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Abstract. Over the past decade, a wealth of research has
been devoted to the detection of crevasses in glaciers and
ice sheets via remote sensing and machine learning tech-
niques. It is often argued that remotely sensed damage maps
can function as early warning signals for shifts in ice shelf
conditions from intact to damaged states and can serve as
an important tool for ice sheet modellers to improve future
sea level rise predictions. Here, we provide evidence for the
Filchner–Ronne and Pine Island ice shelves that remotely
sensed damage maps are only weakly related to the ice rate
factor field A derived by an ice flow model when inverting
for surface velocities. This technique is a common procedure
in ice flow models, as it guarantees that any inferred changes
in A relate to changes in ice flow measured through obser-
vations. The weak relationship found is improved when in-
vestigating heavily damaged shear margins, as observed on
the Pine Island Ice Shelf; however, even in this setting, this
association remains modest. Our findings suggest that many
features identified as damage through remote sensing meth-
ods are not of direct relevance to present-day ice shelf flow.
While damage can clearly play an important role in ice shelf
processes and thus be relevant for ice sheet behaviour and
sea level rise projections, our results imply that mapping ice
damage directly from satellite observations may not directly
help improve the representation of these processes in ice flow
models.

1 Introduction

The advent of high-resolution satellite imagery and the de-
velopment of new sophisticated algorithms to analyse these
products have motivated many studies that track surface
crevasse features across the Antarctic continent (Lai et al.,
2020; Lhermitte et al., 2020; Zhao et al., 2022; Izeboud
and Lhermitte, 2023; Surawy-Stepney et al., 2023). Some of
these studies have highlighted the value of remotely sensed
crevasse maps for ice sheet modellers when investigating
future ice shelf stability (Zhao et al., 2022), initializing or
improving creep damage models (Izeboud and Lhermitte,
2023), and evaluating the impact of ice shelf crevasses on ice
dynamics (Lai et al., 2020; Zhao et al., 2022). Specifically,
a recent study from Surawy-Stepney et al. (2023) suggested
that potential applications of damage fields extracted from
satellite imagery as fracture data – remotely sensed maps of
fractures – can be used to constrain inverse problems in ice
flow models aiming to infer the effective ice viscosity from
surface velocities.

For alpine glaciers, ice caps, and ice sheets, where most
of the forward motion is either due to ice deformation con-
centrated close to the bed or caused by basal sliding, sur-
face crevasses are unlikely to have any significant impact
except for a possible modification in the effective ice den-
sity of the surface layers in which they are confined. For ice
shelves, where the ice deformation is generally characterized
by uniform horizontal divergence and convergence across the
whole ice column, the impact of surface crevasses may not
be this easily discounted (Weertman, 1983; Van Der Veen,
1998; Larour et al., 2005; van der Veen, 2007; Khazendar
et al., 2009; Colgan et al., 2016). However, only those sur-
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face features that actively influence ice flow are pertinent to
modelling studies of ice flow dynamics. In fact, some sur-
face morphological features detected by remote sensing tech-
niques may not necessarily represent crevasses but rather fea-
tures that can be easily mistaken for crevasses, such as flow
stripes (Luckman et al., 2012) or surface expressions of basal
fractures (McGrath et al., 2012). In other cases, some fea-
tures may indeed be crevasses but may have such shallow
characteristics that they have limited relevance to ice flow
dynamics or could have transitioned from active to passive
states when being advected in regions of compression (Col-
gan et al., 2016). Hence, it is not a priori clear if the sur-
face morphological features identified through remote sens-
ing products have any direct correspondence to the ice rheo-
logical parameters as used in ice sheet modelling.

Historically, signs of damage concealed beneath undam-
aged firn in the margins of ice streams have played a cru-
cial role in past changes in ice flow conditions, i.e., the shut-
down of Ice Stream C in Antarctica (Robin, 1975; Shabtaie
and Bentley, 1987; Retzlaff and Bentley, 1993; Smith et al.,
2002). In the modelling community, “ice damage” is gener-
ally introduced as a scalar variable that impacts the effec-
tive value of a rheological parameter, A – also known as the
pre-factor in Glen’s flow law (refer to Methods, Sect. 2) –
by making it rheologically weaker than can be expected for
temperate ice (Pralong and Funk, 2005; Borstad et al., 2013;
Krug et al., 2014; Sun et al., 2017). Rather than prescribingA
as an input field, or alternatively by calculating A from mod-
elled englacial temperatures, many modern ice flow models
infer the A distribution by performing a model inversion us-
ing surface velocities and rates of thickness change, some-
times referred to as “data assimilation”. In contrast to the
forward problem, where ice flow is solved as a function of
an initial ice sheet state, the inverse problem aims to infer the
ice sheet’s state (the spatial distribution ofA) that gave rise to
these observations. Solving the inverse problem can be more
challenging than its forward counterpart, since, in order for
it to be well-posed, it requires the introduction of regulariza-
tion parameters (described below in Methods). Nevertheless,
the inversion method remains a powerful tool as it ensures
that an ice sheet model’s initial state is consistent with the
observations available, e.g., surface velocities. Thus, we can
employ inverse methods to robustly identify the spatial dis-
tribution of A required to generate the specific velocity field
observed.

