of snow accumulation and the observed earlier
SMOD for the 2018-2019 snow season.

3.2.3 Impact of snow transport

Figures 9 and 10b and e show an increase in SMOD standard
deviation when activating snow transport in simulations, con-
sistent with the increase in snow height variance shown in
Sect. 3.1. The standard deviation of simulated SMOD with
transport is found to increase with altitude. This increas-
ing spatial variance of SMOD with altitude is also observed
with Sentinel-2 imagery, whereas simulation without trans-
port keeps a standard deviation rather similar. Nevertheless,
the impact of precipitation forcing on SMOD spatial vari-
ability is at least as high as the impact of snow transport.
Therefore, the added value of snow transport is still diffi-
cult to establish on those criteria, although simulations based
on SAFRAN and AROME forcing would suggest that the
SMOD spatial variability is improved by the snow transport
module.

The addition of snow transport also decreases the SMOD
for all 250 m resolution simulations, with an increasing im-
pact on altitude. Therefore, concerning the SMOD bias, the
impact of snow transport can be either beneficial in 2018-
2019 or detrimental in 2017-2018 depending on the sign of
the general bias of the simulation without transport.

Except with ANTILOPE in 2017-2018, simulating snow
transport always results in improved SPS of SMOD. The
detrimental impact of snow transport at high elevations in
2017-2018 for ANTILOPE forcing is probably linked with
the much smaller estimates of precipitation by ANTILOPE
(Appendix Fig. B1), for which the reasons are discussed in
Sect. 4.2.

3.2.4 TImpact of subgrid variability

The addition of snow transport in the 30m resolution
SAFRAN HR simulations increases the SMOD for the 2
evaluation years, while in contrast snow transport decreases
the SMOD in the 250 m resolution SAFRAN simulation. In
terms of spatial variance, the increase in spatial variance by
snow transport is higher at 250 m resolution than at 30 m res-
olution. The direct impact of resolving a finer topography
in simulations without transport (differences between dashed
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Figure 9. Snow melt-out date (SMOD) depending on elevation and simulation configuration. The simulations are compared with SMOD
observations of the full simulation domain for the 2017-2018 (Sentinel-2 A) and 2018-2019 years (Sentinel-2 B). Each violin contains a
small inner black box representing the first and third quartile and a white dot representing the median distribution value. The number of

samples for each subgroup is denoted by N.

orange and green lines) is less significant than on snow height
evaluations.

3.3 Impact of landform types

In this section, the spatial simulated distributions of snow
heights and SMOD are compared with satellite observations
while grouped by landform types instead of elevation bands,
as described in Sect. 2.2 and Fig. 2.
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Figure 11 compares the January and March 2018 Galibier
Pléiades images to snow height simulations grouped by land-
form types. Appendix Fig. D1 presents the same comparison
using 13 May 2019 and 4 May 2020 Grandes Rousses Pléi-
ades images. The comparison of simulation with and without
transport shows that most of the snow height bias difference
(Fig. 11a, d) is found on pixels classified as “peak (summit)”
or “ridges”. However, this impact on bias can be either bene-
ficial or detrimental depending on the bias of the simulation
without transport, highly dependent on the precipitation forc-
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Figure 10. Scores comparing simulated SMOD with Sentinel-2 imagery. (a), (b), (¢) 2017-2018 year (Sentinel-2 A); (d), (e), (f) 2018-2019
year (Sentinel-2 B). (a), (d) Bias (days); (b), (e) standard deviation ratio (no unit); (¢), (f) SPS (days). All scores are presented as a function

of 300 m elevation intervals.

ing, similar to the results described in the analyses based on
elevation bands.

Simulations with snow transport show lower mean snow
height in pixels classified as “peak (summit)” and “ridges”
compared to simulations without transport. Conversely, sim-
ulations without snow transport exhibit lower snow height on
“spur (convex)”, “slopes”, and “hollow (concave)”. This be-
haviour can be found in each 250 m simulation, regardless of
the simulation forcing (Figs. 11, D1) except for the SAFRAN
HR simulations.

It can be noticed that the ordering between the different
precipitation inputs does not depend on the landform classes,
while it was quite dependent on elevation bands.

https://doi.org/10.5194/tc-18-3081-2024

For all precipitation datasets, the standard deviation of
simulations without transport is much smaller than in the ob-
served spatial distribution. The landforms where the activa-
tion of transport has the most impact on snow height vari-
ance are (by order of importance) “peak (summit)”, “ridges”,
“spur (convex)”, “slopes”, and “hollow (concave)”. Com-
pared to the observed variance, this behaviour is more re-
alistic when snow transport is activated (Fig. 11b, e) for all
precipitation forcings. While the simulated distribution vari-
ance better matches the order of magnitude of the observed
one for “peak (summit)”, “ridges”, and “spur (convex)”, the
simulated distribution variance of “slopes” and “hollow (con-

cave)” is seen to be still half of the observed one. As for
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Figure 11. Scores comparing simulations with the Galibier Pléiades observations. Panels (a), (b), and (¢) compare simulations with the
23 January 2018 Pléiades 3 image; panels (d), (e), and (f) are based on the 16 March 2018 Pléiades 4 image. (a), (d) Bias (m); (b), (e)
standard deviation ratio (no unit); (c), (f) SPS (m). All scores are presented as a function of landform pixel classifications.

the evaluation using elevation bands, the simulations with
the AROME precipitation have the highest spatial variabil-
ity for the two dates and each landform type. Conversely, the
simulations with SAFRAN and no snow transport have the
smallest standard deviation across landforms.

