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Abstract. We examine the past and projected changes
in Arctic sea ice properties in six climate models par-
ticipating in the High-Resolution Model Intercomparison
Project (HighResMIP) in the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6). Within HighResMIP, each
of the experiments is run using a reference resolution con-
figuration (consistent with typical CMIP6 runs) and using
higher-resolution configurations. The role of horizontal grid
resolution in both the atmosphere model component and
the ocean model component in reproducing past and fu-
ture changes in the Arctic sea ice cover is analysed. Model
outputs from the coupled historical (hist-1950) and future
(highres-future) runs are used to describe the multi-model,
multi-resolution representation of the Arctic sea ice and to
evaluate the systematic differences (if any) that resolution
enhancement causes. Our results indicate that there is not
a strong relationship between the representation of sea ice
cover and the ocean/atmosphere grids; the impact of hori-
zontal resolution depends rather on the sea ice characteris-
tic examined and the model used. However, the refinement
of the ocean grid has a more prominent effect compared to
the refinement of the atmospheric one, with eddy-permitting
ocean configurations generally providing more realistic rep-
resentations of sea ice area and sea ice edges. All models
project substantial sea ice shrinking: the Arctic loses nearly
95 % of sea ice volume from 1950 to 2050. The model selec-
tion based on historical performance potentially improves the
accuracy of the model projections and predicts that the Arctic
will turn ice-free as early as 2047. Along with the overall sea
ice loss, changes in the spatial structure of the total sea ice
and its partition in ice classes are noticed: the marginal ice
zone (MIZ) will dominate the ice cover by 2050, suggest-
ing a shift to a new sea ice regime much closer to the cur-

rent Antarctic sea ice conditions. The MIZ-dominated Arctic
might drive development and modification of model physics
and parameterizations in the new generation of general cir-
culation models (GCMs).

1 Introduction

Sea ice is the key feature of high-latitude climate through
its role in the surface energy budget, ocean and atmo-
sphere dynamics, and marine ecosystems. Over recent
decades, the Arctic has witnessed unprecedented sea ice
loss, which is a key indicator of global climate change (e.g.
Onarheim et al., 2018; Serreze and Meier, 2019), driven
by both anthropogenic activities and internal climate vari-
ability (e.g. Notz and Stroeve, 2016). Arctic sea ice has
declined in every month of the year, with the strongest
trends in September: a sea ice extent (SIE) reduction of
7.9 × 104 km2 yr−1 in the period 1979–2022 compared to
that in March, 3.92 × 104 km2 yr−1, in 1979–2022 (http://
nsidc.org/arcticseaicenews/2022/, last access: 4 June 2024).
The overall decrease in SIE reveals large seasonal and re-
gional variability. Although winter sea ice loss is dominated
by the reduction in the Barents Sea (Årthun et al., 2021),
the most pronounced summer sea ice decreases occur in the
East Siberian Sea (explaining more than 20 % of the Septem-
ber trend; Watts et al., 2021) and in the Beaufort, Chukchi,
Laptev and Kara seas (Onarheim et al., 2018). Along with
a severe reduction in sea ice coverage, Arctic sea ice has
also thinned, with a ∼ 70 % reduction in summer sea ice vol-
ume (SIV) from 1979 to 2021 (https://nsidc.org/, last access:
4 June 2024). As a consequence, the Arctic ice is getting
younger: the proportion of multi-year ice, which previously
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was the iconic feature of the Arctic in winter months, has
decreased from ∼ 30 % in 1985 (the beginning of the satel-
lite era) to ∼ 4.4 % in 2020 (Perovich et al., 2020). The Arc-
tic transition toward a first-year-ice regime might substan-
tially alter the interactions in the ocean–atmosphere–ice sys-
tem (Aksenov et al., 2017). The changes in total SIE and in
sea ice thickness (SIT) cause a redistribution of the sea ice
classes; in particular, the marginal ice zone (MIZ) is strongly
affected (Rolph et al., 2020). The Arctic MIZ holds interest
as it is the fundamental region supporting many physical, bi-
ological, and biogeochemical processes (Galí et al., 2021).
The MIZ is traditionally defined as the region where polar
air, ice, and water masses interact with the ocean temper-
ature and subpolar climate system (Wadhams and Deacon,
1981). It corresponds to the portion of the ice-covered ocean
often characterized by highly variable ice conditions, where
surface gravity waves significantly impact the dynamics of
sea ice (e.g. Dumont et al., 2011). Due to the large uncer-
tainties in observed and forecasted waves within sea ice, the
MIZ is still operationally defined through sea ice concen-
tration (SIC) thresholds as the transition zone between open
water and consolidated pack ice, where the total area of the
ocean is covered by 15 %–80 % sea ice (e.g. Strong et al.,
2017; Paul et al., 2021; Rolph et al., 2020). While there have
been no significant changes in the area of the Arctic MIZ
during the satellite era (Rolph et al., 2020), the marginal ice
zone fraction (MIZF), defined as the percentage of total sea
ice area (SIA) covered by MIZ (Horvat, 2021), increases by
more than 50 % in August and September as the total SIA de-
creases drastically (Rolph et al., 2020; Horvat, 2021). Since
the MIZ differs from the pack ice in higher sensitivity to
the dynamic and thermodynamic forces, the growing MIZF
changes the Arctic response to global warming, which may
worsen the pace of sea ice melt and cause repercussions for
local and global climate.

Assuming that the Arctic Ocean will continue to lose sea
ice, a relevant question is how fast the Arctic will turn ice-
free in summer. Coupled climate models can be used in the
prediction and projection of the climate system, including
the sea ice conditions. In the majority of simulations from
CMIP6 (Eyring et al., 2016), the Arctic Ocean becomes
practically sea-ice-free (SIA < 1 × 106 km2) in September
in all scenarios for the first time before 2050 (Notz and
SIMIP Community, 2020) or even by 2035 when selecting
only the models that best represent the present Arctic sea
ice state and northward ocean heat transport (Docquier and
Koenigk, 2021). Even using a process-based selection cri-
terion, uncertainties in the model projections are relatively
large, which undermines the model’s trustworthiness (Doc-
quier and Koenigk, 2021). Besides, the accurate simulation
of past and present Arctic sea ice is still challenging. Al-
though the CMIP6 multi-model ensemble mean is closer to
the observed sensitivity of Arctic sea ice to global warm-
ing (Notz and SIMIP Community, 2020; Shu et al., 2020),
there is little difference in overall model performance among

CMIP3, CMIP5, and CMIP6. CMIP6 models still simulate a
wide spread of mean sea ice area and volume in March and
September (Davy and Outten, 2020; Notz and SIMIP Com-
munity, 2020; Watts et al., 2021).

Among the model developments and improvements
needed to produce more accurate future projections, in-
creasing horizontal spatial resolution is recognized to be
a key step in enhancing the representation of the com-
plex processes at high latitudes and in obtaining trust-
worthy projections of ice variability. In order to address
the impact of the model grid resolution on the simulated
oceanic and atmospheric phenomena, the High-Resolution
Model Intercomparison Project (HighResMIP; Haarsma et
al., 2016) was designed within the EU Horizon 2020 PRI-
MAVERA project (PRocess-based climate sIMulation: Ad-
Vances in high-resolution modelling and European climate
Risk Assessment, https://www.primavera-h2020.eu/, last ac-
cess: 4 June 2024). HighResMIP is one of the CMIP6-
endorsed model intercomparison projects, which provides a
useful framework to investigate the role of enhanced horizon-
tal resolution in representing the features of the climate sys-
tem. A number of climate modelling groups contributed to
the project, providing the same simulations in at least two dif-
ferent configurations. The impact of the increased resolution
within the HighResMIP is examined in many studies with
regard to the atmosphere, sea ice, and ocean components of
the climate systems (e.g. Fuentes-Franco and Koenigk, 2019;
Docquier et al., 2019; Bador et al., 2020; Roberts et al., 2020;
Jackson et al., 2020; Lohmann et al., 2021; Meccia et al.,
2021). Even though high-resolution models can resolve spe-
cific dynamical features, the role of the enhanced horizontal
resolution is not uniform across ocean regions and models.
Grist et al. (2018) demonstrated that refining the ocean grid
to eddy-permitting resolution raises the Atlantic meridional
heat transport and improves agreement with observational es-
timates – they also show the significantly smaller impact of
atmosphere resolution on the strength of the heat transport.
Docquier et al. (2019) confirmed this finding and showed
that a better representation of Atlantic surface characteristics,
velocity fields, and sea surface temperature (in addition to
transports toward the Arctic) improves the representation of
the Arctic SIA and SIV. Nevertheless, the role of ocean res-
olution in the representation of ocean heat transport (OHT)
and SIA is less clear when considering the regional effect on
specific Arctic sectors, as shown for the Barents Sea in Doc-
quier et al. (2020).

Here, we focus on the impact of horizontal resolution on
the Arctic sea ice properties in the past and future at hemi-
spheric and regional scales using the model outputs from
coupled historical (hist-1950) and future (highres-future)
runs in HighResMIP. We assess seasonal and interannual
variability and trends in the SIA and SIV and examine when
the Arctic will see its first ice-free summer. We aim to ex-
plore the role of enhanced ocean/atmosphere horizontal res-
olution in the representation of past and current sea ice and
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to provide some insight into whether the grid refinement im-
proves the model performance in predicting future Arctic sea
ice conditions.