The question now arises if the inferred distribution of A
of an ice flow model agrees with the crevasse maps obtained
from satellite imagery. Here, we investigate this association
for the whole of the Filchner–Ronne Ice Shelf in the Weddell
Sea and the Pine Island Ice Shelf in the Amundsen Sea Em-
bayment. We solve inverse problems at a spatial resolution
comparable to those provided by available crevasse maps.
This requires a resolution of about 100 m, which is a consid-
erably higher resolution than typically applied in the study of
ice shelves, and a pan-Antarctic inversion at this resolution is

currently not feasible. Additionally, these two ice shelves ex-
emplify two contrasting situations. Over the past 20 years,
the Pine Island Ice Shelf experienced rapid changes (Rignot
et al., 2019; Shepherd et al., 2019), transitioning from a state
of no crevasses in 1997 to exhibiting extensive crevassed and
damaged areas near the grounding line and shear margins
in 2019 (Lhermitte et al., 2020). In contrast, the Filchner–
Ronne Ice Shelf has remained relatively unchanged in recent
decades, primarily due to its location in a colder embayment
with less exposure to warm ocean currents (Gardner et al.,
2018; Rignot et al., 2019; Shepherd et al., 2019).

To evaluate to what extent maps of crevassing correspond
to areas identified as damaged via our model inversion, we
treat this as a classification problem. Classification analy-
ses offer a more comprehensive assessment of model perfor-
mance compared to correlation coefficients, since they can
handle imbalanced datasets better and provide insights into
the model’s performance across different threshold levels.
The crevasse products obtained by remote sensing/machine
learning techniques represent the true observations to be clas-
sified (that is, to match). The predictor variable is the variable
used to make a prediction. We treat our model inverted ice
rate factor as a predictor for damage and quantify how often
it corresponds to crevassed areas (true positives) against how
often crevasses are incorrectly predicted from areas of dam-
age (false positive). We find, based on this measure, for the
regions considered, that the predictive performance is about
as good as a random classifier.

2 Methods

This investigation comprised three steps. Firstly, we esti-
mated the ice rate factor A by performing a surface veloc-
ity inversion using the adjoint capabilities of the numeri-
cal ice flow model, Úa (Gudmundsson, 2013; Gudmunds-
son et al., 2012). This procedure guarantees that any in-
ferred changes in A relate to changes in the ice flow mea-
sured through observations and is a common first step in
many ice sheet modelling studies (MacAyeal, 1992, 1993;
Rommelaere and MacAyeal, 1997; Larour et al., 2005; Ray-
mond and Gudmundsson, 2009; Arthern and Gudmunds-
son, 2010; Morlighem et al., 2010, 2013; Petra et al., 2012;
Gillet-Chaulet, 2020; Barnes et al., 2021). The second step
of this analysis consisted of obtaining a crevasse map from
remote sensing and machine learning techniques which we
compare to the inverted A field. In this study, we used
two crevasse datasets: (1) the recently proposed NormalisEd
Radon transform Damage detection (NeRD; Izeboud and
Lhermitte, 2023) method, which maps areas of surface struc-
tural damage on ice shelves using multi-source satellite
imagery through a feature contrast approach, and (2) the
Antarctic-wide crevasse map produced by Lai et al. (2020),
which was trained and applied through a convolutional neural
network (CNN). Finally, for the third step, we used a standard

The Cryosphere, 18, 2677–2689, 2024 https://doi.org/10.5194/tc-18-2677-2024



C. Gerli et al.: Satellite-derived crevasse maps and inverted products 2679

classification analysis to test and evaluate the relationship be-
tween these two observational and modelled products.

For the first step, modelling simulations were performed
with the finite element ice flow model, Úa (Gudmunds-
son, 2013; Gudmundsson et al., 2012), which solves the
vertically integrated shallow shelf approximation (SSA) of
MacAyeal (1989). Viscous ice deformation was described by
Glen’s flow law, ε̇ = Aτn, where A is the ice rate factor, ε̇ is
the effective strain, τ is the effective stress, and n is the stan-
dard constant stress exponent set to 3, while the basal motion
for the grounded ice was modelled using a Weertman sliding
law, vb = Cτ

m
b , where vb is the basal velocity, C is a sliding

parameter, τb is the basal drag, and m is the constant sliding
exponent, set equal to 3.