The improvement in the SPS score (Fig. 11c, f) due to the
representation of snow transport is major on “peaks (sum-
mits)” and “ridges” and noticeable on “spur (convex)” and
“slope” classes. This improvement is obtained for all precip-
itation forcings (even in the ANTILOPE case where the bias
has deteriorated) and is therefore mainly driven by the im-
provement in snow height variance. The SAFRAN HR sim-
ulations with and without transport have the lowest (better)
SPS values for the two evaluation dates and most of the land-
form types, while it is not the least biased. Directly exam-
ining the SAFRAN HR cumulative distribution function re-
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veals that the shape of the cumulative distribution is more
similar to the observation despite being biased. This conclu-
sion differs from the results obtained using a grid cell classi-
fication by elevation bands.

Figure 12 presents the 2-year evaluation using Sentinel-
2 SMOD and landforms. Figure 12a and d show the im-
pact of SnowPappus blowing snow simulations on simulated
SMOD. As for snow height in Fig. 11, the impact on SMOD
is most significant in areas classified as “peak (summit)” or
“ridge”. The SMOD difference when using SnowPappus is
found to go up to 20d for “peak (summit)”’. When compar-
ing the 2 evaluation years, similar behaviour is found, except
the 2018-2019 year appears uniformly more biased. Areas
classified as “valley” and “pit” appear more biased for every
precipitation forcing.
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of landform pixel classification.

In Fig. 12b and e, the impact of snow transport is again
mainly present on “peak (summit)” and “ridges” landforms
but with high variability between both years and a lower im-
pact when AROME precipitation forcing is used (with al-
ready a higher spatial variability even without transport). In
2017-2018, the impact of snow transport is always benefi-
cial for the SMOD o ratio, as obtained for snow heights but
for the second season, and it depends on the precipitation
forcing. The simulated standard deviation of AROME sim-
ulations appears close to the observed one for all landforms
except for pixels classified as “pit”. This better behaviour of
AROME was not illustrated in the evaluation done using the
elevation bands. The other precipitation forcing appears un-
derdispersed with a standard deviation ratio of 0.5-0.75.

Looking at the SPS scores (Fig. 12c¢, f), the impact of snow
transport is less clear than for snow heights, similar to the
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results obtained by elevation bands. SPS values are smaller
using landform classification than elevation bands. All simu-
lations appear to have difficulties in representing SMOD dis-
tribution in pixels classified as “valley” and “pit” conversely
to results of Fig. 11. The SPS scores are also more similar be-
tween the 2 evaluation years, contrary to the SPS score using
the elevation band grouping. Figure 10c shows a distance in-
crease between all simulations and observations distribution
between 2500-3100 m. This effect is not found in Fig. 12c.
In contrast to Fig. 11, the SAFRAN HR simulations have the
overall highest SPS values, and AROME simulations’ o ra-
tios are found to be more realistic.

The impact of the group axis on results can be quanti-
fied by comparing identical data grouped differently. Fig-
ure 13 presents the mean SPS values of the eight simula-
tions when grouped by elevation bands and landform types.
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Figure 13. Plots of average SPS values for the different simulations
when grouped with elevation bands or landform types. This graph
illustrates the impact of the grouping axis (elevation or landform
types) on snow height and snow melt-out date.

We can see that SPS values are lower when grouped by land-
form types. We can see that grouping by elevation gives more
homogeneous SPS scores for the different observation dates
than grouping by landform where variation between dates is
greater.