2 Data

In this study, we analyse the outputs from the six coupled cli-
mate models participating in the HighResMIP. We use cou-
pled runs with historical forcing (hist-1950) covering the pe-
riod of 1950–2014 and future projections (highres-future)
from 2015 to 2050 based on the fossil-fuelled development
SSP5-8.5 scenario. For the ocean, five models use differ-
ent versions of the Nucleus for European Modelling of the
Ocean framework (NEMO, Madec et al., 2016), whereas
MPI-ESM is based on the Max Planck Institute Ocean Model
(MPIOM; Jungclaus et al., 2013). The basic characteristics of
the models are given in Table 1. Because each model uses
at least two different resolutions, we evaluate 14 configu-
rations in total. CMCC-CM2 and MPI-ESM use one ocean
(eddy-permitting) resolution with two different atmospheric
grids. ECMWF-IFS and EC-Earth3P run two of three config-
urations with an eddy-permitting ocean and different atmo-
sphere resolutions. In other models, ocean and atmosphere
resolutions vary in concert among configurations. ECMWF-
IFS is not considered in the analysis of future projections
since it does not provide the outputs from highres-future ex-
periments. It is important to note that ECMWF-IFS, EC-
Earth3P, and CNRM benefit from several ensemble mem-
bers (eight, three, and six members for ECMWF LR, MR,
and HR, respectively, and three members for both config-
urations of EC-Earth3P and CNRM). Given the small en-
semble size of multi-ensemble configurations, a clear assess-
ment of internal variability is not feasible in the context of
this paper. We use only the first ensemble member in this
study. For the past sea ice properties, we mainly focus on
the time period beginning in 1979 to compare model results
with available satellite records. The simulated SIA is val-
idated against satellite observations. We use monthly SIC
from two satellite-based products: the NOAA/NSIDC Cli-
mate Data Record (version 4; Meier et al., 2021, hereafter
CDR) and the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT) Ocean and Sea
Ice (OSI) Satellite Application Facility (SAF) Climate Data
Record and Interim Climate Data Record (release 2, products
OSI-450 and OSI-430-b; Lavergne et al., 2019) for the pe-
riod 1979–2021. CDR uses gridded brightness temperatures
in low frequencies from the Nimbus-7 Scanning Multichan-
nel Microwave Radiometer (SMMR; 18 and 37 GHz) and the
Defense Meteorological Satellite Program (DMSP) series of
Special Sensor Microwave Imager (SSM/I) and Special Sen-
sor Microwave Imager/Sounder (SSMIS) instruments (19.4,
22.2, and 37 GHz). Different ratios of frequencies are used
to filter weather effects. The output data are distributed on
a 25 km × 25 km polar stereographic grid. The CDR algo-

rithm blends the NASA Team (NT; Cavalieri et al., 1984)
and the Bootstrap algorithms (BT; Comiso, 1986) by select-
ing the higher concentration value for each grid cell, thus tak-
ing advantage of the strengths of each algorithm to produce
concentration fields that are more accurate than those from
either algorithm alone (Meier et al., 2014). OSI SAF com-
prises two SIC products based on passive microwave sen-
sors: OSI-450 (from 1979 to 2015) and the OSI-430-b exten-
sion from 2016 onwards. OSI-450 uses data from the SMMR
(1979–1987), SSM/I (1987–2008), and SSMIS (2006–2015)
instruments (19.35 and 37 GHz frequencies) together with
Era Interim reanalysis (Dee et al., 2011), while OSI-430-b
is based on SSMIS and operational analysis and forecasts
from the ECMWF. We use estimates of SIT and SIV from
the Pan-Arctic Ice Ocean Modeling and Assimilation Sys-
tem (PIOMAS; Zhang and Rothrock, 2003) that comprise
the global Parallel Ocean and sea Ice Model (POIM) cou-
pled to an eight-category thickness and enthalpy distribution
sea ice model and a data assimilation of sea surface tem-
perature (SST from NCEP/NCAR reanalysis; Kalnay et al.,
1996) and SIC (from the National Snow and Ice Data Center,
NSIDC, near-real-time product; Brodzik and Stewart, 2016).
PIOMAS proved its credibility versus in situ measurements
(Stroeve et al., 2014; Wang et al., 2016), and therefore it is
widely used in numerous intercomparison studies as the ob-
servational proxy (e.g. Labe et al., 2018). Note that PIOMAS
tends to underestimate the thick ice north of Greenland and
the Canadian Arctic Archipelago and to overestimate SIT in
the areas of thin ice (Stroeve et al., 2014; Wang et al., 2016).
Monthly fields of SIC and effective SIT from 1979 to 2021
are used in this work. We describe sea ice coverage in terms
of SIA (the integral sum of the product of ocean grid-cell
areas and the corresponding sea ice concentration) instead of
SIE (the integral sum of the areas of all grid cells with at least
15 % SIC). To compute SIV, the equivalent SIT (the sea ice
volume per grid cell) is multiplied by the area of the individ-
ual grid-cell and then summed over the Arctic region. To de-
rive integrative metrics, only the grid cells with at least 15 %
SIC are considered, owing to the high uncertainty in passive
microwave retrievals in low-sea-ice conditions. Apart from
model evaluation at the hemispheric scale, we provide a re-
gional analysis of sea ice variability in six subregions of the
Arctic Ocean (north of 65° N), as defined in Fig. 1.

3 Results

3.1 Mean state

First, we assess the spatial patterns of simulated ice prop-
erties against observation-based estimates over the historical
period restricted to 1979–2014. Figure 2 shows the climato-
logical mean distribution of SIT in March and September for
model outputs and PIOMAS. The mean position of 15 % and
80 % of the SIC edges from each model and CDR (over PI-
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Table 1. Models and specifications of the configurations used in this study.

Model configuration Nominal ocean Nominal atmosphere Model components
resolution (°) resolution (km)

Ocean–sea ice Atmosphere

CMCC-CM2 HR 0.25 100 NEMO3.6+CICE4.0 CAM4
(Cherchi et al., 2019) VHR 0.25 25

CNRM-CM6-1 LR 1 250 NEMO3.6+GELATO6 ARPEGE6.3
(Voldoire et al., 2019) HR 0.25 100

ECMWF-IFS LR 1 50 NEMO3.4+LIM2 IFS cycle43r1
(Roberts et al., 2018) MR 0.25 50

HR 0.25 25

EC-Earth3P LR 1 100 NEMO3.6+LIM3 IFS cycle36r1
(Haarsma et al., 2020) HR 0.25 50

HadGEM3 LM 1 250 NEMO3.6+CICE5.1 UM
(Williams et al., 2018) MM 0.25 100

HM 0.25 50

MPI-ESM HR 0.4 100 MPIOM1.6.3 ECHAM6.3
(Müller et al., 2018) XR 0.4 50

Figure 1. Map of the sub-regions used in the regional analysis: cen-
tral Arctic Basin (CA), Barents–Kara seas (B-K), Laptev Sea (LV),
East Siberian Sea (ESS), Beaufort–Chukchi seas (B-C), and Cana-
dian Arctic Archipelago and Greenland coast (GD).

OMAS) is also shown. In general, most models struggle to
reasonably simulate the spatial pattern of SIT and produce
either thicker (ECMWF-IFS, EC-Earth3P, and CMCC-CM2
VHR4) or thinner (CNRM-CM6 and MPI-ESM) ice over
a vast area compared to PIOMAS. Some models are able

to correctly locate the thickest ice north of Greenland and
the Canadian Arctic Archipelago and the thinner ice in the
Siberian Shelf seas (HadGEM3 and CMCC-CM2 HR4), but
the simulated ice can thicken up to 7 m. EC-Earth3P HR and
ECMWF-IFS MR, despite capturing the overall SIT pattern,
also simulate high thickness in the East Siberian and Chukchi
seas, which is clearly visible in March. This might be related
to unrealistic sea ice drift. As in PIOMAS, most models re-
produce changes in the SIT between March and September
showing a more pronounced seasonal retreat in the Siberian
sector.

There is no direct effect of horizontal resolution on
the spatial distribution of SIT. When the ocean resolu-
tion is increased, the mean SIT decreases for ECMWF-
IFS, does not change notably for HadGEM3 and CNRM-
CM6, and increases for EC-Earth3P. The role of atmosphere
resolution also depends on the model; for example, the
finer-atmosphere-resolution MPI-ESM reproduces on aver-
age slightly thinner ice compared to the LR configuration,
while the finer CMCC-CM2 simulates thicker ice over a
larger area. Biases in the representation of SIT pattern can be
related to poor representation of surface pressure and large-
scale atmospheric patterns (Kwok and Untersteiner, 2011;
Stroeve et al., 2014), sea ice motion, and ocean forcing
(Watts et al., 2021).

