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Abstract. Snow water equivalent (SWE) is a key variable in
climate and hydrology studies. Yet, current SWE products
mask out high-topography areas due to the coarse resolu-
tion of the satellite sensors used. The snow remote sensing
community is hence pushing towards active-microwave ap-
proaches for global SWE monitoring. Designing a SWE re-
trieval algorithm is not trivial, as multiple combinations of
snow microstructure representations and SWE can yield the
same radar signal. Retrieval algorithm designs are converg-
ing towards forward modeling approaches using an educated
first guess on the snowpack structure. Snow highly varies in
space and time, especially in mountain environments where
the complex topography affects atmospheric and snowpack
state variables in numerous ways. In Canada, automatic
weather stations are too sparse, and high-resolution numer-
ical weather prediction systems have a maximal resolution
of 2.5 km× 2.5 km, which is too coarse to capture snow spa-
tial variability in a complex topography. In this study, we
designed a subgridding framework for the Canadian High
Resolution Deterministic Prediction System (HRDPS). The
native 2.5 km× 2.5 km resolution forecast was subgridded to
a 100 m× 100 m resolution and used as the input for snow
modeling over two winters in Glacier National Park, British
Columbia, Canada. Air temperature, relative humidity, pre-
cipitation, and wind speed were first parameterized regard-
ing elevation using six automatic weather stations. We then
used Alpine3D to spatialize atmospheric parameters and ra-
diation input accounting for terrain reflections, and we per-
formed the snow simulations. We evaluated modeled snow-

pack state variables relevant for microwave remote sensing
against simulated profiles generated with automatic weather
station data and compared them to simulated profiles driven
by raw HRDPS data. The subgridding framework improves
the optical grain size bias by 18 % on average and the mod-
eled SWE by 16 % compared to simulations driven with raw
HRDPS forecasts. This work could improve the snowpack
radar backscattering modeling by up to 7 dB and serves as a
basis for SWE retrieval algorithms using forward modeling
in a Bayesian framework.

1 Introduction

Seasonal snow governs several feedback loops that directly
affect our planet’s climate and plays a major role in its hy-
drological dynamics. With its high albedo, snow reflects a
large proportion of the incoming solar radiation, which in
turn helps to mitigate global warming (IPCC, 2019). Further-
more, snow insulates the underlying soil, affecting the micro-
bial activity, carbon fluxes, and permafrost freeze–thaw cy-
cles (Natali et al., 2019; Biskaborn et al., 2019). Seasonal
snowmelt provides connected watersheds with freshwater,
sustaining natural ecosystems and human infrastructure. Fi-
nally, extreme precipitation events and resulting snowmelt
can cause devastating floods (Pomeroy et al., 2016; Vionnet
et al., 2020), so managing runoff would highly benefit both
society and the economy (Sturm et al., 2017).
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Yet, snow mass (or snow water equivalent, SWE) re-
mains poorly characterized, especially in mountainous re-
gions where a significant amount of SWE is stored at the
continent scale (Wrzesien et al., 2018). Global SWE prod-
ucts inferred from passive microwave observations are avail-
able at a 25 km resolution (Luojus et al., 2021), which is
too coarse to capture the SWE spatial variability (Derksen
et al., 2021), so mountains are simply omitted or masked
out. Both observations from passive microwaves and model-
ing efforts yield negative biases when estimating mountain or
deep-snow SWE on the global scale (Vuyovich et al., 2014;
Wrzesien et al., 2018; Pulliainen et al., 2020). Hence, the
snow remote sensing community is promoting active remote
sensing, which provides higher-spatial-resolution informa-
tion compared to passive microwave products (Tsang et al.,
2022; Rott et al., 2010; Derksen et al., 2021). The sensitivity
of the synthetic aperture radar (SAR) signal to SWE has been
proven at the Ku-band (King et al., 2015; Lemmetyinen et al.,
2016). Recent studies suggest that the C-band could also be
used for snow depth retrieval (Lievens et al., 2019, 2022),
a key parameter for SWE retrieval, although it is contrasting
with previous research (Dozier and Shi, 2000). Linking SWE
to SAR backscattering is complicated as it depends on more
than solely SWE (which is a function of snow height and
density) and also on the snow microstructure. Several com-
binations of SWE and snowpack microstructures can yield
similar backscattering values, creating multiple inversion so-
lutions (Tsang et al., 2022). As a result, recent inversion algo-
rithms tend towards a Bayesian framework where a forward
scattering model is used to generate possible backscattering
values, and a weighted cost function allows finding the model
that fits best (Lemmetyinen et al., 2018; King et al., 2018;
Zhu et al., 2021). So far, these studies only paired airborne
radar observations with fields measurements, but coupling a
radiative transfer model with a snow physics model still has
to be explored in the active-microwave domain.

Advanced thermodynamic multilayered snow models such
as Crocus or SNOWPACK produce SWE and microstruc-
ture parameter estimates (Brun et al., 1992; Vionnet et al.,
2012; Lehning et al., 2002). Such models can be driven by
either automatic weather station (AWS) measurements, at-
mospheric models, or reanalysis products. On the one hand,
weather stations provide very accurate measurements of the
atmospheric conditions at the local scale. However, they need
human maintenance, are subject to outages and local biases,
and usually undersample the spatial heterogeneity of the pro-
cesses at stake, especially in complex terrain. As a result,
AWS spatial interpolation in mountainous areas is not al-
ways accurate (Lundquist et al., 2019). On the other hand,
the Canadian High Resolution Deterministic Prediction Sys-
tem (HRDPS) (Milbrandt et al., 2016) produces numerical
forecasts at 2.5 km resolution and is known for its negative
bias in precipitation, yielding a negative bias for snow depth
and SWE (Bellaire et al., 2011, 2013; Côté et al., 2017).