3.4 Impact of the SnowPappus model

Correlation between observations and the different simula-
tions can be seen in Fig. 14. This figure illustrates scatter
plots of snow height for the four different Pléiades observa-
tions for the eight different simulations (SAFRAN, SAFRAN
HR, AROME, ANTILOPE, with and without activation of
SnowPappus). For each simulation, we see more dispersed
scatter plots for simulations with snow transport (greater
variance). It can be noted that the mean difference in slope
caused by the addition of snow transport is small (<0.02).
Overall, AROME simulations have the steeper slopes. To
quantify how correlated the simulation results are to the ob-
servations, we use the Pearson correlation coefficient. In Ta-
bles 3 and 4, we see Pearson correlation coefficients between
Pléiades observations and simulations for each of the eight
simulations. Correlation is computed two times for the entire
area (all elevations) and restricted to elevation higher than
2700m. Looking at the Pearson correlation for the entire
Pléiades domain, the addition of snow transport in simula-
tions decreases the correlation coefficient in 15 of 16 experi-
ments. Restricting the correlation to pixels to elevation above
2700 m (pixels with high snow transport probability), the ad-
dition of snow transport in simulations increases the Pearson
correlation for each experiment. This result is found statisti-
cally significant (with significance set at p value <0.05) in
15 out of 16 experiments. We note that for the entire domain,
the variability in the correlation score for a single observa-
tion is greater according to the source of precipitation than
for the addition of the snow transport process in the simula-
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tions. To better disentangle the impact of precipitation forc-
ing variability and the addition of snow transport, this re-
sult can be supplemented with Fig. 15, representing the mean
SPS value of the six different 250 m simulations forced with
SAFRAN, ANTILOPE, and AROME for elevations above
2700 m and the entire observation domain. In this figure, the
addition of snow transport to the simulations clearly shows
improvements in the mean SPS score on snow height and
SMOD above 2700 m for all observations. SnowPappus low-
ers SPS values of 0.06 m and 0.85 d above 2700 m. The im-
provement in SPS score by adding snow transport is logically
much smaller if we look at the total snow height and SMOD
distributions without restricting the elevation. However, it is
important to note that the addition of the SnowPappus model
does not deteriorate the SPS scores.

4 Discussion
4.1 The added value of the SnowPappus model

In this study, we compare snow height maps simulated with
and without transport using various sources for the precipita-
tion forcing. The combined impact of precipitation forcing
variability and wind-blown redistribution using the Snow-
Pappus model is visible on snow height in Figs. 5 and 7 and
SMOD in Fig. 9. For the higher altitudes, particularly around
the summit pixels, the standard deviation of the simulated
snow height and snow melt-out date distribution is primarily
determined by blowing snow transport. The blowing snow
transport impact is mostly restricted to “peak (summit)” and
“ridges” landforms (Figs. 11, D1, 12) and more generally
to the upper elevation bands (above 2700-2800 m). In ad-
dition, the snow height variance is seen to increase closer
to the observation using SnowPappus’ simulated snow trans-
port, regardless of the precipitation bias. Looking at the Pléi-
ades bias values in panels a and d of Figs. 6 and 8, blowing
snow lowers in value the mean bias of all simulations with
snow transport compared to simulations without snow trans-
port. This is probably a combined effect of increased snow
density and mass loss from increased sublimation. This re-
sult is consistent with Vionnet et al. (2021). In Sect. 3.4, re-
sults show the SnowPappus model consistently improves the
correlation between Pléiades observations and simulations
above 2700 m. This improvement was found to be significant
in 15 out of 16 experiments. In our simulation domain, the el-
evations of 2700 m and above correspond to areas where our
snow transport model has a significant impact on the simu-
lated snow height. For the Pléiades domain as a whole, the
correlation coefficient is modestly reduced with the addition
of snow transport. These results are a generalization of the
correlation analysis done in Baron et al. (2024) and are con-
sistent with the previous conclusions. However, the added
value of SnowPappus can not be established only on these
criteria as we find the simulated bias and standard deviation
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are displayed.

dependent on the precipitation forcing. To better disentangle
the effects of precipitation forcing variability and the addi-
tion of snow transport, the previous conclusions can be sup-
plemented with Fig. 15, which shows the mean SPS value of
the six different 250 m simulations forced with SAFRAN,
ANTILOPE, and AROME. Based on these results, it can
be concluded that the addition of the SnowPappus model to
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our 250 m simulation improves the simulated snow distribu-
tion closer to the observed distribution for both snow height
and SMOD. In the literature, Bernhardt et al. (2012) studied
the influence of lateral snow redistribution using SnowTran-
3D (Liston et al., 2007) and found an enhancement in the
simulated snow spatial pattern using lateral snow redistribu-
tion. Using the Canadian Hydrological Model (Marsh et al.,
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Table 3. Pearson correlation coefficients between observed and simulated snow height (Grandes Rousses). For each observation and simula-
tion pair, a second correlation is computed only with pixel elevations (Z) above 2700 m. Underlined values represent p value >0.05. Bold
values correspond to the best correlation value between simulation with and without the SnowPappus model.

Forcing Snow Pléiades 1 Pléiades 1 Pléiades 2 Pléiades 2
transport 13 May 2019 13 May 2019 4 May 2020 4 May 2020

Z>2700m Z>2700

SAFRAN Yes 0.744 0.173 0.766 0.184
SAFRAN No 0.751 0.027 0.795 0.062
SAFRAN HR  Yes 0.739 0.190 0.803 0.221
SAFRANHR No 0.741 0.097 0.820 0.173
AROME Yes 0.826 0.169 0.820 0.211
AROME No 0.835 0.064 0.850 0.127
ANTILOPE Yes 0.592 0.174 0.672 0.198
ANTILOPE No 0.591 0.045 0.693 0.105

Table 4. Pearson correlation coefficients between observed and simulated snow height (Galibier). For each observation and simulation pair,
a second correlation is computed only with pixel elevations (Z) above 2700 m. Underlined values represent p value >0.05. Bold values
correspond to the best correlation value between simulation with and without the SnowPappus model.