Most models tend to realistically simulate the position of
the sea ice edge in both March and September. The LR con-
figuration of ECMWF-IFS tends to overestimate the sea ice
cover in the far south of the North Atlantic and North Pa-
cific oceans compared to CDR. The bias can be explained
by the poor representation of the ocean advection. Docquier
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Figure 2. The 1979–2014 climatological mean sea ice thicknesses from the model outputs and from PIOMAS in March (a) and September
(b). White contours show the edges of 15 % (solid) and 80 % (dashed) sea ice concentrations from each model. SIC from CDR is used for
PIOMAS.

et al. (2019) showed that the northward OHT is improved
when the ocean resolution increases from 1 to 0.25°, both
across the Bering Strait (83 km wide) and through the Nordic
seas, establishing the Atlantic warm inflow into the Arc-
tic Ocean. Similarly for SIT, the effect of the atmospheric
grid resolution on the sea ice extent is model dependent.
When it is enhanced, there are no notable changes in the
location of the March ice edge in the ECMWF-IFS and
HadGEM3 models, but it is largely overestimated in CMCC-
CM2 and MPI-ESM, particularly in the Nordic seas. Specifi-

cally, CMCC-CM2 HR4 underestimates March sea ice cover-
age in the northern Barents Sea, the Bering Sea, and the Sea
of Okhotsk, whereas the VHR4 version (with a finer atmo-
spheric grid) reproduces a reasonable amount of winter ice
in marginal seas. In September, higher atmosphere resolu-
tion leads to a larger SIA in ECMWF-IFS and CMCC-CM2;
conversely it has the opposite effect in the HadGEM3 and
MPI-ESM models. In addition, MPI-ESM XR significantly
melts sea ice in the Siberian seas, which are almost ice-free
in summer. The width of the MIZ (marked in Fig. 2 by the
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area between 15 % and 80 % SIC contours) also varies among
different models. In many of them, March MIZ surrounds the
inner ice pack in a similar way, comparing well with CDR. In
September, most models simulate an extension of MIZ that
is fairly comparable to the observed one. Exceptions are the
MPI-ESM runs that lose all consolidated pack ice in summer
and ECMWF LR runs that tend to overestimate the total and
pack ice, with a small portion covered by marginal ice in the
Barents Sea and Nordic seas.

3.2 Seasonal variability

Figure 3 shows the mean seasonal cycle of the total Arctic
SIA and SIV computed over the 1979–2014 period. Satel-
lite estimates from both OSI SAF and CDR are included to
validate the model outputs. The CDR Arctic ice area ex-
pands to its maximum in March, with coverage of nearly
14 × 106 km2, and returns to its minimum in September at
around 6 × 106 km2. Similar seasonality is displayed by the
OSI SAF dataset, which has a slightly smaller SIA in all
months.

As in the CMIP5 and CMIP6 low-resolution models (Shu
et al., 2020; Notz and SIMIP Community, 2020), most High-
ResMIP models adequately reproduce the mean seasonal cy-
cle of SIA, with the melt season starting in March and last-
ing until September when a minimum is reached (Fig. 3a).
There is a considerable spread among models; it is rela-
tively larger in winter than in summer. March SIA ranges
from 12 to 20 × 106 km2, while September values lie in the
range between 3 and 7.5 × 106 km2 in all but one model.
The ECMWF-ISF LR overestimates the Arctic SIA all year
round, but it can properly represent the amplitude of SIA
seasonal variability and hence correctly reproduces the ice
advance and retreat phases. The comparison between the
model configurations indicates that finer resolution generally
results in a simulated SIA closer to satellite products. The
effect of changing atmosphere resolution varies among mod-
els, however. For instance, the CMCC-CM2 HR constantly
stays in the lower bound of the model ensemble and repro-
duces a weaker amplitude of the seasonal cycle compared
to observations; applying the atmospheric grid refinement
(CMCC-CM2 VHR4 configuration) favourably increases sea
ice coverage and does not significantly change the seasonal
cycle amplitude. A different impact is observed for the MPI-
ESM model: the finer atmospheric grid leads to closer agree-
ment with observations in SIA during winter but increases
the spring/summer melting, resulting in an underestimated
September minimum of up to ∼ 50 % compared to obser-
vations. In general, in other HighResMIP runs, the atmo-
sphere grid refinement gives smaller changes to Arctic sea
ice coverage compared to the ocean resolution enhancement.
In the ECMWF-IFS, the LR shows a constant SIA overes-
timation that is largely resolved in the model configuration
with an eddy-permitting ocean (HR), particularly in summer.
The same behaviour is seen for six ECMWF ensemble mem-

bers (Fig. S1 in the Supplement). As for the CMCC-CM2
model, a further refinement in the atmosphere resolution in-
creases the SIA in the whole year, with the best agreement
with observations from October to July. The HadGEM3 runs
are relatively close to observations in summer, but they tend
to overestimate the sea ice growth – the impact of increased
ocean and atmosphere resolution is evident for this model,
with a strong reduction in winter sea ice of ∼ 25 % from
LL to HM and a smaller but still remarkable contraction in
summer. Here, the increase in the atmosphere resolution fur-
ther reduces SIA in contrast to previous models. Finally, the
EC-Earth3P and CNRM-CM6 models show negligible dif-
ferences between model configurations, regardless of ocean
and atmosphere grid resolutions.

In our reference product, PIOMAS, the Arctic SIV ranges
from ∼ 25 × 103 km3 at its peak in April to ∼ 10 × 103 km3

at its minimum in August/September (Fig. 3b). All mod-
els capture the timing of the SIV maximum in April and
the minimum in August/September, with a realistic seasonal
cycle amplitude that ranges between 15 and 20 × 103 km3.
However, there is a large spread among different models,
with most models overestimating PIOMAS–ECMWF-ISF
LR is a clear outlier, exceeding 70 × 103 km3 in April and
50 × 103 km3 in September. Although in some models the
bias in SIA is seasonally dependent, with larger errors in
winter, the bias in simulated SIV is consistent throughout
the year in all models. In general, large SIV is mainly due
to poorly simulated SIT rather than incorrect sea ice cover
(Figs. 2 and 3a). Only in ECMWF-IFS LR does the combina-
tion of large ice expansion and extremely thick ice lead to un-
realistically high SIV. The SIV overestimation in the CMCC-
CM2 and EC-Earth3P models is caused by the sea ice being
too thick, even though their SIAs compare well with obser-
vations. Only one model (CNRM-CM6 in both configura-
tions) has thin ice and hence low bias in SIV compared to
PIOMAS all year round. The changes in resolution have no
visible impact in this case. The increase in only ocean resolu-
tion largely improves the representation of SIV (the same for
SIA) in ECMWF-IFS with a large volume reduction (includ-
ing six ensemble members; Fig. S1) but does not affect the
volume seasonality in HadGEM3. Finer atmosphere resolu-
tion and the combined resolution increases tend to increase
the ice volume, except in HadGEM3 and MPI-ESM. MPI-
ESM has a good fit to PIOMAS for SIV, although this model
underestimates SIA and cannot simulate consolidated pack
ice (SIC > 80 %, Fig. 2).

In addition to the total SIA, we show the seasonal vari-
ability in the area covered by marginal ice over the same
1979–2014 period (Fig. 4a). It is worth noting that the eval-
uation of the simulated MIZ area is highly dependent on the
reference product used, particularly in summer. This can be
mainly ascribed to the treatment of wet surfaces (e.g. melt
ponds and snow wetness) that causes difficulty in retriev-
ing the SIC using passive microwave radiometers (Ivanova
et al., 2015). OSI SAF has a small portion of MIZ in winter,
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Figure 3. The 1979–2014 seasonal cycle in SIA (a) and SIV (b) from HighResMIP hist-1950 model outputs versus CDR and OSI SAF for
SIA and versus PIOMAS for SIV.

but it overestimates CDR from May to November. The maxi-
mum difference between the two products increases to nearly
0.9 × 106 km2 in July. The observed MIZ seasonal variabil-
ity contrasts with that shown by the total ice area: the MIZ
expands in spring when the consolidated pack ice starts to
melt, and this process leads to the MIZ area peak occurring
in summer. After reaching its maximum in July, the marginal
ice starts to melt and its area decreases with the total and con-
solidated pack ice cover simultaneously until September. Be-
fore the next year’s melting season, the MIZ stays relatively
stable, but with a secondary peak in October at the beginning
of sea ice advance. The models are overall able to simulate
the seasonal cycle, reasonably capturing the phases of the
MIZ expansion and retreat. However, they tend to overesti-
mate the MIZ in winter, but most of their estimates lie be-
tween the OSI SAF and CDR summer estimates. Generally,
models struggle to properly simulate the timing and magni-
tude of the MIZ maximum. ECMWF-IFS LR is higher than
observations from November to May due to a large overes-
timation of the total ice area; nevertheless, it lies between
CDR and OSI SAF during the rest of the year. Noteworthy,
the ECMWF-IFS finer-resolution configurations are in better
agreement with observed values. In the HadGEM3 LL con-
figuration, the marginal ice expansion starts earlier, with a
large bias in the MIZ area from March to June. Increasing
resolution in the HadGEM3 model does not have a visible
impact on the rest of the year. The impact of changes in the
ocean and atmosphere resolution is small in other models.
Finally, MPI-ESM configurations fail to reproduce the MIZ
seasonal cycle from June to November. This pairs with Fig. 2,
which shows underestimation of consolidated pack ice and
MIZ predominance in the MPI-ESM runs.

We also show the seasonal cycle of the MIZ area fraction
(MIZF) from 1979 to 2014, calculated from model and satel-

lite product outputs (Fig. 4b). The MIZF is defined as the
percentage of the ice cover that is MIZ (Horvat, 2021) and re-
flects the relative changes in the MIZ, which are highlighted
since the total ice experiences substantial seasonal variabil-
ity. The observed MIZF ranges from about 5 %–10 % in win-
ter to about 20 %–40 % at its maximum between June/July.
For all models, the simulated MIZF maxima are delayed
compared to the satellite estimates and to the MIZ area
by about 1 month, when the total ice area approaches the
September minimum, and the MIZ area is still large. Notably,
the HighResMIP models are in better agreement with obser-
vations when considering the MIZF rather than the MIZ area.
Excluding the MPI-ESM configurations, all models are in
general agreement from November to May; the model spread
enlarges in spring/summer but the models lie within the ob-
servation envelope regardless. The use of the MIZF metric
highlights the peculiar representation of Arctic sea ice in the
MPI-ESM: up to 95 % of sea ice in the model consists of
marginal ice.