For the Filchner–Ronne Ice Shelf, we extended the compu-
tational boundary some distance upstream from the ground-
ing line, following the drainage basins of Zwally et al. (2012)
and using the 2008–2009 ice front data from ALOS PALSAR
and ENVISAT ASAR acquired during the International Po-
lar Year, 2007–2009 (IPY) (Mouginot et al., 2017). Calving
front positions for the Pine Island Ice Shelf were extracted
from Landsat 8 and Sentinel-1A and Sentinel-1B satellite
imagery. Measurements of ice flow velocities for the Pine Is-
land Ice Shelf were obtained from Joughin et al. (2021a) for
November 2019 and February 2020, while for the Filchner–
Ronne Ice Shelf observed velocities were derived from Land-
sat 8 (Fahnestock et al., 2016) for the year 2014. Simulations
were performed with an initial ice thickness, surface eleva-
tion, and bedrock topography taken from the BedMachine
Antarctica v2 dataset (Morlighem et al., 2020).

For each ice shelf, we inverted for the ice rate factor A.
The inversion minimizes a cost function (J ) of the general
form:

J = I +R , (1)

where I is the misfit term between modelled and observed
velocities, given by

I =
1

2Area

∫ (
u− uobs

uerr

)2

dArea

+
1

2Area

∫ (
v− vobs

verr

)2

dArea, (2)

where Area=
∫

dArea is the total area of the domain we are
integrating on; u and v are the modelled horizontal x and
y velocity components, respectively; uobs and vobs are the
observed surface x and y velocity components, respectively,
and uerr and verr are their relative observational errors; and
R is the regularization term. The regularization term follows
the assumption that the prior probability density function can
be described using a Matérn covariance function (Lindgren et
al., 2011). Whenever an inversion in ice flow models is per-
formed, the inverse solution (in this case, A) is affected by
the set of constraints (regularization parameters, γ ) imposed

in the regularization term. The magnitude of γ determines
to what extent our inverse solution can deviate from the prior
estimate imposed, such that a high γ penalizes a solution that
is substantially different from its prior. Here we imposed two
regularization parameters, γs and γa, that penalized the de-
viation of the parameters getting optimized from their prior
estimates in terms of gradient and amplitude, respectively.
The regularization term takes the form

R =
1
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where M is the mass matrix; Dxx +Dyy is the stiffness ma-
trix in the x and y direction, respectively; p = log10(A); and
p̃ is its relative prior estimate. To avoid the inverse solution
being shaped by either the given prior or overfit observa-
tions, we adopted the L-curve method (Calvetti et al., 2002),
which graphically visualizes, in a log–log scale, the relation-
ship between the norm of the regularized solution and the
norm of the residual error. This technique consists of per-
forming multiple simulations in which different regulariza-
tion magnitudes are tested and compared to their reciprocal
norm residuals. The distribution of these points follows an L-
shaped curve, and the point where the horizontal and vertical
branches converge is the L-corner. This point corresponds to
the point of maximum curvature and represents a solution
where the “perturbation” errors and the “regularization” er-
rors are well-balanced. Since the regularization equation that
we solve in our inversions adopts two regularization param-
eters, γa and γs, we systematically have to assess both quan-
tities for both regularization parameters. Thus, we perform
two sets of simulations: for each set, one of the two regu-
larization parameters is allowed to evolve by several orders
of magnitude, while the other is kept fixed, and the L-corner
value is found. For our simulations, we found an ideal L-
corner at γa = 1 and γs = 25 000. Selecting a smaller value
for γs will not affect the calculated velocity distribution sig-
nificantly; hence any further variation in A resulting from se-
lecting a smaller value is not supported by any corresponding
variations in observed velocities. On the other hand, selecting
very large values of γs (> 109) will cause the solution ofA to
be spatially uniform (we refer to Fig. S5 in the Supplement).

For the second step, we adopted two crevasse map prod-
ucts. For the Pine Island Ice Shelf we used the 30 m
resolution NormalisEd Radon transform Damage detec-
tion (NeRD) method, developed by Izeboud and Lher-
mitte (2023), applied on a median composite sentinel S2 im-
age for the austral summer of 2019–2020 (December, Jan-
uary, and February), using red, green, and blue reflectance
bands and filter cloud cover < 20 %. Since the NeRD ap-
proach was validated just on the Amundsen Sea Embayment,
and given the limited changes observed in the Filchner–
Ronne Ice Shelf, we opted to use the CNN-derived 125 m
resolution crevasse map produced by Lai et al. (2020) for
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the Filchner–Ronne Ice Shelf, using a MODIS Mosaic from
2009 (Fig. 1).

The NeRD method applied on Pine Island provided a con-
tinuous damage map (D), which has values ranging from
0 for intact ice to 0.5 for fully damaged ice, with heavily
damaged regions defined as areas with values greater than
0.1, containing heavily damaged ice, fully fractured rifts,
and ice mélange (Izeboud and Lhermitte, 2023). Hence, this
continuous crevasse product can be converted into a binary
grid, yielding two masks: one displaying all surface crevasses
(D > 0) and the other exclusively highlighting heavily dam-
aged crevasses (D > 0.1). This approach enabled us to assess
two distinct scenarios for the Pine Island Ice Shelf.