Forcing Snow Pléiades 3 Pléiades 3 Pléiades 4 Pléiades 4
transport 23 January 2018 23 January 2018 16 March 2018 16 March 2018

Z>2700m Z>2700

SAFRAN Yes 0.492 0.192 0.586 0.346
SAFRAN No 0.599 0.068 0.675 0.142
SAFRAN HR Yes 0.535 0.110 0.626 0.353
SAFRANHR No 0.598 0.086 0.664 0.157
AROME Yes 0.549 0.189 0.716 0.414
AROME No 0.600 0.025 0.744 0.355
ANTILOPE Yes 0.437 0.181 0.566 0.422
ANTILOPE No 0.509 0.020 0.606 0.266

2020), Vionnet et al. (2021) find snowpack simulations with-
out lateral snow redistribution unable to capture the spatial
variability in snow cover in alpine terrain. In contrast, the
addition of lateral snow redistribution is found to provide
a better estimate of snow height across elevations and in-
crease the simulated snow height distribution variance. Very
recently, Quéno et al. (2023) evaluated the FSM2trans snow
redistribution model (Quéno et al., 2023) and find the addi-
tion of snow redistribution necessary at hectometric or finer
resolution to better represent snowpack heterogeneity. Snow
heights simulated using lateral snow redistribution are found
to have significantly better variability. Additionally, Quéno
et al. (2023) conducted a model sensibility analysis to hori-
zontal resolution and established that, although the most re-
alistic simulation pattern is found at 25 m resolution, the ad-
dition of lateral snow redistribution at coarser resolution is
also having a positive impact on snow distribution and vari-
ance. Hence, we estimate the results obtained in this study
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on the impact of the SnowPappus snow transport model are
compatible with the literature.

4.2 Sensitivity to precipitation forcings

In our simulations, the mean and median snow height and
SMOD values are primarily driven by the spatial variability
in precipitation forcing, as shown in Figs. 5, 7, and 9. Pre-
cipitation forcing is also found to be the main driver of simu-
lated snow height distribution standard deviation across low
to medium elevations. As the Crocus snow model is known
to produce realistic snow heights and snow water equiva-
lent when forced by well-controlled meteorological forcing
(Lafaysse et al., 2017; Menard et al., 2021), the large biases
of snow height and SMOD observed in the snow simula-
tions presented most probably reflect intrinsic biases of the
different precipitation datasets. In panels a and d of Figs. 6
and 8, for a simulation with a precipitation dataset leading to
an already negatively biased snow height (like ANTILOPE),
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Figure 15. Plots of average SPS values for the three different 250 m forcings (SAFRAN, ANTILOPE, AROME) compared to observations.
SPS values are computed for pixels with elevations above 2700 m (square) and pixels of the entire observation domain (all elevations, circle).
This graph summarizes the impact of the SnowPappus transport model on snow height and snow melt-out date distributions.

the addition of snow transport further degrades the overall
snow height simulation bias. Similar behaviour is found for
the SMOD in Fig. 10a and d with an exception for the 30 m
simulation where it increases the absolute SMOD bias. Thus
the beneficial or detrimental impact of blowing snow trans-
port on mean snow height or SMOD bias is mainly depen-
dent on the precipitation bias. This result is consistent with
Raleigh et al. (2015), Schlogl et al. (2016), and Giinther
et al. (2019), also finding the prevalence of meteorological
forcing errors in snow simulations. More specifically, when
looking at the simulation forcing with the ANTILOPE pre-
cipitation source, we found that across all elevation bands,
the ANTILOPE forcings have the lowest snow height and
SMOD values. A negative bias trend is seen with elevation
(Fig. B1). The ANTILOPE precipitation product is primar-
ily based on radar reflectivity measurements, a technique
known to be more challenging in mountainous terrains (Yu
et al., 2018; Faure et al., 2019; Foresti et al., 2018; Ger-
mann et al., 2022). Meteorological radars are based on the
backscatter measurement of several conic-shaped microwave
electromagnetic impulses produced by the radar itself at sev-
eral elevation angles (conic-shaped radar beams). When a
mountain intercepts a radar beam, the reflected signal (called
ground clutter) is unusable and rejected by the ANTILOPE
algorithm. If the mountain intercepts less than 70 % of the
beam section, the signal reflected further away is simply
corrected to account for the loss of information but is still
used for precipitation rate estimation. Precipitation estima-
tion over pixels affected by ground clutter thus comes from
beams that can be several thousands of meters higher than
the mountain, often above the base of precipitation clouds.
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This leads to an underestimation of the precipitation rate over
mountain ridges (Appendix Fig. B1). One possible compro-
mise would consist of using the observed spatial variability
from ANTILOPE while correcting the elevation-dependent
precipitation bias.