Several numerical weather prediction (NWP) downscal-
ing schemes have already been proposed. Liston and Elder
(2006) introduced the MicroMet model, which is now widely
used and is part of several more recent models. In MicroMet,
a high-resolution DEM (30 m to 1 km) is used to generate
the overlying atmospheric forcing from a coarser grid or a
sparse network of automatic weather stations. This allows
a physically sound downscaling to be produced when com-
pared to naive interpolation methods but without the need to
run a computationally intensive fully dynamic atmospheric
model at the local scale. In MicroMet, lapse rates are used for
air temperature, dew point temperature (for relative humid-
ity), and precipitation. The algorithm for wind speed takes
terrain slope and curvature into account. Incoming solar ra-
diation is split between direct and diffuse radiation and ad-
justed with cloud cover and terrain shading. Fiddes and Gru-
ber (2014) developed the TopoSCALE model, which can be
seen as an iteration over the MicroMet model. The main dif-
ference with MicroMet lies in the precipitation subgridding
that considers wind redistribution by altering the precipita-
tion field with climatology data after applying the lapse-rate
correction from Liston and Elder (2006). In the Canadian
Hydrology Model (CHM), Marsh et al. (2020) take this idea
one step further by adding snow modeling to the atmospheric
model subgridding. In their study, the high-resolution DEM
used for subgridding is first transformed into an unstruc-
tured triangular mesh (or “triangulated irregular network”,
TIN). The input meteorology can be either real AWSs or an
array of “virtual stations” extracted from any atmospheric
model and defined by latitude, longitude, and elevation. The
provided atmospheric forcing is spatialized over the study
area and then used to run snow simulations using either iS-
nobal, SNOWPACK, or Crocus (Marks et al., 1999; Lehn-
ing et al., 2002; Brun et al., 1992). Vionnet et al. (2021)
used the CHM with a novel wind-downscaling strategy to
subgrid forecasts from the HRDPS and simulate snow con-
ditions at 50 m during one snow season using two-layer iS-
nobal within CHM as the snow model. With snow hydrology
as a main application, the evaluation for CHM in Marsh et al.
(2020) and Vionnet et al. (2021) is naturally focused on SWE
and snow depth. However, for remote sensing applications,
specifically for the SAR signal inversion, snow microstruc-
ture and layering truly matter (King et al., 2018; Zhu et al.,
2021; Tsang et al., 2022). Remote sensing products are writ-
ten in a gridded raster format; the TIN mesh used in CHM, al-
though very efficient, becomes problematic when pairing the
model’s output with satellite imagery. The Alpine3D model
is a spatially distributed 3D model, which allows the verti-
cal 1D multi-layer snow model SNOWPACK to be run over
a gridded DEM, considering the spatial processes affecting
atmospheric variables (Bartelt and Lehning, 2002; Lehning
et al., 2002, 2006). Weather data are spatialized using the
MeteoIO library (Bavay and Egger, 2014). However, Me-
teoIO is geared towards AWS spatialization, and it excludes
an atmospheric model subgridding scheme. This highlights
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the current community needs for both the design and the
evaluation of an atmospheric model subgridding framework
to perform snow modeling in a SAR remote sensing coupling
context. Our research should answer the following questions:

1. How do subgridded HRDPS forecasts compare to ref-
erence automatic weather stations in the simulation do-
main?

2. Do the resulting atmospheric forcings lead to an im-
provement in snowpack modeling, especially for critical
snow parameters in remote sensing applications?

3. Which degree of spatial variability with regards to snow
parameters can be reached by such a subgridding frame-
work?

We thus first built a subgridding module to downscale
HRDPS grids as a virtual weather station array. Second,
we spatialized atmospheric parameters and performed snow
simulations on the study area using the Alpine3D model
over two consecutive winters (2018–2019 and 2019–2020).
Weather parameter subgridding and snowpack state parame-
ters were assessed at three reference weather stations using
an array of statistical criteria and a dynamic time warping al-
gorithm (Hagenmuller and Pilloix, 2016; Hagenmuller et al.,
2018; Herla et al., 2021). Finally, we assessed the spatial
variability capacity of the proposed subgridding framework
over the whole simulation domain and within one HRDPS
grid cell.

2 Study area

This study was conducted in the Rogers Pass area of Glacier
National Park (GNP), British Columbia, Canada (Fig. 1),
which is part of the Selkirk range in the Columbia Moun-
tains. The pass is used as a transportation corridor by the
Trans-Canada Highway and the Pacific Railway, making it
the busiest transport corridor in western Canada (Bellaire
et al., 2016). The pass is exposed to 144 avalanche paths, and
as a result, Rogers Pass hosts the largest avalanche control
operation in Canada (Delparte et al., 2008). The operation
has been ongoing since 1965, and the site has been used for
snow research ever since, making this area the longest record
of mountain snow in western Canada (Fitzharris, 1987; Bel-
laire et al., 2016; Madore et al., 2022). The study area is
18 km by 16 km, covering 288 km2 of complex topography,
with elevations ranging from 840 m a.s.l at the valley bottom
to 3284 m a.s.l. In winter, the Columbia Mountains snowpack
is characterized as a transitional snowpack with a maritime
influence. Hence, westerly fluxes coming from the Pacific
mainly govern the precipitation pattern. Occasionally, dryer
and colder systems from the northeast hit the range, bring-
ing some continental influence to the east of the study area.
On average, the snowpack reaches 3.2 m at its peak, usually
around the end of March and early April.

The Park has eight automatic weather stations (AWSs) at
different elevations around the Highway corridor. However,
Heather Hill and Rockfall stations are outside of the main
study area and are more subject to long outages. As a re-
sult, we removed them from the AWS set used in this study.
The measured variables are air temperature (TA, °C), relative
humidity (RH, %), wind speed (VW, m s−1), wind direction
(DW, degrees), precipitation (PSUM, mm), incoming long-
wave radiation (ILWR, W m−2), and incoming shortwave ra-
diation (ISWR, W m−2). Some stations include a snow height
(HS, cm) sensor. Table 1 summarizes the set of meteorologi-
cal variables available for each AWS. This work mainly aims
at providing a realistic first guess of the snowpack structure
in the context of SAR remote sensing signal inversion al-
gorithm development. At relevant frequencies (Ku-band, X-
band, C-band), the snowpack becomes opaque to microwaves
when wet. As a result, this study focuses on the accumulation
period, and we used two winter time series: from September
to April, 2018–2019 and 2019–2020. The 2018–2019 sea-
son had overall colder temperatures and was relatively dry.
The 2019–2020 season had milder temperatures and abun-
dant precipitation. As a result, in 2019–2020, the snowpack
was deeper and mostly composed of rounded grains where, in
2018–2019, the shallower snowpack and colder temperatures
led to a mostly faceted snowpack. Both seasons had rain-on-
snow episodes in the early season, which created melt–freeze
crusts at the bottom of the snowpack.