For the Filchner–Ronne Ice Shelf, on the other hand, we
extracted the CNN product of Lai et al. (2020), which is al-
ready binary data, either 0 for intact ice or 1 for crevassed ice.
Since the crevasse mask was obtained from MODIS MOA
2009, and the inverted ice rate factor fits observed velocities
from 2014 (Fahnestock et al., 2016), we have tested the case
for which the 2009 crevasses were advected downstream for
5 years’ worth of distance, with constant velocity, for a better
match with the 2014 ice rate field, but found no differences
in the final results.

2.1 Classification techniques

In the third step of our methodology, we used a standard clas-
sification analysis (Tharwat, 2018) to test and evaluate the
relationship between these two observational and modelled
products. If there is a strong link between the inverted ice rate
factor A and the damage maps obtained from remote sensing
methods, we would expect to be able to use the inverted A
field to classify areas of damage as identified through the re-
mote sensing methods and predict crevasses where satellite
maps detected crevasses (true positive). Since we employed
the SSA equations to invert for the solution of A, there are
certain regions for which the SSA equations may not behave
well/break down, i.e., in areas close to the grounding line, in
regions where there is a drastic change in slope or topogra-
phy, close to pinning points and ice rises, due to the presence
of high vertical shear. To ensure reliable results from our re-
ceiver operating characteristic (ROC) analysis we have ex-
cluded all areas of A that were found within a 5 km radius of
the grounding line. To enable the comparison of these obser-
vational and modelled products in a common framework, we
re-gridded one of the variables to ensure consistent format
and resolution. Since the binary crevasse mask is an equally
spaced rectangular grid and the A field is computed on a De-
launay triangulation mesh, we chose to interpolate the fieldA
onto the regular crevasse mask coordinates. Having achieved
spatial consistency between the crevasse binary mask and the
interpolated A field, we proceeded with the assessment of
their relationship via multiple classification analyses (Ferri
et al., 2009; Yacouby and Axman, 2020).

Given that classification analyses generally involve com-
paring two categorical datasets, we need to transform the
continuous A field into a binary map before comparing it
with the binary crevasse map. However, whenever impos-
ing an A threshold above which ice is considered dam-
aged, we considerably reduce the amount of information
(in terms of spatial variability) present in A. To address
this limitation, we employed receiver operating characteristic
(ROC) curve analyses (Hanley and McNeil, 1982; Bradley,
1997; Fawcett, 2006), which evaluate the classification per-
formance – predictive capability – of each paired dataset (A
field vs. crevasse map) across all potential classification A
thresholds. The strength of the ROC metric is its ability to
evaluate the classifier’s performance based on the true posi-
tive rate (TPR; “sensitivity”, the proportion of true positives
correctly classified as positive) and false positive rate (FPR;
“specificity”, the proportion of negatives that are incorrectly
represented as positive) at any classification threshold. Here,
the crevasse products obtained by remote sensing/machine
learning techniques represent the true observations to be clas-
sified. The ROC analysis varies the classification threshold
of the A field to generate a binary A map for each threshold.
Specifically, values of A that exceed the designated classi-
fication threshold are categorized as damaged ice (1), while
those that fall below this threshold are identified as intact ice
(0). For each classification threshold, we compare the binary
A map with the binary crevasse map and produce a pair of
TPR and FPR, corresponding to a dot in the ROC curve. The
ideal perfect classifier corresponds to the right-angled line,
vertical along the y axis and parallel to the x axis, passing
by the upper-left corner of the plot, where TPR is 1 and FPR
is 0 (red dot in Figs. 2 and 3). A random classifier, on the
other hand, corresponds to a straight diagonal line of the plot
(dashed blue line in Figs. 2 and 3). The area under the curve
(AUC) is a metric that measures the overall performance of
the classification analysis, and which describes the strength
of the relationship between the two compared products, in-
dependently of the classification threshold used (Rizk et al.,
2019). An AUC value ranges from 0 to 1, where an AUC of
0.5 is equivalent to a random classifier and an AUC of 1 is
a perfect classifier. To further identify an ideal A threshold
which best compromises the FPR and TPR in this analysis,
we calculate the OPTtimal operating PoiNT (OPT-PNT) on
the ROC curve – further details on how this value is calcu-
lated in the ROC analysis can be found in the Supplement.