In contrast to ANTILOPE, our simulations with the
AROME precipitation source lead, on average, to the highest
snow height across the elevation bands. It is particularly vis-
ible in Fig. 4b, where squared patterns can be seen and come
from the 1.3 km AROME pixels forming distinctive precip-
itation patterns (see Appendix Fig. B1d). This behaviour of
excessive solid precipitation at high elevations is known and
coherent with other snow cover studies using AROME as the
precipitation source (Quéno et al., 2016; Vionnet et al., 2019;
Monteiro et al., 2022). Multifactorial causes were discussed
by Monteiro et al. (2022) and Gouttevin et al. (2023). The
variable biases between the western (Grandes Rousses) and
eastern (Galibier) evaluation areas suggest that orographic
enhancement of precipitation might be especially overesti-
mated by AROME for the areas the most exposed to the pre-
vailing westerly flows.

Finally, the two SAFRAN simulations show a good agree-
ment in terms of SMOD and snow height biases but are spa-
tially under-dispersed by design. The SAFRAN meteorolog-
ical reanalysis (Vernay et al., 2022) uses one vertical profile
per climatologically homogeneous area, interpolated to all
simulation points with altitude (see Sect. 2.5.1). Within one
of these areas, the spatial variability is thus limited to a ver-
tical gradient as described in Vionnet et al. (2016). This also
explains why opposite snow height biases are obtained with
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this forcing between western (Grandes Rousses) and eastern
(Galibier) areas.

4.3 Sensitivity to horizontal resolution

Numerical simulations rely on numerical discretization and
parameterization. The choice of a spatial resolution in-
evitably introduces errors. This choice depends on a trade-
off between scientific arguments, computing resources, and
external factors. As described in Baron et al. (2024), the
250 m resolution choice of the SnowPappus scheme was mo-
tivated by the desire for applicability in large-extent systems
(50000 to 100000 km?, multi-decadal simulations). The nu-
merical resolution choice impacts simulated slope inclina-
tions and aspects and can lead to inaccuracy in the radia-
tive balance (Baba et al., 2019). The snow radiative balance
is particularly heterogeneous in mountainous areas due to
complex topography and can lead to significant changes in
snow properties and melting rates. Comparing simulations
computed at 250 and 30 m resolution provides an analysis
of the unresolved subgrid variability. A direct comparison
between Appendix Fig. Cla, b, and c reveals the expected
unresolved subgrid variability. Snow height patterns in the
250 m simulations (Appendix Fig. Cla) exhibit steeper vari-
ations than the 250 m re-gridded maps obtained from 30 m
simulations (SAFRAN HR, Appendix Fig. C1b) where the
snow patterns are found to be smoother. To understand the
origin of this subgrid variability, Appendix Fig. Clc illus-
trates the raw 30 m simulation where snow patterns are more
sophisticated. As expected (Baba et al., 2019), resolving the
30m topography in simulations without snow transport in-
creases the spatial variance at high elevations and reduces
the 250 m averaged snow height (Sect. 3.1.4). Increasing the
resolution in simulations with snow transport increases the
SMOD (Sect. 3.2.4) but reduces the expected snow height
variability gain compared to 250 m simulations. The com-
plex behaviour of resolution can be summarized by compar-
ing the mean SPS value across all elevations of the SAFRAN
and SAFRAN HR simulations, as in Appendix Fig. E1. This
figure shows a very small mean SPS change with resolution.
The mean difference is found to be lower than 0.01 m for the
Pléiades observations and lower than a day (0.98) for SMOD.
Until now, the resolution-dependence of snow transport mod-
els was only documented at higher resolutions (Griinewald
et al., 2013; Marsh et al., 2020; Mott et al., 2010; Schnei-
derbauer and Prokop, 2011), but results recently submitted
suggest that the resolution-sensitivity of SnowPappus in this
range of spatial scales is similar to what is obtained from
another snow transport model at similar resolutions (Quéno
et al., 2023). Quéno et al. (2016), Bellaire et al. (2014),
and Schirmer and Jamieson (2015) also emphasize the rela-
tionship between the available resolution of the atmospheric
forcing and the resulting snow simulation leading to the rec-
ommendation of a forcing spatial resolution of 1 km or less,
although evaluations of these data are very challenging at this
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scale. A much lower resolution is needed to capture the re-
lationship between topography wind field and snow accumu-
lation (Dadic et al., 2010) or for a complete representation
of wind-driven processes (Mott et al., 2008, 2014; Bernhardt
et al., 2010; Vionnet et al., 2017).