3 The numerical weather prediction downscaling
processing chain design

Figure 2 summarizes the numerical weather prediction
(NWP) downscaling processing chain.

3.1 HRDPS subgridding and Alpine3D simulations

The High Resolution Deterministic Prediction System
(HRDPS) produced by the Meteorological Service of Canada
provides a 2.5 km gridded hourly forecast of atmospheric
variables for most of Canada (Milbrandt et al., 2016). At-
mospheric variables are computed for each pixel at a ref-
erence elevation provided by the underlying 2.5 km resolu-
tion digital elevation model. This study is based on a grid of
70 HRDPS prediction cells overlying the study area and in-
cluding the following variables: TA, RH, VW, DW, PSUM,
ISWR, and ILWR. First, using the 20 m Canadian Digital El-
evation Model (CDEM), we transformed each HRDPS cell
data into a virtual weather station. To do so, each cell’s
centroid coordinates were recomputed, minimizing the hy-
potenuse distance between each underlying CDEM pixel
centroid and the HRDPS centroid, in an 800 m radius around
the original HRDPS centroid. Then, TA, RH, PSUM, and
ILWR were parameterized to correct for the model’s bi-
ases and account for the elevation discrepancy between the
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Figure 1. Glacier National Park, British Columbia, Canada.

Table 1. Inventory of instruments on the weather stations of the study site. TA stands for air temperature, RH for relative humidity, VW for
velocity of wind, DW for direction of wind, PSUM for precipitation water equivalent, ILWR for incoming longwave radiation, and ISWR
for incoming shortwave radiation.

Weather station Elevation TA RH VW DW PSUM ILWR ISWR HS

Abbott 2085 m X X X X X X
Hermit 1950 m X X X X X X
Fidelity 1905 m X X X X X X X X
MacDonald West Shoulder 1930 m X X X X
Rogers Pass 1315 m X X X X X X
Round Hill 2100 m X X X X X

HRDPS cell elevation and the new centroid CDEM eleva-
tion. VW was parameterized to account for the topography
underlying the 2.5 km resolution grid unresolved by HRDPS.

Based on all weather stations in the park, the bias in
air temperature has a nonlinear relationship with the eleva-
tion difference between the station elevation and the original
HRDPS cell elevation over the 2018–2020 period. We gener-
ated a training set by randomly selecting 75 % of this dataset
uniformly across elevations, and the remaining 25 % served
as validation set. The data were transposed into logarithmic
space to perform a linear regression. The resulting logarith-
mic fit was then applied over the TA dataset when the ele-
vation difference between the virtual weather station and its
overlying HRDPS cell was over 100 m.

TAp =

{
TAhrdps+ ln(−0.0121E+ 6.89) if |1E|> 100
TAhrdps otherwise

(1)

Here 1E corresponds to the elevation difference between the
CDEM cell and the HRDPS cell, TAp is the parameterized air
temperature, and TAhrdps is the raw HRDPS air temperature.

RH was corrected by first converting relative humidity
to dew point temperature, as described in Liston and Elder
(2006). This dew point temperature was then adjusted using
the logarithmic fit presented above and converted back to rel-
ative humidity.

Snowfall was first parameterized using an elevation lapse-
rate correction. This lapse rate was computed by perform-
ing a simple linear regression of precipitation as a func-
tion of elevation. We used a dataset of 4 weeks of manual
SWE measurements on four conventional HN24 precipita-
tion boards placed between 1330 and 1920 m at Mount Fi-
delity, all placed in flat and open areas sheltered from the
wind.
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Figure 2. Numerical weather prediction downscaling scheme flowchart.

PSUMp = PSUMhrdps+ 0.0011×1E×PSUMhrdps (2)

Finally, the HRDPS ILWR was downscaled using the lapse-
rate correction as highlighted by Marty et al. (2002), and VW
was downscaled to the 20 m CDEM resolution at each new
centroid position using the sky view factor approach (Helbig
and Löwe, 2014; Helbig et al., 2017).

These virtual weather stations were then spatially interpo-
lated on a 100 m grid via MeteoIO (Bavay and Egger, 2014)
using the CDEM grid resampled to 100 m. TA was spatial-
ized using a simple lapse rate computed from the AWS data
and inverse distance weighting (IDW). RH, VW, and DW
were spatialized using the MicroMet algorithms described
in Liston and Elder (2006). To spatialize precipitation, we
used topographic parameters and prevailing winds to alter
the precipitation field to account for wind snow redistribu-
tion (Winstral et al., 2002). Incoming shortwaves were spa-
tialized considering terrain shading, slopes, and reflections
from neighboring cells. Finally, ILWR was spatialized us-
ing IDW. All the spatial interpolation algorithms mentioned
above are a part of the MeteoIO library, which is integrated
into the Alpine3D model.

Alpine3D is a spatially distributed 3D model, which al-
lows running the vertical 1D snow model SNOWPACK over
an area while taking into account the spatial processes af-
fecting the input atmospheric variables, such as terrain shad-
owing (Lehning et al., 2006). SNOWPACK is a detailed
multi-layer thermodynamic finite-element model of snow
microstructure and metamorphism. In this model, the snow
microstructure is represented by four main variables: grain
size, bond size, dendricity, and sphericity for each snow
layer. In addition, the model simulates several metrics of

interest when monitoring the evolution of the snowpack,
such as height of snow, SWE, density, optical grain size, or
snow temperature (Bartelt and Lehning, 2002; Lehning et al.,
2002). To do so, the model is fed with three text files describ-
ing the weather parameters on the time domain of the simu-
lation, the initial state of the soil layers on which the snow
is going to develop (and initial snow layers if relevant), and
finally the configuration of the simulation. Alpine3D uses a
DEM and a land-use layer to properly initiate each SNOW-
PACK cell. Depending on the land-use category each cell
falls into, canopy information is provided for forested cells
to represent snow interception and forest snow processes.
The model was run at Rogers Pass on the same 100 m grid
described above, over an area of 18 km× 16 km (288 km2)
centered on the Highway 1 corridor for winters 2018–2019
and 2019–2020. The snowdrift scheme was turned off, and
we generated outputs for three reference stations: Fidelity,
Hermit, and Abbott. To assess the spatial variability capac-
ity of the subgridding framework, the model was run on the
whole simulation domain, and we also generated outputs at
six points within the same cell for intra-cell variability as-
sessment. The specific cell was chosen because it is the only
cell in the simulation domain that features a north and south
slope with elevations ranging from below the treeline to the
alpine on both aspects. No glacier is present in the area. Ta-
ble 2 summarizes the topographic characteristics for the cho-
sen intra-cell spatial variability points.