2.2 Adjusting unbalanced datasets

Since both crevasse maps (CNN and NeRD) have a greater
sample size of “non-crevasse” nodes (99 %) compared to the
“crevassed” class, the dataset is, in this sense, highly un-
balanced. Thus, careful evaluation and treatment are needed
(Branco et al., 2015) when assessing the classifier perfor-
mance in relation to the inverted A field (preliminary anal-
ysis in the Supplement). When performing a ROC curve
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analysis on unbalanced datasets, results will be biased to-
wards the majority class. To resolve this, we applied a stan-
dard approach in classification analysis of under-sampling
the majority (non-crevasse) class, to obtain an even distribu-
tion among classes (bias-corrected data). This is performed
by randomly sub-sampling the majority class by the size of
the minority class, thus forcing an equal sample size for both
classes. Given the random nature of the sub-sampling pro-
cedure, we perform this step 2000 times, thus repeating the
ROC curve analysis for each resampling iteration and record-
ing all 2000 ROC curves and area under the curve (AUC).
We then calculate the OPT-PNT on each of the 2000 ROC
curves, measuring the mean optimal A threshold.

3 Results

Our inverse solution finds that the Filchner–Ronne Ice Shelf
displays a consistently stiffer and more resistant ice (low A)
compared to the Pine Island Ice Shelf, with softer ice (higher
values) present just in the proximity of ice rises and ice rum-
ples, at the ice shelf front, and in areas close to the grounding
line (Fig. 1a). In contrast, the Pine Island Ice Shelf (Fig. 1b)
exhibits a visibly softer and more deformable ice (higher A),
with values several orders of magnitude larger than the A
for temperate ice along the ice shelf margins, specifically in
the southern shear zone and in one region in the middle of
the ice shelf. By visually comparing these A fields with their
corresponding maps of remotely sensed crevasses, displayed
on the right-hand side of each panel, we can already appre-
ciate qualitatively the regions where these two fields overlap
in contrast to regions where little or no agreement is present.
A discrepancy is clearly visible between areas displaying an
ice rate factor well below the reference A for temperate ice
and the abundance of remotely sensed crevasses, particularly
evident for the Filchner–Ronne Ice Shelf. The middle portion
of the Pine Island Ice Shelf, where the NeRD method detects
a considerable number of crevasses, also exhibits a low ice
rate factor (as shown in red boxes in Fig. S2b). Additionally,
some regions where the ice rate factor exceeds that of tem-
perate ice do not show remotely sensed crevasses, indicating
that other factors, such as fabric, may be affecting changes in
ice flow.

3.1 Weak association between remotely sensed damage
and inverted ice rate factor

The ROC curve results illustrated in Fig. 2 display the trade-
off between the TPR and FPR of the binary classification
models across different classification thresholds of A for
bias-corrected data for the Filchner–Ronne Ice Shelf, for the
2009 crevasse map, and for the case of the 2009 crevasses
advected downstream for 5 years’ worth of distance. Overall,
we measure a mean AUC for the Filchner–Ronne Ice Shelf of
0.51 (with 95 % confidence intervals of 0.494–0.528) for the

former and 0.52 (with 95 % confidence intervals of 0.501–
0.536) for the latter, demonstrating that the ROC’s predictive
performance is no better than a random classifier.

The ROC curve analysis for the Pine Island Ice Shelf,
based on all surface crevasse features (Fig. 3a) and only heav-
ily damaged crevasses (Fig. 3b), for November 2019 (in blue)
and February 2020 (in orange), showed slightly improved
classification performance compared to the Filchner–Ronne
ROC plot results. However, we found that the predictive per-
formance is much higher for the model based only on heav-
ily crevassed regions, as opposed to that using all crevasses
mapped by NeRD (Fig. 3a and b). We found a mean AUC
of 0.55 for velocities of November 2019 (with 95 % confi-
dence intervals of 0.542–0.557) and a mean AUC of 0.55 for
velocities of February 2020 (with 95 % confidence intervals
of 0.539–0.555) for the model based on all surface crevasses.
The mean AUC improves to 0.69 in November 2019 (with
95 % confidence intervals of 0.649–0.724) and 0.73 in Febru-
ary 2020 (with 95 % confidence intervals of 0.686–0.765) for
the model based only on the heavily crevassed areas. These
results show that surface features identified as heavily dam-
aged crevasses are correlated to a greater degree with the
ice rate factor obtained through inversion methods. Never-
theless, the area under the curve values obtained still fall
below the threshold for significance, as AUC values rang-
ing from 0.7 to 0.8 are typically interpreted as poor in clas-
sification analysis (Metz, 1978). We further found a larger
uncertainty around the mean AUC for the heavily damaged
crevasse ROC analysis compared to that based on all sur-
face crevasses. This reflects the former ROC analysis rely-
ing on a smaller number of crevasses (412 heavily damaged
crevasses) compared to the latter, where all crevasses are con-
sidered (12 466).