3.3 Seasonal variability in the sub-regions

Since sea ice changes in the Arctic region are not uniform in
space and time as a result of local climate effects (Parkinson
et al., 1999; Meier et al., 2007; Peng and Meier, 2018), it
is important to also monitor the sea ice change on regional
scales. We analyse the seasonal variability in SIA and SIV
in six sub-regions, and we compare it with that of reference
products (Fig. 5, Table 2).

Satellite estimates of SIA are not shown in the central Arc-
tic sector (CA) due to the observation gap near the North
Pole. In this region, all models simulate a pronounced sea-
sonal cycle in SIA, with the widest area between December
and April and a minimum in August. Although most models

https://doi.org/10.5194/tc-18-2739-2024 The Cryosphere, 18, 2739–2763, 2024



2746 J. Selivanova et al.: Past and future of the Arctic sea ice in HighResMIP climate models

Figure 4. The 1979–2014 seasonal cycle in the MIZ area (a) and MIZF percentage (b) from HighResMIP hist-1950 model outputs and
satellite products.

Table 2. March and September SIA for each region (except CA) in each model for 1979–2014.

March (106 km2) September (106 km2)

B-K LV ESS B-C GD B-K LV ESS B-C GD

ECMWF-IFR LR 3.06 1.1 1.57 2.16 4.05 1.87 0.84 1.41 1.73 3
ECMWF-IFR MR 2.12 1.08 1.56 2.15 3.22 0.62 0.57 1.19 1.56 1.45
ECMWF-IFR HR 2.46 1.09 1.56 2.14 3.53 1.06 0.64 1.25 1.61 1.7
EC-Earth3P 2.13 1.11 1.58 2.18 3.17 0.45 0.35 0.74 1.26 1.56
EC-Earth3P HR 2.43 1.1 1.57 2.17 3.32 0.72 0.52 1.06 1.56 1.43
CNRM 2.39 1.11 1.58 2.19 3.43 0.76 0.66 0.68 1.12 1.26
CNRM HR 2.64 1.1 1.57 2.17 3.35 0.6 0.47 0.8 1.2 1.08
HadGEM3 LR 2.89 1.31 1.85 2.31 4.29 0.78 0.71 1.22 1.45 1.8
HadGEM3 MM 2.7 1.23 1.68 2.3 4.41 0.79 0.6 1.17 1.59 1.68
HadGEM3 HM 2.38 1.17 1.63 2.24 3.84 0.4 0.43 0.95 1.46 1.45
CMCC-CM2 HR 1.4 1.1 1.56 2.13 2.9 0.22 0.47 0.68 1.05 1.41
CMCC-CM2 VHR 1.98 1.11 1.57 2.15 3.25 0.66 0.63 1 1.44 1.76
MPI-ESM HR 2.31 1.03 1.52 2.1 2.93 0.42 0.38 0.68 0.95 0.72
MPI-ESM XR 2.48 1.04 1.53 2.11 3.39 0.37 0.24 0.36 0.62 0.65
CDR 2.19 1.11 1.58 2.18 3.07 0.64 0.54 0.9 1.28 1.38
OSI SAF 2.09 1.11 1.57 2.15 2.97 0.56 0.48 0.8 1.17 1.28

agree in winter when the region is fully covered by sea ice,
the inter-model spread increases in summer. HadGEM3 and
CMCC-CM2 simulate similar seasonal cycles in all configu-
rations, with slightly lower values in HadGEM3 HM. The
ECMWF-IFS LR is an outlier also in this region, with a
large SIA all year round and a minimum in August that is
as large as the autumn/winter values in other models. Also,
EC-Earth3P LR has SIA comparable to ECMWF-IFS LR
from November to May; however, it overestimates the melt-
ing and growing phases, with an August minimum compa-
rable to other models. The CNRM-CM6 model produces the
smallest seasonal cycle amplitude at both resolutions, with
a decrease between the winter values and the minimum of

∼ 10 %. On the contrary, both MPI-ESM configurations dis-
play the strongest seasonal cycle, with the largest area in
winter and the smallest in summer. These differences among
models do not clearly depend on the resolution changes. For
SIV, PIOMAS shows an increase of ∼ 30 % between the min-
imum in August/September and the maximum in May. The
seasonal cycle magnitude is captured by most models, but
with a large spread mainly driven by differences in the simu-
lated thickness (Fig. 2). The models generally perform simi-
larly in simulating the SIV seasonal cycle in the sub-regions
and at the hemispheric scale (Fig. 3b). For the sake of con-
ciseness, only the specific features of the SIV representation
at the regional scale will be indicated below. The Barents–
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Figure 5.

Kara seas (B-K) is the only sub-region where satellite prod-
ucts show a distinct maximum peak that occurs in April
(1 month after the hemispheric SIA maximum); cf. Fig. 5a.
Except for CMCC-CM2, the models generally overestimate
SIA in winter, with a large spread among them which re-
duces in summer when models are in closer agreement with
satellite estimates. The strong underestimation of SIA in the
CMCC-CM2 HR4 configuration could be attributed to the
increased poleward Atlantic OHT simulated by this model
(Docquier et al., 2020). The warmer ocean temperatures not
only promote sea ice melting in winter but also hinder its
growth in autumn. The ocean and atmosphere spatial resolu-
tions generally have the opposite effects on simulated SIA.
Increasing only the ocean resolution in ECMWF-IFS (from

LR to MR) and HadGEM3 (from LL to MM) results in lower
SIA and a better fit to the observations. Conversely, increas-
ing the atmosphere resolution generally leads to a larger SIA,
except for a decrease in SIA in HadGEM3. The combined ef-
fect of enhanced resolution in both ocean and atmosphere in
the CNRM-CM6 and EC-Earth3P models increases the win-
ter SIA, exacerbating the disparity when compared to obser-
vational data. For SIV, nearly half of the model ensemble is
within the 15 % of the PIOMAS seasonal variability from
January to June, which is not the case for other sectors. The
Barents–Kara seas is the only region where CMCC-CM2 HR
underestimates SIV as a result of too low SIA. In addition,
both configurations of CMCC-CM2 underestimate the sea-
sonal variation in SIV. At the same time, CNRM-CM6 bet-
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Figure 5. The 1979–2014 seasonal cycle in (a) SIA and (b) SIV in the Arctic sub-regions from HighResMIP hist-1950 model outputs versus
CDR and OSI SAF for SIA and versus PIOMAS for SIV.

ter fits PIOMAS SIV in the Barents–Kara sea sector com-
pared to the other parts of the Arctic Ocean. The increased
ocean resolution has a clear positive effect on SIV represen-
tation in ECMWF-IFS configurations, whereas other mod-
els display similar values when changing such parameter. On
the other hand, the enhanced atmosphere resolution leads to
higher SIV in ECMWF-IFS and CMCC-CM2, lower SIV in
HadGEM3, and no affect on SIV in MPI-ESM.

The Laptev (LV), East Siberian (ESS), and Beaufort–
Chukchi seas (B-C) show similar SIA and SIV behaviour.
They can be analysed together and grouped as in Peng and
Meier (2018). In these regions, there is no noticeable peak in
the observed seasonal variability in SIA; instead, the annual

maximum is extended between December and May since the
winter sea ice expansion is constrained by land. In spring, the
downward shortwave radiation increases, causing the rapid
sea ice melt that ends in September. Notably, the disagree-
ment between satellite estimates in summer SIA is higher in
all three regions, probably due to the enhanced presence of
melt ponds, which complicate the SIC retrievals from passive
microwave radiometers (Ivanova et al., 2015). The models
exhibit better agreement in winter, while the spread across
models is larger in summer. This could possibly be associ-
ated with the model differences in simulating atmospheric
circulation, river discharge (Park et al., 2020), and the trans-
port of Pacific waters through the Bering Strait (Watts et al.,

The Cryosphere, 18, 2739–2763, 2024 https://doi.org/10.5194/tc-18-2739-2024



J. Selivanova et al.: Past and future of the Arctic sea ice in HighResMIP climate models 2749

2021), which modifies the thermohaline structure of the up-
per ocean and affects sea ice growth and melt. In all three
regions, SIA from ECMWF-IFS LR fits well with satellite es-
timates in winter, which is not the case for other sectors with
a greater role of the Atlantic OHT where the model is biased
high. HadGEM3 overestimates SIA, particularly in its lower-
resolution configuration. This behaviour is also common for
other parts of the Arctic Ocean, which points to the fact that
bias in HadGEM3 is similarly distributed across the regions.
MPI-ESM underestimates SIA to a greater degree in summer
since the model is struggling to simulate consolidated pack
ice (Fig. 2). CNRM-CM6, CMCC-CM2 and the HR run of
EC-Earth3P show fairly good agreement with satellite esti-
mates in all three regions. The lower-resolution configuration
of EC-Earth3P displays an earlier and faster sea ice retreat in
the Laptev and East Siberian seas, resulting in the second-
lowest SIA, while the model compares well to OSI SAF esti-
mates in the Beaufort–Chukchi seas. Increased ocean resolu-
tion leads to lower SIA for all models except for EC-Earth3P,
which has higher values in its HR configuration. The effect
of the ocean resolution is stronger in summer; however, the
impact on HadGEM3 is substantial all year round. Enhance-
ment of the atmosphere resolution does not significantly af-
fect ECMWF-IFS but leads to higher summer SIA in CMCC-
CM2 as well as in the other regions. For MPI-ESM, the in-
crease in atmosphere resolution has a larger impact on sum-
mer SIA in the Laptev, East Siberian, and Beaufort–Chukchi
seas compared to other sectors: MPI-ESM XR simulates SIA
almost 2 times lower than CDR in August and September. In
the Laptev, East Siberian, and Beaufort–Chukchi seas, SIV
reaches a maximum in May (April–May in B-C), while the
annual minimum occurs in September. Most models overes-
timate SIV, with the highest bias (ECMWF LR) in the East
Siberian and Beaufort–Chukchi seas. CMCC-CM2 HR and
MPI-ESM HR are the closest to PIOMAS, even though the
latter fails to reasonably simulate SIC (Fig. 2). The effect of
the ocean resolution on SIV is clearly seen in ECMWF-IFS
and EC-Earth3P in all three regions and in HadGEM3 in the
Laptev Sea – the only region where the LL and MM con-
figurations of HadGEM3 differ. Other models do not show
considerable differences in SIV when changing ocean res-
olutions. Finally, increased atmosphere resolution results in
higher SIV for ECMWF-IFS, EC-Earth3P, and CMCC-CM2
and in lower SIV for HadGEM3 and MPI-ESM.