3.2 Validation data and atmospheric parameter
subgridding evaluation

To compare with snow simulations driven by the raw HRDPS
and the subgridding framework, we performed SNOWPACK
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Table 2. Summary of the topographic characteristics for the chosen
intra-cell spatial variability points. BTL stands for below treeline,
TL for treeline, and ALP for alpine.

Spatial variability Elevation Slope azimuth Slope angle
point (m) (°) (°)

S_BTL 1510 144 17
S_TL 1871 140 23
S_ALP 2197 179 22
N_BTL 1548 359 25
N_TL 1852 356 26
N_ALP 2079 352 31

simulations driven with AWS data at Fidelity, Hermit, and
Abbott stations. We filtered weather station data to remove
outliers; data gaps smaller than 6 h were linearly interpolated,
while larger gaps were filled using parameterized HRDPS
data. Note that Abbott station is located in a thunderstorm-
prone area. Hence, the station is shut down all summer and
is only turned back on mid-October. Parameterized HRDPS
data were again used to fill in this gap. Moreover, SR50 snow
depth measurements at Fidelity and Abbott stations were
compared against each snow simulation approach.

The numerical weather forecast subgridding quality was
statistically assessed using three well-known criteria: bias,
mean absolute error (MAE), and Spearman R correlation
coefficient. These indicators allowed respectively quantify-
ing the systematic difference between the models and the
ground-truth measurements at the AWSs, the prediction ac-
curacy, and the strength of the association between modeled
variables and the ground truth. To smooth small time lags be-
tween modeled meteorological events and measurements at
the AWSs, we averaged the meteorological time series over
2 h time steps, and reaccumulated precipitation over the same
period.

3.3 Snow modeling evaluation

Dynamic time warping (DTW) is an algorithm developed
to measure the similarity between two sequences. In a nut-
shell, DTW computes the optimal match between two sig-
nals while allowing for an elasticity in time (or space, in the
case of snow profiles). It first resamples the two sequences on
1D grids of the same elemental size and length. Then, a local
cost matrix D is built, summarizing the distance between ev-
ery elemental pair. From there, an accumulated cost matrix
G is built by computing the accumulated cost to iterate from
one element of D to the next one, respecting a predefined
constraint set. The optimal alignment is found by minimiz-
ing the alignment accumulated cost.

Although originally designed for speech recognition
(Sakoe and Chiba, 1978), DTW is extensively used in time
series analysis, and it has recently received increased interest
in the snow community (Hagenmuller and Pilloix, 2016; Ha-

genmuller et al., 2018; Viallon-Galinier et al., 2020; Herla
et al., 2021). In the snow science community, DTW has
only been used so far in an avalanche forecasting perspec-
tive, focusing on aligning standard snow parameters (e.g.,
grain type, hardness, liquid water content). In this study, we
present a new development to the open-source DTW snow
profile alignment package written by Herla et al. (2021),
allowing aligning snow profiles on remote-sensing-oriented
snow parameters, namely layer density and optical grain size
(OGS), two key parameters in snow radiative transfer mod-
eling. To do so, an alternative cost function was added to
compute the local cost matrix D.

Di,j = wddd(q
d
i , rd

j )+wogsdogs(q
ogs
i , r

ogs
j ), (3)

where wd and wogs are averaging weights respectively ap-
plied to density and OGS (wd+wogs = 1), rk

n denotes the
nth element of the reference profile R, and qk

n denotes the
nth element of the query profile Q. Finally, dd() and dogs()

correspond to the distance function for density and OGS re-
spectively, which is simply the absolute difference between
the two elements, normalized over the entire vertical profile.

The space elasticity in the alignment algorithm allows us
to find the best match for a layer of the query profile in
the same depth range in the reference profile. The algorithm
constraints define the amount of elasticity allowed, i.e., the
warping window definition and the local slope constraint.
These constraints are essential to keep the algorithm from de-
generating and from generating irrelevant alignments. How-
ever, HRDPS tends to underestimate precipitation in moun-
tain environments (Bellaire et al., 2011, 2013; Côté et al.,
2017). Hence, profiles generated from atmospheric models
and ground truth profiles can significantly diverge in HS.
Physically matching layers are then too far apart, accord-
ing to the algorithm’s constraints, preventing the algorithm
from generating relevant matches. Therefore, we artificially
inflated profiles modeled using NWP, each layer being mul-
tiplied by the height ratio with the station profile. This al-
lowed us to rely solely on snow microstructure parameters
for the alignment, assessing only the microstructure repre-
sentation. The generated aligned (or warped) profile was then
used to compute a mean bias for density and OGS with re-
spect to the ground truth. As precipitation is usually under-
estimated by HRDPS, HS should be underestimated as well,
which should impact the overburden pressure on basal lay-
ers. A small negative bias on density might result with re-
gards to AWS-driven SNOWPACK runs, depending on the
amount of missing snow. For OGS, the temperature gradi-
ent in this region is low and metamorphism mainly happens
through gravitational settling, leading to little variability in
OGS in the snowpack (Madore et al., 2018). As a result, we
do not expect much impact of the inflation approach on this
microstructure parameter, as the main discrepancies should
come from offsets in rain-on-snow modeling and melt/perco-
lation events. Height of snow was compared to the station’s
SR50 measurements when available, and the Nash–Sutcliffe
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model efficiency coefficient (Nash and Sutcliffe, 1970) al-
lowed us to assess the SWE modeling quality using HRDPS
and subgridded HRDPS data versus the station runs over the
two seasons. For more details on the DTW implementation
used in this paper, see Herla et al. (2021).

4 Results

4.1 Numerical weather forecast subgridding
performance

Figure 3 summarizes the performances of the subgridding
framework (denoted as SGF in the figures) applied to the
2018–2019 and 2019–2020 HRDPS time series. The SGF
delivers a mixed performance for TA in 2018–2019. The
HRDPS model shows a 1.8 °C negative bias at Abbott, which
is reduced by 1.2 °C when using the subgridding framework.
However, the negative bias increases by 0.6 °C at the Fi-
delity station and increases very slightly at the Hermit sta-
tion (< 0.1 °C). On the other hand, the mean absolute error
(MAE) and the Spearman R coefficient slightly increase for
most of the validation stations. TA shows a very strong cor-
relation with station measures (R > 0.8).