3.2 Results are robust to changes in the regularization
parameter (γs)

The ROC plot’s classification analysis hinges on the accuracy
of the currently available crevasse maps derived by satel-
lite images and on the ice rate factor field A, which cannot
be directly observed, and must be derived through inverse
methods. The reliability of the inverted A field can be influ-
enced by two key factors. Firstly, errors can arise from the
observed velocities during the inversion process when min-
imizing the discrepancies between them and the modelled
velocities. Secondly, the spatial distribution of the inverted
A field may be affected by the choice of the regularization
parameters (γs) used to refine the gradient of A based on
prior information during the inversion. In this aspect, while
we assumed the velocity data provided by the remote sens-
ing community to be reliable for the first factor, we tested
the second by evaluating the sensitivity of our classification
results to the choice of γs. The sensitivity analysis was as-
sessed in the context of the Pine Island Ice Shelf, for both
November 2019 (in the Supplement) and February 2020 ve-
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Figure 1. Summary of the inverted ice rate factor field for the Filchner–Ronne (a) and Pine Island (b) ice shelves. To visually display the A
field and identify regions of damage, we have chosen to use a blue–white–red colour scale, centred on the A field for temperate ice obtained
from experimental results (A= 1.67×10−7 kPa−3 a−1; Spring and Morland, 1983; Cuffey and Paterson, 2010). This colour scale allows us
to easily identify areas of damage by visually comparing the A field to the reference value for temperate ice. Regions that have lower values
of A than the reference value indicate areas of less damage or intact ice (in blue), while regions with higher values indicate areas of damage
(in red). On the right-hand side of each panel, a representation of the crevasses as detected with the CNN method (panel (a), crevasses in
white with MODIS Mosaic 2009 underlaid) and all crevasses (in white) and heavily damaged crevasses (in red) as mapped with the NeRD
method (panel (b), with a composite sentinel (S2) image of austral summer 2019–2020 underlaid) is displayed. The MODIS MOA2009
mosaic underlaid in panel (a) is available at the National Snow and Ice Data Center (NSIDC): https://nsidc.org/data/nsidc-0593/ (last access:
4 June 2024). The Sentinel 2 composite in panel (b) was obtained from Izeboud et al., 2023, and processed in the Google Earth Engine, for
which the code is available here: https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd (last access: 4 June 2024).

locities, and the classification results, inclusive of all heavily
damaged crevasses, are presented in Figs. 4 and S3. With γa
fixed at a constant value, we systematically explored a spec-
trum of γs values in accordance with the values used by the
L-curve method (Fig. 4a). Notably, as γs is progressively in-
creased (Fig. 4a and b) to values > 106, the model’s predic-
tive capability (AUC mean) is reduced (closer to the random
classifier dashed line). This outcome is expected, since an in-
crease in γs enforces a more pronounced smoothing effect on

the invertedA field, thus reducing the correlation between in-
verted and remotely sensed damage. However, this is not the
case for the range of acceptable values of the regularization
parameter – γs within the L-corner range – within which the
ROC plot results remain invariant.
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Figure 2. ROC curve analysis for 2000 classification tests applied
to the Filchner–Ronne Ice Shelf, for all crevasses (2009, in blue)
and for all crevasses advected downstream for 5 years’ worth of
distance (in orange, to improve the match with the inverted ice rate
factor when fitting the 2014 velocities). We compare the ice rate fac-
tor field, A, and the crevasse products obtained by remote sensing/-
machine learning techniques, which represent the true observations
to be classified. The ideal perfect classifier corresponds to the red
dot; a random classifier corresponds to the diagonal line of the plot
(dashed blue line). We find an AUC mean of 0.51, which is slightly
improved when considering the advected crevasses to an AUC mean
of 0.52. Both models suggest that the predictions are no better than
a random classifier.

3.3 Consistently poor classification ability even for
optimal A threshold

While these results provide insights into the relationship be-
tween inferred A and the observed crevasse map for any pos-
sible threshold value in A, it may be beneficial to identify
an optimal A threshold, specifically for the case of heav-
ily damaged crevasses, where this relationship is strongest.
When performing this investigation on the Pine Island Ice
Shelf, for values of γs in the L-corner range, we found a me-
dian optimal A threshold for heavily damaged crevasses of
2.06×10−8 kPa−3 a−1 with a minimum and maximum range
[1.36×10−8–2.39×10−8] kPa−3 a−1 (Fig. 4c). Additionally,
when adopting this threshold, the classifier accurately iden-
tifies 50 % of the crevasses, while also incorrectly flagging
almost 20 % of crevasse-free regions as crevasses (Fig. 5).
While it is plausible that values above this A threshold may
indicate damage for this ice shelf, the probability of a match
between inverted and remotely detected damage remains lim-
ited to 50 %.

4 Discussion

An abundance of studies has been dedicated over the past
decade to detect crevasses across Antarctica using remote
sensing and machine learning techniques, but it remains un-
certain whether modellers can incorporate these products to
inform the rheology state of ice and constrain future sea level
rise projections. In this study, we have analysed whether the
inferred distribution of the ice rate factor A of an ice flow
model, which by construction is consistent with the observed
surface velocities, agrees with the damage maps derived from
surface morphological features. Overall, we find a poor re-
lationship between these observational and inverted prod-
ucts. However, when we specifically target regions where re-
motely derived damage maps display heavy crevassing, such
as the shear margins of the Pine Island Ice Shelf, the two
products are somewhat correlated. However, the calculation
of an optimal A threshold which best compromises the ROC
analysis has shown that, even in this setting, the association
between inverted and observational products is limited.