The Greenland region (GD) holds the largest area of sea
ice in both winter and summer (3 and 1.5 × 106 km2, re-
spectively, according to the satellite estimates). Most mod-
els tend to overestimate SIA all year round, with the highest
bias in winter in ECMWF-IFS LR and HadGEM3. The mod-
els are generally capable of melting away the excess sea ice
by August, so there is more consistency among most mod-
els in summer, when MPI-ESM underestimates SIA more
than all other models. An increase in the ocean resolution
from 1 to 0.25° effectively improves the representation of
SIA in ECMWF-IFS, whereas it does not produce notable

changes in HadGEM3 and EC-Earth3P. The effect of atmo-
sphere resolution again depends on the model. ECMWF-
IFS and CMCC-CM2 display slightly higher SIA in their
finer-atmosphere configurations, particularly in winter. Con-
versely, HadGEM3 has lower SIA in its HM configuration
in winter, which fits better to the observations. For MPI-
ESM, there are no differences between different configura-
tions, as can be seen in the Barents–Kara seas region. For
SIV, both configurations of CMCC-CM2 have a large error
in the Greenland region owing to high bias in SIT (Fig. 2),
while at least one configuration of the model is in good
agreement with PIOMAS in other sectors. Enhanced ocean
resolution leads to lower SIV in ECMWF-IFS and higher
SIV in EC-Earth3P. At the same time, there are no signif-
icant differences between configurations of HadGEM3 and
CNRM-CM6 when changing ocean resolution. An increase
in the atmosphere resolution has almost no effect on SIV
in HadGEM3 and in MPI-ESM but leads to higher SIV in
CMCC-CM2.

The displayed analysis reveals that the model performance
and the accuracy of simulated SIA largely depend on the Arc-
tic region and the season studied. While the Barents–Kara
seas and Greenland regions mainly contribute to the winter
inter-model spread, the largest summer differences among
models are seen in the Laptev, East Siberian, and Beaufort–
Chukchi seas. There are no considerable differences in the
model abilities to simulate SIV at the regional scale; in fact,
the biases are generally uniform across regions and seasons.
Generally, we find no strong dependence of sea ice realism
on the horizontal resolution. The impact of the ocean reso-
lution on the representation of SIA is most pronounced in
the Barents–Kara seas and Greenland sea ice regions that
are strongly influenced by the Atlantic OHT. The effect of
the atmosphere resolution is less clear, but there is evidence
that the atmosphere resolution has a stronger impact on SIV
rather than on SIA, particularly in the regions of thicker ice
(B-C, GD).

3.4 Interannual variability and trends

Next, we evaluate the long-term variability in the Arctic SIA
and SIV from the hist-1950 simulations from 1979 to 2014.
Figure 6a illustrates monthly anomalies of SIA (with re-
spect to 1979–2014 climatologies) simulated by the models
and derived from satellite datasets. The inter-model spread
is relatively similar throughout the period, but it increases
from the mid-2000s when the ice reduction begins to accel-
erate. All models are able to reproduce the sea ice shrinking,
but with varying intensities: ECMWF-IFS LR, HadGEM3
LL, and MPI-ESM HR show larger negative trends com-
pared to observations (−44 × 103 km2 yr−1 in CDR and
−46×103 km2 yr−1 in OSI SAF), while the MR and HR ver-
sions of ECMWF-IFS, both configurations of CNRM-CM6,
EC-Earth3P, HadGEM3 HM, and CMCC-CM2 HR display
weaker negative trends (Table 3). An increase in ocean res-
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olution generally results in smaller negative trends, except
for EC-Earth3P, which shows a similar decline rate in both
configurations. Note that weaker trends are also observed in
six HR ensemble members of ECMWF-IFR in comparison
to their low-resolution counterparts (Table S1 in the Supple-
ment). The effect of finer atmosphere resolution is different
among models: the SIA decrease is stronger in ECMWF-IFS
and CMCC-CM2 and weaker in HadGEM3 and MPI-ESM.

Figure 6b shows monthly anomalies of SIV (with the sea-
sonal cycle removed) from 1979–2014 in the HighResMIP
models and in PIOMAS. There is a substantial inter-model
spread for SIV compared to SIA, particularly at the begin-
ning and the end of the observed period (55 %–85 % of yearly
averaged SIV from PIOMAS). The biases from a few models
are not consistent throughout the years, varying significantly
from positive to negative (EC Earth-3P HR, ECMWF MR,
and HadGEM3 LL).

PIOMAS simulates sea ice shrinking at a rate of
−291 km3 yr−1; similarly, all models simulate a SIV de-
crease. There is no straightforward impact on the linear
trends in SIV from changing resolution in the ocean and
atmosphere since the impact of horizontal resolution on
SIA and SIT differs between the models. However, we
find that configurations with coarse ocean resolution gener-
ally tend to simulate more negative trends (−424 km3 yr−1

in ECMWF LR compared to −105 and −157 km3 yr−1 in
its finer configurations; for HadGEM3, the trend ranges
from −355 km3 yr−1 at lower resolutions to −257 and
−174 km3 yr−1 in finer resolution configurations). We ob-
serve the same for the ECMWF ensemble members (Ta-
ble S1). Here, the exception is EC-Earth3P, in which the
eddy-permitting configuration has a larger negative trend in
SIV (−322 and −460 km3 yr−1). This might be attributed to
the thicker ice simulated in the HR configuration (Fig. 2).
In CNRM-CM6, the SIV decrease is very weak (−62 and
−36 km3 yr−1 for LR and HR configurations, respectively),
which might reflect the negative ice growth–ice thickness
feedback: thin ice allows sea ice to grow more rapidly, miti-
gating ice loss. The finer atmosphere resolution has a differ-
ent impact on the pace of sea ice retreat in different mod-
els: CMCC-CM2, VHR4, and ECMWF-IFS HR simulate
slightly stronger trends compared to their coarser counter-
parts (−384 and −411 km3 yr−1 in CMCC-CM2 and −105
and −158 km3 yr−1 in ECMWF-IFS). On the other hand, in
MPI-ESM and HadGEM3, the finer configuration has less
of a negative trend compared to the coarser one (−337 and
−144 km3 yr−1 in MPI-ESM and −174 and −257 km3 yr−1

in HadGEM3).
We also examine how the models simulate sea ice re-

sponse to external forcing on a seasonal scale. The monthly
trends in the Arctic-wide SIA (computed over the period of
1979–2014) reveal that the models tend to underestimate the
rate of sea ice loss in the melting season and in summer
(not shown). Most models reproduce more negative trends
from November to May and underestimate the magnitude of

trends in other seasons. MPI-ESM HR trends are found to
have a closer fit to the observed trends for the total Arc-
tic, although the model simulates SIC and sea ice classes
poorly. For SIV, the models vary greatly in the representa-
tion of trends. Despite all models being able to simulate a
SIV decline in all months, they cannot capture the observed
magnitude of sea ice loss and have values ranging from al-
most 0 to −450 km3 yr−1. They also struggle to reproduce
the seasonal cycle in the trends, which in PIOMAS has a
slightly stronger signal in June and a weaker signal in the
winter months (−320 and −260 km3 yr−1, respectively).

Since there is a substantial difference in model perfor-
mance in reproducing seasonal variability on a regional
scale, we analyse monthly trends in SIA and SIV in each
sea ice zone from 1979–2014 (Fig. 7). The magnitude and
timing of sea ice loss strongly depend on the season and
region. According to observations, the winter decrease in
SIA is most dramatic in the Barents–Kara seas (nearly
−17 × 103 km2 yr−1; 0.8 %yr−1), while the summer trends
are dominated by the Eastern Siberian Sea and Beaufort–
Chukchi seas (almost −25 × 103 km2 yr−1; 2 %–3 %yr−1).
The Barents–Kara seas and the Greenland region show a pat-
tern of SIA trends that differs from the total Arctic and the
rest of the regions, which have one pronounced negative peak
in September and trends close to zero in winter. Instead, in
the Atlantic sector, i.e. the Barents–Kara seas and Greenland
coast, sea ice loss is observed all year round with a slightly
stronger decrease in July. In the central Arctic, the models
simulate a weak SIA reduction, with the strongest signal in
August–September, which is not significant in most models
(less than 5 % of the SIA of the sector). In the other sec-
tors, the models generally tend to underestimate the pace of
sea ice loss indicated by satellite estimates. The exception is
the Barents–Kara seas and the Greenland sector, where some
models produce more negative trends compared to the obser-
vations. In the Laptev, East Siberian, and Beaufort–Chukchi
seas, some of the models do not simulate a reduction in sum-
mer SIA and even display weak yet insignificant positive
trends. Given that all these regions contain a large MIZF in
summer (Fig. 4), the inability to capture trends points to in-
accurate sensitivity of sea ice to external forcing, particularly
within the MIZ.