Relative humidity subgridding yields good performances
as the HRDPS model bias and MAE are reduced by 1 %
to 6 % at all sites. The bias is constant at Fidelity station,
as is the MAE at Abbott. The Spearman correlation coeffi-
cient also slightly increases at Hermit and Fidelity stations
and only slightly decreases at Abbott. Finally, modeled RH
shows a strong correlation with station values (0.6 < R <

0.8).
Overall, the SGF performs best at subgridding VW.

HRDPS is constantly overestimating wind speed by
1.5 cm s−1. This bias is considerably reduced to 0.25 m s−1

on average, and MAE is reduced by around 1 m s−1. How-
ever, the correlation with station values is overall weak
(0.2 < R < 0.4), and the subgridding workflow seems to
have even weakened this correlation, except for Hermit sta-
tion, which shows a negligible correlation (R < 0.2).

Finally, subgridding shows a good performance for PSUM
as well. In agreement with the literature, the bias in mod-
eled precipitation shows a general lack of precipitation in
the HRDPS model and ranged from 0.05 to 0.2 mm. For
2018–2019, MAE values range between 0.25 and 0.35 mm.
With the subgridding, bias and MAE decrease at Abbott and
slightly increase at Hermit, and bias decreases at Fidelity,
while the MAE remains constant. Correlation with station
values is moderate at Abbott and Hermit (0.4 < R < 0.6)
and strong at Fidelity (0.6 < R < 0.8). Finally, subgridding
slightly improves the correlation with AWS measurements at
the former sites and stayed constant at the latter.

The 2019–2020 season yields very similar results to those
for 2018–2019; the bias and MAE are corrected on the same
scale, and the Spearman R coefficient is in the same range

for each variable. The only notable difference is that the
PSUM bias at Abbott is positive for this season, meaning
that HRDPS overestimated precipitation, which is highly un-
usual. As a result, the SGF introduces even more precipita-
tion bias (+0.07 mm).

4.2 Subgridding performance for snow modeling

Figures 4 and 5 summarize the subgridding framework per-
formances for the seasons 2018–2019 and 2019–2020. From
here, snow simulations are denoted as SGF-SNOWPACK,
HRDPS-SNOWPACK, and AWS-SNOWPACK when driven
respectively by subgridded atmospheric parameters from the
SGF, raw HRDPS forecasts, and AWS measurements. For
2018–2019, the snowpack similarity behaves identically at
every site and for both HRDPS-SNOWPACK and SGF-
SNOWPACK. The season begins with average similarity
values (around 0.5), and then it plummets to low values
in mid-October (< 0.5) before improving to higher levels
of similarity in November and for the rest of the season
(0.6 < sim < 0.8). In general, HRDPS-SNOWPACK tends
to have a closer similarity to AWS-SNOWPACK early in
the season. SGF-SNOWPACK tends to score higher simi-
larities than HRDPS-SNOWPACK in the mid-season before
converging back with HRDPS-SNOWPACK in the spring.
For the 2019–2020 season, similarity is again highly vari-
able around 0.5 at Abbott and Hermit for both HRDPS-
SNOWPACK and SGF-SNOWPACK. The early season at
Fidelity shows very low similarities for SGF-SNOWPACK
and HRDPS-SNOWPACK. Then, starting in November, the
similarities stabilize and slowly rise throughout the sea-
son to 0.8 at every site. Again, SGF-SNOWPACK shows a
higher similarity than HRDPS-SNOWPACK during the mid-
winter period at Abbott and Hermit. HRDPS-SNOWPACK
reaches the same level of similarity by early spring or the
end of the winter. At Abbott, HRDPS-SNOWPACK and
SGF-SNOWPACK similarities are very close, though the for-
mer shows more fluctuations during most of the winter and
early spring. The average similarity for all sites and sea-
sons is 0.8 for SGF-SNOWPACK and 0.75 for the HRDPS-
SNOWPACK. Overall, SGF-SNOWPACK increased snow-
pack similarity by 7 % at Abbott, by 2 % at Hermit, and by
6 % at Fidelity with respect to HRDPS-SNOWPACK and
when compared against AWS-SNOWPACK. The mean er-
ror in OGS shows a similar behavior at every site in 2018–
2019 for both approaches. The error peaks and fluctuates
strongly in the early season for both approaches and then
stabilizes around mid-November. Considering the high vari-
ability in the fall for both seasons (September to November
included), the first 3 months were considered a spin-up phase
for the model to initiate a proper snowpack. Hence, the nu-
merical analysis of the results was carried out starting on
the first of December. Both HRDPS-SNOWPACK and SGF-
SNOWPACK are slightly overestimating OGS with respect
to AWS-SNOWPACK, but overall, the proposed method al-
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Figure 3. Atmospheric parameter evaluation for the seasons 2018–2019 and 2019–2020. The first row shows biases with respect to AWS
measurements for each atmospheric parameter, the second row shows mean absolute error, and the third shows Spearman R coefficients.
Blue and orange bars refer to values for 2018–2019 raw HRDPS and subgridding framework respectively. Green and red bars refer to values
for the 2019–2020 season, in the same order.

lows the bias to be decreased by 0.04 mm at Fidelity. How-
ever, OGS bias remains constant at Abbott and Hermit in the
same period. The same pattern repeats for the 2019–2020
season at all sites, where SGF-SNOWPACK decreases on av-
erage the OGS bias by 0.07 mm at Fidelity and 0.09 mm at
Hermit. The bias in OGS remains unchanged at Abbott once
again that season.

Similarly to OGS, in 2018–2019, the mean error in density
shows higher values in the early season and stronger fluctua-
tions for both HRDPS-SNOWPACK and SGF-SNOWPACK.
Variations tend to stabilize by mid-November, and the error
increases again towards the end of the season. Again, the nu-
merical analysis was performed from the first of December
until the end of the simulation for both seasons. Generally,
HRDPS-SNOWPACK seems to underestimate snow den-
sity. SGF-SNOWPACK brought density 3.17 kg m−3 closer
to AWS-SNOWPACK at Abbot and 6.79 kg m−3 closer at
Fidelity for the 2018–2019 season. However, in the same pe-
riod at Hermit, the density bias increases by 1.71 kg m−3 on
average. In 2019–2020, the density bias decreases on aver-
age by 4.65 kg m−3 at Fidelity and by 3.62 kg m−3 at Her-
mit. However, the density bias increases by 0.9 kg m−3 over
the same period at Abbott.