Several studies (MacGregor et al., 2012; Alley et al., 2019;
Lhermitte et al., 2020) have documented the increase in ar-
eas affected by damage on the Pine Island Ice Shelf over
the time period from 2017 to 2020, with a sustained series
of calving events and high localized fracturing occurring at
the ice shelf margins (Lhermitte et al., 2020; Joughin et al.,
2021a). The classification analysis performed in this study
showed an improved yet modest relationship when specifi-
cally targeting heavily crevassed regions in the Pine Island
Ice Shelf’s margins (AUC = 0.73 for the 2020 ice veloci-
ties). The relationship is poor, however, when targeting all
features identified as crevasses. Qualitatively, there are mul-
tiple regions where this discrepancy is clearly visible: for in-
stance, those crevasse-like features located in the centre of
the Pine Island Ice Shelf, where a stiffer and less deformable
ice is inferred (red boxes in Fig. S2b). Equally, in some re-
gions of the Filchner–Ronne Ice Shelf, the ice rate factor A
is lower than that of temperate ice, yet there is a high abun-
dance of crevasses detected through remote sensing images.
Other regions display the opposite relationship.

The classification analysis further provided us with an
optimal A threshold, 2.06× 10−8 kPa−3 a−1, where the re-
lationship between inverted and observational products is
strongest. If we translate this A threshold value into ice
temperature (°C) using Glen’s flow law for a stress expo-
nent n= 3, and following the approach of Spring and Mor-
land (1983), we find that it corresponds to a mean tempera-
ture of approximately −7.4 °C, with a minimum and maxi-
mum range of [−9.1 to−6.7] °C, a temperature substantially
lower than that of temperate ice (Fig. 4d). Since the model
employs a 2D depth-integrated formulation, resulting in a
depth-integrated ice rate factor and temperature, this value
will not capture the natural variation in ice shelf temperature
with depth. Thus, it becomes challenging to interpret this op-
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Figure 3. ROC curve analysis for 2000 classification tests applied to the Pine Island Ice Shelf, for all crevasses as mapped via NeRD (a) and
for only heavily damaged crevasses (b). We find an AUC mean of 0.55 and 0.73, respectively, when using an inverted ice rate factor obtained
when fitting velocities for February 2020. This relationship is slightly reduced when considering the November 2019 velocities (an AUC
mean of 0.55 and 0.69, respectively). Greater uncertainty is estimated for the case of heavily damaged crevasses (0.67–0.77). These results
suggest that the model’s predictions are improved, to some extent, when considering just heavily damaged crevasses.

timal temperature and extrapolate this critical A threshold for
future modelling purposes.

The observed discrepancy between modelled damaged and
remotely sensed crevasse maps is not to be attributed to defi-
ciencies in the physics incorporated within the model, such as
the use of a depth-integrated approximation or the omission
of the elastic component of deformation. Our methodology,
which leverages SSA equations and inversion techniques, has
proven effective in identifying rift formation and pinpointing
their locations (De Rydt et al., 2019), yielding an inverted so-
lution that not only accurately located areas of weakening but
also faithfully replicated independent analyses of ice rheol-
ogy (King et al., 2018). Our study abstained from investigat-
ing elastic effects, firstly, as the predominant behaviour of ice
resembles that of a viscous fluid, and instances of elastic be-
haviour arise in limited settings, and, secondly, as elastic ef-
fects can be safely disregarded at stresses and strain rates typ-
ical of ice shelf flow – given that loading periods and strain
rates in ice shelves are approximately 5 orders of magnitude
too small for elastic effects to be significant (Gudmundsson,
2007). The limited agreement between the two damage prod-
ucts suggests that the majority of surface crevasses identified
through satellite imagery are shallow features that do not ex-
ert a discernible impact on the depth-integrated ice viscosity
and ice flow.

Since remotely sensed crevasses do not have a strong as-
sociation with the inferred ice rate factor A, it is worth
questioning whether the extensive effort put into tracking
crevasses across the whole of Antarctica is of direct rele-
vance to modelling efforts regarding future sea level rise

projections. The inverted ice rate factor A that ice sheet
modellers obtain by fitting horizontal surface velocities pro-
vides a quite detailed and comprehensive understanding of
the depth-integrated properties of the ice for that moment in
time (Albrecht and Levermann, 2014; Borstad et al., 2012,
2013; Khazendar et al., 2007). Horizontal stresses cannot be
effectively transferred across highly fractured regions due to
the loss of mechanical integrity and load-bearing capacity
(Borstad et al., 2012, 2013). Therefore, if a crevasse is ac-
tive and affecting ice flow, the strain rates and velocities in
that region will change and will be detected by an ice sheet
model as a local increase in the ice rate factor parameter A.
On the other hand, crevasses that were previously active and
which later became passive or were later advected in regions
of compression are detected and expressed by lower values
of A. Additionally, regions that display inferred high values
of A may not necessarily match areas of active rifts, thus
providing insights into the structural integrity of the ice at
that location and highlighting the presence of other dynami-
cal processes currently occurring.