4.4 TImpact of the grid cells classification in spatial
evaluations

Classically in the snow modeling community, the quantita-
tive spatial snow evaluations are performed by grouping sim-
ulation points (Griinewald et al., 2014; Vionnet et al., 2022;
Monteiro et al., 2022; Tong et al., 2009; Deschamps-Berger
et al., 2022; Vionnet et al., 2017) because (1) it allows sum-
marizing large simulation datasets with more concise diag-
nostics and (2) these evaluations are less demanding for mod-
els on large areas than pixel-to-pixel evaluations. In Sect. 3.3,
results are presented using landform classification instead of
elevation bands. The results are partly correlated because
summits and ridges mainly cover the highest elevations of
the domain (Fig. 3). Thus, we consistently obtain snow trans-
port mainly affecting snow height and SMOD on the upper
elevation bands and for the geomorphons “peaks (summit)”
and “ridge”. However, some conclusions significantly differ
between both space classifications, especially for the o ra-
tio score and the SPS. A notable difference is found in the
SPS snow height comparison. SPS scores are found to show
lower variability for the different precipitation forcings and
overall smaller SPS values using landform groupings than el-
evation bands (Fig. 11, Appendix Fig. Dlc, f). This result can
be supplemented with Fig. 13 showing the mean SPS value
being consistently better using landform groups. This sug-
gests simulated and observed distributions are closer when
grouped using landforms than elevation bands. Indeed, for
the landform grouping, each different landform distribution
includes a relatively large spatial variability (intra-class vari-
ance) mostly due to elevation, slope, aspect, and precipita-
tion variability (Clark et al., 2011; Freudiger et al., 2017).
On the other hand, using the elevation grouping the intra-
class variance is mostly caused by other processes than ele-
vation. This might suggest that our simulations better cap-
ture the altitudinal variability in snow than the other pro-
cesses and the topographic-dependent variability. This result
clearly illustrates the sensitivity to the choice of grid cell
classification groups of the scores used. The landform clas-
sification also provides complementary insights into the be-
haviour of the SnowPappus model. In Fig. 11 and Appendix
Fig. D1, SnowPappus reduces the mean snow height on pix-
els classified as “peak (summit)” and “ridges” and increases
the snow height on “spur (convex)”, “slope”, and “hollow
(concave)” comparatively to simulations without snow trans-
port. This behaviour is the result of the wind spatial patterns
obtained from Le Toumelin et al. (2024). It can be under-
stood as snow on “peak (summit)” and “ridges” (ablation ar-
eas) being transported to pixels classified as “spur (convex)”,
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“slope” or “hollow (concave)” (deposition areas) due to re-
spective wind acceleration and deceleration on these pixels.
This behaviour is similar between all 250 m resolution sim-
ulations, while different patterns are obtained from the 30 m
SAFRAN HR simulation. Indeed, the finer spatial scales re-
solved at 30 m resolution produce more complex spatial pat-
terns of wind fields and snow transport. When averaged at
250 m resolution, these simulations produce a more subtle
influence of snow transport than simulations at the coarser
250 m resolution, with a less direct influence of the 250 m
topography on the simulated snow patterns.

4.5 Limitations of simulations

In this study, we tested the sensitivity of simulated spatial
snow height and SMOD variability to the variability in pre-
cipitation, snow transport, and spatial resolution, but numer-
ous other processes shape snow spatial variability in the field,
as reviewed in Mott et al. (2018). Those processes occur at
different scales, going from the regional scale to the slope
and lower scale. It is worth noticing that neither preferen-
tial deposition nor the seeder—feeder mechanism is repre-
sented in our simulations. Additional errors in snow—wind
interaction come from process modeling. In our simulation,
only the blowing snow redistribution process is represented,
but the preferential deposition and snowfall enhancement are
not. Blowing snow transport parameterization also suffers
from uncertainties. The parameterizations used in our model
were developed for flat areas and the question remains on
using them in complex turbulent mountain topography. As
discussed by Aksamit and Pomeroy (2018), turbulence, wind
gusts, and eddies are some of the main small-scale contribu-
tors to blowing snow. In any case, the DEVINE downscaled
wind does not yet take into account wind turbulence and re-
circulation zone. Further studies are needed to quantify the
relative impact of recirculation zones over lee deceleration at
the 250 m spatial resolution used in this work. Moreover, in
our simulations not all cover types and processes are repre-
sented. Forests and glaciers are masked out for comparisons
in addition to unusable observed pixels (due to topographic
shadows or other observation limitations). The necessity of
using these masks inevitably has an impact on the results by
reducing the number of pixels in use for the evaluation. For
masked forest pixels, we know that snow transport is strongly
inhibited in forested areas leading to the creation of snow ac-
cumulation at the forest edges (Bernhardt et al., 2012). It is
not possible to account for this phenomenon solely through
post-processing masks. In our simulation domain, the main
forested areas are located at low elevations where snow trans-
port is minimal or non-existent. On the other hand, glaciers
are generally located in areas prone to blowing snow. Re-
moving glaciers from the analysis significantly decreases the
total number of pixels subject to snow transport at higher al-
titudes, but it does not introduce bias to pixels at the edges of
the mask. Although the simulated and observed snow heights
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are not directly usable, it is important to note that snow trans-
port is still simulated on masked glacier pixels and thus can
contribute to neighbour pixels’ snow balance.