The strongest negative trends in SIV are observed
in the areas of thick ice: the Beaufort–Chukchi seas
(up to −90 km3 yr−1 in September), the Greenland sec-
tor (−80 km3 yr−1 in July), and the East Siberian Sea
(−70 km3 yr−1 in summer months). The seasonal cycle of the
Barents–Kara sea SIV trend contrasts with that of other sec-
tors, where the highest rate of sea ice decline is observed
in September. Notably, in the Laptev, East Siberian, and
Beaufort–Chukchi seas, SIV experiences a substantial de-
crease in the winter months, while SIA stays nearly stable, re-
flecting a considerable ice thinning primarily driven by basal
melting. In the East Siberian Sea and Beaufort–Chukchi seas,
almost all models tend to underestimate trends in SIV (10
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Figure 6. Monthly anomalies of SIA (a) and SIV (b) from 1979–2014 from HighResMIP model outputs and reference products.

Table 3. Linear trends in SIA and SIV and their standard deviations for the 1979–2014 and 2015–2050 periods.

1979–2014 SIA trend 2015–2050 SIA trend 1979–2014 SIV trend 2015–2050 SIV trend
(103 km2 yr−1) (103 km2 yr−1) (km3 yr−1) (km3 yr−1)

ECMWF-IFR LR −72.08 ± 16.9 No future runs −423.86 ± 68.3 No future runs
ECMWF-IFR MR −21.24 ± 9.8 −104.82 ± 71.4
ECMWF-IFR HR −36.67 ± 7.6 −157.58 ± 34.4

EC-Earth3P −34.2 ± 9.47 −52.31 ± 16.1 −322.28 ± 31.8 −210.56 ± 64.1
EC-Earth3P HR −40.13 ± 8.8 −54.87 ± 5.5 −460.47 ± 97.5 −368.47 ± 31.7
CNRM −29.83 ± 8.9 −6.55 ± 13.4 −61.89 ± 23.6 −35.55 ± 26.7
CNRM HR −15.94 ± 7.9 −63.9 ± 9.2 −35.58 ± 15.9 −131.21 ± 20.5
HadGEM3 LR −56.54 ± 13.1 −113.91 ± 12.5 −354.64 ± 66.2 −361.87 ± 31.7
HadGEM3 MM −48.32 ± 10.8 −97.68 ± 11.3 −256.75 ± 41.2 −459.86 ± 36.7
HadGEM3 HM −31.54 ± 8.3 −106.72 ± 10.2 −173.72 ± 38.5 −440.09 ± 52.6
CMCC-CM2 HR −38.57 ± 5.2 −47.55 ± 9.7 −384.2 ± 30.9 −286.38 ± 31.2
CMCC-CM2 VHR −40.83 ± 6.6 −73.97 ± 6.6 −411.1 ± 51.1 −698.79 ± 37.5
MPI-ESM HR −52.19 ± 5.1 −49.94 ± 8.3 −336.95 ± 22.8 −116.95 ± 19.7
MPI-ESM XR −36.94 ± 9.5 −46.95 ± 8.5 −143.97 ± 44.5 −99.39 ± 16.4
CDR −44.14 ± 7.3
OSI SAF −46.42 ± 6.7
PIOMAS −291.27 ± 36.8

out of 14 model simulations produce less-negative trends),
while in the rest of the Arctic zones, PIOMAS is nearly in the
middle of the inter-model spread. Compared to other models,
both CNRM-CM6 configurations and the two finest configu-
rations of ECMWF-IFS have changes in SIA and SIV closest
to zero in almost all regions and months. On the one hand,
CNRM-CM6 simulates very thin ice, so the lack of trend
is consistent with the concept of negative ice thickness–ice

growth feedback. On the other hand, ECMWF-IFS MR and
HR underestimate sea ice reduction everywhere despite sim-
ulating very thick ice. HadGEM3 performs differently at the
regional scale, but at least one of the configurations has a
very good fit to the PIOMAS estimates. Generally, both con-
figurations of CMCC-CM2 present the large SIV decrease in
all sectors except for the Barents–Kara Sea, and the rate of
decline is similar between the two resolutions despite a sig-

https://doi.org/10.5194/tc-18-2739-2024 The Cryosphere, 18, 2739–2763, 2024



2752 J. Selivanova et al.: Past and future of the Arctic sea ice in HighResMIP climate models

Figure 7.

nificant difference in the mean SIV. The HR configuration of
MPI-ESM is in fairly good agreement with PIOMAS in all
regions except the central Arctic and the Laptev Sea, where
it tends to produce more negative trends. Conversely, MPI-
ESM XR underestimates negative SIV trends in all parts of
the Arctic Ocean, except the Greenland zone where it is close
to its HR configuration.

Overall, there is no consistent link between the strength
of sea ice retreat and the ocean/atmosphere resolution: it in-
stead depends on the region and the model used. Considering
only SIA, the models generally underestimate the trends, es-
pecially in finer ocean configurations and in the Laptev, East
Siberian, and Beaufort–Chukchi seas in summer. However,
the beneficial effects of increased ocean resolution for SIA
trends are observed for ECMWF-IFS in the Barents–Kara

seas and in the Greenland area. In these regions, other models
do not differ considerably between configurations: low- and
high-resolution configurations show a closer fit to the obser-
vations according to the season. Moreover, the increased at-
mosphere resolution also does not improve the representation
of SIA trends: the HadGEM3, CMCC-CM2, and MPI-ESM
finer atmosphere configurations lead to underestimating the
negative SIA trends more than their counterparts at coarse
resolutions do. The relation between ocean/atmosphere reso-
lution and SIV trends is less clear and depends on the region
and the model.
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Figure 7. The 1979–2014 monthly trends in SIA (a) and SIV (b) in the Arctic sub-regions for HighResMIP hist-1950 model outputs versus
CDR and OSI SAF for SIA and versus PIOMAS for SIV. Dots indicate non-significant trends.

3.5 Future projections

In this section, we analyse the results of HighResMIP models
when simulating future Arctic sea ice changes, using highres-
future model outputs from 2015 up to 2050. HighResMIP
future projections generally show stronger sea ice loss com-
pared to historical runs (Table 3). These simulations can elu-
cidate when the Arctic will reach its first ice-free summer, i.e.
the condition typically defined as the timing when September
sea ice drops below 106 km2. Reaching ice-free conditions is
an unprecedented change in the Arctic environment and the
tipping-point in the Earth’s climate system. Considering the
large inter-model spread in simulating observed mean sea ice
state and trends, we assume that a selection of the models

which better agree with observations can reduce the spread
and decrease uncertainty in the model projections. We se-
lect models based on the historical performance of Septem-
ber SIA and SIV mean state and trends versus CDR and
PIOMAS, respectively (Fig. 8). To exclude outliers, we de-
fine the 75th-percentile threshold, and we select the models
whose values do not exceed the threshold for both variables.
The resulting subset includes four models: the low-resolution
configuration of EC-Earth3P, HadGEM3 MM and HM, and
CMCC-CM2 HR. These models are used in the further anal-
ysis of sea ice future evolution.

Figure 9 illustrates the September SIV time series from
1950 to 2050 computed for the total Arctic and for the sub-
regions. The vertical lines mark the first ice-free September
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Figure 8. Normalized difference in the mean September SIA versus September SIA trend from 1979–2014 (a). Same for SIV (b). The
difference is computed with reference to CDR (for SIA) and PIOMAS (for SIV). Dashed lines indicate the 75th percentile for a set of the
model outputs excluding ECMWF-IFS.

in the multi-model mean with and without model selection
(yellow and green, respectively) and in CDR (black, data
available between 1971–2021). At the regional scale, the tim-
ing of ice-free conditions refers to the threshold of 25 % of
the CDR SIA averaged over the 1980–2010 period in the
given region. It is evident that a huge sea ice reduction takes
place in all Arctic sectors; however, the pace of sea ice loss
varies across the regions owing to differences in the initial
state and dominant processes driving the change. We note
that applying model selection results in earlier timing of the
ice-free conditions in Barents–Kara, Laptev, East Siberian,
and Beaufort–Chukchi seas and in ice-free conditions in the
total Arctic, central Arctic, and Greenland region. In the lat-
ter sub-regions, the multi-model mean without model selec-
tion does not predict the event everywhere before 2050. The
comparison between the model configurations in simulating
the timing of ice-free conditions shows that there is no clear
link between the model resolution and the pace of sea ice loss
(not shown).