Finally, SGF-SNOWPACK mean error in modeled HS is
35 cm in 2018–2019 (20 cm improvement when compared
to HRDPS-SNOWPACK) and 29 cm in 2019–2020 (29 cm
improvement) when compared with the SR50 measurement

at Fidelity. For reference, the modeled HS with AWS-
SNOWPACK shows a mean error of 8 cm in 2018–2019
and of 14 cm in 2019–2020. However, SGF-SNOWPACK
seems to degrade the quality of the HS modeling regard-
ing HRDPS-SNOWPACK when compared to the SR50 at
Abbot station, overestimating HS for each season. Yet, the
AWS-SNOWPACK run at Abbott shows a high discrepancy
with the SR50 measurements as well, overestimating HS (es-
pecially in 2018–2019). Finally, HS remains relatively un-
changed at Hermit for 2018–2019 as the framework does
not bring a substantial improvement when compared to the
AWS-SNOWPACK-modeled HS.

SWE modeling is considerably improved at all stations
except at Abbott in 2019–2020 (Fig. 6) when compared to
AWS-SNOWPACK. Table 3 summarizes the Nash–Sutcliffe
efficiency coefficient (NSE) values at each site and for each
season. On average, SGF-SNOWPACK improves the SWE
NSE by 13 %, up to 57 % at Hermit in 2019–2020.

4.3 Intra-cell spatial variability provided by the
subgridding framework: a case study

Figure 7 summarizes the main atmospheric parameter values
for the six spatial variability sites, averaged per month (and
accumulated for precipitation). First, as a direct consequence
of the applied lapse rate for TA downscaling and spatializa-
tion, the general rule of thumb that TA should get colder
with elevation is respected. However, the selected point on
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Figure 4. Snowpack similarity assessment for the season 2018–2019. The first row shows DTW similarity for each station, the second shows
bias in OGS with respect to AWS-SNOWPACK, the third shows density bias with respect to AWS-SNOWPACK, and the last row shows
simulated HS (and measured when available). The blue curves refer to SGF-SNOWPACK, the orange curves to HRDPS-SNOWPACK, and
the green curves to AWS-SNOWPACK. In the HS plots for Abbott and Fidelity, the red curves refer to SR50 measurements at the station
plot.

Figure 5. Snowpack similarity assessment for the season 2019–2020. The first row shows DTW similarity for each station, the second shows
bias in OGS with respect to AWS-SNOWPACK, the third shows density bias with respect to AWS-SNOWPACK, and the last row shows
simulated HS (and measured when available). The blue curves refer to SGF-SNOWPACK, the orange curves to HRDPS-SNOWPACK, and
the green curves to AWS-SNOWPACK. In the HS plots for Abbott and Fidelity, the red curves refer to SR50 measurements at the station
plot.
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Figure 6. SWE modeling for the seasons 2018–2019 and 2019–2020. The first row represents SWE simulations at each site for the 2018–
2019 season, and the second row represents SWE simulations for the 2019–2020 season. The blue curves refer to SGF-SNOWPACK, the
orange curves refer to HRDPS-SNOWPACK, and the green curves refer to AWS-SNOWPACK.

Table 3. Nash–Sutcliffe model efficiency coefficient for SWE at each site for each season. Values in bold denote the highest scoring method
at each suite and for each modeled season.

Abbott Fidelity Hermit

2018–2019 2019–2020 2018–2019 2019–2020 2018–2019 2019–2020

SGF-SNOWPACK 0.97 0.64 0.72 0.81 0.53 0.85
HRDPS-SNOWPACK 0.82 0.86 0.43 0.77 0.51 0.28

the north aspect is 100 m lower than the south aspect point,
and as a result, the figure shows slightly warmer tempera-
tures consistently throughout the season on the north aspect.
Second, the aspect gradient is respected with lower incom-
ing shortwave radiation and slightly lower temperatures in
the north aspects. Moreover, wind direction is mostly coming
from the south and southwest. South slopes are thus more ex-
posed to the wind and north aspects are more sheltered. This
is reflected by wind speed values being higher in the south as-
pects, especially in the alpine region. Wind-generated snow
redistribution is accounted for, leeward slopes getting more
snow than windward slopes. Finally, the altitudinal precipita-
tion rate gradient is also respected by the subgridding frame-
work, with precipitation rates getting higher with elevation.
This atmospheric parameter variability is then propagated to
the modeled snowpacks (Fig. 8). Again, the altitudinal gradi-
ent in HS is present, with a deeper snowpack from below the
treeline to the alpine region. Moreover, the melt onset date is
a few days earlier on the south aspect than on the north as-
pect, and water is percolating faster and deeper in the snow-
pack on the south aspects.

Season 2019–2020 results for spatial variability appear in
Appendix A, Figs. A1 and A2. The subgridding framework
creates the same altitudinal and aspect gradients, with more

precipitation overall, milder temperatures, and stronger wind
speeds on average.

4.4 Spatial variability in snow water equivalent
provided by the framework over the simulation
domain

Figure 9 shows the evolution of simulated SWE averaged by
elevation band and aspect. The elevation gradient is well rep-
resented over all four quadrants. In the east and west aspects,
which face dominant winds in the area, the high alpine eleva-
tion is showing SWE equal to or lower than that in the alpine
elevation band. This reflects the effect of wind on ridges,
modeled in the SGF as an alteration of the PSUM field with
wind speed and terrain features. Figure 10 shows the vari-
ability in the modeled SWE within each HRDPS cell over
the simulation domain. The top plot shows the variability in
the early season (19 November 2018), and the bottom plot
shows the variability at the end of the season when the snow-
pack is at its peak (4 March 2019). Each cell shows a wide
spread of SWE values, which indicates that the subgridding
of weather parameters is very effective in bringing spatial
variability within each cell.
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Figure 7. Intra-cell spatial variability in subgridded atmospheric parameters for the season 2018–2019. Each row represents monthly averages
for each atmospheric variable and cumulative precipitation for each elevation band. Blue bars correspond to the north aspect, and orange bars
correspond to the south aspect.