4.6 Uncertainties and limitations of observations

In this work, simulations are evaluated against spatialized
snow observations, giving a larger perspective than point-
scale snow observations. Indeed, although point-scale snow
observations are commonly used to evaluate spatialized sim-
ulations (Horton and Haegeli, 2022; Vernay et al., 2022;
Vionnet et al., 2022; Mott et al., 2023; Marsh et al., 2020),
their spatial distribution and representativeness is quite low
in mountains (Griinewald et al., 2015; Pomeroy et al., 2009;
Pepin et al., 2015), while satellite snow observations like
Pléiades snow height and Sentinel-2 SMOD have a much
better spatial coverage and representativeness. Nonetheless,
some errors and limitations also come from the observa-
tion side. The Pléiades observations are on-demand snap-
shots of snow height over a predefined extent and at a spe-
cific date. By design, this limits the usage of Pléiades im-
ages and the extent to which our conclusions stay valid. P1éi-
ades observations of snow height can be affected by shad-
ows, steep slopes, and the reference image used in the pro-
cessing method. These limitations restrict the domain of ob-
servations and make it difficult to retrieve accurate snow
height on glaciers. The Pléiades horizontal resolution of 2 m
causes challenges in comparison to coarser-resolution simu-
lations. Unsimulated subgrid processes are captured by the
observation, which complexifies the analysis (Fig. 4). For
the Sentinel-2 observations, the major limitation comes from
the snow detection algorithm. The presence or absence of
snow is not directly comparable to our simulation output. In
Sect. 2.8.1, the presence or absence of snow is expressed as
a function based on a given simulated snow height threshold.
This raises the question of the sensitivity to this threshold
(Gascoin et al., 2019; Hofmeister et al., 2022).

5 Conclusions

We conducted a spatialized evaluation of the blowing snow
model SnowPappus (Baron et al., 2024) joined with a sensi-
tivity analysis to alpine precipitation variability on a 902 km?
area representative of the French Alps and the Pyrenees
in terms of landforms. We evaluated the simulated snow
height and snow melt-out date (SMOD) using Pléiades and
Sentinel-2 satellite products. The Pléiades comparisons were
conducted in two different areas, on four different dates, and
during three different snow seasons. Eight different snow
simulations have been run over three snow seasons with three
different precipitation forcings and two simulation resolu-
tions (Table 1). We performed simulation analysis with the
aim of disentangling simulation error contributions from the
SnowPappus blowing snow model, the precipitation forcing
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variability, and the unresolved subgrid variability. The main
conclusions of this study are as follows:

Simulations without snow transport are found to be un-
able to capture the spatial variability in snow cover in
alpine terrain. The addition of SnowPappus’ snow trans-
port in the simulations results in a more physically real-
istic assessment of snow height and SMOD, regardless
of precipitation forcing, and leads to simulated snow
height and SMOD closer to the observations. Further-
more, the use of the SnowPappus model increases the
variance of simulated snow height regardless of precip-
itation forcing bias.

Precipitation errors are identified as the main source of
bias and standard deviation in snow height and SMOD
at low to medium altitudes. This result underlines that
the greatest care must be taken to obtain the most accu-
rate precipitation fields for snow simulation. It also sug-
gests that assessments of spatial snow simulations that
do not account for precipitation uncertainty are unlikely
to provide informative insights regarding the accuracy
of particular simulated snow processes.

Blowing snow transport impact on snow height, SMOD
bias, and standard deviation prevail for high altitudes
or pixels classified by the landform classifier as “peak
(summit)” and “ridges”.

The changes in simulation snow height and SMOD
mean SPS when increasing computation resolutions
from 250 to 30 m are minimal. For Pléiades observa-
tions, the change is less than 0.01 m, and for SMOD, it
is less than 1d. These changes in spatial variance and
bias are also lower than the simulated spatial variability
due to precipitation inputs and the impact of blowing
snow in the affected areas.

The addition of the SnowPappus blowing snow model
to a 250 m Crocus snowpack simulation consistently in-
creases and improves the simulated snow spatial vari-
ability at high elevations in accordance with obser-
vations. However, improvements in snow height and
SMOD biases are only obtained using precipitation
forcing that does not suffer from strong negative biases.

The findings of this study show promising results of using
the SnowPappus blowing snow model for large-scale mod-

eling

of alpine snowpack. Future work will focus on adding

to the simulation workflow assimilation methods to improve

preci

pitation estimates. Our results suggest that snow trans-

port impact on snow height at 250 m resolution is significant
at high elevations and therefore needs to be accounted for.
However, unresolved processes at this spatial scale, parame-
terization uncertainty, and evaluation challenges are respon-

sible

for large uncertainties that will need to be appropriately
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quantified in future works, especially with the goal of design-
ing a snow ensemble assimilation frameworks (e.g., Cluzet
et al., 2021; Deschamps-Berger et al., 2022).
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Appendix A: Additional domain characteristics

3107

0.20

Frequency
=]
=
w
1

0.10

0.05 A

Area
0.25 - Il Entire French Alps and Pyrenees
I Simulation

area

Geomorphons

Figure A1l. Landform classification frequency (at 250 m) for our simulation domain and the entire French Alps and Pyrenees (as an area
defined in Vernay et al., 2022). We found a good agreement between our simulation pixel classification and the frequency of the French Alps
and Pyrenees. We note that using 250 m resolution, no pixel corresponding to shoulder, footslope, and flat is classified as such.
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Appendix B: Additional map of mean daily
precipitation variability
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Figure B1. Map of the mean daily precipitation over 2017-2020 (in mm d=1) for the four different forcings. This illustrates the spatial
variability in each precipitation dataset: (a) SAFRAN, (b) SAFRAN HR, (¢) ANTILOPE, (d) AROME. In each map, the mean solid fraction
of precipitation is displayed as a contour plot (i.e., 1 = only solid precipitation). The summer aerial photography base map is from IGN©