The September Arctic-wide sea ice from the multi-model
mean (with model selection) shrinks by 95 % from 1950 to
2050; cf. the top panel of Fig. 9. The inter-model spread
decreases throughout the century, from 14 × 103 in 1950
to 1.64 × 103 km3 in 2050. The Arctic does not reach ice-
free conditions before 2050 in the multi-model mean with-
out model selection, although applying selection criteria ad-
vances the timing of the event to 2047. The central Arctic
September sea ice will lose 96 % of its volume by 2050 in
the multi-model ensemble, which is in good agreement with
PIOMAS during the overlapping period. The inter-model

spread again narrows substantially, from 2.58 × 103 km3 in
1950 to 0.23 × 103 km3 in 2050. Ice-free conditions in the
central Arctic are not reached before 2050 in the multi-model
mean when considering all models. However, the exclusion
of outliers leads to approaching the threshold in 2042. The
Barents–Kara seas experience the most dramatic sea ice loss,
accounting for almost 100 % of SIV from 1950 to 2050 in the
model ensemble. The first ice-free September in the Barents–
Kara seas is accurately simulated by the multi-model mean
with model selection: the event occurs in 2012, as shown
in CDR. Avoiding model selection postpones the event by
19 years. In the Barents–Kara seas, the spread among mod-
els decreases from 1.46 × 103 km3 in 1950 to almost vanish-
ing in 2050. The multi-model mean SIV in the Laptev Sea
shrinks by 99 % in 100 years. The inter-model spread nar-
rows from nearly 0.9 × 103 km3 at the beginning of the run
to 0.05 × 103 km3 at the end. The timing of the first ice-free
summer is similar to that in the Barents–Kara seas: SIA drops
below the threshold in 2012 in CDR and in 2032 in the multi-
model mean without model selection. When applying selec-
tion criteria, ice-free conditions are reached in 2023. In the
East Siberian Sea, September ensemble-mean SIV is reduced
by 99 % by the middle of this century. The East Siberian Sea
reaches the threshold in SIA earlier compared to the other
regions. CDR produces the event in 2007, when the Arc-
tic broke the first record low, while the multi-model mean
with model selection simulates the first ice-free conditions in
2033 (2034 without model selection). The inter-model spread
ranges between 4.76 × 103 km3 in 1950 and 0.1 × 103 km3

in 2050. The Beaufort–Chukchi seas lose nearly 96 % of
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Figure 9. Time series of September SIV from 1950 to 2050 using HighResMIP historical and future runs and PIOMAS for the entire Arctic
and sub-regions. The multi-model mean SIV with model selection is shown by the dashed line. The vertical lines indicate the year of ice-free
conditions: green for the multi-model mean without model selection, yellow for the multi-model mean with model selection, and black for
CDR. “Ice-free conditions ”signifies that SIA falls below 106 km2 for the total Arctic and reaches 25 % of the CDR SIA averaged over
1980–2010 for the sub-regions.
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SIV in 100 years in the ensemble mean. The inter-model
spread decreases from 3.44 × 103 km3 at the beginning to
0.37 × 103 km3 at the end of the run. The multi-model mean
reaches the first ice-free September in 2046. When adopting
model selection, the Beaufort–Chukchi seas will be ice-free
in 2039. The Greenland region is undergoing the least promi-
nent sea ice loss, accounting for 88 % throughout the period
from 1950 to 2050. However, there is a great narrowing of
the inter-model spread from 6.12 × 103 km3 in the middle
of the last century to 1.15 × 103 km3 100 years after. Both
multi-model means project that Greenland SIA might turn
ice-free in 2048. Overall, the models simulate the first ice-
free September later than CDR in all sub-regions studied.
Therefore, we can reasonably assume the same behaviour for
the total Arctic.

Along with overall sea ice loss, there are substantial
changes in the structure of sea ice cover. Figure 10 shows
the time series of September SIA and the MIZF from 1950
to 2050. For SIA (top panel), the models are in fairly good
agreement with the observations yet have systematic biases
and underestimate the negative trend. In addition, the inter-
model spread is large but relatively similar throughout the
years (∼ 4 × 106 km2). For the MIZF (bottom panel), the
spread among models increases considerably with time, from
∼ 10 % in 1950 to ∼ 75 % in 2050. Most models simulate
MIZF growth, which reflects the transition of the sea ice state
to the marginal, ice-dominated state. MIZ in the 2040s is
projected to account for up to 80 % of the total ice area in
September, although the interannual variability at the end of
the run is large in most models. The CNRM-CM6 and MPI-
ESM models are two outliers: CNRM-CM6 has a nearly con-
stant MIZ fraction during the whole period, while MPI-ESM
has MIZF close to 100 % from the beginning of the run, but it
occasionally drops to 0 at the end of the run. Distinct model
performances in simulating MIZF show that an accurate rep-
resentation of total SIA does not guarantee the same for all
sea ice classes, highlighting the importance of studying the
Arctic MIZ.

4 Discussion

Although the latest generation of the models does a fairly rea-
sonable job simulating the mean state and long-term variabil-
ity in sea ice cover (Notz and Community, 2020), the models
still suffer from biases, which decrease model trustworthi-
ness in projecting the future sea ice state in the Arctic. The
enhancement in the model component horizontal resolutions
is used in CMIP6 HighResMIP as one of the factors capable
of improving the realism of the model simulations and reduc-
ing biases in polar regions. In this study, we investigated the
ability of HighResMIP to simulate Arctic sea ice variabil-
ity and the impact of the ocean and atmosphere horizontal
resolution on the representation of sea ice properties in the
recent-past and future climate. We do not find a strong link

between ocean/atmosphere resolution and the representation
of sea ice properties, and the realism of model performance
instead depends on the model used. Nevertheless, there is ev-
idence that enhanced ocean resolution leads to an improved
representation of winter SIA in some models. This is associ-
ated with more accurate meridional heat transport (Docquier
et al., 2019), which is a key process that can regulate the lo-
cation of the ice edge and of SIA (Li et al., 2017; Muilwijk
et al., 2019). The Atlantic Ocean is the main heat source en-
tering the Arctic, accounting for 73 TW on average per year
(Smedsrud et al., 2010); therefore, an adequate simulation
of the boundary currents is particularly important in the At-
lantic sector of the Arctic Ocean, which is confirmed by the
regional analysis in our study. Another process that might
be sensitive to horizontal ocean resolution is the Arctic river
discharge, which contributes to both seasonal variations in
sea ice cover and long-term sea ice variability. The fresh-
water input stabilizes the upper ocean stratification and iso-
lates the warm Atlantic layer from the bottom of the sea ice
cover (Carmack et al., 2015), resulting in higher ice growth
in winter. On the other hand, the heat input from the rivers
accelerates sea ice melt and increases the ocean temperature,
which has possible implications for the next year’s growing
season (Park et al., 2020). Representation of river discharge
in HighResMIP models needs additional investigation. Our
results do not show a systematic impact of atmosphere res-
olution on the representation of the Arctic sea ice. This is
confirmed by other studies reporting the minor role of atmo-
sphere resolution compared to that of the ocean (Roberts et
al., 2020; Koenigk et al., 2021; Meccia et al., 2021). How-
ever, increasing atmosphere resolution might permit a more
realistic representation of precipitation, which can lead to
increased snowfall (Strandberg and Lind, 2021) and conse-
quently generate cooling and sea ice expansion (Bintanja et
al., 2018).

SIT is less responsive to changes in the ocean grid res-
olution compared to SIA, and its representation largely de-
pends on the sea ice model. Our results show that in some
cases large biases in SIT reduce the beneficial effect of in-
creased horizontal resolution on SIA. Poor representation of
SIT is a great obstacle to the robustness of sea ice projec-
tions. The high uncertainty cannot be overcome without con-
straining the model simulations with a sufficient number of
in situ measurements of the Arctic SIT, which are still sparse
and unreliable (Massonnet et al., 2018). Apart from the hor-
izontal resolution, there are other important factors affecting
the model performance, for example inaccurate representa-
tions of mixed layer depth (Watts et al., 2021), surface air
temperature (Papalexiou et al., 2020), surface pressure and
geostrophic winds (Kwok and Untersteiner, 2011; Stroeve et
al., 2014), and sea ice sensitivity to global warming (Zhang,
2010). These elements pair with the intrinsic complexity of
sea ice models that include thermodynamics schemes and pa-
rameterizations (Keen et al., 2021), sea ice dynamics compo-
nents (Hunke, 2010), and coupling between the ocean and at-
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Figure 10. Time series of September SIA (a) and MIZF (b) from 1950 to 2050 using HighResMIP historical and future runs and satellite
products (CDR and OSI SAF).

mosphere components (Hunke et al., 2020). Given that there
were few improvements with increased horizontal resolution,
we argue that running the models at higher resolutions might
not be worth the major effort of costly computations. Our re-
sults suggest that the efforts of the modelling groups should
be aimed rather at the improvement of the sea ice model
physics and parameterizations.

Our analysis is limited to only one ensemble member of
each model configuration, which does not allow for a proper
assessment of the role of internal variability. It is important to
emphasize that internal variability can easily lead to marked
differences between the basic features of the climate models.
Results from large ensembles of multi-decadal simulations
are required to robustly quantify internal climate variability
and convincingly identify deficiencies and demonstrate the
potential progress of the climate models (e.g. Deser et al.,
2020; Maher et al., 2020). Large ensembles with individ-
ual CMIP-class models show that the differences between
ensemble members reflect simulated internal variability. For
Arctic sea ice, internal variability has a large influence on
multi-decadal trends (e.g. Swart et al., 2015) and has rein-
forced anthropogenic September Arctic ice loss since 1979
(Kay et al., 2011). Using a single member or small ensembles
to conclude that a climate model is in error can lead to inap-
propriate conclusions about the model fidelity. While a large
number of ensemble members is desirable to account for
fluctuations due to internal variability, we acknowledge that
these are computationally expensive and may not always be

available. Unfortunately, not all HighResMIP models used in
this study provide multiple members. ECMWF-IFR LR, MR,
and HR have 8, 3, and 6 ensemble members, respectively, and
EC-Earth3P and CNRM have 3 ensemble members for both
the LR and HR systems. Only one member is available for all
the other configurations. In the Supplement, we provide ad-
ditional analysis of the abovementioned models that includes
all existing model members to show the weakness and ro-
bustness of the single-model response. For these three mod-
els, we show SIA and SIV variability on seasonal (Figs. S1,
S3, and S5 in the Supplement) and interannual (Figs. S2, S4,
and S6 in the Supplement) timescales and linear SIA and
SIV trends (Tables S1–S3 in the Supplement) from 1979 to
2014 for ensemble members with LR and HR configurations.
The minimum and maximum deviation among the “control”
member for each month depict the bounds of simulated in-
ternal variability. The internal variability tends to be largest
in late autumn and winters and smallest at the summer sea
ice minimum when the reduced ice coverage leads to rela-
tively low variability, as seen in the seasonal cycle. In this
case, the effect of resolution does not depend on the choice
of ensemble member. The magnitude of the 36-year trends in
SIA and SIV is most affected, but the small-ensemble mean
is generally comparable with the single-member results (with
the exception of the CNRM ice area). Still, the LR area and
volume exhibit stronger (weaker) negative trends than their
HR counterparts in ECMWF (EC-Earth3P). It is worth not-
ing that these very small ensembles do not offer considerably
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better sampling of internal climate variability than a single-
model ensemble. Although the correct sampling of internal
variability is a necessary condition for assessing model fi-
delity, it is also crucial to assess how the model simulates the
physical mechanisms of interest. However, our analysis high-
lights the fact that large ensembles of multi-decadal credible
simulations, along with strengthening of the effort towards
developing more realistic climate models, are needed to un-
derstand sea ice trends.