Current ice flow models do not account for an evolving ice
rate factor in transient simulations; thus the accuracy of their
projections remains restricted. Recent advances adopting a
novel physics-informed machine learning framework have
tested a complementary approach to calibrate uncertainties in
the ice rate factor and sea level forecasts by inferring a pos-
terior distribution of the ice rate factor (Riel and Minchew,
2023), providing some insights on better and continuously
updated calibrations of ice flow parameters. To further re-
duce these errors in the ice rate factor field when adopting

The Cryosphere, 18, 2677–2689, 2024 https://doi.org/10.5194/tc-18-2677-2024



C. Gerli et al.: Satellite-derived crevasse maps and inverted products 2685

Figure 4. (a) L-curve analysis for the Pine Island Ice Shelf, with a zoomed-in inset highlighting the L-corner range. (b) AUC mean values
for heavily damaged crevasses across varying regularization parameters (γs). The AUC mean is reduced for γs values exceeding 106, as a
smoother ice rate factor is applied. (c, d) Optimal A threshold determined from the ROC plots and corresponding temperature derived from
Glen’s flow law for heavily damaged crevasses, as a function of γs. Within each panel, a red-outlined box filled with grey shading highlights
the acceptable regularization values for γs, for heavily damaged crevasses. The AUC mean values, calculated from ROC analyses that
adopted simulations with regularization values of γs spanning the range [102–106], exhibit magnitudes tightly clustered around a common
value, ∼ 0.73. Nevertheless, as we progressively introduce larger γs values (exceeding 106), there is a discernible and consistent reduction in
the magnitude of the AUC mean. Variations in γs values in the L-corner range do not significantly impact the robustness of our results.

Figure 5. True positive rate (a) and false positive rate (b) for the Pine Island Ice Shelf across varying regularization values (γs), for heavily
damaged crevasses for simulations that fitted velocities for February 2020, for the best optimalA-threshold. Within each panel, a red-outlined
box filled with grey shading highlights the acceptable values for γs within the L-corner range.
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more conventional inversion procedures, it remains crucial
for future efforts to prioritize the monitoring of ice shelves’
velocity, geometry, and calving front positions, which are es-
sential parameters for accurate estimates of sea level fore-
casts.

5 Conclusions

We have investigated the relationship between inverted val-
ues of rheological parameters used in ice flow models and
independent estimates of ice damage extracted from satellite
imagery. In particular, we have critically evaluated the as-
sertion that estimates of ice damage can be used to inform
ice flow modelling studies by providing constraints on the
rheological parameter values (A) used in those models. Our
key measure is the ability to correctly predict the existence
of ice damage in each area from our inverted A values and
to correctly predict no damage where none is found. To do
this we must select a threshold value for A above which the
ice is considered damaged. We find that for any threshold
value, the performance of this predictor is like that of a ran-
dom classifier. While areas for which our inverted A fields
are above a given threshold value (suggesting ice damage)
often coincide with areas where analyses of satellite imagery
indicate structurally compromised ice (i.e., true positives), in
many other locations where our inverted A fields are above
that same threshold value, the satellite products suggest un-
damaged ice (i.e., false positives). In essence, we do not find
a clear relationship between damage inferred by an ice sheet
model and damage identified via remote sensing.

Our estimates of the spatial distribution of the rheologi-
cal parameter A are based on model inversions of measured
velocities and therefore reflect spatial variation in the prop-
erties of ice that have a measurable impact on ice flow. Any
feature identified as damage through other methods that does
not correspond to areas that a model identifies as softer ice
does not, by extension, have a measurable impact on ice flow.
Our results show that some of the variability in estimated
ice damage and crevasse densities derived from the analysis
of surface morphological features may not be impacting the
flow of the ice. This would, for example, be the case if some
of the observed crevasses are passive features. Conversely,
we also find that our model inversion implies areas affected
by ice damage (e.g., areas where the ice rate factor A is, for
example, higher than that of temperate ice), where no surface
damage or crevasses have been identified.

This lack of a match between ice damage and crevasse
density and the inferred variation in ice rheological param-
eters warrant further studies. It seems intuitively plausible
that surface crevasses on ice shelves may penetrate to suffi-
cient depths to hit the water line, and sound theoretical ar-
guments support this expectation, especially in the presence
of surface water input (Lai et al., 2020). Indeed, we do find
areas, such as within the shear margins of the Pine Island Ice

Shelf, where crevasse density and inferred A values both in-
dicate damaged ice. This suggests that further work might be
able to elucidate the reasons for the lack of correspondence
between these independent estimates of damage.
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