(2022).
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Appendix C: Additional map of simulated snow height
for Pléiades 1, 13 May 2019
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Figure C1. Map of simulated snow height on the 13 May 2019 at 10:00 CET. (a) SAFRAN 250 m simulation with snow transport and without
snow transport in the left sub-map. (b) SAFRAN HR simulation (30 m computed resampled to 250 m) with snow transport and without snow
transport in the left sub-map. (¢) Raw SAFRAN 30 m simulation with snow transport and without snow transport in the left sub-map. The

absence of snow is indicated in gray.
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Appendix D: Additional landform analysis
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Figure D1. Scores comparing simulations with the Grandes Rousses Pléiades observations. Panels (a), (b), and (¢) compare simulations
with the 13 May 2019 Pléiades 1 image; (d), (e), and (f) are based on the 4 May 2020 Pléiades 2 image. (a), (d) Bias (m); (b), (e) o ratio
(no unit); (¢)—(f) SPS (m). The important standard deviation ratio values found for the “pit” landform type in (b) and (e) are explained
because almost all pixels of this type have no observed snow, whereas the simulations give snow on every pixel. This is particularly visible
in panels (d) and (e) where ANTILOPE, SAFRAN, and SAFRAN HR have almost no simulated snow and a fair standard deviation ratio

except for ANTILOPE. All scores are presented as a function of landform pixel classification.

The Cryosphere, 18, 3081-3116, 2024

https://doi.org/10.5194/tc-18-3081-2024



A. Haddjeri et al.: Analyzing the sensitivity of a blowing snow model

Appendix E: Additional resolution analysis

23 January 2018 SAFRAN HR
" SAFRAN
[
T c
£ 6 16 March 2018
o
[
“6 =]
© 9 13 May 2019
= ©
©
a
4 May 2020
0.05 0.10 015 0.20 0.25 030 0.35 040 045
N Mean SPS (m), lower is better
£s
£S5 2018 - 2019
L 0
0ns
5 T 2017-2018
o
— ©
g 45 5.0 5.5 6.0 65 7.0 75 80

Mean SPS (days), lower is better

Figure E1. Plots of average SPS values for the SAFRAN and
SAFRAN HR simulations when grouped with 300 m elevation
bands. This graph illustrates the impact of the computing horizontal
resolution on snow height and snow melt-out date.

Code and data availability. The SnowPappus blowing snow model
is developed in the framework of the open-source SURFEX project.
The source files of the SURFEX system (Crocus snow model,
ISBA ground model, and SnowPappus model) are provided at https:
//doi.org/10.5281/zenodo.7687821 (Baron et al., 2023a) to guaran-
tee the permanent reproducibility of results. However, we recom-
mend that potential future users and developers access the code
from its Git repository to benefit from all tools of code manage-
ment (history management, bug fixes, documentation, interface for
technical support, etc.). This requires a free and quick registration.
The procedure is described at https://github.com/UMR-CNRM/
snowtools/blob/master/doc/source/misc/surfex-install.rst (last ac-
cess: 24 June 2024). The version used in this work is tagged as
SnowPappus-v1.0. A user manual describing the SURFEX namelist
options related to SnowPappus is available at https://doi.org/10.
5281/zenodo.7681340 (Baron et al., 2023b). More general infor-
mation about SURFEX use can be found at https://github.com/
UMR-CNRM/snowtools (last access: 24 June 2024).

The code and model weights used for DEVINE are available
for free at https://github.com/louisletoumelin/neural_network_and_
devine/ (last access: 24 June 2024; DOI: https://doi.org/10.5281/
zenodo.10594274, Le Toumelin, 2024).

The WhiteboxTools Open Core software used to com-
pute the landform classification is available for free at
https://www.whiteboxgeo.com/manual/wbt_book/available_
tools/geomorphometric_analysis.html#Geomorphons  (Whitebox
Geospatial Inc., 2024).

The Earth System Modeling Framework (ESMF) software is
available for free at https://earthsystemmodeling.org/ (last access:
24 June 2024; DOI: https://doi.org/10.5281/zenodo.11205527,
Theurich et al., 2024).

The GDAL software is also available for free at https://doi.org/
10.5281/zenodo.8340595 (Rouault et al., 2023).

https://doi.org/10.5194/tc-18-3081-2024

3111

The DEM used in this study originates from the IGN® website.
Tiles can be downloaded for free at https://geoservices.ign.fr/rgealti
(IGN©, 2021c¢).

Forest mask originates from IGN® and can be downloaded for
free at https://geoservices.ign.fr/bdforet (IGN©O, 2024a).

Waterways, lakes, and cities’ spatial extent originate from IGN®
and can be downloaded for free at https://geoservices.ign.fr/bdtopo
(IGN®©, 2024b).
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