Figure 8. Snowpack spatial variability assessment for the season 2018–2019. The left column represents snow profiles on the south aspect
in the alpine, treeline, and below-treeline elevation bands. The right column represents snow profiles at the same elevation bands but on the
north aspect. Colors represent grain type, which are denominated according to the international classification of Fierz et al. (2009).
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Figure 9. Average SWE aggregated by elevation band and aspect for the season 2018–2019. Atmospheric parameter spatial vari-
ability assessment for the season 2018–2019. Red lines correspond to below-treeline elevations (< 1850 m), green is treeline
(1850 m < elevation < 2000 m), orange is alpine (2000 m < elevation < 2900 m), and blue is high alpine (> 2900 m).

Figure 10. Boxplot of the SWE modeled by the subgridding framework within each HRDPS cell in the early season and at the end of the
season. The labels on the x axis correspond to each HRDPS cell ID. The box spans the interquartile range (IQR), the line represents the
median, and the whiskers extend to the minimum and maximum value within 1.5 times the IQR. Outliers have been removed.

5 Discussion

The proposed downscaling framework brings a noteworthy
improvement to modeled atmospheric parameters when com-
pared to station values. Bias and MAE for VW and RH are
constantly attenuated. For precipitation, in most cases, bias

is corrected but MAE increases. Indeed, although the model,
on average, underestimates precipitation, major precipita-
tion events are overestimated (Côté et al., 2017). The “one-
directional” lapse-rate correction reduces the overall bias by
accurately correcting the small and common underestimation
errors but accentuates the overall larger and rarer overestima-
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tion errors, thus increasing the MAE. We acknowledge that it
limits our work, and our lab is currently carrying out research
to produce an adaptive bias-correction algorithm. Regarding
TA, the mean systematic bias slightly worsens at every sta-
tion except at Abbott, where bias clearly improves. However,
the added error remains under 0.5 °C. MAE reacts similarly,
with an exception for Hermit, where the MAE slightly low-
ers (i.e., improved precision). However, TA presents a pos-
itive bias at these three stations (i.e., HRDPS is colder than
station measurements), which are all higher in elevation than
the nominal elevation of their corresponding HRDPS cell. As
a result, a naive inverse distance weighting lapse-rate spatial-
ization scheme would have introduced even more bias and
MAE in the system, aggravating the original error. The log-
arithmic bias correction reduces the bias in TA. However the
IDW spatialization depends on the elevation difference be-
tween the HRDPS cell and each sub-pixel; IDW surely ag-
gravates a positive TA bias at the parameterization stage if
the sub-pixel is higher in elevation. We then argue that the
logarithmic lapse-rate parameterization allows the error in
the subgridding scheme to be reduced and keeps it within
a physically meaningful interval regarding spatial resolution.

Before analyzing the accuracy of the subgridding frame-
work for modeling snow properties, the use of a SNOW-
PACK run driven by AWS measurements as a validation
tool for the subgridding framework needs to be discussed.
Madore et al. (2022) performed a detailed parameterization
and analysis of the SNOWPACK model at Fidelity station.
Results show that SNOWPACK performs very well on mod-
eling HS and SWE and slightly underestimates both param-
eters (−4.2 % mean error in bulk density). When compar-
ing layer by layer with observed snow profiles, SNOWPACK
models the density accurately with a slope of 0.88 and a cor-
relation of 0.97, though the model overestimates low densi-
ties and underestimates high densities. Madore et al. (2018)
showed that SNOWPACK usually overestimates OGS and
introduces more variability than typical on-site observations.
However, this lack of variability could be an artifact of the
resolution of the sampler used in the field (5 cm). The ac-
curacy of SNOWPACK at Fidelity has been proven, and its
biases are clear. Therefore, it seems more than reasonable
to consider a SNOWPACK run driven by AWS as a ground
truth at Fidelity. The quality of a SNOWPACK run relies
almost entirely on its input quality. Abbott and Hermit sta-
tions are remote, harder to reach, and hence more difficult
to maintain. It was impossible to conduct a similar study at
these sites, and we can safely assume that the AWS SNOW-
PACK runs present substantial bias regarding reality. The
results on snow height modeling illustrate this particularly
well. When compared against the station SR50 measure-
ments, SGF-SNOWPACK drastically improves HS modeling
at Fidelity over HRDPS-SNOWPACK for both seasons (es-
pecially in 2019–2020 where SGF-SNOWPACK is almost
identical to AWS-SNOWPACK and very close to the SR50
measurements). However, at Abbott, AWS-SNOWPACK is

consistently overestimating HS with regards to the SR50
measurements. The SGF is getting the SNOWPACK simu-
lation closer to the AWS-SNOWPACK run but actually fur-
ther away from reality. Hence, although the SGF improves
weather parameters compared to the measurements at the
AWSs, the weather inputs and the model parameterization
fail to represent reality accurately at this site. Weather mea-
surements at Abbott thus become dubious. Moreover, the
SNOWPACK parameterization applied on every cell of the
domain has been developed at Fidelity. The site is perfect for
studying snow processes as it is sheltered from the wind, but
it is not representative of the processes affecting the snow on
the whole domain.

Simulated snow parameters are usually improved, depend-
ing on the site and period. The most important errors and
lowest similarities occur early in the season when the snow-
pack is starting to build. This is due to differences in snow on-
set timing between simulations and reality, as well as milder
air temperatures early in the season. As a result, a fine mar-
gin exists between solid (snow precipitation) and liquid (rain-
on-snow), which can strongly alter the microstructure of the
snowpack. During this period, the snowpack is also thin-
ner, and discrepancies between layers have a heavier im-
pact on the mean similarity and mean errors. With regards
to the microstructure, the subgridding framework allows the
OGS overestimation to be decreased by 0.06 mm compared
with HRDPS-SNOWPACK simulations at Fidelity and by
0.07 mm at all sites and seasons. Optical diameter usually
ranges from 0.1 to 0.4 mm in this region, and the average
snow pit OGS is 0.38 mm. Hence, the subgridding frame-
work could improve the modeled OGS by 18 % on average
compared to AWS-SNOWPACK-modeled OGS. SWE NSE
is improved by 22.5 % at Fidelity over all seasons and by
16 % when averaged over all sites and seasons with the AWS-
SNOWPACK as a reference. The SWE bias is improved by
86.5 mm (both season average) at Fidelity and by 56.7 mm
on average over all sites and seasons. This represents a ma-
jor improvement in a remote sensing perspective as SWE is
the major driver for SWE inversion algorithms (King et al.,
2015; Zhu et al., 2018; Tsang et al., 2022). For instance, King
et al. (2015) reported a backscatter increase of 0.82 dB per
1 cm increase in SWE at the Ku-band with Canadian tundra
measurements. Similarly, Yueh et al. (2009) found a 0.15 to
0.5 dB increase for every 10 mm increase in SWE at the Ku-
band in Colorado. According to these figures, using the sub-
gridding framework in a SWE inversion context could pro-
vide an improvement of 1.4 to 7 dB in the Ku-band simulated
backscatter.