In this study, we try to understand when the Arctic will see
its first ice-free summer using HighResMIP outputs. Models
show a wide temporal range for the occurrence of ice-free
conditions in the Arctic. To reduce the inter-model spread
in sea ice projections, we apply a widely used approach
based on the selection of models according to their historical
performance (Wang and Overland, 2012; Senftleben et al.,
2020). Although close agreement with observations does not
guarantee the realism of the models, we believe that exclud-
ing the models that struggle to reproduce the present-day SIA
and SIV mean state and trends might improve the accuracy
of future sea ice projections. Different criteria to select “best-
performing” models exist and almost always lead to earlier
near-disappearance of sea ice compared to no selection (Doc-
quier and Koenigk, 2021). The timing of the first ice-free
Arctic in our model selection compares well with similar cri-
teria applied to CMIP6 models that predict the event between
2047 and 2052, while the process-based criteria advance the
timing of the first ice-free summer to 2035 (Docquier and
Koenigk, 2021). However, the investigation of model selec-
tion criteria is outside of scope of this study; our goal is to
give insight into when the Arctic might turn ice-free.

Our results highlight the increasing role of the MIZ in the
response of Arctic sea ice to climate change. We show that
the MIZ will be the dominant sea ice class in the Arctic by
2050, which implies a shift to new sea ice conditions similar
to those in Antarctica. The chaotic interannual variability in
the summer MIZF in the last years of simulations indicates
that current model physics might not be suitable for chang-
ing sea ice conditions (Fig. 10). In order to realistically sim-
ulate (thermo)dynamical processes, the new sea ice regime
requires modifications in model physics and sea ice rheol-
ogy, which is formulated for thick pack ice (Aksenov et al.,
2017). Additionally, the growing fraction of the MIZ requires
changes in the parameterization of the lateral and basal melt
(Smith et al., 2022). The proper simulation of the MIZ is
essential for achieving reasonable projections of future sea
ice conditions since small and thin ice floes within the MIZ
are more vulnerable to external dynamic and thermodynamic
forces than consolidated pack ice is. In addition, the water
patches between the ice floes permit the absorption of solar
radiation in the upper ocean, increasing the role of the ice–
albedo effect, which causes anticipation of the ice advance
onset and acceleration of the overall sea ice loss. To demon-
strate positive feedback between summer MIZ and minimum
SIA for the following year, we plot the mean MIZF over

June, July, August, and September (JJAS) versus September
SIA with a 1 year lag, computed for the years 2015–2050
(Fig. 11a). All models except one simulate negative regres-
sions ranging from ∼ −0.13 % per 106 km2 to −0.06 % per
106 km2, which means that the larger summer MIZF leads to
lower September SIA the following year. We suggest that the
MIZ might act as a predictor of future sea ice conditions in
the model simulations. Figure 12b shows JJAS MIZF in 2015
(start of the highres-future run) versus the first September
when the Arctic becomes ice-free. Note that not all models
simulate the event before 2050. Our analysis indicates that
with higher initial MIZF, the September sea ice disappears
earlier. This indicates that a reasonable representation of the
MIZ at the beginning of the run might impact the pace of
sea ice loss and potentially improve the accuracy of model
projections. We assume that the MIZF might represent a ro-
bust criterion to examine model fidelity. The impact of the
MIZ on the accuracy of the model simulations needs further
investigation.

5 Conclusions

In this study, we evaluate the historical and future variabil-
ity in the Arctic sea ice area and volume using six cou-
pled atmosphere–ocean general models participating in the
HighResMIP experiments of the sixth phase of the Coupled
Model Intercomparison Project (CMIP6). For the period of
1979–2014, we find that most models can properly simu-
late the maximum and minimum of the SIA seasonal cycle
at hemispheric and regional scales. However, some of them
cannot correctly capture their magnitude, failing to realisti-
cally reproduce the ice growth and retreat phases, with sys-
tematic overestimation or underestimation of the seasonal
variability. We find that the models are generally able to
reproduce the seasonal cycle of the Arctic-wide MIZ area,
although not all of them can capture the timing of the an-
nual maximum. The models simulate different areas of the
MIZ, especially in summer; however, there is stronger agree-
ment among models regarding MIZF. We find that different
regional contributions to the inter-model spread are associ-
ated with seasonal variability: the winter inter-model spread
in SIA is attributed to the Atlantic sector (Barents–Kara seas
and the Greenland ice zones), while the summer differences
are tied to the Laptev, East Siberian, and Beaufort–Chukchi
seas.

Selected models differ broadly across the spatial distri-
bution of the mean SIT and its average values. Only a few
models reveal a pattern similar to PIOMAS, characterized by
thicker ice off the coast of Greenland and the Canadian Arc-
tic Archipelago. Most models simulate ice that is too thick,
which affects the representation of sea ice volume; exclud-
ing one outlier, all but two models overestimate ice volume
all year round: up to 1.5 times in April and 3.5 times in Au-
gust. However, regardless of large systematic biases, most
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Figure 11. June, July, August, and September (JJAS) MIZF mean versus September SIA with a 1-year lag, from 2015–2050 (a). Timing of
the first ice-free Arctic year versus JJAS MIZF in 2015 (b).

models simulate a realistic seasonal cycle of SIV with a max-
imum in April and a minimum in August. All models capture
declines in SIA and SIV over the historical period, but they
disagree on the pace of sea ice loss. The response to the exter-
nal forcing does change with season and region: the winter
trends are dominated by changes in the Barents–Kara seas
and the Greenland ice zone, while the summer trends are
driven by those in the East Siberian and Beaufort–Chukchi
seas. Most models underestimate ice loss in all regions, par-
ticularly in summer; conversely, they tend to simulate more
negative trends in the Greenland zone, leading to overesti-
mating the Arctic-wide SIA trend in some configurations. In
this study, we find that there is no strong relationship between
ocean/atmosphere resolution and sea ice cover representa-
tion: the impact of horizontal resolution rather depends on
the studied variable and the model used. However, the ocean
has a stronger effect than the atmosphere and an increase in
ocean resolution from ∼ 1 to ∼ 0.25° has a favourable im-
pact on the representation of SIA and sea ice edges, which is
especially evident for the ECMWF-IFS and HadGEM3 mod-
els. At the same time, the simulation of SIT does not directly
rely on the grid spacing or on the derived SIV. A finer ocean
resolution leads to lower SIV for ECMWF-IFS and to almost
no differences for HadGEM3. On the other hand, enhanced
atmosphere resolution leads to higher SIV for ECMWF-IFS
and CMCC-CM2, and increasing the resolution in both the
ocean and the atmosphere results in little difference between
configurations in CNRM and in higher SIV for EC-Earth3P.
We also find that the differences between configurations vary
from one region to another, which highlights the importance
of examining the model performance at a regional scale. For
example, SIA and SIV are too low in CMCC-CM2 HR4 in

the Barents Sea, caused by overestimating the OHT at the
Barents Sea Opening (Docquier et al., 2020), while perform-
ing well in the rest of the sectors. On the other hand, MPI-
ESM has similar SIA in two configurations in the Barents–
Kara seas and the Greenland ice zone, whereas the finer-
atmosphere configuration displays less sea ice in summer in
the rest of the regions.

Considering the period 2015–2050, all models simulate a
long-term decrease in SIA and SIV, with a generally stronger
rate of ice loss compared to the historical period. Model sim-
ulations predict that the Arctic loses nearly 95 % of SIV
from 1950 to 2050. There is again no systematic impact of
horizontal resolution on the occurrence of the first ice-free
conditions. The multi-model mean of all models does not
project the Arctic to become ice-free before 2050. However,
applying model selection based on historical performance
advances the event to 2047. Considering that the model se-
lection leads to closer agreement with CDR on the year of
the first ice-free summer in the regions where it has already
happened (the East Siberian, Barents–Kara, and the Laptev
seas), we infer that model selection application may poten-
tially improve the accuracy of model projections of Arctic
sea ice evolution. Together with overall ice shrinking, we
studied the changes in the structure of sea ice cover, and we
concluded that the MIZ will constitute up to 60 %–80 % of
the September SIA by 2050. This suggests a shift to a new
sea ice regime similar to that in the Antarctic. Given that the
MIZ will play a major role in the response of the Arctic sea
ice to external forcing, modifications in the model physics
and parameterizations are encouraged in the new generations
of coupled climate models.
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