Finally, the subgridding framework performs well in intro-
ducing spatial variability over the simulation domain. SWE
distribution across topographic categories respects the eleva-
tion gradient, the orientation of dominant winds in the area,
and the erosion effect on ridges. Spatial variability is key
when considering SAR signal inversion (King et al., 2018),
and the subgridding framework should be a highly relevant
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tool in this context. However, the introduced spatial variabil-
ity has not been evaluated against distributed snow height
measurements, but airborne snow height surveys are expen-
sive and logistically challenging.

6 Conclusions

This study aims at meeting the present need in the snow re-
mote sensing community for both the design and the eval-
uation of an atmospheric model subgridding framework to
perform snow modeling in the context of coupling with a
SAR signal inversion routine. To do so, (i) a new NWP
downscaling approach was introduced by first parameteriz-
ing the 2.5 km HRDPS cells into a virtual weather station ar-
ray, which was then spatially interpolated using the MeteoIO
and Alpine3D models. (ii) Snow simulations were performed
using the state-of-the-art model SNOWPACK. Microstruc-
ture modeling quality was assessed using the DTW algorithm
and an original cost function focusing on density and optical
grain size, and SWE modeling improvements were quanti-
fied using the Nash–Sutcliffe efficiency coefficient. (iii) The
spatial variability in atmospheric parameters and snowpack
state variables within one subgridded HRDPS cell was as-
sessed. Finally, we assessed the introduced spatial variabil-
ity in SWE over the simulation domain, as well as intra-cell
variability. The key findings regarding the research questions
from the Introduction are as follows:

1. The atmospheric parameter subgridding framework
yields an overall good performance, especially for RH
and VW. Further research should be carried on to find
a better spatialization algorithm for air temperature and
an adaptative precipitation rate correction algorithm.

2. The general overestimation of OGS by SNOWPACK
when driven by raw HRDPS data decreased by 0.06 mm
on average at Fidelity and by 0.07 mm averaged over
all sites. This represents an 18 % improvement over
raw HRDPS-SNOWPACK-simulated OGS. The Nash–
Sutcliffe efficiency coefficient for SWE was improved
by 22.5 % at Fidelity and by 16 % on average when
compared to HRDPS-SNOWPACK simulations. SWE
bias was diminished by 86.5 mm at Fidelity and by
56.7 mm on average. This is a major improvement in a
SAR remote sensing context as this could lead to up to a
7 dB improvement in the Ku-band simulated backscat-
ter. In this context, the first 3 months (September to
November) of snow simulations should be considered
a spin-up phase for the snow model, as discrepancies
between reality and simulations are critical before the
snowpack is properly established and the similarity sta-
bilizes in December and onward.

3. The subgridding framework introduces a realistic spa-
tial variability in snowpack state variables, respecting
altitudinal and orientation gradients as well as ridge
effects. The framework brings substantial variability
within each HRDPS, reflecting the high spatial variabil-
ity in the snowpack at the kilometer range in a moun-
tainous environment.

This study shows that downscaling NWP at a 100 m reso-
lution can improve local representation of atmospheric vari-
ables and, as a result, improve the modeling of snowpack
state variables and spatial variability in the snowpack in com-
plex topography. The modeling of the two key parameters for
snow remote sensing, SWE and OGS, was improved. This
work is highly relevant in a remote sensing context. The re-
mote sensing community is currently pushing for new SAR
satellite missions, and observation system synthetic experi-
ments have proven that satellite SWE measurements would
substantially improve SWE products’ RMSE (Garnaud et al.,
2019; Cho et al., 2023). This study provides finer-spatial-
variability forcing data and improved simulated snowpack
state variables regarding NWP-driven simulations. As a re-
sult, snow simulations performed with such a method can
provide a realistic first-guess estimate of the retrieval param-
eters, bringing a solid basis to overcome the non-unique solu-
tion issue in physical retrieval algorithms (Tsang et al., 2022)
and steer away from empirical retrieval approaches. In this
context, the next logical step is to design a SWE retrieval
algorithm, exploiting the vast array of SAR satellites in or-
bit, such as Sentinel-1 (C-band), TerraSAR-X (X-band), or
the SnowSAR mission concept (dual Ku-band) led by En-
vironment and Climate Change Canada and the Canadian
Space Agency (Derksen et al., 2021). Future work can thus
focus on using these modeled snowpack state variables along
with field-inferred distributions as a basis for a SWE SAR re-
trieval algorithm.
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Appendix A: 2019–2020 spatial variability figures

Figure A1. Intra-cell spatial variability in subgridded atmospheric parameters for the season 2019–2020. Each row represents monthly
averages for each atmospheric variable and cumulative precipitations for each elevation band. Blue bars correspond to the north aspect, and
orange bars correspond to the south aspect.

Figure A2. Snowpack spatial variability assessment for the season 2019–2020. The left column represents snow profiles on the south aspect
in the alpine, treeline, and below-treeline elevation bands. The right column represents snow profiles at the same elevation bands but on the
north aspect. Colors represent grain type, which are denominated according to the international classification of Fierz et al. (2009).
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Code and data availability. Code and installation guidelines for
MeteoIO, SNOWPACK, and ALPINE3D can be found at https://
gitlabext.wsl.ch/snow-models (Lehning et al., 2024). The snowpack
DTW alignment package can be found at https://CRAN.R-project.
org/package=sarp.snowprofile.alignment (Herla et al., 2024). Code
for the subgridding framework and the data used in this study are
available upon request.
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